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Chapter 2

Pfaffian formula for fermion
parity fluctuations in a
superconductor and
application to Majorana
fusion detection

2.1 Introduction

The pairing interaction in a superconductor favors a ground state with an even
number of electrons, but when both time-reversal and spin-rotation symmetry
are broken the ground state may have odd parity — for example when a
magnetic impurity binds an unpaired electron [97]. While the connection
between fermion-parity switches and level crossings was noticed already in
1970 by Sakurai [98], these only became a topic of intense research activity
after Kitaev [17] made the connection with topological phase transitions and
Majorana fermions: The absence of level repulsion at a fermion-parity switch
indicates a change in a topological quantum number, which Kitaev identified
as the sign of the Pfaffian of the Hamiltonian in the basis of Majorana fermions.

An open subsystem need not be in a state of definite fermion parity
P = ±1, the fermion parity expectation value ⟨P⟩ may take on any value in the
interval [−1, 1]. Here we generalize Kitaev’s Pfaffian formula so that it can de-
scribe both closed and open systems. This generalization has a computational
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Figure 2.1. The left panel shows two superconducting regions (quantum dots)
connected (fused) by a point contact. The entire system is in a state of definite
fermion parity P0, even (+1) or odd (−1). The parity PL of the occupation number
of the NL electronic levels in one single quantum dot has quantum fluctuations. The
expectation value ⟨PL⟩ ∈ [−1, 1] may be obtained by rapidly closing the point contact
and decoupling the quantum dots (right panel), followed by a measurement of the
fermion parity of a single dot. The effective number of levels Ndot ≃ ℏ/δ0τc in each
quantum dot that contributes to the fermion parity fluctuations is determined by the
single-particle level spacing δ0 and the time scale τc on which the interdot coupling
is broken [99]. We address the question when a vanishing fermion parity ⟨PL⟩ ≈ 0 in
such a fusion experiment is a signature of isolated Majorana zero-modes.

as well as a conceptual merit. Computationally, it reduces the complexity of
a calculation of ⟨P⟩ for N levels from order 2N , when all possible occupation
numbers are enumerated, down to order N3. Conceptually, it allows us to
make contact with the random-matrix theory of topological superconductivity
[48, 49], and identify the origin of a statistical peak at ⟨P⟩ = 0 discovered
recently in computer simulations [99]. These findings have implications for
proposed experiments [60] to search for signatures of isolated Majorana zero-
modes in the fermion parity of two superconductors that have first been fused
and then decoupled (see Fig. 2.1).

The outline of the paper is as follows. In the next section we derive the
Pfaffian formula for the average subsystem fermion parity. This generalization
of Kitaev’s formula [17] can be seen either as an application of the Wick
theorem for Majorana operators [100–102] (cf. a similar application in Ref.
[103]), or as an application of Klich’s theory of counting statistics for paired
fermions [104]. In Sec. 2.3 we use the fermion parity formula to establish
the connection between vanishing average fermion parity and the presence of
isolated Majorana zero-modes in the decoupled quantum dot. We continue in
Sec. 2.4 with a statistical description of the double quantum dot geometry of
Fig. 2.1, by identifying the random-matrix ensemble in symmetry class DIII
that describes the fermion parity fluctuations. We contrast the case of strongly
coupled quantum dots in Sec. 2.4.2 with the case of weak coupling in Sec. 2.4.3.
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In Sec. 2.5 we show how weak coupling by a single-mode quantum point contact
can distinguish quantum dots with or without isolated Majorana zero-modes.
In the concluding Sec. 2.6 we discuss the implications of our analysis for the
detection of Majorana zero-modes by means of a fusion experiment.

2.2 Pfaffian fermion-parity formula

2.2.1 Kitaev’s formula for an isolated system

To set the stage we recall some basic facts [105] needed to present Kitaev’s
formula [17] for the ground-state fermion parity of an isolated superconductor.

At the mean-field level the Hamiltonian of a superconductor is a Hermitian
quadratic form in the fermion creation and annihilation operators a†, a,

H = ∑N
n,m=1Vnm

(
a†
nam − 1

2δnm
)

+ 1
2
∑N
n,m=1

(
∆nmanam + ∆∗

nma
†
ma

†
n

)
. (2.1)

The indices n,m label spin and orbital degrees of freedom of N fermionic
modes. The N ×N Hermitian matrix V represents the kinetic and potential
energy and the antisymmetric matrix ∆ is the pair potential.

More compactly, Eq. (2.1) can be written in the matrix form

H = 1
2

N∑
n,m=1

Ψ†
n · Bnm · Ψm, (2.2a)

Ψn =
(
an
a†
n

)
, Bnm =

(
Vnm −∆∗

nm

∆nm −V ∗
nm

)
. (2.2b)

The 2N × 2N Hermitian matrix B is called the Bogoliubov-De Gennes (BdG)
Hamiltonian [106]. Its eigenvalues come in pairs ±E1,±E2, . . .±EN of opposite
sign, with the positive entries equal to the single-particle excitation energies
of the many-particle Hamiltonian H.

The unitary transformation

Bnm 7→ UBnmU † ≡ Anm, with U = 1√
2

(
1 1

−i i

)
, (2.3)

maps B onto the 2N × 2N imaginary antisymmetric matrix A with elements

Anm =
(
i Im (Vnm + ∆nm) iRe (∆nm + Vnm)
iRe (∆nm − Vnm) i Im (Vnm − ∆nm)

)
= −AT

mn. (2.4)
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The superscript T denotes the transpose. An antisymmetric matrix is also
referred to as “skew-symmetric”.

The transformed state

γ = (γ1, γ2, . . . γ2N ), with
(
γ2n−1
γ2n

)
= U

(
an
a†
n

)
, (2.5)

contains 2N Hermitian operators γn = γ†
n, with anticommutator

γnγm + γmγn = δnm, γ2
n = 1/2. (2.6)

This is the Clifford algebra of Majorana operators.
The global fermion parity operator

P = (−1)
∑N

n=1 a
†
nan = (−2i)Nγ1γ2 · · · γ2N (2.7)

commutes with H, so energy eigenstates have a definite fermion parity ±1.
Kitaev’s formula [17] equates the fermion parity P0 of the ground state to the
Pfaffian1 (Pf) of the Hamiltonian in the Majorana basis,

P0 = sign Pf (−iA), for H = 1
2γ · A · γ. (2.8)

2.2.2 Pfaffian formula for a subsystem

Our objective is to calculate the ground-state expectation value of the fermion
parity PL of an open subsystem, say the left quantum dot with NL fermionic
modes in Fig. 2.1 .

A direct way to proceed, used for example in Ref. [99], is to calculate
the many-particle ground state |Ψ0⟩ in the basis of occupation numbers and
evaluate

⟨PL⟩ = ⟨Ψ0|(−1)
∑NL

n=1 a
†
nan |Ψ0⟩. (2.9)

Since the Fock space of occupation numbers has dimension 2N , this direct
approach scales exponentially with system size and is therefore prohibitively
expensive for large systems.

Klich [104] has developed an efficient method, with a polynomial scaling
in N , to calculate squares of expectation values of operators exp(iχ∑n a

†
nan).

This gives ⟨PL⟩2 if one sets χ = π and restricts the sum to indices n in L. In
App. 2.7 we show how the Klich method can be adapted to give also the sign

1Wikipedia has a helpful collection of Pfaffian formulas.



2.3 Connection with the Majorana fusion rule 43

of ⟨P⟩L. That calculation is technically rather involved, but the final result
can be easily understood as follows.

We make the flat-band transformation A 7→ Ā, which consists in replacing
each of the 2N eigenvalues ±En of A by their sign. (We assume that no
eigenvalue is identically zero, meaning that we are not precisely at a fermion-
parity switch.) Since no eigenvalue crosses zero when it is replaced by its sign,
the flat-band transformation leaves the sign of the Pfaffian (2.8) invariant.
And because the Pfaffian of −iĀ can only equal ±1 we no longer need to take
the sign in Eq. (2.8), hence the global fermion parity is

P0 = Pf (−iĀ). (2.10)

At this point one may surmise that the desired subsystem generalization of
Eq. (2.8) simply amounts to taking the Pfaffian of the 2NL × 2NL submatrix
[Ā]LL restricted to the subspace of modes in the left quantum dot,

⟨PL⟩ = Pf [−iĀ]LL. (2.11)

This is indeed the correct expression, as one can see by application of the Wick
theorem for Majorana operators [100–102],

⟨γ1γ2 · · · γ2s⟩ = Pf
1≤k<l≤2s

⟨γkγl⟩. (2.12)

Substitution of PL = (−2i)NLγ1γ2 · · · γ2NL on the left-hand-side and −2i⟨γkγl⟩ =
−iĀkl on the right-hand-side results in Eq. (2.11). This is how an equivalent
formula was derived recently for a different problem [103].

Eq. (2.11) is computationally efficient because the Pfaffian of an N × N
matrix can be calculated in a time that scales polynomially with N [107,
108]: It has the same O(N3) complexity as the eigenvalue decomposition
one needs for the flat-band transformation A 7→ Ā. Note that the flat-band
transformation needs to be performed before the subblock restriction Ā 7→
[Ā]LL — the two operations do not commute.

2.3 Connection with the Majorana fusion rule

As a fundamental application of Eq. (2.11), consider the case that each quan-
tum dot in Fig. 2.1 has a single electronic mode (NL = NR = 1), each con-
sisting of two Majorana modes with inter-dot coupling matrix Γ but vanish-
ing intra-dot coupling — so these become fully isolated zero-modes when the
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quantum dots are decoupled. The Hamiltonian in the Majorana basis is

A =
(

0 iΓ
−iΓT 0

)
. (2.13)

The global fermion parity is

P0 = sign Pf (−iA) = −sign Det Γ. (2.14)

To obtain the average local fermion parity we use that the real 2×2 coupling
matrix Γ has the singular value decomposition Γ = O1 diag (κ1, κ2)O2, with
O1, O2 real orthogonal matrices and κ1, κ2 > 0. The eigenvalues of A are
±κ1,±κ2. In the flat-band transformation {κ1, κ2} 7→ {1, 1}, which gives

Ā =
(

0 iO1O2
−iOT

2 O
T
1 0

)
⇒ [Ā]LL = 0 ⇒ ⟨PL⟩ = 0, (2.15)

so the average fermion parity in a single quantum dot vanishes. This is a
manifestation of the Majorana fusion rule [53]: The fusion of the two Majorana
zero-modes γ1 and γ2 produces an equal-weight superposition of a state of even
and odd fermion parity.2

Several recent experimental proposals [60, 99, 109] are based on the connec-
tion between the Majorana fusion rule and vanishing average fermion parity.
The implication “isolated Majorana zero-modes ⇒ ⟨PL⟩ = 0” holds if there
are only two pairs of Majorana zero-modes. For NL or NR greater than 1 the
implication breaks down, as is demonstrated by the following counterexample
for NL = NR = 2:

A =
(

iΩ iΓ
−iΓT iΩ

)
, Ω =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0

 , Γ =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 , (2.16a)

⇒ Ā = 1√
5

(
iΩ′ iΓ′

−iΓ′T iΩ′

)
, Γ′ = 2Γ, Ω′ =


0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

 , (2.16b)

⇒ [Ā]LL = i√
5

Ω′ ⇒ Pf [−iĀ]LL = −1
5 , (2.16c)

2The converse is not excluded: ⟨PL⟩ = 0 without an isolated Majorana zero-mode is
possible, for example for

A = i

(
0 λ1 0 λ2

−λ1 0 −λ2 0
0 λ2 0 λ1

−λ2 0 −λ1 0

)
with λ1 < λ2.



2.4 Random-matrix theory 45

and hence ⟨PL⟩ = −1/5 does not vanish even though each quantum dot has a
pair of Majorana zero-modes without intra-dot coupling (γ1 and γ2 in the left
dot, γ5 and γ6 in the right dot).

Since Pf (−iA) = +1 the global fermion parity is even, hence the negative
sign for ⟨PL⟩ means that the states with odd-odd occupation numbers in the
left and right quantum dot have a greater weight in the ground state than the
states with even-even occupation numbers — even though the fusion of the
Majorana modes γ1 and γ2 would favor equal weight of even and odd fermion
parity.

As a check on the formalism, we have also calculated the average fermion
parity directly from the many-particle ground state wave function |Ψ0⟩ of the
Hamiltonian H = 1

2γ · A · γ. We find

|Ψ0⟩ =
√

5
10
[
2i(a†

1a
†
2 + a†

3a
†
4) − (1 +

√
5)a†

1a
†
3

− (1 −
√

5)a†
2a

†
4
]
|0⟩, (2.17)

which indeed gives ⟨PL⟩ = −1/5 upon calculation of the expectation value
(2.9).

In this case with N = NL + NR = 4 electronic levels the size 2N−1 = 8
of the basis of many-particle states in the even-parity sector is the same as
the size 2N = 8 of the basis of single-particle states, so the two calculations
based on Eq. (2.9) or on Eq. (2.11) are equally efficient. For larger N the
single-particle approach based on the Pfaffian formula has the more favorable
scaling (polynomial instead of exponential).

2.4 Random-matrix theory
For a statistical description of the fermion parity fluctuations we apply the
methods of random-matrix theory (RMT). In Sec. 2.4.2 we assume a strong
mixing of the states in the two quantum dots of Fig. 2.1, and then in Sec. 2.4.3
we consider the opposite regime of weakly coupled quantum dots. We will need
results [110] from the RMT in symmetry class DIII, which we summarize in
Sec. 2.4.1.

2.4.1 Skew Circular Real Ensemble

The matrix [−iĀ]LL which in view of Eq. (2.11) determines the local fermion
parity is a 2NL × 2NL submatrix of a matrix S = −iĀ that is an antisym-
metric (skew-symmetric) element of the real orthogonal group O(2N), with
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N = NL +NR. The corresponding ensemble from RMT is the class-DIII circu-
lar ensemble, which differs from the class-D circular ensemble by the antisym-
metry restriction [49]. The latter is called the Circular Real Ensemble (CRE)
and we will refer to the former as the skew-Circular Real Ensemble (skew-
CRE).3 The switch from symmetry class D to DIII is remarkable, because
class DIII was originally introduced [48] in superconductors with preserved
time-reversal symmetry — which is broken in our physical system.

Two equivalent methods to randomly choose a matrix from the skew-CRE
are:

1. Generate a real antisymmetric matrix −iA with independent Gaussian
elements on the upper diagonal (zero mean and unit variance), and per-
form the flat-band transformation to obtain S = −iĀ.

2. Draw a random element O from O(2N), uniformly with the invariant
Haar measure, and construct

S = O

(
0N×N 1N×N

−1N×N 0N×N

)
OT. (2.18)

The two methods are equivalent because the distribution P (A) ∝ exp(1
4Tr A2)

as well as the flat-band transformation A 7→ Ā are invariant under orthogonal
transformations A 7→ OAOT, so the matrix O in the decomposition (2.18) is
distributed according to the invariant Haar measure.

The matrix S has the block decomposition

S =
(

SLL SLR
SRL SRR

)
, SLL = [−iĀ]LL, (2.19)

with SXY a matrix of dimension NX × NY . In the context of scattering
problems, where the skew-CRE ensemble was studied previously [49], this
is analogous to a decomposition of the scattering matrix into reflection and
transmission matrices. In that context the eigenvalues ±iλn of the upper-left
submatrix SLL correspond to reflection amplitudes.4 Their joint probability

3The qualifier “real” for the O(N) ensemble is used instead of “orthogonal” because the
name Circular Orthogonal Ensemble (COE) was already used by Dyson [111] for the coset
U(N)/O(N).

4Eq. (2.20) follows from equation 5 of Ref. [110] upon change of variables from transmis-
sion probabilities Tn to reflection amplitudes λn =

√
1 − Tn.
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distribution in the skew-CRE is known [110],

P (λ1, λ2, . . . λNmin) ∝
∏
n

(1 − λ2
n)|NL−NR| ∏

j<k

(λ2
k − λ2

j )2,

Nmin = min(NL, NR), 0 ≤ λn ≤ 1. (2.20)

If NL > NR there are additionally 2(NL − NR) trivial eigenvalues pinned at
±1, not included in the distribution (2.20).

Symmetry class DIII has the Z2 invariant Pf S = ±1, which in view of
Kitaev’s formula (2.10) is the global fermion parity P0. This does not enter in
Eq. (2.20) because in the skew-CRE the distribution of the λn’s is independent
of the Z2 invariant [110].

The density ρ(λ) of the nontrivial eigenvalues has ±λ symmetry with a
three-peak structure: There are two peaks at the band edges ±λc, with [110]

λc = (2/N)(NLNR)1/2, (2.21)

and a peak at the band center5 described by [48, 51, 112]

ρ(λ) = 1
δeff

+ sin(2πλ/δeff)
2πλ , λ ≲ 1/δeff . (2.22)

The parameter δeff = π/2Nmin is the mean eigenvalue spacing in the center of
the band. The peak at λ = 0 is a weak antilocalization effect in the scattering
context [113].

Fig. 2.2 shows the eigenvalue density for NL = NR = Ndot ranging from
1 to 6. The three-peaked structure is evident except for Ndot = 1, when the
density profile is flat.

2.4.2 Distribution of the local fermion parity in the skew-CRE

The peak at λ = 0 in the eigenvalue density ρ(λ) increases the probability for
vanishing local fermion parity, since

|⟨PL⟩| =
Nmin∏
n=1

λn =
√

Det SLL. (2.23)

5For the density profile near λ = 0 we can approximate the distribution (2.20) by
P ({λ}) ∝

∏
j<k

(λ2
k − λ2

j )2 and ignore the restriction |λn| ≤ 1. The distribution of the
λn’s is then identical to the distribution of the energy levels of a Hermitian matrix in sym-
metry class D, which has the spectral peak (2.22). A Hermitian matrix in class DIII, rather
than class D, has a vanishing density of states at zero energy, but this is not relevant for
ρ(λ).
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Figure 2.2. Density ρ(λ) of the eigenvalues of the 2NL × 2NL matrix [−iĀ]LL in
the skew-CRE, calculated by integration of the distribution (2.20) for NL = NR =
Ndot ∈ {1, 2, 4, 6}. The density has a peak at the band edges and at the band center.

Indeed, as shown in Fig. 2.3, while the distribution of ⟨PL⟩ in the skew-CRE
is broad for a single electronic level Ndot = 1 in each quantum dot, it quickly
narrows to a sharp peak at ⟨PL⟩ = 0 with just a few levels — in accord with
numerical calculations reported by Clarke, Sau, and Das Sarma [99].

The peak at zero ⟨PL⟩ ≡ p appears as a sharp cusp in Fig. 2.3, it has a
logarithmic singularity ∝ (p2 ln |p|)Ndot−1, for example

P (⟨PL⟩ = p) = 45
32

(
1 − p4 + 4p2 ln |p|

)
, Ndot = 2, |p| ≤ 1. (2.24)

For large-Ndot the width of the distribution becomes exponentially small, as
follows from the variance

Var ⟨PL⟩ = (2Ndot)!3
(Ndot)!2(4Ndot)!

=
√

2
4Ndot

[1 + O(1/Ndot)], (2.25)

see App. 2.8.
We may quantify the effect of the spectral peak in ρ(λ) on the distribution

of the local fermion parity by comparing with a set of independent λn’s with
uniform density. In that uniform case one would have the fermion parity
distribution

Puniform(⟨PL⟩ = p) = (− ln |p|)Ndot−1

2(Ndot − 1)! , |p| ≤ 1, (2.26)
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Figure 2.3. Probability distribution of the local fermion parity in the ensemble of
antisymmetric orthogonal matrices (skew-CRE), representative of strongly coupled
quantum dots. The curves are calculated from Eq. (2.20) for NL = NR = Ndot ∈
{1, 2, 3, 4}. It takes just a few levels in the quantum dot to have ⟨PL⟩ ≈ 0 with high
probability, so equal weight of even and odd fermion parity.

with a variance 3−Ndot that decays less rapidly than Eq. (2.25).

2.4.3 RMT model of weakly coupled quantum dots

The RMT description in terms of the skew-CRE from the previous subsection
assumes a strong (chaotic) mixing in the entire phase space, appropriate for
strongly coupled quantum dots. To describe also the weakly coupled regime,
we consider an alternative approach where the RMT ensemble is applied to
the two quantum dots individually, rather than to the system as a whole.

In the Majorana representation, the Hamiltonian H = 1
2γ · A · γ of the two

coupled quantum dots of Fig. 2.1 has the block structure

A =
(
iΩL iΓ

−iΓT iΩR

)
. (2.27)

The real antisymmetric matrices ΩX of size 2NX × 2NX , with X ∈ {R,L},
describe the left and right quantum dot in isolation, while the 2NL × 2NR
real matrix Γ describes the coupling via a quantum point contact (QPC) with
NQPC propagating fermionic modes. In what follows we takeNL = NR = Ndot.
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Figure 2.4. Probability distribution of the local fermion parity for the RMT model
(2.27) of two weakly coupled quantum dots, calculated numerically by sampling the
Gaussian matrix elements in ΩL,ΩR,Γ for NQPC = 1, NL = NR = Ndot ∈ {1, 3, 6}.
In contrast to the strongly coupled skew-CRE ensemble of Fig. 2.3, the distribution
narrows only slowly with increasing Ndot.

The number Ndot counts the number of electronic modes in each quantum
dot. One electronic mode an corresponds to two Majorana modes γ2n−1 and
γ2n, according to

an = (γ2n−1 + iγ2n)/
√

2, (2.28)

cf. Eq. (3.4). Because of this double-counting, the mean level spacing δ0 of
eigenstates of ΩX is one half the electronic mean level spacing of a quantum
dot (taken the same in each dot, for simplicity).

For a statistical description we take independent Gaussian distributions
for the two matrices ΩX . Each upper-diagonal matrix element has zero mean
and variance 2Ndotδ

2
0/π

2, corresponding to superconductors in symmetry class
D (broken time-reversal and broken spin-rotation symmetry) [48, 49].

Following Refs. [114, 115], the quantum dots are coupled by a Gaussian
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Figure 2.5. Comparison of the variance of P (⟨P⟩) in the skew-CRE of strongly
coupled quantum dots [red data points, calculated from Eq. (2.25)] and in the weakly
coupled ensemble (blue data points, numerical results for NQPC = 1). The inset shows
that the decay is exponential in both cases, but with widely different decay rates.

random matrix Γ of rank NQPC, with elements6

Γkl = 2Ndotδ

π

2NQPC∑
n=1

v
(n)
k w

(n)
l , (2.29)

in terms of 2NQPC real Gaussian vectors v(n) and w(n) of unit average length
(each element independently distributed with zero mean and variance 1/2Ndot).

For the weak coupling regime we focus on the case of a single propagating
electronic mode in the point contact, NQPC = 1, corresponding to two prop-
agating Majorana modes. We do not have an analytical solution, so we show
numerical results in Fig. 2.4 for the probability distribution of ⟨PL⟩ = Pf (−iĀ)
in the ensemble of random matrices ΩL, ΩR, and Γ. The variance of the dis-
tribution is compared with that in the skew-CRE in Fig. 2.5. The two figures
show that the distribution of the local fermion parity is much broader when
the coupling is via a single-mode point contact.

6The coupling matrix (2.29) describes a ballistic point contact. For tunnel coupling,
rather than ballistic coupling, the coupling strength δ0/π is to be multiplied by T −1

n (2 −
Tn − 2

√
1 − Tn), with Tn the tunnel probability of the n-th mode in the QPC, see Ref. [49].
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Figure 2.6. Same as Fig. 2.4, but now comparing the situation with or without
isolated Majorana zero-modes in a quantum dot. The quantum dots are weakly
coupled (NQPC = 1) and they have the same number of electronic levels NL = NR =
Ndot. For the blue histograms each quantum dot has a pair of isolated Majorana
zero-modes (no intradot coupling, only interdot coupling). For the brown histograms
there are either no isolated zero-modes at all (panels a and b), or they are only in one
of the two quantum dots (panel c). Weak coupling ensures that the peak at vanishing
local fermion parity becomes a distinctive feature of isolated Majorana zero-modes in
each quantum dot.

2.5 Effect of an isolated Majorana zero-mode
The random Hamiltonians of the previous section do not contain isolated Ma-
jorana zero-modes: the 2Ndot Majorana modes in each quantum dot have
intradot coupling as well as interdot coupling. We may introduce a pair of
isolated Majorana zero-modes in a quantum dot by setting to zero one row
and one column of the submatrix ΩL or ΩR in the Hamiltonian (2.27). (The
row and column number should be the same to preserve the antisymmetry of
ΩX .) The effect on the distribution of the local fermion parity is shown in Fig.
2.6. The distribution of the local fermion parity is strongly peaked at zero if
and only if there is a pair of isolated Majorana zero-modes in each of the two
quantum dots.

2.6 Conclusion
In summary, we have studied the fusion of Majorana zero-modes using a gen-
eralization of Kitaev’s Pfaffian formula [17] for the global fermion parity of
the superconducting ground state, to include local fermion parity fluctuations
in an open subsystem. The Pfaffian formula in Eq. (2.11), and an equivalent
formulation from Ref. [103], is computationally efficient since it works with
the single-particle (Bogoliubov-De Gennes) Hamiltonian rather than with the
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many-particle Hamiltonian. One limitation of the single-particle formulation
is that it is limited to a mean-field description of the superconductor — in
particular we are assuming that the quantum dots in the geometry of Fig. 2.1
have a sufficiently large capacitance that Coulomb charging energies can be
neglected.

The Pfaffian fermion parity formula is particularly suited to an analysis
in terms of random-matrix theory, in an ensemble of antisymmetric matrices
[49]. For strongly coupled quantum dots the circular ensemble in symmetry
class DIII is the appropriate ensemble, which allows for analytical results for
the statistical distribution of the local fermion parity. There is no eigenvalue
repulsion at the particle-hole symmetry point in such an ensemble [48], and the
resulting accumulation of near-zero eigenvalues enforces a nearly equal-weight
superposition of even and odd fermion parity in a quantum dot.

This is a nontopological mechanism for vanishing expectation value ⟨PL⟩ ≈
0 of the local fermion parity. The Majorana fusion rule provides a fundamen-
tally different, topological mechanism [53]: The merging or “fusion” of two iso-
lated Majorana zero-modes (“isolated” in the sense of zero intradot coupling,
while allowing for interdot coupling) also favors a vanishing ⟨PL⟩ because the
two fusion channels, with or without an unpaired quasiparticle, have equal
weight.

To carry out such a fusion experiment it is proposed [60] that one would
rapidly decouple the subsystems, on a time scale τc sufficiently short that
quasiparticles from the environment cannot leak in. The complication [99]
is that even if there are isolated Majorana zero-modes, the presence of even
a small number Ndot of higher levels at energies below ℏ/τc may hide the
presence of the zero-modes by favoring ⟨PL⟩ ≈ 0 (see Fig. 2.3).

Fig. 2.6 illustrates our proposal to distinguish the two mechanisms for
vanishing local fermion parity: A low-rank coupling between the quantum
dots, via a single-mode quantum point contact, suppresses the nontopological
effect from levels at nonzero energy, without affecting the topological effect
from the fusion of isolated Majorana zero-modes.

2.7 Appendix: Derivation of the Pfaffian formula
from Klich’s counting statistics theory

We follow the steps of Klich’s theory of counting statistics of paired fermions
[104], to reproduce his result for ⟨PL⟩2. Then we will resolve the sign ambiguity
to arrive at Eq. (2.11) for ⟨PL⟩. An equivalent formula is obtained by a different
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method in Ref. [103], Appendix B.
The superconductor in Fig. 2.1 is assumed to be an isolated system, so

that the global fermion parity does not fluctuate. For the derivation of the
subsystem fermion parity formula (2.11) it is convenient to start from the more
general case that the superconductor is in contact with a reservoir in thermal
equilibrium at temperature T . We will then take the T → 0 limit at the end
of the calculation in order to describe an isolated system.

At inverse temperature β = 1/kBT the average fermion parity ⟨PL⟩ of
subsystem L (the left quantum dot in Fig. 2.1) is given by the trace of the
equilibrium density matrix

ρeq = 1
Z
e−βH , Z = Tr ρeq, (2.30)

acting on the fermion parity operator

PL = exp

iπ∑
n∈L

a†
nan

 . (2.31)

Because H = 1
2
∑
n,m Anmγnγm in the basis of Majorana operators γn, and

a†
nan = iγ2n−1γ2n + 1

2 , this can be written as

⟨PL⟩ = eiπNL/2

Z
Tr
[
exp

(
−1

2β
∑
n,m

Anmγnγm

)

× exp
(

−1
2 iπ

∑
n,m

(σy ⊗ PL)nmγnγm
)]

. (2.32)

The matrix σy is a Pauli matrix and the operator PL projects ontoNL fermionic
modes in subsystem L.

Application of the identity [104][
Tr
∏
k

eγ·Ok·γ
]2

= e
∑

k
TrOk Det

(
1 +

∏
k

eOk−OT
k

)
, (2.33)

results in

⟨PL⟩2 = eiπNL
Det [1 + exp (−βA) exp (−iπσy ⊗ PL)]

Det [1 + exp (−βA)]

= (−1)NL Det
[
1 − 2

1 + exp (βA)(σ0 ⊗ PL)
]
. (2.34)



2.7 Appendix: Derivation of the Pfaffian formula from Klich’s counting
statistics theory 55

In the second equality we made use of the identity

eiχ σy⊗PL = 1 + σ0 ⊗ PL(cosχ− 1) + iσy ⊗ PL sinχ, (2.35)

with χ = π. (The matrix σ0 = σ2
y is the 2 × 2 unit matrix.) Note that, in a

basis of energy eigenstates of the BdG Hamiltonian, the operator (1 + eβA)−1

is the Fermi function f(E) = (1 + eβE)−1.
Eq. (2.34) is Klich’s result for the square of the average fermion parity

(equation 84 in Ref. [104]). Klich shows how the sign of ⟨PL⟩ can be recovered
if the determinant is known analytically as a function of the matrix elements.
Here we take a different route, more suitable for numerical calculations, which
gives the sign directly upon evaluation of a Pfaffian instead of a determinant.

Any 2N × 2N imaginary anti-symmetric matrix A can be decomposed as

A = iO(J ⊗ E)OT, J =
(

0 1
−1 0

)
, (2.36)

where O is a 2N × 2N real orthogonal matrix and
E = diag (E1, E2, . . . EN ) is an N ×N real diagonal matrix. Substitution into
Eq. (2.34) gives

⟨PL⟩2 = (−1)NL Det
[
1 −O

2
1 + exp (iβJ ⊗ E)O

T(σ0 ⊗ PL)
]

= (−1)NL Det
[
1 −O[1 − iJ ⊗ tanh(1

2βE)]OT(σ0 ⊗ PL)
]
. (2.37)

This may be written in a more compact form by defining the restriction
[M ]LL of a 2N×2N matrix M to the 2NL ×2NL submatrix of modes in region
L,

⟨PL⟩2 = (−1)NL Det
[
O[iJ ⊗ tanh(1

2βE)]OT]
LL

= Det
[
O[J ⊗ tanh(1

2βE)]OT]
LL. (2.38)

Note that, because of the submatrix restriction, the product rule Det (AB) =
(DetA)(DetB) cannot be applied to Det[AB]LL, so the orthogonal matrix O
cannot be cancelled with the inverse OT.

We have now arrived at the determinant of a real antisymmetric matrix,
hence we can take the square root without introducing branch cuts,

⟨PL⟩ = Pf
[
O[J ⊗ tanh(1

2βE)]OT]
LL. (2.39)
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In the zero-temperature, β → ∞ limit this reduces to

⟨PL⟩ = Pf
[
O[J ⊗ ( sign E)]OT]

LL, (2.40)

which is Eq. (2.11) with −iĀ = O[J ⊗ (sign E)]OT. Kitaev’s formula (2.8)
for the global ground-state fermion parity is recovered when L is the entire
isolated system. This correspondence also identifies

√
Det with +Pf rather

than with −Pf.

2.8 Appendix: Moments of determinants of anti-
symmetric random matrices

In Sec. 2.4.2 we used a formula for the average determinant of a submatrix
(a principal minor) of an antisymmetric real orthogonal matrix. This would
seem like a classic result in RMT, but we have not found it in the literature
on such matrices [116–118]. We therefore give the derivation in this appendix,
and for completeness and reference also derive the corresponding result for
antisymmetric Hermitian matrices.

2.8.1 Principal minor of antisymmetric orthogonal matrix

Consider a 2N × 2N antisymmetric real orthogonal matrix S, with a uniform
distribution in O(2N) subject to the antisymmetry constraint. This is the
class-DIII circular ensemble of RMT [48, 49], referred to as the skew-Circular
Real Ensemble (skew-CRE) in the main text.7

The 2NL×2NL upper-left submatrix SLL has eigenvalues ±iλn, 0 ≤ λn ≤ 1.
Denoting NR = N −NL and Nmin = min(NL, NR), we have that N −Nmin of
the λn’s are pinned to +1. The set {λn} = {λ1, λ2, . . . λNmin} can vary freely
in the interval [0, 1], with joint probability distribution [110]

P ({λn}) ∝
∏
n

(1 − λ2
n)|NL−NR| ∏

i<j

(λ2
i − λ2

j )2. (2.41)

The determinant of SLL is a principal minor given by

Det SLL =
NL∏
n=1

(iλn)(−iλn) =
Nmin∏
n=1

λ2
n. (2.42)

7The antisymmetric orthogonal matrices form a disconnected set in O(2N), distinguished
by the sign of the Pfaffian. For the probability distribution (2.41) it does not matter whether
or not we restrict the ensemble to Pf S = ±1.
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We seek the moments µq = E
[
(Det SLL)q

]
of this determinant in the skew-

CRE.
For that purpose we make a change of variables from λn to Rn = λ2

n ∈ [0, 1],
with distribution

P ({Rn}) ∝
∏
n

R−1/2
n (1 −Rn)|NL−NR| ∏

i<j

(Ri −Rj)2. (2.43)

We can then compute the moments of the determinant from

µq =

∫ 1

0
d{Rn}

∏
i<j

(Ri −Rj)2∏
n

(1 −Rn)|NL−NR|Rq−1/2
n∫ 1

0
d{Rn}

∏
i<j

(Ri −Rj)2∏
n

(1 −Rn)|NL−NR|R−1/2
n

, (2.44)

where we abbreviated
∫ 1

0 d{Rn} =
∫ 1

0 dR1 · · ·
∫ 1

0 dRNmin .
These socalled Selberg integrals have a closed-form expression [119],

µq =
Nmin−1∏
j=0

Γ
(
max(NL, NR) + j + 1

2

)
Γ
(
q + j + 1

2

)
Γ
(
max(NL, NR) + q + j + 1

2

)
Γ
(
j + 1

2

) . (2.45)

For the first few moments, Eq. (2.45) reduces to

µ1 = (2NL)!(2NR)!N !
NL!NR!(2N)! , (2.46)

µ2 = (2NL + 1)(2NR + 1)
2N + 1 µ2

1. (2.47)

Eq. (2.25) in the main text is Eq. (2.46) for NL = NR = Ndot = N/2.

2.8.2 Antisymmetric Hermitian matrix

A similar calculation can be carried out for moments of the determinant of
a 2N × 2N antisymmetric Hermitian matrix A, in the Gaussian ensemble of
independent upper-diagonal elements with a normal distribution (zero mean
and unit variance).

The 2N eigenvalues come in pairs ±λn. The N eigenvalues λn ≥ 0 have
the joint distribution [51]

P ({λn}) ∝
∏
n

e−λ2
n/2 ∏

i<j

(λ2
i − λ2

j )2. (2.48)
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The determinant is

Det A = (−1)N
N∏
n=1

λ2
n. (2.49)

Let us introduce the variables xn = λ2
n/2 ≥ 0, with distribution

P ({xn}) ∝
∏
n

x−1/2
n e−xn

∏
i<j

(xi − xj)2. (2.50)

The q-th moment µq of the determinant of A is given by

µq = (−2)Nq

∫ ∞

0
d{xn}

∏
i<j

(xi − xj)2∏
n

xq−1/2
n e−xn

∫ ∞

0
d{xn}

∏
i<j

(xi − xj)2∏
n

x−1/2
n e−xn

, (2.51)

with
∫∞

0 d{xn} =
∫∞

0 dx1 · · ·
∫∞

0 dxN . This is the ratio of normalisation con-
stants of Laguerre distributions, which is known [119]. We thus obtain

µq = (−2)Nq
N−1∏
j=0

Γ
(
q +N − j − 1

2

)
Γ
(
N − j − 1

2

) . (2.52)

For q = 1, 2 this reduces to

µ1 = (−1)N (2N)!
2NN ! , µ2 = (2N + 1)!(2N)!

22N (N !)2 ,

⇒ Var (Det A) = 2N [E(Det A)]2.
(2.53)

The average determinant of antisymmetric Hermitian matrices increases ex-
ponentially with N ,

µ1 =
√

2(−2/e)NNN [1 + O(1/N)], (2.54)

in contrast to the exponential decay for antisymmetric orthogonal matrices,
cf. Eq. (2.25).


