

Molecular inheritance from cloud to disk: a story of complex organics and accretion shocks

Gelder, M.L. van

Citation

Gelder, M. L. van. (2022, November 24). *Molecular inheritance from cloud to disk: a story of complex organics and accretion shocks*. Retrieved from https://hdl.handle.net/1887/3487189

Version:	Publisher's Version
License:	<u>Licence agreement concerning inclusion of doctoral</u> <u>thesis in the Institutional Repository of the University</u> <u>of Leiden</u>
Downloaded from:	https://hdl.handle.net/1887/3487189

Note: To cite this publication please use the final published version (if applicable).

Molecular inheritance from cloud to disk

- A story of complex organics and accretion shocks -

Proefschrift

ter verkrijging van de graad van doctor aan de Universiteit Leiden, op gezag van rector magnificus prof. dr. ir. H. Bijl, volgens besluit van het college voor promoties te verdedigen op donderdag 24 november 2022 klokke 12:30 uur door

Martijn Lucas van Gelder

geboren te 's-Gravenhage, Nederland in 1994

Promotores:

Prof.	dr.	E. F. van Dishoeck	
Prof.	dr.	M. R. Hogerheijde	Universiteit Leiden
			Universiteit van Amsterdam

Co-promotor:

Dr. B. Tabone	Université Paris-Saclay
---------------	-------------------------

Promotiecommissie:

Prof. dr. H. J. A. Röttgering Prof. dr. S. Viti Prof. dr. J. K. Jørgensen University of Copenhagen Dr. B. Nisini INAF, Osservatorio Astronomico di Roma Dr. B. A. McGuire MIT, Cambridge

ISBN: 978-94-6419-632-0

Cover design: Marta Paula Tychoniec

If the truth is worth telling, it is worth making a fool of yourself to tell it. - Frederick Buechner

Table of contents

1.1 How do stars form? 1.1.1 Prestellar phases and start of collapse 1.1.1 Prestellar phases and start of collapse	· 2 · 2 · 3
1.1.1 Prestellar phases and start of collapse	. 2 . 3
	. 3
1.1.2 Low-mass star formation	
1.1.3 High-mass star formation	. 6
1.2 Chemistry during protostellar evolution	. 7
1.2.1 Prestellar cores	. 7
1.2.2 Hot cores	. 10
1.2.3 Shocks	. 10
1.3 Astronomical observatories	. 14
1.3.1 ALMA	. 14
1.3.2 JWST	15
1.4 Complex organic molecules in protostars	. 16
1.4.1 Ices	. 17
1.4.2 Gas phase	. 18
1.5 Inheritance versus reset: accretion shocks	23
1.6 This thesis	25
PART 1 Chemical complexity in young protostars	29
2 Complex organic molecules in low-mass protostars on Solar Sys	_
tem scales. I. Oxygen-bearing species	31
2.1 Introduction	. 33
2.2 Observations	. 35
2.3 Spectral modeling and results	. 37
2.3.1 Methodology	. 37
2.3.2 Column densities and excitation temperatures	39
2.3.3 Relative abundances	. 42
2.4 Discussion	43
2.4.1 Occurrence of COMs in young protostars	43
2.4.2 Dependence on source size	. 10
2.4.3 From cold (Band 3) to hot (Band 6) COMs	. 45
2.4.4 Comparison to other sources	. 48

		2.4.5 Comparison with ices			50
		2.4.6 Temperature dependence of deuterated methanol .			50
	2.5	Summary			51
	App	$\mathbf{pendices}$			53
	2.A	Laboratory spectroscopic data			53
	$2.\mathrm{B}$	CASSIS modeling results			54
	$2.\mathrm{C}$	Full ALMA Band 6 spectra			61
	$2.\mathrm{D}$	B1-c Band 3 spectrum			67
	$2.\mathrm{E}$	Additional tables			71
3	Imp	portance of source structure on complex organics en	nissi	on.	
	I. Ō	Observations of CH ₃ OH from low-mass to high-mass p	oroto	sta	rs 95
	3.1	Introduction			97
	3.2	Methodology			98
		3.2.1 Observations and archival data			98
		3.2.2 Deriving the column density			100
		3.2.3 Calculating the warm methanol mass			102
	3.3	Results			103
		3.3.1 Amount of warm methanol from low to high mass			103
		3.3.2 Comparison to spherically symmetric infalling enve	lope		105
	3.4	Discussion			107
	0	3.4.1 Importance of source structure			107
		3.4.2 Continuum optical depth			110
	3.5	Conclusion			112
	App	pendices			114
	3 A	Observational details			114
	3 B	Transitions of CH_2OH and isotopologues	• • •	• •	126
	3 C	Toy model of infalling envelope	• • •	• •	128
	3 D	Calculating the reference dust mass		• •	120
	J.D			• •	129
4	Met	thanol deuteration in high-mass protostars			131
	4.1	Introduction			133
	4.2	Methodology			134
		4.2.1 Observations			134
		4.2.2 Deriving the column densities			136
	4.3	Results			138
	4.4	Discussion			140
		4.4.1 Methanol deuteration from low to high mass			140
		4.4.2 Singly vs doubly deuterated methanol			142
		4.4.3 Linking the methanol D/H to the physical condition	ıs dur	ing	
		formation			143
	4.5	Conclusion			146
	App	pendices			149
	4. A	Transitions of CH ₃ OH and isotopologues			149
	$4.\mathrm{B}$	Observational details			150
	4.C	Methanol D/H ratios of sources in the literature \ldots .			154

	4.D 4.E	$\rm CHD_2OH$ in B1-c, Serpens S68N, and B1-bS	$\begin{array}{c} 156 \\ 157 \end{array}$
PA	ART	II Inheritance versus reset: accretion shocks	159
5	Mod	leling accretion shocks at the disk-envelope interface. Sul-	
	fur o	chemistry	161
	5.1	Introduction	163
	5.2	Accretion shock model	165
		5.2.1 Shock model	165
		5.2.2 Input parameters	168
	5.3	Results	169
		5.3.1 Temperature and density	169
		5.3.2 Chemistry of SO and SO_2	171
		5.3.3 Effect of grain size and PAHs	176
		5.3.4 Other molecular shock tracers: SiO, H_2O , H_2S , CH_3OH , and	
	~ .	H_2	176
	5.4	Discussion	178
		5.4.1 Comparison to SO and SO ₂ with ALMA \dots	178
		5.4.2 Predicting H_2 , H_2O , and [S1] with JWST	179
	ə.ə A	Summary	180
	Appo 5 A	Undeted appling of NIL	102
	D.A.	Updated cooling of $N\pi_3$	102
	э. р 5 С	Changing the preshock conditions	100
	5.0 5 D	Abundance gride	187
	J.D	5 D 1 H ₂ S H ₂ O SiO and CH ₂ OH for $C_0 = 1$	187
		5.D.1 H_{25} , H_{20} , SIO , and $OH_{3}OH$ for $O_0 = 1$	188
	5 E	Higher magnetized environments	190
	0.11	$5 \ge 1$ <i>C</i> -type shocks	190
		$5 \to 2$ <i>CL</i> -type shocks	191
		o. D. D. D. Contraction of the c	101
6	\mathbf{Obs}	erving accretion shocks with ALMA. Searching for SO and	
	\mathbf{SO}_2	in Class I disks	193
	6.1	Introduction	195
	6.2	Observations	197
	6.3	Results	198
		6.3.1 Dust continuum	198
		6.3.2 SO and SO_2	199
	6.4	Discussion	202
		$6.4.1 \text{Inheritance vs reset: constraining the shock strength} \ . \ . \ .$	202
		$6.4.2$ $$ Relation between warm SO_2 and source properties $$	203
	6.5	Conclusions	205
	App	endices	207
	6.A	Maps of $c\text{-}C_3H_2$ and CH_3OH	207

6.B Spectra of SO and SO2 for IRS 4 and IRS 6	$208 \\ 209$
Bibliography	200 210
Nederlandse samenvatting	233
Publications	241
Curriculum Vitae	243
Acknowledgements	245