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Abstract: The core spliceosomal Sm proteins were recently proposed as cancer-selective lethal targets
in non-small cell lung cancer (NSCLC). In contrast, the loss of the commonly mutated cancer target
SF3B1 appeared to be toxic to non-malignant cells as well. In the current study, the transcriptomes of
A549 NSCLC cells, in which SF3B1 or SNRPD3 was silenced, were compared using RNA sequencing.
The skipping of exon 4 of the proteasomal subunit beta type-3 (PSMB3) mRNA, resulting in a shorter
PSMB3-S variant, occurred only after silencing SNRPD3. This observation was extended to the other six Sm
genes. Remarkably, the alternative splicing of PSMB3 mRNA upon Sm gene silencing was not observed in
non-malignant IMR-90 lung fibroblasts. Furthermore, PSMB3 was found to be overexpressed in NSCLC
clinical samples and PSMB3 expression correlated with Sm gene expression. Moreover, a high PSMB3
expression corresponds to worse survival in patients with lung adenocarcinomas. Finally, silencing the
canonical full-length PSMB3-L, but not the shorter PSMB3-S variant, was cytotoxic and was accompanied
by a decrease in proteasomal activity. Together, silencing Sm genes, but not SF3B1, causes a cytotoxic
alternative splicing switch in the PSMB3 mRNA in NSCLC cells only.

Keywords: non-small cell lung cancer; alternative splicing; proteasome; Sm proteins

1. Introduction

The human genome consists of approximately 20,000 protein-coding genes, but the transcriptome
and proteome are considerably larger. This is brought about by, amongst other processes, alternative
RNA splicing. RNA splicing converts premature mRNA into mature protein-coding mRNA through
the removal of intronic sequences. Different mRNA transcripts can be formed through alternative
splicing processes, including alternative 3′ or 5′ splice site selection, exon skipping or intron retention [1].
Different mRNA splice variants encode different protein isoforms, which can have distinct, or even
opposing functions. Alternative splicing (AS) is a common process in healthy cells, occurring in up to 94%
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of human genes [2]; and is crucial for proper tissue and organ development [3]. However, when RNA
splicing becomes deregulated, this can contribute to tumorigenesis through the loss-of-function of tumor
suppressor genes or the gain-of-function of oncogenes [4]. Over recent years, efforts have been made
in exploiting the RNA splicing machinery as a therapeutic target in cancer. The chosen strategies and
reported effects have been reviewed extensively [5,6]. RNA splicing is a dynamic reaction catalyzed by
a ribonucleoprotein complex called the spliceosome, involving the sequential recruitment and release
of many different proteins to and from the pre-mRNA transcript. Aside from serine/arginine-rich
protein-specific kinases, by far the most abundantly studied splicing factor as a target for cancer therapy
is splicing factor 3B subunit 1 (SF3B1), which is frequently mutated in cancer, especially in hematological
malignancies [7]. Small molecules targeting this splicing factor have been developed and are being
tested in clinical trials, with varying outcomes [8,9].

We recently found that another class of splicing factors, i.e., the Sm proteins that form a ring
structure in the core of the spliceosome, are cancer-selective lethal targets. The silencing of any of the
seven Sm genes killed non-small cell lung cancer (NSCLC) cells, but not non-malignant cells. In contrast,
targeting SF3B1 was toxic to malignant, as well as non-malignant lung cells [10]. Thus, the Sm proteins
appeared to be particularly attractive targets to combat NSCLC.

To date, it is unknown if and what changes in RNA splicing patterns are associated with loss of
NSCLC cell viability in response to Sm gene silencing, and if these events are distinct from those induced
by silencing SF3B1. Therefore, in the current study, we compared the transcriptomes of NSCLC cells
before and after silencing an Sm gene or SF3B1 by using RNA next-generation sequencing. From this
analysis, we found an alternative splicing switch in the proteasomal subunit beta type-3 (PSMB3) mRNA,
from the canonical long variant (PSMB3-L) to a short variant (PSMB3-S) that is predicted to be targeted
for nonsense-mediated decay (NMD). This switch occurred in NSCLC cells when any of the seven
Sm genes were silenced, but not when SF3B1 was silenced or inhibited with the splicing modulator
pladienolide B. The observed cytotoxicity could be attributed to a loss of PSMB3-L. We conclude that Sm
gene knockdown, but not SF3B1 knockdown, causes a cytotoxic alternative splicing switch in the PSMB3
gene in NSCLC cells, resulting in a loss of the full length protein. This switch is likely to contribute to
the cancer-selective toxicity of silencing Sm genes.

2. Results

2.1. Analysis of Transcriptomic Changes in NSCLC Cells after Silencing SNRPD3 or SF3B1

To investigate transcriptomic changes in NSCLC cells in response to splicing factor silencing, an
RNA sequencing experiment was performed on A549 NSCLC cells transfected with a non-targeting
control siRNA (siNT), an siRNA targeting SNRPD3 (siSNRPD3), or an siRNA targeting SF3B1 (siSF3B1).
A schematic overview of the experimental set-up is given in Figure S1.

As expected, a highly significant downregulation of SF3B1 and SNRPD3 mRNA was observed in
siSF3B1 and siSNRPD3 treated cells, respectively, confirming effective gene silencing (Figure 1a,b).
Silencing SF3B1 resulted in the differential expression (DE) of 1988 genes (false discovery rate (FDR)
< 0.05; log fold change > 1 or < −1), of which 729 genes were upregulated and 1259 genes were
downregulated (Figure 1a; Table S1). In contrast, SNRPD3 knockdown led to the DE of only 13 genes
other than SNRPD3 (of which eight were upregulated and five were downregulated; Figure 1b;
Table S2). Thus, silencing SF3B1 had much more profound effects on the transcriptome than silencing
SNRPD3. Gene ontology (GO) term analysis using the DAVID functional annotation tool [11,12]
revealed a significant enrichment of genes involved in transcriptional regulation and DNA replication
in the siSF3B1 upregulated and downregulated gene set, respectively (Table S1). The number of
differentially expressed genes upon SNRPD3 knockdown was too low to perform GO term enrichment
analysis (gene annotation is shown in Table S2). Only five differentially expressed genes (i.e., ATF3,
DUSP5, TM4SF1, GSTP1 and UBE2L6) were shared between siSF3B1- and siSNRPD3-transfected cells.
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Hence, the detected effects of silencing SF3B1 or SNRPD3 on the transcriptome of A549 NSCLC cells
were largely different.
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Differential expression (DE) analysis revealed 729 upregulated and 1260 downregulated genes when 
SF3B1 was silenced in A549 non-small cell lung cancer (NSCLC) cells (FDR < 0.05, logFC < −1 or > 1). 
(b) In contrast to siSF3B1, only eight and six genes were up- or downregulated upon SNRPD3 
knockdown, respectively (FDR < 0.05, logFC < −1 or > 1). (c) Alternative splicing (AS) events (A3′SS, 
A5′SS, RI and ES) upon silencing SF3B1 (top) or SNRPD3 (bottom). Silencing SF3B1 led to 
considerably more AS events than silencing SNRPD3. (d) Venn diagrams showing the overlap 
between the types of AS events within samples. Upon SF3B1 silencing, multiple AS events occurred 
within the same gene, whereas SNRPD3 silencing led to mostly single AS events within genes. 

Figure 1. Transcriptomic changes upon silencing SNRPD3 compared to silencing SF3B1. (a) Differential
expression (DE) analysis revealed 729 upregulated and 1260 downregulated genes when SF3B1 was
silenced in A549 non-small cell lung cancer (NSCLC) cells (FDR < 0.05, logFC <−1 or > 1). (b) In contrast
to siSF3B1, only eight and six genes were up- or downregulated upon SNRPD3 knockdown, respectively
(FDR < 0.05, logFC < −1 or > 1). (c) Alternative splicing (AS) events (A3′SS, A5′SS, RI and ES) upon
silencing SF3B1 (top) or SNRPD3 (bottom). Silencing SF3B1 led to considerably more AS events than
silencing SNRPD3. (d) Venn diagrams showing the overlap between the types of AS events within
samples. Upon SF3B1 silencing, multiple AS events occurred within the same gene, whereas SNRPD3
silencing led to mostly single AS events within genes.

Next, the alternative splicing of RNA transcripts in response to splicing factor silencing was
analyzed using the rMATS algorithm [13]. Here, the transcriptomes of siSF3B1-treated cells and
siSNRPD3-treated cells were each compared to the transcriptome of siNT-transfected control cells.
Volcano plots of filtered AS events are displayed in Figure 1c. For siSF3B1, 8189 AS events in 4057 unique
genes were detected (FDR < 0.05), of which 95% were exon skipping events. Thus, multiple AS events
were often detected in the same gene. The analysis of individual events revealed that, while multiple
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exon skipping events often occurred in the same gene, alternative splice site usage and intron retention
usually occurred only once within the same gene and were largely mutually exclusive. These events
did, however, regularly co-occur with an exon skipping event in the same gene (Figure 1d).

When SNRPD3 was silenced, only 672 AS events (FDR < 0.05, Figure 1c) were observed, of which
most were exon skipping events. However, in contrast to what we observed upon the silencing of
SF3B1, the knockdown of SNRPD3 caused mainly single AS events in individual genes (96%; Figure 1d).
Therefore, overall, silencing SNRPD3 appeared to cause more distinct changes in the transcriptome of
A549 cells than silencing SF3B1, with fewer mRNAs affected and fewer AS events per mRNA.

2.2. Identification and Validation of AS Events Unique to the Knockdown of SNRPD3 Compared to SF3B1

As we identified Sm proteins, but not SF3B1, as cancer-selective lethal targets in NSCLC, we sought
to identify AS events that occur in NSCLC cells exclusively upon Sm silencing compared to SF3B1.
To this end, we compared all unique genes with AS events in siSF3B1- and siSNRPD3-transfected
A549 cells (Figure 2a). GO term analysis on unique siSNRPD3 AS genes (Table S3), unique siSF3B1
AS genes (Table S4) or AS genes in both sets (Table S5) revealed the enrichment of genes involved in
RNA splicing. Hence, intriguingly, it appears that interfering with SF3B1 and/or SNRPD3 expression
induced the AS of many other splicing factor genes.
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Table S3. The top 10 most significant AS events in this set, occurring in nine different genes, are depicted 
in the volcano plots for siSNRPD3 in Figure 1c and were selected for validation by either quantitative 
RT-PCR or endpoint PCR using AS-specific primers (Figure S3 and Table S6). For some mRNAs, AS 
could not be confirmed, or was inconclusive due to the presence of multiple splice variants. The most 
convincing AS events in this analysis were the exon skipping events in TEX261, YKT6 and PSMB3. For 
TEX261, as identified by the rMATS analysis, silencing SNRPD3, but not SF3B1, resulted in the skipping 

Figure 2. Identification and validation of alternative splicing (AS) events unique to the knockdown
of SNRPD3 compared to SF3B1. (a) Venn diagram showing the overlap in AS events identified in
siSF3B1- and siSNRPD3-treated cells. (b) AS of the proteasomal subunit beta 3 (PSMB3) was confirmed
by PCR to occur only upon SNRPD3 silencing. Silencing SNRPD3 in A549 cells led to the decreased
expression of the long splice variant (PSMB3-L) and the increased expression of the short variant
(PSMB3-S). (c) PSMB3-L is the canonical full-length transcript variant that is translated into protein,
whereas the truncated PSMB3-S variant is predicted to be targeted for nonsense-mediated decay, and is
therefore non-coding.

The complete list of AS events in the 133 mRNAs in the siSNRPD3-specific gene set is given in
Table S3. The top 10 most significant AS events in this set, occurring in nine different genes, are depicted
in the volcano plots for siSNRPD3 in Figure 1c and were selected for validation by either quantitative
RT-PCR or endpoint PCR using AS-specific primers (Figure S3 and Table S6). For some mRNAs,
AS could not be confirmed, or was inconclusive due to the presence of multiple splice variants. The most
convincing AS events in this analysis were the exon skipping events in TEX261, YKT6 and PSMB3.
For TEX261, as identified by the rMATS analysis, silencing SNRPD3, but not SF3B1, resulted in the
skipping of exon 3. For YKT6, silencing SNRPD3 led to a decrease in the canonical full-length variant
and an increase in the shorter variant in which exon 6 is skipped. This was also observed upon
SF3B1 silencing, but to a lesser extent. Additionally, a product of about 300 nucleotides appeared in
siSNRPD3-treated cells only. There is no described or predicted YKT6 splice variant that could explain this
observation. The most prominent difference between siSNRPD3- and siSF3B1-transfected cells was the
exon 4 skipping event in the proteasome subunit beta 3 (PSMB3) gene (Figure 2b). Therefore, we focused
our attention on this specific event. The skipping of PSMB3 exon 4 results in a 178 nt shorter transcript
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variant (PSMB3-S, Figure 2c), which is predicted to be a target for nonsense-mediated decay (NMD).
Hence, exon 4 skipping is expected to result in decreased PSMB3 protein expression.

2.3. Sm Gene Silencing Induces a Cytotoxic Alternative Splicing Switch in PSMB3 that is More Pronounced in
NSCLC Cells than in Non-Malignant Cells

The Sm ring in the core of the spliceosome consists of seven Sm proteins; SmB, SmE, SmF, SmG,
SmD1, SmD2 and SmD3. We previously found that all these Sm proteins are cancer-selective lethal
targets in NSCLC [10]. Therefore, we investigated whether the alternative splicing of PSMB3 also
occurs when the other Sm genes are silenced in A549 NSCLC cells. We observed a significant decrease
in PSMB3-L expression when silencing each of the seven Sm genes. Although not significant, this was
accompanied by a trend of increased PSMB3-S expression. Again, silencing SF3B1 had no effect on
PSMB3 mRNA splicing (Figure 3a).
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Figure 3. Sm gene silencing induces a cytotoxic alternative splicing switch in PSMB3 more abundantly in
non-small cell lung cancer (NSCLC) cells than in non-malignant cells. (a) PSMB3 expression was assessed
upon silencing all seven Sm genes in A549 NSCLC cells and non-malignant IMR-90 lung fibroblasts.
The knockdown of Sm genes led to a significant decrease in PSMB3-L expression in A549 NSCLC cells
only. A trend of increased PSMB3-S expression was also observed in these cells, however, this was not
significant. In non-malignant IMR-90 lung fibroblasts, a trend of decreased and increased expression of
PSMB3-L and PSMB3-S, respectively, was also observed, but this was not significant and to a far lesser
extent than observed for A549 NSCLC cells. (b) The silencing of PSMB3-L, but not PSMB-S, decreased cell
viability in both A549 NSCLC cells and IMR-90 non-malignant lung fibroblasts and was accompanied by
decreased proteasomal activity, as measured by N-Succinyl-Leu-Leu-Val-Tyr-7-Amido-4-Methylcoumarin
(suc-LLVY-AMC) cleavage (c). Error bars indicate the standard deviation. * p < 0.05; ** p < 0.01; *** p < 0.001;
**** p < 0.0001.

As silencing Sm genes was lethal to NSCLC cells but not to non-malignant lung cells, we also
investigated if PSMB3 splicing was changed after silencing Sm genes in IMR-90 lung fibroblasts.
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Interestingly, although we observed a slight increase and decrease in PSMB3-S and PSMB3-L expression,
respectively, this effect was not significant and occurred to a lesser extent compared to A549 NSCLC
cells (Figure 3a). In addition, PSMB3 exon 4 skipping was also not observed when treating either A549
NSCLC cells or IMR-90 non-malignant lung cells with the SF3B1 inhibitor pladienolide B (Figure S4A).
Hence, silencing Sm genes, but not the silencing or inhibition of SF3B1, appeared to induce an AS switch
in the PSMB3 gene in NSCLC cells only.

We next investigated if the AS switch in PSMB3 compromised cell viability and could thus
explain the cancer cell-selective cytotoxicity of Sm gene silencing. To this end, custom siRNAs were
designed to specifically target either the PSMB3-L or PSMB3-S variant. The silencing of each PSMB3
variant was confirmed by PCR (Figure S4B). Silencing PSMB3-L induced a slight increase in PSMB3-S
expression. Therefore, siRNAs silencing PSMB3-L and PSMB3-S were also combined, to discriminate
between the effects caused by the loss of PSMB3-L and the gain of PSMB3-S. Interestingly, silencing
PSMB3-L, but not PSMB3-S, resulted in decreased cell viability in both A549 NSCLC cells and IMR-90
fibroblasts (Figure 3b). When co-transfecting cells with both siRNAs, viability was decreased to a similar
extent as observed when silencing PSMB3-L alone (Figure 3b). This indicates that the loss of PSMB3-L,
and not the increase of PSMB3-S, accounts for the observed cytotoxicity. To investigate if this cytotoxicity
could be related to a function of PSMB3 in protein catabolic processes, the proteasomal cleavage
of N-Succinyl-Leu-Leu-Val-Tyr-7-Amido-4-Methylcoumarin (Suc-LLVY-AMC) was measured upon
silencing PSMB3-L in A549 NSCLC cells (Figure 3c). The proteasome inhibitor epigallocatechin gallate
(EGCG) was included as a positive control. PSMB3-L silencing was confirmed with PCR (Figure S4C).
Silencing PSMB3-L significantly decreased proteasomal activity, although not as effectively as the
proteasome inhibitor, suggesting that the loss of proteasomal activity via the decreased expression of
PSMB3-L could contribute to the cytotoxic effect of Sm gene silencing.

Finally, to investigate a possible link between Sm and PSMB3 expression in clinical materials,
we analyzed a publicly available gene expression dataset [14] of primary NSCLC samples and normal
lung samples. This showed the overexpression of PSMB3 in NSCLC samples (Figure 4a) and revealed
a correlation between Sm and PSMB3 transcript expression in both malignant and adjacent normal
lung tissues, but not between SF3B1 and PSMB3 expression (Figure S5). Moreover, the analysis of
the Cancer Genome Atlas Lung Adenocarcinoma (TCGA-LUAD) dataset [15] revealed that the high
expression of PSMB3 is associated with worse survival in lung adenocarcinoma patients (Figure 4b).
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Figure 4. Analysis of publicly available data on PSMB3 expression in clinical materials. (a). PSMB3 is
overexpressed in NSCLC (n = 91) compared to adjacent normal lung tissue samples (n = 65) in the
NSCLC mixed non-small cell lung carcinoma dataset [14]. Error bars indicate the standard deviation.
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revealed that high PSMB3 expression corresponds to worse survival in patients with lung adenocarcinomas
(log-rank p-value < 0.01; high expression n = 386; low expression n = 114).
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3. Discussion

There is a growing interest in targeting components of the RNA splicing machinery to treat cancer.
A commonly sought therapeutic target in the spliceosome is SF3B1 (reviewed extensively in [16–18]).
Recently, we identified the core spliceosomal Sm proteins as candidate targets for the selective treatment
of NSCLC [10]. In contrast, we found that silencing SF3B1 was toxic for non-malignant lung cells as
well [10]. Therefore, in the current study, we set out to compare the transcriptomic effects of silencing
SNRPD3 or SF3B1 in NSCLC cells using RNA sequencing. There were notable differences, especially to
the extent of DE or AS, where the silencing of SNRPD3 induced substantially fewer DE or AS events than
silencing SF3B1. SmD3 is an essential component of the core of the spliceosome. It forms a heptameric
ring with six other Sm proteins, together constituting the core of U1, U2, U4 and U5 small nuclear
ribonucleoprotein (snRNP) subunits in the spliceosome, encircling the corresponding small nuclear
RNA (snRNA). Hence, Sm proteins are present in every step of the RNA splicing reaction. The Sm
proteins themselves do not engage in direct interactions with the pre-mRNA, however, the snRNA that
they specifically assemble around does so through base pairing with various intronic sequences [19].
In contrast, SF3B1 is part of only the U2 snRNP subunit that participates in every part of the splicing
reaction, except the initial step. SF3B1 accommodates the adenosine of the branchpoint sequence in
the intronic sequence to support duplex formation with the U2 snRNA [20]. It is unclear whether
this difference in the structural versus dynamic functions of SmD3 and SF3B1 can account for the
observed difference in the number of DE and AS events upon their silencing. In a study in which
the effect of the knockdown of different splicing factors on the AS of 38 selected splicing events was
analyzed, the silencing of structural components of the spliceosome (such as Sm proteins) caused more
profound changes in AS than silencing transient early components (such as SF3B1) [21]. While this
appears to be in contrast to our observations, the authors also found that the knockdown of core
splicing factors led to differential effects on specific introns, rather than to inefficient intron splicing in
general. In another study, it was found that the depletion of SmB led to AS of cassette exons rather than
constitutive exons. Additionally, the knockdown of SmB or SmD1 decreased snRNA expression [22].
It was recently reported that interfering with snRNA levels has a more selective effect on single exons
rather than a widespread global effect on splicing efficiency [23]. Together, this suggests that the core of
the spliceosome might have a more prominent role in the regulation of specific AS events than might
be assumed for a structural component.

When analyzing AS events specific to SNRPD3 silencing compared to SF3B1 silencing, our most
prominent finding was a switch in the splicing of PSMB3 mRNA. Specifically, exon 4 was skipped,
resulting in a short transcript variant (PSMB3-S) that is predicted to be target for NMD; and thus in
decreased PSMB3 expression. This observation was extended to all other Sm genes. Silencing Sm genes,
but not SF3B1, generally induced PSMB3 exon 4 skipping in NSCLC cells, but not in non-malignant
lung cells. We showed that the loss of the long transcript variant (PSMB3-L) is cytotoxic. We thus
identified an AS event that discriminates between the effects of targeting Sm genes versus SF3B1 and
that may contribute to the observed cancer-selective lethal phenotype of silencing Sm genes.

The proteasome is a 28-subunit protein complex that degrades ubiquitinated proteins. It consists
of a 19S regulatory domain and a 20S core domain. The 20S core domain is built up by two alpha
and two beta chains, consisting of subunits α1–7 and β1–7, respectively. PSMB3 codes for the β3
subunit [24]. The β1, β2 and β5 subunits have catalytic activity: caspase-like, trypsin-like and
chymotrypsin-like, respectively. In mammalian cells, three types of the 20S proteasome exist: the
constitutive proteasome, immunoproteasome and thymoproteasome. Plenty of studies have already
shown the relevance of proteasome deregulation in the context of cancer. Cancer cells appear to be
specifically sensitive to the inhibition of the constitutive proteasome. Several proteasome inhibitors
have been developed and clinically approved as anti-cancer drugs, such as bortezimib, carfilzomib
and ixazomib [25]. These proteasome inhibitors mainly target PSMB5.

Interfering with the proteasome has been described to increase the expression of autophagy-related
genes, such as LC3-II [26]. However, we did not observe this when we silenced Sm genes in NSCLC
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cells [10]. Other described downstream effects of proteasome inhibition include the inhibition of the
NF-κB pathway, cell cycle arrest through the prevention of p21 degradation and the induction of
apoptosis through the activation of the extrinsic and intrinsic pathways [27]. The latter is in line with
our previous observation that silencing Sm genes resulted in apoptosis in NSCLC cells [10]. Hence, the
inhibition of the proteasome, inducing apoptosis as a direct result of the AS switch in the PSMB3 mRNA,
could potentially explain the cytotoxicity of interfering with Sm gene expression in NSCLC cells.

Acquired resistance to, or toxicity caused by, current proteasome inhibiting compounds are
problematic [25]. Resistance to these drugs might be overcome by targeting another core 20S subunit;
such as PSMB3. Although the PSMB3 subunit is not assumed to have direct proteolytic functions,
silencing this subunit was found to contribute to bortezomib sensitivity in human multiple myeloma
cells and in A549 NSCLC cells [28]. Of note, in that study, contrasting our observations, cytotoxicity was
not evident when silencing PSMB3 alone. We identified a direct link between the core spliceosome and
proteasome activity. Although the loss of proteasome activity is clearly not the only response to Sm
gene silencing, the lethality of Sm gene silencing and PSMB3 silencing in NSCLC cells was similar,
suggesting that the loss of proteasome activity was a major contributor to the selective cytotoxicity of
targeting the core spliceosome. Our in vitro observations await in vivo confirmation. In view of the
strong cytotoxicity of silencing Sm genes or PSMB3-L in NSCLC cells, such studies will need to be
done using an inducible knockdown system.

There are more indications that the proteasome and spliceosome are intertwined. For example,
splice factor PRPF19 was shown to interact with PSMB4 of the 20S proteasome, to co-localize with
the proteasome after the inhibition of the latter and to exhibit E3 ubiquitin ligase activity [29].
Moreover, in triple-negative breast cancer cells, the expression of proteasomal genes PSMB4 and PSMB5
was dependent on the expression of splice factors PRPF8 and PRPF38A. The treatment of patient-derived
triple-negative breast cancer xenografts with the splicing inhibitor E7107 and proteasome inhibitor
bortezomib combined showed an enhanced effect compared to either treatment alone [30].

In conclusion, we found that silencing Sm genes indirectly targets the proteasome by inducing a
cytotoxic AS switch in PSMB3 mRNA in NSCLC cells only. Potentially, through inhibiting Sm gene
expression, the loss of proteasomal activity can be achieved with similar cytotoxic effects as observed
when targeting PSMB5, but with more selectivity towards cancer cells. Hence, indirectly targeting the
proteasome via the spliceosome might be a powerful strategy in the context of cancer therapy that is
worth further investigating.

4. Materials and Methods

4.1. Cell Culture

Human A549 NSCLC cells (RRID:CVCL_0023) and IMR-90 fetal lung fibroblasts (RRID:CVCL_0347)
were purchased from the ATCC (Massanas, VA, USA) and grown in Dulbecco’s modified Eagle’s medium
(DMEM, Sigma, part of Merck, Kenilworth, NJ, USA #D5796,) or Eagle’s minimum essential medium
(EMEM, Sigma, part of Merck, Kenilworth, NJ, USA #4655), respectively, containing 10% fetal calf
serum (PAA Laboratories, part of Thermo Fisher Scientific, Waltham, MA, USA, #A15-101) and 1%
penicillin/streptomycin (Sigma, part of Merck, Kenilworth, NJ, USA, #P4333). A549 cell line identity was
confirmed by short tandem repeat (STR) analysis (BaseClear, Leiden, The Netherlands) and both cell lines
were tested negative for mycoplasma every 3 months. During the experiments, antibiotics were omitted
from the medium. All culturing procedures were performed at 37 ◦C; 5% CO2.

4.2. siRNA Transfection

A549 and IMR-90 cells were transfected with a 25 nM non-targeting siRNA pool (Dharmacon, part of
Horizon Discovery Ltd., Cambridge, UK, siNT, #D-001206-14) or individual siRNAs targeting Sm genes,
SF3B1 or PSMB3 (Table S7) and 0.05% DharmaFECT1 (Dharmacon, part of Horizon Discovery Ltd.,
Cambridge, UK, #T-2001) for A549 or 0.03% Lipofectamine RNAiMAX (Thermo Fisher Scientific, Waltham,



Int. J. Mol. Sci. 2020, 21, 4192 9 of 12

MA, USA, #13778) for IMR-90; 24 h after seeding in 96-well or six-well plates. For RNA-seq, two biological
replicates were prepared for each sample. All other experiments were performed in triplicate. Cells were
harvested 72 h after transfection for RNA isolation or the assessment of proteasomal activity. Cell viability
was assessed after 6 days using CellTiter-Blue reagent (Promega, Madison, WI, USA, #G8081). Cell viability
was determined by measuring fluorescence at 540 nm excitation and 590 nm emission wavelengths
using a Tecan Infinite F200 reader (Tecan Group, Männedorf, Switzerland) and lethality scores [31] were
calculated from fluorescent values, as described previously [10].

4.3. RNA Isolation, cDNA Preparation and RNA-Seq Library Preparation

Total RNA was isolated from cells using either the miRNeasy Mini Kit (Qiagen, Hilden, Germany,
# 217004) with the additional on-column DNAse digestion (RNase-Free DNase Set, Qiagen, Hilden,
Germany, # 79254) for RNA-seq experiments, or using phenol–chloroform extraction for PCR
experiments using TRIzol reagent (Thermo Fisher Scientific, Waltham, MA, USA, # 15596). The cDNA
for PCR experiments was prepared with FIREScript RT cDNA synthesis KIT (Solis Biodyne, Tartu,
Estonia, # 06-15-00200). RNA quality for RNA-seq analysis was assessed using the RNA 6000 Nano kit
(Agilent, Santa Clara, CA, USA, #5067-1511) on a 2100 Bioanalyzer instrument (Agilent, Santa Clara,
CA, USA, # G2939BA) with the 2100 Expert software (RRID:SCR_014466) and determined at a RIN
score of 9 or higher. Samples were prepared for RNA-seq using the TruSeq Stranded mRNA Sample
Preparation kit (Illumina, San Diego, CA, USA, #RS-122-2101) and Agencourt AMPure XP beads
(Beckman Coulter, Brea, CA, USA, #A63880) according to the manufacturer’s protocol using 2 µg input
RNA with an extra cleanup step after the PCR amplification of the library to remove potential primer
dimers. Sample size and purity was analyzed using the DNA 1000 kit (Agilent, Santa Clara, CA,
USA, #5067-1504) on the 2100 Bioanalyzer instrument. Samples were pooled to a final concentration of
10 nM and the pooled library was analyzed using the DNA 7500 kit (Agilent, Santa Clara, CA, USA,
#5067-1506). Sequencing was performed on an Illumina HiSeq V4 2500, using a 125 bases paired-end
run with an input of 13 pM cDNA.

4.4. RNA-Seq Analysis

Sequencing yielded an average of 40 million reads per sample. Raw reads were first subjected to
quality control using FastQC version 0.11.4 (RRID:SCR_014583) [32] with default settings and visualized
with MultiQC version 0.9 (RRID:SCR_014982) [33] with default parameters. Adapters were trimmed,
reads were processed to 120 nt and mapped to the human genome (USCS RefSeq hg19 annotation)
using STAR (RRID:SCR_015899) [34]. Differential expression was analyzed using DESeq2 version 1.10
(RRID:SCR_015687) [35] and filtered on logFC < −1 or > 1 and FDR < 0.05. Alternative splicing was
detected using the rMATS algorithm version 3.2.5 (RRID:SCR_013049) [13]. Events were filtered on FDR
< 0.05 and a threshold for the selection of relevant events was set based on the sum of inclusion and
skipping counts calculated by rMATS. Code is available under https://github.com/NKI-TGO/SPLICIFY
part 1; the pipeline was developed by Komor et al. [36]. Events with sum counts within the first quartile
were excluded (Figure S2; excluding events with total counts < 202 for siSF3B1, < 127 for siSNRPD3).
Gene ontology (GO) term analyses were performed in DAVID version 6.8 (RRID:SCR_001881) [11,12].

4.5. PCR and Quantitative PCR (qPCR) Experiments

One hundred nanograms of cDNA was added to PCR Master Mix (Thermo Fisher Scientific,
Waltham, MA, USA, #K0172), with forward and reverse primers (Table S6), and run on a Biometra
T3000 Thermal Cycler (Westburg BV, Utrecht, The Netherlands) using an initial denaturation step
at 95 ◦C for 3 min, followed by 30 cycles of denaturation at 95 ◦C for 30 s, annealing at 55 ◦C for
30 s, extension at 72 ◦C for 1.5 min and a final extension at 72 ◦C for 7 min. PCR products were
analyzed on a 3% agarose gel and band intensity was quantified using ImageJ software version
1.51 (Rasband, W.S., ImageJ, NIH, Bethesda, MD, USA, RRID:SCR_003070). Expression values were
normalized to β-actin expression and calculated relative to siNT. Real-time PCR was performed on a
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LightCycler 480 (Roche) using the HOT FIREPol® EvaGreen® qPCR Mix Plus (no ROX) (Solis BioDyne,
Tartu, Estonia, #08-25-00001). Primers were designed using Primer-BLAST 3.0 (RRID:SCR_003095) and
purchased as custom oligonucleotides from Invitrogen (Table S6). Expression levels were determined
on the basis of the threshold cycle calculated by the LightCycler 480 software (RRID:SCR_012155) and
normalized to β-actin. Relative expression levels were calculated compared to siNT (2−∆∆Ct).

4.6. Proteasome Activity Assay

A549 cells were transfected with siNT or siPSMB3-L, as above. After 3 days, proteasomal activity
was quantified using the 20S Proteasome Assay Kit (Cayman Chemical, Ann Arbor, MI, USA, # 10008041)
according to the manufacturer’s protocol, measuring fluorescence at 360 nm excitation and 440 nm
emission wavelengths on a BioTek plate reader (Agilent). The fluorescent signal relative to siNT-treated
cells was calculated.

4.7. Expression Data Analysis

The publicly available NSCLC dataset of mixed non-small cell lung carcinoma [14] was analyzed
for differential expression between adjacent normal lung tissue samples and primary NSCLC and the
correlation between SNRP and PSMB3 expression using R2: Genomics Analysis and Visualization
Platform (http://r2.amc.nl) using the built-in one-way ANOVA statistical test to compare between
adjacent normal lung tissue samples and primary NSCLC. For survival analysis, TCGA-LUAD data [15]
was extracted from the Human Protein Atlas [37].

4.8. Statistical Analyses

All experiments were performed in triplicate, except for the RNA sequencing experiments, for which
two biological replicates per sample were prepared. For PCR, the viability and proteasome activity
experiments’ significant differences compared to siNT or untransfected controls were identified by
two-way ANOVA, correcting for multiple comparisons using the Benjamini–Yekutieli method [38].
Correlations were determined through Pearson coefficients. Unless stated otherwise, statistical analyses
were performed using GraphPad Prism version 8.2.1 for Windows (GraphPad Software, La Jolla, CA, USA,
RRID:SCR_002798).

Supplementary Materials: The following are available online at http://www.mdpi.com/1422-0067/21/12/4192/s1,
Figure S1: Workflow of the RNA sequencing experiment, Figure S2: Histograms depicting the frequency distribution
of inclusion and skipping counts calculated by rMATS, Figure S3: PCR or quantitative PCR was performed to
validate siSNRPD3-specific AS events predicted by rMATS, Figure S4: Analysis of PSMB3 expression, Figure S5:
Analysis of publicly available NSCLC expression dataset, Table S1: DE_siSF3B1, Table S2: DE_siSNRPD3,
Table S3: AS_siSNRPD3, Table S4: AS_siSF3B1, Table S5: AS_overlap, Table S6: Primer sequences, Table S7:
siRNA sequences.
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