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Chapter 5

Quantum tunneling dynamics
in a complex-valued

Sachdev-Ye-Kitaev model
quench-coupled to a cool bath

5.1 Introduction

Non-equilibrium dynamics of the celebrated Sachdev-Ye-Kitaev (SYK) model
[25, 26] — dual to a black hole in a two-dimensional anti-de Sitter space —
instantaneously coupled to a larger cold media has been recently scrutinized
[170, 171] intending to mimic black hole evaporation [172-176] in a compact
quantum mechanical setup. Alongside, several platforms have been proposed
for experimental realization of the SYK model: as a low-energy effective de-
scription of a topological insulator/superconductor interface with an irregular
opening [23], Majorana wires coupled through a disordered quantum dot [22],
ultracold atoms trapped in optical lattices [177, 178], graphene flake with a
random boundary [77], and digital quantum simulation [179-181]. In this con-
text, opening up the system to an outer environment arises naturally as the
“black-hole chip” [23] is necessarily in contact with a substrate and probes.
Once the system is opened due to quench-coupling, it starts to equilibrate
with the external reservoir. Of particular interest is how the initial shock
and the subsequent equilibration affects the initial SYK state and transport
observables. The SYK model describes strongly interacting fermions in (0+41)-
dimensions. As such, it can be considered as a quantum dot that is usually
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characterized via tunneling current. In this manuscript, we consider the com-
plex SYK model [137, 182] abruptly coupled to a zero temperature bath. We
input the initial electrochemical potential in the SYK subsystem to enable
quantum charge tunneling apart from the temperature drop between the SYK
dot and the reservoir [170, 171]. Unlike equilibrium transport in the SYK
quantum dot coupled to metallic leads [183-187], we are focused on the time
evolution of both spectral properties and the tunneling current.

It was indicated earlier that right after the quench the SYK subsystem
surprisingly heats up despite coupling to the colder bath [170, 171] and cools
down later equilibrating with the reservoir’s temperature. In the holographic
picture this initial heating is aligned with the increase of the subsystem energy
that accompanies the information carried by the quench-induced shock-wave
falling into the black hole [175]. We recover this result in the absence of a
potential difference and confirm that the applied quench protocol cools down
the SYK dot preserving an exotic SYK non-Fermi liquid phase after the relax-
ation. Proceeding to transport, we analyze the tunneling current evolution at
low temperatures. We observe numerically that the current half-life — the time
required for current to relax back to half its maximum value — growths linearly
with the initial temperature of the SYK quantum dot. In contrast, replacing
the SYK subsystem with a disordered Fermi liquid leads to a quadratic tem-
perature increment of the current’s half-life. This enables one to distinguish
the SYK non-Fermi liquid from a more common disordered phase by means
of the quench-tunneling protocol.

5.2 The model

We begin our analysis with the SYK model in thermal equilibrium (chemical
potential p, temperature T') coupled to a reservoir at zero chemical potential
and zero temperature via tunneling term at time ¢ = 0. The Hamiltonian
reads

H = HSYK + Hres + e(t)Htuna (51)
1 N N

Hsyi = ———75 > Jij;lezTC;CkCl - MZCZT% (5.2)
(2N)77, =1 i=1

1 M
Hres e fa 1#3?/) + h.C., (53)
ﬁMa’BZﬁ LN
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i=la=1
where Jiju = Jiy. i = —Jjikt = —Jijuk, §ap, and A, are Gaussian random

variables with finite variances [J;;.x1|2 = J2, [€as]? = €2, [Mia|?> = A? and zero
means. Below we assume the reservoir much larger than the SYK subsystem,
which imposes M > N for the modes numbers. The charging energy [185,
187-189] is supposed to be negligible comparing to the SYK band-width J.
The conventional way to address non-equilibrium dynamics of a quan-
tum many-body system is solving Kadanoﬁ Baym (KB) equations for the

two-point functions G=(t,t') = —iN~! Z(cl(t:F)cl(ti)% where + denotes

the top/bottom branches of the Keldysh tlme contour [76]. Inasmuch as
Schwinger-Keldysh formalism has been widely applied to the SYK model in
both thermalization [170, 171, 190-193] and transport [183, 184, 194] context,
we leave the detailed derivation for Appendix 5.6 and proceed straight to the
Kadanoff-Baym equations that hold in the large N, M limit:

(10 4 p) G2 (t, 1) = /J:Odu(ZR(t, u)G= (u,t)

+ B2t w)Ga(u, 1)), (5.5)
(—i0y + p) G2 (t, ) :/J:Odu(GR(t,u)Ez(u,t’)
+ G2 (t,u)Ba(u, 1)), (5.6)

The self-energy
Y2(t,t") =TGR (t, V)2 G>(t) 1)
+ VP X000 Q= (¢, 1) (5.7)
includes the contribution of the cool-bath as a time dependent background

H;(26(t —t')) +4J1(26(t — 1))
28(t — 1)
expressed through Struve H; and Bessel J; functions [167]; see Appendix 5.6.

Here we introduce the ratio p = M/N and limit ourselves to the large reservoir
case p > 1. Below we assume & = J for brevity.

Q% (ta t,) = -

(5.8)
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The initial state of the system is settled by the thermal state of the bare
SYK model (5.2) in absence of coupling to the reservoir. At the moment of
quench the SYK subsystem (5.2) begins to deviate from the initial thermal
state until it finally thermalizes at late times. Characterizing thermaliza-
tion dynamics requires notion of the retarded, advanced, and Keldysh Green’s
functions

Grt,t) =0(t—1t) (G>(t, ) — G<(¢, t’)), (5.9)
Galt,t) = —0(t' = 1) (G> (. ¥) - G=(t,1)), (5.10)
Gk (t,t) =G~ (t,t') + G=<(t,t) (5.11)

expressed above in terms of the “greater” and “lesser” components. The same
rules (5.9-5.11) apply to the self-energy (5.7).

The Green’s functions are found numerically from the KB equations (5.5,5.6)
with the self-energies (5.7,5.8). At first, we calculate the equilibrium Green’s
functions of the bare SYK model using an iterative approach [195, 196]. We ap-
ply an extra constraint manifesting the fluctuation-dissipation relation at ini-
tial temperature and chemical potential !. The equilibrium Green’s functions
set the initial condition for the Kadanoff-Baym equations and evolve as fol-
lows: the integrals in the KB equations are computed with the trapezoidal rule
and the remaining differential equations are solved by the predictor-corrector
scheme. The corrector adjusts self-consistently at every iteration [190, 191].
For the spectral properties we use the two-dimensional time grid with a step
5t = 0.02 and n ~ 10* points in each direction, while for the transport cal-
culations the numerical grid is more refined §¢ = 0.005 but has a smaller size
n ~ 103.

5.3 Relaxation after the quench

In a while after the quench the system relaxes and approaches a thermal
state. To demonstrate that, we rotate the time frame ¢,¢' in the numerically
computed Green’s functions towards 7 =t —t/, T = (¢t + ¢')/2 and make a
Fourier transform along 7. Indeed, the system returns to a nearly-thermal

In thermal equilibrium the fluctuation dissipation relation states [76]: Gx(w) =

2i ImGRr(w) tanh wz—T,u
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Figure 5.1. [Top] Deviation of the SYK subsystem from the initial thermal
state: ratio between the Keldysh Green’s function and the spectral function of the
SYK model at charge neutrality (Left panel) and at finite chemical potential (Right
panel). The equilibrium distribution functions at the initial temperature are profiled
with the dashed lines. The oscillations noticeable in the orange curves have a numer-
ical origin, viz. the quality of the computation depends on the size and refinement of
the time grid. The time grid is designated in the ¢, ' space, while Fourier transform is
done along diagonal 7 =t —t'. Ergo, the T-lattices differ by length for separate slices
of T. Extension and refinement of the time grid suppress the oscillations. [Bottom]
Spectral function of the SYK model as a function of frequency at charge neutral-
ity (Left panel) and at finite chemical potential (Right panel). The dashed/dash-dot
lines show the equilibrium SYK spectral function in the infrared regime for different
parameters.

state if the extended fluctuation dissipation relation
M — tanh w—Ni,u(T) (5.12)
A(w,T) 27(T)
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SYK,, T =0.1J, p=0.1J

T
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Figure 5.2. Effective chemical potential in the SYK quantum dot coupled
to a large reservoir with Ty.s = 0 and fires = 0.

is fulfilled at frequencies in the vicinity of fi, where A(w,T) = —2ImGg(w,T)
is the SYK spectral function. In contrast to the equilibrium case, the ex-
tended fluctuation dissipation relation (5.12) is manifestly time dependent via
the “centre of mass” coordinate 7~ which enters the effective temperature T
and chemical potential 1. Overall, the ratio (5.12) determines the effective
distribution function of the SYK fermions in a quasi-equilibrium state, since
tanh £ = 1 — 2np(w — [, T'), where ng is the Fermi distribution function.

The effective temperature can be extracted from the fluctuation dissipation
relation (5.12) by an inverse slope of the Green’s functions ratio

—1
~> (5.13)

W=

~ [ 0 2iGg(w,T)
T = (&,u Af;,”r)

at w = . Following the top panel of Fig. 5.1, that shows the ratio (5.12), one
notices the temperature increase around 7 = 0, in spite of coupling to a colder
reservoir. The initial temperature increment is followed by the subsequent
temperature decay to the reservoir’s temperature 7' = 0. This behavior was
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revealed earlier for the SYK model with Majorana zero-modes [170, 171]. At
late times JT =~ 17.8, the system clearly relaxes after the quench since the
ratio (5.12) corresponds to the Fermi distribution at low temperature.

In comparison to the previous studies [170, 171}, the new ingredient here
is a charge imbalance between the SYK quantum dot and the cool-bath.
Thereby, we track the electrochemical potential in the SYK subsystem which
changes substantially once the quench is on. The effective chemical potential
f(7T) is set by the frequency where the ratio (5.12) turns to zero, as shown
in Fig. 5.1 (top right). We plot the SYK chemical potential in Fig. 5.2,
where 1 originates from the initial value y = 0.1J in the SYK quantum dot
for T — —oo and adjusts to the reservoir’s p,.s = 0 at late times 7 — 4o00.
As noted in Fig. 5.2, the chemical potential responds to the quench with a
non-monotonic behavior as a function of time 7, akin to the temperature.
Note that the “centre of mass” time coordinate 7 and the actual time are
not equivalent unless in a long-time limit. This explains why the chemical
potential can already rise at small negative 7.

Since the tunneling between the SYK quantum dot and the reservoir turns
on not adiabatically, of importance is whether the SYK non-Fermi liquid phase
survives the quench. We compare the SYK spectral function A(w,7T) a while
after the quench to the equilibrium spectral function of the bare SYK model
AR (w) = —2ImGF(w) in the infrared regime J/N < w,T < J, where

C@)e T (i~ izgr +i€)

G (w) = —i , 5.14
R() /727_‘_!]1_,11(%_2,%%_{_2,5) ( )
ore SN (5 +0) < T )1/4
— 7 = . Nl
¢ sin (§ —6)’ () cos 26 (5.15)

The low-frequency asymptotic (5.14), known as the conformal Green’s function
of the SYK model, does not explicitly depend on chemical potential. Instead, it
depends on the independent parameter — the spectral asymmetry angle [137,
182]. The asymmetry angle 6 [197] is nonzero away from charge neutrality
(1 # 0) and related to the charge per site on the SYK quantum dot
N .

1 t 1 0  sin26
== Ci) — = = —— — 5.16
<Q> N ;<cz cl> 2 T 4 I ( )

where (Q) € (—1/2,1/2) and 0 € (—n/4,m/4) [137, 182].
As mentioned earlier, the system relaxes to the low-temperature Fermi
distribution at J7T ~ 17.8 (see Fig. 5.1 (top left)). In Fig. 5.3 we plot
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Figure 5.3. Spectral of the SYK quantum dot after the quench as a function
of frequency. The blue dots show the result of the saddle-point numerics done for
the evolution of the SYK subsystem with the initial temperature 7' = 0.1J connected
to a zero temperature reservoir with a coupling strength \/;5)\2 /J? = 0.2. The red
dash-dot curve is the equilibrium saddle-point numerics for the bare SYK model at
low temperature, the black dashed line is the infrared (IR) solution of the bare SYK
model (5.14), and the green line is the spectral function of the disordered Fermi liquid
(dF1). The energy scale 6w = pA*/J? indicates the region where the SYK nF1 crosses
over to a Fermi liquid.

the spectral function of the SYK quantum dot in this regime. The spectral
function after the quench is well aligned with the bare SYK spectral function
at low temperature. The SYK nFl state is known to break down in presence
of a Fermi liquid [80, 198]. Here we can estimate the timescale of the crossover
to a Fermi liquid from the self-energy (5.7) comparing the SYK nFl and the
reservoir’s contributions. Indeed, substitution of the Green’s functions G(t)
1/v/Jt and Q(t) o< 1/(Jt) to the self-energy (5.7) shows that the crossover to
a Fermi liquid happens for tgy, > 1/0w, where dw = pA*/.J3. This implies that
after relaxation from the quench the SYK nFl behavior can be read out from
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the spectral function for
dw Sw < J. (5.17)

The lower bound in inequality (5.17) can be suppressed as \/]3)\2 /J < J in
the weak tunneling limit. This observation agrees with the long timescale of
the SYK nFl/Fermi liquid crossover found earlier in equilibrium studies [80,
185, 194, 199].

In Figs. 5.1 (top right), 5.2 we demonstrate that the system at finite initial
p tends to zero chemical potential in the long time limit. This is aligned with
the discharging of the SYK quantum dot coupled to the large reservoir, which
is kept at charge neutrality. At the level of the the equilibrium SYK Green’s
function (5.14), this naively implies § ~ 0. However, the spectral function in
Fig. 5.1 (bottom right) at long times is close enough to the conformal one with
non-zero asymmetry angle . We plot the conformal spectral function with
0 = 0.2 as a reference. The origin of this mismatch may be that the asymmetry
parameter 6 is usually related to du/OT but not to the equilibrium value of
the chemical potential [137]. In its turn, the temperature-independent part
of the chemical potential in the SYK model is not a monotonic function of
the asymmetry parameter [200]. Additionally, the SYK subsystem after the
quench suffers the particle leak, that may require to account not only for
a self-energy shift by the real-valued p [137], but also an extra imaginary
contribution to the self-energy. This issue could lead to the renormalization
of 6 in the final state, which is beyond the scope of this paper.

5.4 Tunneling current

Having discussed the SYK subsystem inner properties we proceed to transport.
Specifically, we focus on the tunneling current:

. i) R
Q:Z[H,Q]:—NWZZ)\iQCiTﬁQ—Fh.C. (5.18)

i=la=1

The current’s expectation value in the SYK quantum dot/cool-bath system is
found from the generating functional InZ[y] [183]
1 . 1 0

7= s dt(Q(t)) = " 30 X:o’ (5.19)

Zhy] = <Tce—ifcdtH<X>> _ / DI, D[, eI, (5.20)

InZ[x]
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where T is the time ordering along the Keldysh contour, t¢,, is the measure-
ment time, and S[x] is the effective action of the model with a counting field
X [201, 202]. The counting field x transforms the tunneling Hamiltonian

H(x) = Hsyx + Hyes + 0(t) Hrun(X), (5.21)
Hiun(X) : ifp Sl + h (5.22)
tun\X) = 771 ia€ CiVa -C., .

(NS

so that

, (5.23)

x for O0<t<ty
x(t) = .
0 otherwise

The factor of two in the coupling phase in the tunneling term (5.22) accounts
for the doubling due to the forward and backward branches of the Keldysh
time contour.

One notices that the Hamiltonian transformation (5.22) is equivalent to a
ix(t)

simple rotation of the coupling constants \;, — )\me% in the original theory

(5.1). Thus, the Kadanoff-Baym equations (5.5,5.6) describe the valid saddle-

point for the partition function (5.20) up to the redefinition of the coupling

constants ;. Indeed, the current can be deduced from the tunneling part of
the effective action

Foo isx(t)—s"x(¢))
Spun(x) =iVNIMA Y /0 dtdt ss' e

ss'=+

X Ggo (t,1)Qus(t)1). (5.24)

Here the Green’s functions G4y and Qs describe the saddle-point of the SYK-
bath system and are found from the equations (5.5-5.8), where s = + denotes
the forward and backward branch of the Keldysh contour. Accordingly, the
counting field x is defined on the Keldysh contour as xs(t) = sx(t). Leaving
the detailed derivation of the full effective action of the SYK-bath coupled
system for the Appendix 5.6, we proceed to the tunneling current

Applying the prescription (5.19), we derive the expectation value of current
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Figure 5.4. Tunneling current as a function of time normalized on its maximum
value. The insets show time dependence of the current in log-log and log scales for
\/ﬁ)\Q /J? = 0.3. The log-log plot reveals the initial power law increase of the tunneling
current, while the log plot is consistent with the exponential decay. We illustrate the
current’s half-life ¢, /o for VPA?/JE =04

as a function of the measurement time ¢,

)\2 +o0
R/ / dt / dt' (Gss/ (t, )8 Qs (t. 1)
2tm 0

- Qs/s (tv t,)S Gss/ (tlv t))
)\2 m N N
— \g /0 at | T tr(o‘”G(t, t)Q(tt)
- O'xQ(t, tl)é(t/, t)), (525)

where

~ _ (Gr Gk A [Qr Qk
b6 ) 0 (@ ) o
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Figure 5.5. Half-life of the tunneling current as a function of the initial
temperature. In the left panel, we compare the half-lives for the SYK model connected
to a cool-bath for different coupling strengths. Meanwhile in the right panel, we
show the difference between SYK, (SYK non-Fermi liquid initial state) and SYK,
(disordered Fermi liquid initial state) behavior as a tested subsystem; the curves
are shifted to the same origin for better visual comparison. The initial temperature
changes from T'= 0.1J to T = J with a step 67 = 0.01J. The dashed/dashdot lines
stand for the linear/quadratic fits made for the temperature interval T € [0.1J,0.2.J].

are the Green’s functions of the SYK quantum dot and the cool-bath set by
the equations (5.5-5.8) and transformed to the R, A, K basis according to the
rules (5.9-5.11) 2. From here, the dynamics of the tunneling current is given
by

(O@t)) = — \/}Z)\Zﬁ(t) /O tdt’j(t,t’), (5.27)

Tt t) =Gr(t,thQk () t) — Qr(t,t")Ga(t,t)
- Qr(t, )Gk (t,t) + G (t,t)Qa(t,1). (5.28)
Time dependence of the tunneling current is shown in Fig. 5.4. The

current grows initially as a power law, reaches the maximum value, and decays
exponentially to zero consistently with the discharging process of the SYK

’In equilibrium the fluctuation dissipation relation holds Gx(w) = —2mi(l —
2nsyi (w))vsyr (W), Qr(w) = —27i(1 — 2nres(W))Vres(w), where nsyrx and nres are the
Fermi distribution functions and vsyx = —%ImG r and Vyes = —%ImQR are the densities

of states. Substituting those to Eq. (5.25), one gets a familiar Fermi golden rule formula for
the tunneling current [76]:
T = 27r\/13)\2fdw Vsyk (W)Vres(w) (Nsyk (W) — Nres(w)).
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quantum dot. With intention to mark the lifetime of the effect we extract the
half-life — the time in which the current is decreased in half of its maximum
value. Varying the initial temperature T" of the SYK quantum dot, we show the
current’s half-life for several coupling strengths in Fig. 5.5 (left). The stronger
the coupling, the shorter the half-life of the tunneling current. Oppositely,
the half-life increases with the initial temperature rise. For the temperatures
T < 0.4J the tunneling current half-life growths linearly in 7.

To check if the T-linear current’s half-life is specific for the SYK state, we
substitute the SYK model with the one-body random Hamiltonian (5.3), often
refereed to as the SYKs model, the same that describes the reservoir. This
model has a typical Fermi liquid Green’s function Gg(t) o< 1/t in the long time
limit Jt > 1, which makes it legitimate to build the SYK nFl/Fermi liquid
comparison. Matching the tunneling current half-life for the SYK vs SYKs
model in Fig. 5.5 (right), we ascertain that their temperature dependencies
are drastically different. The current’s half-life in the system of the SYKs
quantum dot coupled to the cold bath increases as T2 at low temperatures,
which discerns it from the SYK model cooling protocol displaying the linear
in temperature increase.

Duration of the tunneling event in our system is defined by the tunneling
contact resistance, similarly to an exponentially relaxing capacitor discharge.
As such, our results resemble the prominent resistivity predictions for strange
metals psyr ~ T [194, 199, 203] and Fermi liquid ppp ~ T2.

5.5 Conclusion

The Sachdev-Ye-Kitaev model quench-coupled with a cold bath has been a
subject of close attention aiming to simulate evaporation of a black hole [170,
171]. At the same time, both connecting the system to the environment and
its further characterization are inherent for realization proposals of the SYK
model in condensed matter systems [22, 23, 77, 177, 178]. In this manuscript,
we consider a quantum dot described by the complex SYK model at finite
temperature instantaneously coupled to a zero temperature reservoir. Ana-
lyzing the dynamical spectral function of the SYK quantum dot at charge
neutrality, we show that the considered quench protocol preserves the SYK
non-Fermi liquid state for the energies dw <« w < J. Here the lower bound
dw is suppressed in the weak tunneling limit. Further, we put an initial elec-
trochemical potential in the quantum dot and compute the tunneling current
dynamics due to discharging of the dot. The tunneling current half-life shows
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distinct temperature dependencies for different systems that are being cooled
down. In case of the SYK quantum dot, the half-life increases linearly in the
initial temperature 7', while for the Fermi liquid the increase is oc 72. There-
fore, this temperature dependence of the tunneling current half-life provides
a distinguishing feature for the disordered quantum dot exhibiting the SYK
nF1 phase against more common Fermi liquid behavior.

5.6 Appendix: Derivation of the Kadanoff-Baym
equations from the SYK saddle-point

Here we derive the Kadanoff-Baym equations for the SYK quantum dot cou-
pled to a cool-bath by a quench.

5.6.1 Saddle-point equations

We perform the disorder average of with the Hamiltonian (5.1), pursuing [184,
194]. The effective action can be written in terms of bilocal fields Gy(t,t) =
iN~1 Zz Cis (t)cis (tl)a Qs (t/7 t) =iM~! Za Yas (t)¢as (tl) and X (t, tl)a Ly (t7 t/)
as the corresponding Lagrange multipliers

S =~ iNtrln[oZ,8(t = t') (100 + 1) — Saw (1,1)] -

ss' J?

—iNy / dtdt’ (ESS/ (t, )Gyt ) Gy (t,1)2Gys(t, t)2> —

— iMtrln o2, 8(t — ¢') i) — Ty (t,1)| -

58/52

—iMy /dtdt’<Hssl(t,t’)Qs/s(t’,t>— . stf(t,t/)sts(t’,t)>

+iVNMY) /dtdt’ss’AQH(t)G(t’)Gssl (£, 4)Qui(£11). (5.29)

ss’



5.6 Appendix: Derivation of the Kadanoff-Baym equations from the SYK
saddle-point 99

where s = 4 denotes forward and backward branches of the Keldysh time
contour [76]. In the large N, M limit, the saddle-point equations are

Yeu (6, 1) = J?Glag (8, 1)) 2 Gas(t, 1) + /D A2O()O()Qssr (8, 1), (5.30)
N 2 , / )‘72 / , /
Hss’ (tat ) - g st (t7t ) + \/ﬁ H(t)e(t )Gss (tat )a (531)
3 [ J:odu (02,0(t = w) (101 + 1) = 57 B (1) ) G (u, ) = G508t — 1),
' (5.32)

3 / i (02,0(t = w)idy — sr Ty (t,1) ) Qror (u, ) = S5 3(t — ), (5.33)

- —

where p = M/N is the mode ratio.

Following Ref. [190], we derive the self-consistent Kadanoff-Baym equa-
tions considering s, s’ = £, F components of Eqgs. (5.32, 5.33):

“+o00

(i + ) G2 (¢, 1) :/ du(Sr(t )G (u, ) + 5 (1, w)Ga(u, 1)),
(5.34)
+oo
(=i + ) GZ(t,#) :/ du(Gr(t,u) 22 (u, ') + G (£, w)Sa(u, 7)),
(5.35)
+oo
i0,Q3(t, 1) :/ du(HR(t,u)Q%(u,t)+H< (t,)Qa(u,t) )
(5.36)
+oo
—i0p Q3 (t ) = /_ du(QR(t,u)H (u,t') + Q= (t, )L (u, )
(5.37)
where the self-energies are
B2(t,t) = PR (1) GE(1 1) + o A1) ) Q (¢, 1), (5.38)

M2 (t, ) = E2Q2(t, 1) + j; 0(t)0(t"G=(t,1). (5.39)
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5.6.2 Reservoir as an external potential

Since we assume the reservoir to be large enough p > 1, it can be considered
as a closed dynamic background to the SYK subsystem

+o0 " R
/_ du(3(t = wivy — €2Q(t.0)) Qust) = 3(t ~ ) (5.40)

describing a decoupled random free fermion in equilibrium. Here we perform
a rotation towards retarded, advanced, and Keldysh basis

A (Qr Qr\ _ ; - (Q++ Q- 1 11 4
Q_<0 QA>‘L" (Q—+ Q--)L’ L_ﬂ<1 1>-

The retarded Green’s function is found from

(w - €2Qr(w))Qr(w) (5.41)
Qn(w) = 55— 111 - (542
3 Tt 2ie1— (w/26)?
where the spectral function obeys the semicircle law p(w) = —2ImQg(w) =
9 2
gRew [1— Z—éz Let’s derive the time representation of Qpg:
oo d - /
Qrlt.t) = Qa(tit) = [~ T2 Qp(w) =
—oo 27
too duw ; / N1
— _ % W —iw(t—t') o(t—t') - cN2 9
51—1>%1+ =L e 26 (w+10)" — 482, (5.43)

Here the branch cut is in the lower half plane, so we close the contour cor-
respondingly for ¢ — ¢ > 0. Since there are no poles in the lower half
plane, we shrink the contour to the anticlockwise traverse around the branch
cut. Note that an additional phase is acquired when crossing the branch cut

VZ 482 s 3@ ) im _ pim /5T 4E2 Therefore, we get

Qult,t') = —0(t — ') 4;? / * e, [ ger —
Ji(2¢(t = 1))

= _ie(t - t/) f(t _ t/) )

(5.44)
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where Ji is the first Bessel function of the first kind. The Keldysh component
at zero temperature is

+00 ) , +oo . ,
Qk(t,t) = / d—w e iw(t—t )QK(w) = / d—w e~ w(t=t)o; sgn(w)ImQ@Q g (w)

oo 2T —0 2T
_ 27:'52/_221 duw e~ (=) sgn(w)\/mz _ngf(_tt_,)t/)), (5.45)

where Hj is the first Struve function.

5.6.3 Dynamics of the SYK subsystem

In the large p limit, the dynamics of the SYK subsystem is described by Eqgs.
(5.34,5.35,5.38), where the reservoir Green’s function Q(t —t') enters the SYK
self-energy (5.38) as the external potential derived in Section ??. Thereby, the
Kadanoff-Baym equations simplify to

(i0 + 1) G2(t,t) = /_+Oodu(ER(t,u)G (u, ) + B2 (t, u)Ga(u, 1),

(5.46)
+o00

(—idy + 1) G2(t, 1) = /_ du(GR(t, u)S3 (u, ) + G2 (t,u)Sa(u, 1)),

(5.47)
with the self-energy (5.30)

YE(t, 1) = JAGR(t,t)2G= (1) + P AN20(1)0(1) Q= (¢, 1), (5.48)
Q(t,t') = —%(tl_t,) (B (26(t = #)) + i1 (26(2 — 1)) ). (5.49)

Here we introduced [76] G~ (t,t') = G_1(t,t'), G<(t,t') = G4_(t, 1), X7 (¢, 1) =
Y (t, ), B<(t,t') = X1 _(t,t') and account for

G () =00 -G (t,t') +0(t'— t)G=(t, 1), (5.50)
G__(t,t)=0{t'—t)G~(t, ')+ 0(t — t")G=(t,t'), (5.51)
YSii(t,t) =0t —t)S7 () + 0t — )X (t,t), (5.52)
S__(t,t) =0t —t)X7(t, ) + 0t — )X (¢, ). (5.53)
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The retarded, advanced, and Keldysh components are expressed in terms of
> and < as

(t,¢) = 0t —¢)(G> (1) = G=(t,1), (5.54)
(1) = =0t = ) (G (t,1) — G=(t.1)), (5.55)
Gk (t,t) =G~ (t,t') + GS(t, 1), (5.56)
(1) = 0t — )2 (t,1) = B (¢, 1), (5.57)
(t.t) = =6(t' = ) (S (t,¢) = D°(1,1)), (5.58)
(t, ) =27 (t, 1) + Z<(t, ). (5.59)



