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Chapter 3

Dynamical signatures of
ground-state degeneracy to
discriminate against Andreev
Levels in a Majorana fusion
experiment

3.1 Introduction

Non-Abelian anyons hold much potential for a quantum information process-
ing that is robust to decoherence [52, 53]. The qubit degree of freedom is
protected from local sources of decoherence since it is encoded nonlocally in a
ground-state manifold of exponentially large degeneracy (of order dM for M
anyons with quantum dimension d > 1). The degeneracy is called topologi-
cal to distinguish it from accidental degeneracies that require fine tuning of
parameters. The non-Abelian statistics follows from the ground-state degen-
eracy because exchange operations (braiding) correspond to non-commuting
unitary operations in the ground-state manifold [120].

Majorana zero-modes, midgap states in a superconductor, are non-Abelian
anyons with quantum dimension d =

√
2 [21, 121]: Two zero-modes may or

may not share an unpaired fermion, so that the ground state of M zero-modes
has degeneracy 2M/2. To demonstrate the topological degeneracy of Majorana
zero-modes is a near-term milestone on the road towards a quantum computer
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based on Majorana qubits [60].
The general strategy for such a demonstration has been put forward by

Aasen et al. [60]. A set of four Majorana zero-modes γ1, γ2, γ3, γ4 is pairwise
coupled (fused) in two different ways: Either γ2 with γ3 or γ1 with γ2. The
zero-modes are then decoupled and the fermion parity P12 of γ1 and γ2 is
measured (P12 = +1 for even fermion number and P12 = −1 for odd fermion
number). The E = 0 ground-state degeneracy manifests itself in a nondeter-
ministic outcome in the first case, with expectation value P̄12 = 0. The second
case serves as a control experiment with a deterministic outcome of +1 or −1
depending on the sign of the coupling.

A challenge for the approach is formed by the tendency for non-topological
Andreev levels to accumulate at E = 0, resulting in a mid-gap peak in the
density of states and a proliferation of accidental ground-state degeneracies
[49]. The ground-state wave function of a few Andreev levels has local fermion-
parity fluctuations that may mimic the non-deterministic fusion of Majorana
zero-modes [99, 122].

Here we present a dynamical description of the fusion strategy of Aasen et
al., to search for signatures that make it possible to exclude spurious effects
from Andreev levels. We traverse the parameter space of coupling constants
along two pathways A and B such that the fermion parity measurement is
non-deterministic along both pathways, but with identical expectation value
P̄12(A) = P̄12(B) when the evolution is adiabatic. Ground-state degeneracies
are identified from the breakdown of adiabaticity, which causes P̄12(A) ̸=
P̄12(B) in a way that is statistically distinct for Andreev levels and Majorana
zero-modes.

3.2 Adiabatic evolution to test for ground-state de-
generacy

We consider a Majorana qubit consisting of 4 Majorana zero-modes with 3
adjustable couplings, in either a linear geometry or a tri-junction geometry,
see Fig. 3.1. The linear circuit contains two superconducting islands with
adjustable Coulomb couplings in each island and a tunnel coupling between
the islands. In the tri-junction there are three strongly coupled islands and
only the Coulomb coupling within each island is adjustable.

The state |±⟩ of the Majorana qubit is encoded in the fermion parity of one
of the islands, say the island containing Majorana zero-modes 1 and 2. The
fermion parity operator P12 = −2iγ1γ2 is the product of the two Majorana
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Figure 3.1. Two pathways A and B for the evolution of a Majorana qubit, encoded
in four Majorana zero-modes (red dots) in a linear or tri-junction geometry. The blue
contours represent superconducting islands and the black solid lines indicate which
zero-modes are coupled. At the end of the evolution the Hamiltonian is the same
for both pathways, but the final states |ψA⟩ or |ψB⟩ may depend on the pathway if
adiabaticity breaks down because of a degenerate ground state.

operators. Its eigenvalues are +1 or −1 depending on whether the fermion
parity in that island is even or odd. For definiteness we will assume that the
fermion parity of the entire system is even, and then P34 = P12.

As illustrated in Fig. 3.1, in each geometry the system is initialized in the
ground state with two of the three couplings on and the third coupling off.
The final state with all couplings off is reached via one of two pathways, A or
B, depending on which coupling is turned off first.

Notice that at each instant in time the system contains at least two uncou-
pled zero-modes: γ4 and an E = 0 superposition γ0 of γ1, γ2, γ3 (which must
exist because of the ±E symmetry of the spectrum [20]). Pathway A is the
fusion process discussed by Aasen et al. [60], while pathway B is an element
in the braiding process of Ref.[57].

If the ground state remains nondegenerate during this dynamical process,
separated from excited states by a gap Egap larger than the decoupling rate,
then the adiabatic theorem ensures that the final state |ψ⟩A = |ψ⟩B does not
depend on the pathway. By measuring the expectation values

P̄A = ⟨ψA|P12|ψA⟩, P̄B = ⟨ψB|P12|ψB⟩, (3.1)
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one can detect a breakdown from adiabaticity. This might be due to an acci-
dental gap closing during the evolution, or due to the topological ground-state
degeneracy of Majorana zero-modes.

We will consider the effect of an accidental degeneracy in Sec. 3.4, in the
next section we first address the topological degeneracy.

3.3 Topologically degenerate ground state
We summarize some basic facts about Majorana zero-modes (see reviews [14,
53] for more extensive discussions).

An even number M = 2N of uncoupled Majorana zero-modes has a 2N−1-
fold degenerate ground-state manifold for a given global fermion parity. The
degeneracy is removed by coupling, as described by the Hamiltonian

H = 1
2

2N∑
n,m=1

Anmiγnγm. (3.2)

The 2N × 2N matrix A is real antisymmetric, Anm = −Amn = A∗
nm and the

Majorana operators γn = γ†
n are Hermitian operators with anticommutator

γnγm + γmγn = δnm, γ2
n = 1/2. (3.3)

The fermion creation and annihilation operators a†, a are related to the
γ’s by (

γ2n−1
γ2n

)
= U

(
an
a†
n

)
, U = 1√

2

(
1 1

−i i

)
. (3.4)

The fermion operators define a basis of occupation numbers, |s1, s2, . . . sN ⟩,
such that a†

nan|s1, s2, . . . sN ⟩ = sn|s1, s2, . . . sN ⟩, sn ∈ {0, 1}.
For N = 2 and assuming even global fermion parity the Hamiltonian (3.2)

in the basis of occupation numbers |00⟩ ≡ |+⟩ and |11⟩ ≡ |−⟩ reads

H = 1
2

(
−Γ Γ′∗

Γ′ Γ

)
, Γ = A12 +A34,

Γ′ = −A14 −A23 − iA24 + iA13.

(3.5)

The fermion parity operator P12 = σz in this basis. Its expectation value in
the ground state |GS⟩ follows from

|GS⟩ ∝ (Γ +
√

Γ2 + |Γ′|2)|+⟩ + Γ′|−⟩

⇒ ⟨GS|P12|GS⟩ = Γ√
Γ2 + |Γ′|2

.
(3.6)
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Figure 3.2. Solid curves: Expectation value P̄12(t) = ⟨ψ(t)|P12|ψ(t)⟩ calculated
numerically from the solution of the differential equation (3.7), for the Hamilto-
nian (3.5) with time dependent coupling constants Γ(t) = 1 − tanh[(t − t0)/δt]
and Γ′(t) = 1 − tanh[(t − t′0)/δt] for δt = 2. The decoupling times are chosen at
t0 = 4, t′0 = 8 for pathway A and t0 = 8, t′0 = 4 for pathway B. The dashed curves
show the corresponding evolution of the expectation value in the ground state of H(t),
calculated from Eq. (3.6). The close agreement of solid and dashed curves indicates
that the dynamics is nearly adiabatic.

Eq. (3.6) is a known result [99], which shows that for |Γ| ≪ |Γ′| the ground
state of the Majorana qubit is in an even-odd superposition of nearly equal
weight. Applied to Fig. 3.1 the same Eq. (3.6) shows that the two pathways A
and B correspond to an exchange of limits: Γ → 0 before Γ′ → 0 for pathway
A, resulting in P̄12 → 0, or the other way around for pathway B with |P̄12| → 1.

In Fig. 3.2 we show how this works out dynamically, by integrating the
evolution equation

iℏ
∂

∂t
|ψ(t)⟩ = H

(
Γ(t),Γ′(t)

)
|ψ(t)⟩, (3.7)

with initial condition that |ψ(0)⟩ is the ground state of H at t = 0.

3.4 Accidentally degenerate Andreev levels

To assess the breakdown of the adiabatic evolution as a result of (nearly)
degenerate Andreev levels we consider the double quantum dot geometry of
Fig. 3.3. There are NL Andreev levels in the left dot and NR Andreev levels in
the right dot. The quantum dots are coupled to each other by an adjustable



64 Chapter 3. Dynamical Signatures of Ground-State Degeneracy

Figure 3.3. Two quantum dots on a superconducting substrate (blue), containing
NL and NR Andreev levels coupled via a tunnel barrier. The coupling strength is
adjustable via a pair of gate electrodes (black). The fermion parity PL, PR in each
quantum dot is regulated by the ratio EJ/EC of Josephson and charging energies,
which is adjustable via the magnetic flux through a Josephson junction. In this way
we can drive the system away from the ground state via the two pathways of Fig. 3.1,
either by switching off first the fermion-parity coupling and then the tunnel coupling
(pathway A) or the other way around (pathway B). At the end of each process the
fermion parity PL is measured.

tunnel barrier and each has an adjustable coupling to a bulk superconductor
by a Josephson junction.

For strong Josephson coupling the Coulomb charging energy may be ne-
glected and the Hamiltonian of the double-quantum dot is bilinear in the
creation and annihilation operators,

H0 = 1
2

N∑
n,m=1

Ψ†
n · Bnm · Ψm, (3.8a)

Ψn =
(
an
a†
n

)
, Bnm =

(
Vnm −∆∗

nm

∆nm −V ∗
nm

)
. (3.8b)

The indices n,m label spin and orbital degrees of freedom of the N = NL +NR
Andreev levels. The N × N Hermitian matrix V represents the kinetic and
potential energy. The N ×N antisymmetric matrix ∆ is the pair potential.

As the ratio EJ/EC of Josephson and charging energy is reduced, the
Coulomb interaction in a quantum dot becomes effective. In the regime



3.4 Accidentally degenerate Andreev levels 65

Figure 3.4. Scatter plot that illustrates how the expectation value P̄L of the fermion
parity in the left quantum dot depends on the pathway A or B that is followed in
parameter space. Each blue dot results from one realization of the class-D ensemble of
random Hamiltonians H0. In units such that the mean Andreev level spacing δ0 ≡ 1,
the parameters in Eqs. (3.10) and (3.12) are δt = δt′ = 2, κ0 = 1/4 for both pathways,
and t0 = 4, t′0 = 8 for pathway A, t0 = 8, t′0 = 4 for pathway B. The fermion parity
is evaluated at time t = 15. The red circle indicates the expected outcome for a
Majorana qubit, which is well separated from the scatter plot of Andreev levels.

EJ/EC ≳ 1 the interaction term only depends on the fermion parity [57],

HC = −κLPL − κRPR,

PL = (−1)
∑

n∈L a
†
nan , PR = (−1)

∑
n∈R a

†
nan .

(3.9)

The two coupling constants κL and κR depend exponentially ∝ e−
√

8EJ/EC on
the Josephson energy [123], which can be varied by adjusting the magnetic
flux through the Josephson junction connected to the left or right quantum
dot. We set κR ≡ 0 for all times while κL(t) drops from κ0 to 0 in an interval
δt around t = t0. We choose a tanh profile,

κL(t) = 1
2κ0 − 1

2κ0 tanh[(t− t0)/δt]. (3.10)

For each of the two dynamical pathways A and B we start at t = 0 with a
strong tunnel coupling between the quantum dots. We model this statistically
by means of the Gaussian ensemble of random-matrix theory in symmetry
class D (broken time-reversal and broken spin-rotation symmetry) [48, 49].

The ensemble is constructed as follows. A unitary transformation to the
Majorana basis,

UBnmU † = iAnm, U = 1√
2

(
1 1

−i i

)
, (3.11)
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see Eq. (3.4), expresses the Hamiltonian (3.8) in terms of a real antisymmetric
2N × 2N matrix A. We take independent Gaussian distributions for each
upper-diagonal matrix element of A, with zero mean and variance 2Nδ2

0/π
2,

where δ0 is the mean spacing of the Andreev levels.
For strongly coupled quantum dots we do not distinguish statistically be-

tween matrix elements Anm that refer to levels n and m in the same dot or
in different dots. To decouple the quantum dots by the tunnel barrier we
suppress the inter-dot matrix elements,

Anm(t) = Anm(0) ×
{

1 if n,m in the same dot,
κLR(t) if n,m in different dots,

(3.12a)

κLR(t) = 1
2 − 1

2 tanh[(t− t′0)/δt′]. (3.12b)

We solve the Schrödinger equation

iℏ
∂

∂t
|ψ⟩ = (H0 + HC)|ψ⟩, (3.13)

by first calculating the Hamiltonian in the 2NL+NR−1 dimensional basis of
occupation numbers in the left and right dot, for even global fermion parity
PLPR = +1. (We used the zitko2011sneg package to take over this tedious
calculation [124].) Starting from the ground state at t = 0 we switch off κL
and κLR along pathways A or B (first switching off κL or first switching off
κLR, respectively). At the end of the process we calculate the expectation
value of the fermion parity P̄L in the left dot.

The calculation is repeated for a large number of realizations of the Hamil-
tonian H0 in the class-D ensemble. A scatter plot of P̄L(A) versus P̄L(B) is
shown in Fig. 3.4 for a few values of NL, NR. Significant deviations are ob-
served from the line P̄L(A) = P̄L(B) of adiabatic evolution, but the scatter plot
stays clear of the point P̄L(A) = 0, P̄L(B) = 1 that characterizes a Majorana
qubit.

Two ingredients in the fusion protocol are essential for this to work: Firstly,
the fermion-parity coupling should be smaller than or comparable to the tunnel
coupling, in order for pathway B to have a nondeterministic fusion outcome.
Secondly, the tunnel coupling should be cut slowly on the scale of the inverse
mean level spacing, to promote adiabatic evolution in pathway A. In Fig. 3.5
we show the scatter plot when both these conditions are violated: There is
now no clear separation from the Majorana qubit.
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Figure 3.5. Same as Fig. 3.4, but now for a stronger fermion-parity coupling
(κ0 = 2) and abrupt removal of the tunnel coupling (δt′ = 1/4, all other parame-
ters unchanged). The outcome for a Majorana qubit is now no longer well separated
from the scatter plot of the outcome from Andreev levels.

3.5 Conclusion

A succesful demonstration of the non-deterministic fusion of two Majorana
zero-modes would be a milestone in the development of a topological quan-
tum computer [60]. Its significance would be both conceptual (because it
implies non-Abelian braiding statistics [120]) and practical (because fusion
can substitute for braiding in a quantum computation [14, 125]).

In this work we have investigated the dynamics of the fusion process, to
see how spurious effects from the merging of Andreev levels can be eliminated.
We compare the time-dependent evolution in the parameter space of coupling
constants (tunnel coupling and Coulomb coupling) via two alternative path-
ways. The topological ground-state degeneracy of Majorana zero-modes causes
a breakdown of adiabaticity that can be measured as a pathway-dependent
fermion parity. Andreev levels can produce accidental degeneracies, and a
non-deterministic fermion parity outcome, but the correlation between the
two pathways is distinct from what would follow from the Majorana fusion
rule (see Fig. 3.4).
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Initial experimental steps towards the detection of the Majorana fusion
rule have been reported [126]. Typical spacings δ0 of sub-gap Andreev levels
in these nanowire geometries are 10µeV, so the adiabatic decoupling time scale
δt = 2ℏ/δ0 in Fig. 3.4 would be on the order of 0.1 ns, well below expected
quasiparticle poisoning times of 1µs [127].


