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Chapter 1

Introduction

1.1 Preface

This thesis is devoted to the study of a model that finds useful and important
applications in a wide range of physical systems, from cosmology and particle
physics to condensed matter physics and quantum computers. It tries to
support the idea that working on the intersection of different fields of physics
is extremely fruitful and that studying low energy effective field theories can
give us a lot of insight about high energy fundamental theories.

The state of the art of modern physics describes matter as consisting of
fermionic particles that interact through bosonic mediators (with the Higgs
boson playing yet another special role). Attempts to build a closed, complete
and self-consistent quantum mechanical description of atomic and sub-atomic
physics started at the beginning of 20th century and culminated in the so-
called Standard Model [1]. At the moment, it describes a zoo of all particles
that have been detected so far. These particles have many interesting and
peculiar properties such as chiral interactions, non-abeliean symmetries, etc.
To study them, particle physicists build larger and larger facilities such as
accelerators, colliders, gigantic detectors.

A complementary avenue to study the properties of the particles on low
energy scales is provided by condensed matter physics. Both at the high-
(particle physics) and low-energy end (condensed matter physics), physics
is of irreducible emergent many-particle nature and it is only in the mid-
dle (atomic and nuclear physics) that few-particle systems come into play.
Collective degrees of freedom of a many-body system can be described by
so-called “quasi particles” [2]. Such many-body systems are governed by qual-
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itatively new principles (also called “laws of emergent behaviours”), compared
to few-particle systems [3].

The properties of these quasi-particles such as statistic, charge, effective
mass, etc. are typically defined not by the microscopic details, but by the
universal properties of the system, e.g. its symmetries. Modern technologies
allow to fabricate complex many-body systems that can host quasi particles
with predefined properties, which can be probed experimentally. On the other
hand, the principle of adiabatic continuity allows us to study such systems
theoretically. One can forget about microscopic details and consider simpler
“toy” effective models with specified symmetries [3].

One interesting and yet not fully studied example are the so-called Ma-
jorana fermions – neutral particles with fermionic (or, in general, anyonic)
statistics that have a peculiar property: they can be considered as their own
anti-particles [4]. Although no elementary particles has so far been confirmed
to be a Majorana fermion, they play a very important role both in funda-
mental and applied physics. From the point of the former, there are several
reasons to consider Majorana fermions:

1. ordinary Standard Model neutrinos may appear to be Majorana fermions.
This possibility is being tested in, e.g., experiments of the so-called
neutrino-less double β decay [5–7].

2. despite the great experimental success of the Standard Model, which has
been verified to a high precision in thousands of different channels, we
know for sure that it is incomplete. This means that there should exist
some new particles. Majorana fermions could be a very good candidate
for several reasons:

(a) Majorana fermions have been proposed as a dark matter particle
(e.g. WIMPs, sterile neutrinos) [8–10].

(b) a Majorana lepton breaks lepton number conservation. This is the
key element of the so-called thermal leptogenesis – one of the most
popular mechanisms for the explanation of the matter-antimatter
asymmetry [11, 12].

(c) the Majorana mass of right-handed neutrinos provides a very natu-
ral explanation of the minuteness of normal neutrino masses (seesaw
mechanism) [13].

We do not know what is the correct extension of the Standard Model.
Even if Majoranas are not the right candidates and do not exist in nature as
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a fundamental particle, we are still left with a lot of motivation to study them
from the perspective of mesoscopic physics, where they can be constructed out
of electron and hole excitations [14–16].

Recently, there has been a lot of attention to so-called Majorana zero modes
(MZMs) – subgap states in superconductors [16–19]. There they arise as a
quasiparticle excitation localized at the boundaries. Such MZMs are spatially
separated, pinned to have exactly zero energy and free of decoherence thanks
to the particle-hole symmetry of the superconducting state. Moreover, unlike
ordinary fermions and bosons, they have a non-abelian anyonic statistics under
the exchange. Thanks to these properties one can use them as building blocks
for a protected quantum memory [17, 20, 21] for a fault-tolerant quantum
computer.

The effective low energy field theory of the MZMs in superconductors is
a non-interacting theory. A very interesting physics emerges also if one looks
at a different end - strongly interacting Majorana modes in the many-body
systems. If one couples N ≫ 1 such modes in a way that the coupling is
all-to-all and random [22, 23], the resulting system would have a non-Fermi
liquid phase, where there is no clear Fermi surface even at zero temperature
and the description of the system in terms of quasiparticles is not possible [24].
The theoretical toy model for such system is called Sachdev-Ye-Kitaev (SYK)
model [25, 26] and it appears to be theoretically solvable under the mean-
field approximation. It can be fruitful to study this toy model since there is
still a need in the development of a general theory of the non-Fermi liquid
ground state(s) of an interacting many-body fermionic system [24] and there
are hints that SYK is capable of describing them to some extent. For exam-
ple, the SYK model can reproduce some aspects of certain strongly correlated
materials called strange metals [27]. Moreover, such a toy model has an emer-
gent conformal symmetry in the infrared and saturates the upper bound on
quantum chaos [28]. These aspects led to considering the SYK model to be a
holographic dual of black hole horizons [29–31].

The points mentioned above are only a small part of the extensive list of
arguments that make Majorana fermions an extremely interesting and rich
subject of study.

1.2 Majorana fermions as fundamental particles

We start our investigation by looking at how the Majorana fermions emerge
as elementary particles - real solutions of the fundamental Dirac equation [4].
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1.2.1 Dirac equation

The first attempt to write a relativistic version of the Schrödinger equation
iℏ∂t |ψ⟩ = p̂2

2m |ψ⟩ was made by Oskar Klein and Walter Gordon in 1926 by
following the same logic of exploiting the dispersion relation, but in the rel-
ativistic form E =

√
p2c2 +m2c4 [32, 33]. However, such operator would be

non-local, which is incompatible with the finite speed of light propagation.
To get the local equation one needs to take the square of the dispersion rela-
tion, arriving to the famous Klein-Gordon equation

(
□ +

(
mc
ℏ
)2)

ψ = 0, where
□ = gµν∂µ∂ν = 1

c2∂
2
t − ∇2 is a Lorentz-invariant combination.

However, the total probability P =
∫

dr⃗
∣∣ψ(r⃗, t)

∣∣2, that used to be positive
definite and conserved in time for the states obeying Schrödinger equation,
loses its probabilistic interpretation in the Klein-Gordon equation, since we
have also included the negative energy states when we took the square of E(p).
Indeed, the zeroth component of the conserved current Jµ ∼ ψ∗∂µψ − ψ∂µψ

∗

can not be treated as the probability density since J0 = −ℏ|ψ|2
mc2

∂arg(ψ)
∂t can

change sign.1
An alternative equation, proposed by Dirac in 1928, had the form of

iℏ∂t |ψ⟩ = Ĥ |ψ⟩ with Ĥ = α · p̂ + βm [32, 34]. In this case the probabilistic
interpretation occurs automatically as the probability density is conserved for
such equation with any Hermitian Ĥ. Let us first consider the case of zero
mass m = 0. Then, it can be shown that αi do not commute, but rather satisfy
{αi, αj} = 2δij which means that they are not numbers but matrices. One can
also show that these matrices should be Hermitian, even-dimensional, trace-
less and that their eigenvalues are ±1. The minimal set that satisfies these
conditions are Pauli matrices σx,y,z and the corresponding form of the Dirac
equation is called Weyl equation iσµ∂µ |ψ⟩ = 0 2. Let us call right spinor
ψR the 2-component wave function ψ = (ψ1, ψ2) that is the solution of the
corresponding Weyl equation. However, one can see that there is also another
choice of αi = −σi compatible with all the constraints that leads to the Weyl
equation on left spinor iσ̄µ∂µψL = 0, where σ̄µ = (1,−σi). The names left and
right come from the fact that one spinor relates to another through a parity
transformation P : r → −r such that ψL = P̂ψR.

Now let us try to introduce the mass into this equation. An important ob-

The contents of this chapter is mostly based on textbook material, for example one can
follow the references [32]

1Klein-Gordon equation is, in essence, classical equation.
2Where we introduced the 4-vector σµ = (1, σi).
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servation in this regard is that in order for the theory to be Lorentz-covariant,
namely iσµ∂′

µψ
′
R = iσµΛµν∂νSRψR = S (iσµ∂µψR) = 0 3 (and the same holds

for ψL but with some other matrices SL, S̃), one has to require S = SL and
S̃ = SR. In other words, the equation for he right spinor transforms as the left
spinor and vice versa. This leads to the fact that the mass would mix right
and left spinors since it is the only Lorentz-covariant way to introduce it

{
iσµ∂

µψR = mψL

iσ̄µ∂
µψL = mψR

. (1.1)

Introducing the Dirac spinor ΨT = (ψL, ψR) and the matrices γµ =
(

0 σµ

σ̄µ 0

)
,

equations 1.1 become

(iγµ∂µ −m) Ψ = 0. (1.2)

This representation of γ-matrices is not unique and is called Weyl representa-
tion.

Since the Hamiltonian of the Dirac equation commutes with pµ the solu-
tions are of a plane wave form with some spinor structure Ψ(x) = u(p)e−ipµxµ .
By plugging it in the equation 1.2 and requiring to have a non-trivial solution
for u(p) we arrive at the constraint on the two solutions: E = ±

√
p2 +m2.

Therefore, the general solution to the Dirac equation takes form Ψ(x) =
u(p)e−ipµxµ + v(p)e+ipµxµ , where the spinors u(p), v(p) have the interpreta-
tion of the particle and anti-particle.

The particle/antiparticle nature of the two solutions to the Dirac equa-
tion can be seen if one tries to build the positive energy counter-part ψc to
the negative energy solution ψ = v(p)eipµxµ . One can convince themselves
that simple complex conjugation will not work and one should instead take
ψc = Ĉψ∗, where Ĉ = iγ2. Only in this case the opposite energy states ψ
and ψc simultaneously solve Dirac equation. Physically, Ĉ is the operator of
the charge conjugation, since in the presence of the electromagnetic field ψc
satisfies the equation (iγµ(∂µ + eAµ) −m)ψc = 0, while for ψ the charge is
opposite. This interpretation of the negative energy states comes very handy
as it saves us from the catastrophe of the infinite negative energy sea of states
(so-called Dirac sea).

3Where Λµ
ν is a boost matrix.
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1.2.2 Majorana solution

In 1937, before disappearing, Majorana posed the question of whether we could
look for a real solution to the Dirac equation [4]. This would be possible if
one imposed the following constraint on the γ matrices present in the Dirac
equation: (iγ̂µ)∗ = iγ̂µ (Majorana representation)4. Since the charge conju-
gation operator is generally chosen such that −γ̂µĈ = Ĉ(γ̂µ)∗, for Majorana
representation it commutes with γ-matrices and therefore the Majorana solu-
tions are also eigenstates of the charge conjugation operator. In other words,
the Majorana particle is electrically neutral and hence its own antiparticle
Ψc ≡ ĈΨ = Ψ. The latter relation is what defines a Majorana particle in any
representation and is called Majorana condition.

The Majorana solution can be written both in terms of a real four-component
spinor, and as a complex two-component spinor. The equation on this two-
component spinor can be understood from the following consideration. The
charge conjugation operator in the Majorana representation is just a complex
conjugation. This means that it changes the momentum of the state, but not
the spin. For the massless case it would mean that the charge conjugation
operator transforms the left spinor into the right5, namely χcL/R = χR/L. The
Majorana spinor χ satisfies the equation

iσµ∂µχ−mχc = 0. (1.3)

1.3 Majorana fermions in condensed matter physics

Now when we are familiar with the Majorana fermions on the fundamental
level, let us see how these (quasi)particles emerge in many-body condensed
matter systems as effective low-energy degrees of freedom. The connection of
the effective description of the low energy modes in many-body systems with
the fundamental equations is very frequent with the most obvious example
being graphene [35], followed by Weyl semimetals [36], etc. This should not
be surprising, as the theory on low energies does not “see” the microscopic
structure of the material, only its global symmetries.

4We note that the solutions can be real, but they do not need to, same as for the case of
Klein-Gordon or Maxwell equations

5Dirac Hamiltonian commutes with the so-called helicity operator ĥ = p̂ · Σ̂/|p|. When
m = 0, γ5 also commutes with H and therefore the eigenstates have both fixed helicity and
parity.
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1.3.1 The need in superconductivity

Majorana fermions may or may not exist in Nature as elementary building
blocks, but in condensed matter they can be constructed out of electron and
hole excitations. In order to get the excitation that is charge neutral one
needs superconductivity where the quasiparticles are coherent superpositions
of electrons and holes – so-called Bogoliubov quasiparticles.

The mean-field Bardeen–Cooper–Schrieffer (BCS) Hamiltonian [37, 38] de-
scribing the conventional s-wave (the meaning of it will be elaborated further)
superconductor is quadratic but includes so-called anomalous terms

HBCS =
∑

k

[
(εk − µ)(c†

k,↑ck,↑ + c†
−k,↓c−k,↓) + ∆∗c−k,↓ck,↑ + ∆c†

k,↑c
†
−k,↓

]
,

(1.4)
where ∆ = g0

V

∑
k⟨c−k,↓ck,↑⟩, V is a system volume and g0 is some positive

interaction constant.
Such kind of Hamiltonians are known to be diagonalized by the so-called

Bogoliubov transformation which is in essence a rotation in the particle-hole
space

γ†
k,1 = ukc

†
k,↑ + vkc−k,↓

γ−k,2 = v∗
kc

†
k,↑ − u∗

kc−k,↓ (1.5)

with the condition that u2
k + v2

k = 1 and canonical commutation relations on
quasiparticles {γk,α, γ

†
k′,β} = δk,k′δα,β. The Hamiltonian becomes diagonal

HBCS = ∑
k Ek

(
γ†

k,1γk,1 + γ†
k,2γk,2

)
+ E0 with the eigenvalues

Ek =
√

(εk − µ)2 + |∆|2 (1.6)

We can view γ−k,2 as a creation operator of the particle with the negative
energy and then the spectrum would look symmetric around E = 0. This
means that the system has particle-hole symmetry – each eigenfunction Ψ
at energy E > 0 has a copy Ψ′ = ĈΨ at energy −E, where Ĉ is a charge
conjugation operator. Only at zero energy the particle and antiparticle can
coincide which means that despite the fact that the quasiparticle excitations
are coherent superposition of the particle and hole, we can not have Majorana
quasiparticles in such a system because it would mean that we need to close
the energy gap. Naively, if we allow for the superconducting gap ∆ to become
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k-dependent this obstacle can be bypassed and we can close the gap6.
Let us consider a more general case where the Cooper pairing correlation

(gap parameter) is a k-dependent tensor ∆αβ(k) ∝ ⟨cα(k)cβ(−k)⟩ with α, β
being the spin indices. When there is no spin-orbit coupling, both the spin and
the momentum are good quantum numbers, and one can separate ∆αβ(k) =
χαβ∆(k) with χαβ a spinor matrix and ∆(k) a function. Then, there are two
possibilities:

1. χαβ = −χβα,∆(k) = ∆(−k) – the spin-singlet pairing.

2. χαβ = χβα,∆(k) = −∆(−k) – the spin-triplet pairing.

One can write a general form of the order parameter as

∆αβ(k) = (∆0(k) + d(k) · σ) (iσ2)αβ, (1.7)

where ∆0(k) encodes the singlet component and d(k) is a vector encoding the
triplet state. Their functional dependence is generally unknown and depends
on the particular lattice under consideration.

1.3.2 Topologically protected zero modes

If we do not have translational invariance in the system namely we have a
system with an edge or a defect and if on top of that we also break the spin
conservation, we can build Bogoliubov quasiparticle out of the creation and
annihilation operator of the same mode [17, 39]

γn1 = cn + c†
n

γn2 = i(cn − c†
n). (1.8)

One can also think about it as simply a change of the basis where we double
the degrees of freedom going to real modes – Majorana representation. For the
systems with particle-hole symmetry we have a requirement that such states
come in pairs at ±E with the possibility of an unpaired state at E = 0. The
simplest example of the appearance of such a Majorana zero modes (MZM) is
in the toy model called Kitaev chain [17]. There, the two MZMs are localized
at the ends of the fermion chain.

Thanks to the particle-hole symmetry, the state at E = 0 is protected
against any local perturbation that does not break particle-hole symmetry –

6Due to the symmetry of the spectrum with respect to k⃗ → −k⃗ this would be at the
k = 0 or k = ±π points.
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it simply is not able to shift from zero since the spectrum should be symmet-
ric [15]. Such state is called topologically protected. One can also think about
it as following - the Hamiltonian that has particle-hole symmetry commutes
with the parity operator which means that different parity sectors are decou-
pled. The presence or absence of the zero energy state correspond to parity
odd sectors. The only way for such state to disappear would be to bring the
two Majorana modes that encode it close to each other such that their wave
functions overlap. In this case the ground state will split and no longer be
degenerate. For the example of the Kitaev chain it means that if the chain
has finite length L then the state with MZMs at the end of the wire will have
the energy of order ε ∼ e−L instead of zero.

The presence or absence of the unpaired zero energy level is therefore in
one-to-one mapping with the parity of the ground state that is a topologi-
cal invariant protected by the particle-hole symmetry. Kitaev identified this
invariant to be defined by the Pfaffian of the Hamiltonian in the basis of Majo-
rana fermions H = 1

2γ ·A·γ,P0 = signPf(−iA)7 [17]. The transition involving
the change of the sign of the Pfaffian should necessarily involve closing of the
gap.

It appears, that such topologically protected MZMs can appear not only
in the toy models, but rather in real materials. We can depart from the
superconductor with the presence of a defect or a boundary and see which
additional constraints we have to impose. The first important ingredient to
this story is that the zero energy level should be non-degenerate otherwise
the two states at E = 0 can merge as |11⟩ → |00⟩8. This process is not
forbidden in the superconductor since the latter only preserves the parity, not
the particle number. It is known that the half-integer states in the system
that has time reversal symmetry are doubly degenerate – so-called Kramers
degeneracy [40]. The time-reversal operator changes both the direction of the
spin and momentum. The two possible ways to break it are:

1. Take a p-wave superconductor with ∆αβ(k) ∝
(

1 0
0 0

)
(kx+ iky) [15, 18,

41]. Such superconductors are called unconventional which reflects the
fact that they are extremely rare in nature. Moreover, p-wave pairing is
fragile, easily destroyed by disorder.

7The fact that the Hamiltonian can be represented as H = iA, where A is a real antisym-
metric matrix follows from the particle-hole symmetry which is just H∗ = −H in Majorana
basis.

8Here we denote by |1⟩ the presence of the state at zero energy.
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2. A much simpler solution is to introduce the magnetic field that would
break the time-reversal symmetry. Since the magnetic field is repelled
from the superconductor (Meissner effect) and can only penetrate it in
the form of vortices, we introduce superconductivity by proximitizing
the semi-conductor with the superconductor. We take the s-wave su-
perconductor since most superconductors in nature are of this kind. A
singlet superconductor, however, has an important property: the total
spin of every excitation is conserved. Zeeman field conserves the spin in
z-direction, so together every single state of our system has to have a
definite spin, including the Majoranas. Majoranas are their own particle-
hole partners, and that means that they cannot have any spin (energy,
charge, or any other observable property at all). This would mean that
in such a system they can not appear. Therefore, the spin conservation
needs to be broken and the simplest plausible way to do so is via the
spin-orbit coupling (also referred to as Rashba coupling).

To conclude this analysis, in the system that consists of the semi-conductor,
proximitized by the s-wave superconductor, with magnetic field and spin-orbit
coupling one can have Majorana zero modes bound to a defect or a boundary
that are spatially separated and protected from the local perturbations. In-
deed, it happens so that by varying the strength of the magnetic field, chemical
potential and superconducting gap one can close the gap in the energy spec-
trum and reopen it entering the so-called topological phase with the protected
zero energy level.

There exist many proposals for the experimental realization of the topo-
logically protected Majorana zero modes including chiral p-wave superconduc-
tors [42, 43], topological insulators in the proximity to the s-wave supercon-
ductor [16], semiconductors with Rashba spin-orbit coupling [19, 44, 45] (see
Fig. 1.1).

1.3.3 Andreev levels

As was discussed above, the spectrum of the ideal topological superconduc-
tor under the mean field approximation is gapped (the gap being the mean
field order parameter), so the zero energy level (if present) is well separated
from the continuum. But is it still same for the “dirty” system with some
disorder? The tool that can describe universal properties of disordered metals
and superconductors [46, 47] depending on the symmetry class that it belongs
to [48] is called Random matrix theory (RMT). The main idea is that instead
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Figure 1.1. Schematic experimental setup of Majorana nanowire device. The figure
is reprinted with permission from Zhang, Hao, Dong E. Liu, Michael Wimmer, and
Leo P. Kouwenhoven, Nature communications 10, no. 1, (2019)

of considering one “ideal” Hamiltonian we take an ensemble of the Hamilto-
nians with some probability distribution P (H) ∼ exp

(
− c
NTrH2) where c is

a parameter that is the same for the classes of Hamiltonians that share same
universal symmetries [46].

When classifying the Hamiltonian classes we look only on anti-unitary sym-
metries that come in two types: the Hamitonian can either commute (time-
reversal symmetry) or anti-commute (particle-hole symmetry) with the anti-
unitary operator. All the unitary symmetries can be disregarded by restricting
ourselves to one symmetry sector (block in the Hamiltonian matrix) and the
unitary symmetry that anti-commutes with the Hamiltonian (called chiral
symmetry) can be obtained as a product of particle-hole and time-reversal op-
erators [49]. According to this, different combinations of these “non-reducible”
symmetries give us 10 different classes of Hamiltonians [48] (corresponding to
all the possible combinations of the symmetries).

In case of the systems that can host topologically protected Majorana zero
modes, the spin-rotation symmetry is broken by spin-orbit coupling, while the
particle-hole symmetry is present. The corresponding systems are in symmetry
class D.

If one looks at the ensemble-averaged density of states for the class D
system (Fig. 1.2), one would see that in the topologically non-trivial phase
(green color and red delta-function contribution) there is a clear zero energy
mode (corresponding to MZMs) that is well separated from the continuum
– there is a dip in the density of states around zero. However, despite the
fact that there is no sharp line at E = 0 for the topologically trivial case, the
density of states is still peaked around zero [48, 50, 51].

This posses a fundamental obstacle on the route to measuring topologically
protected zero modes since the accidentally low lying states (also called An-
dreev levels) in the trivial phase can mimic the true MZMs in the observables.
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Figure 1.2. Panels a) and b) show the spectrum of a class-D superconductor. The
unpaired MZMs are present on panel b). In the middle: the ensemble-averaged density
of states. The green line and the delta-function contribution from the zero-mode
correspond to the topological phase, while the blue line - to the trivial phase. The
figure is reprinted with permission from Beenakker, C. W. J, Reviews of Modern
Physics, 2015

The particular case when the observable is the parity of the sub-system of the
system with 2N MaZMs is considered in Chapter 1.7.1 and Chapter 1.7.2.

1.4 Anyonic Majorana fermions

By definition, Majorana zero modes (MZMs) are real (γ†
i = γi) so we need two

of them to encode a single complex fermion (each Majorana is an equal-weight
superposition of the electron and hole excitation, Eq. 1.8). Moreover, in case
of the topologically protected MZMs bound to defects or at the boundaries,
such a fermion is de-localized.

For N zero energy levels we have 2N Majoranas and the degeneracy of the
ground state is 2N . The degeneracy of the ground state is a key element to the
most valuable property of the topological superconductors - the non-Abelian
statistic of the MZMs under the adiabatic exchange between one another

|Ψ⟩ → Û |Ψ⟩ , where Unm = exp
(

±π

4 γnγm
)

= 1√
2

(1 ± γnγm) . (1.9)

Such exchange of two MZMs out of the group is called braiding and is a key
element in building the quantum computer – with its help we can construct
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gates and operate the state. In case when the MZMs are bound to vortex cores,
it can be realized when a vortex from one pair is adiabatically 9 moved around
a vortex from the other pair at a large distance without ever approaching it.
Each of the two selected MZMs can be seen as one fermionic mode with fixed
parity Pn = 1 − 2c†

ncn ≡ iγ2n−1γ2n. Despite the fact that the total parity
Ptot = ∏

n Pn is conserved, the parity of each pair can be changed during
braiding, the procedure called quantum state transfer.

In order to have a fully functional quantum computer, we need to be able
to generate arbitrary n-qubit unitary gate. However, not all the unitary oper-
ations can be performed using braiding [52, 53]. For the single-qubit operation
we need the minimal set of 4 MZMs such that the qubit for the case of the
odd total parity can be encoded depending on where does the fermion “sit”:
|0⟩ ≡ |+⟩ |−⟩ , |0⟩ ≡ |−⟩ |+⟩10 (see Fig. 1.3, panel a) for an example of imple-
mentation of the qubit on 4 MZMs bound to vortices). Exchange of two MZMs
(also called “half-braid”) corresponds to the square root of the Pauli matrices√
σi depending on which Majoranas are getting exchanged [14]11 (example of

the implementation of √
σx can be seen on Fig. 1.3, panel c)). The latter

correspond to the rotation of the qubit by π/2 with respect to the orthogonal
axes on the Bloch sphere. It can be shown, that if we add a π/4 rotation
around z-axis to out set of operations, a rotation by an arbitrary angle around
any axis can be approximated with arbitrary accuracy [54]. However, that π/4
rotation which is also called T-gate can not be realized with braiding [14].

In order to construct any multi-qubit unitary operation, one needs a com-
bination of a two-qubit gate (e.g CNOT that flips or not the state of the
target qubit depending on the state of the control qubit) with single-qubit ro-
tations [55]. The latter can be realized if we add the parity measurement that
define the last step of the operation and the ancilla qubit [14] (see Fig. 1.4,
left panel).

Braiding operation is very non-trivial and yet no one has succeeded in
performing it. The MZMs bound to a defect or the end-point of a nanowire (as
compared to the quantum Hall edge states) are immobile and therefore most
proposals to demonstrate non-Abelian statistics generate the unitary braiding
operation without physically moving the zero-modes in real space [20, 56–
59]. Instead, the braiding is done in the parametric space. In the tri-junction

9The adiabaticity of the process is important to avoid Landau-Zener transitions.
10Equivalently, we could encode the qubit in the states |−⟩ |−⟩ , |+⟩ |+⟩ if the total parity

is even.
11For √

σx corresponds to the exchange of Majorana 2 and 3, √
σy - to the exchange of

Majorana 1 and 3 and √
σz - to the exchange of Majorana 1 and 2.
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Figure 1.3. Panel a): a qubit |0⟩ ≡ |+⟩ |−⟩ , |0⟩ ≡ |−⟩ |+⟩ built out of the four Majo-
rana zero modes bound to vortices. Panel b) and c): operations σx,

√
σx respectively

performed by exchanging the vortices. The figure is reprinted with permission from
Beenakker, C. W. J, SciPost Phys. Lect. Notes, 2020

Figure 1.4. Two-qubit CNOT gate realized through braiding (left) and solely real-
ized by projective parity measurements. The figure is reprinted with permission from
Beenakker, C. W. J, SciPost Phys. Lect. Notes, 2020

introduced by by Alicea et al. [20] by varying the couplings between Majotanas
H(t) = ∑3

i=1 ∆i(t)iγ0γi and can transfer a Majorana zero-mode is transferred
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from one end point to another (see Fig. 1.5). On practice, this can be either
done by the electrostatic control using gate voltage [60] or by magnetic control
tuning the magnetic flux through the Josephson junctions (see Fig 1.6) [57].
The advantage of the latter over the former is in the fact that the charge-
sensitivity can be switched on and off with exponential accuracy by varying
the magnetic flux through a split Josephson junction [61]. This gives us a
macroscopic handle on the interaction of pairs of Majorana fermions.

Figure 1.5. Braiding of Majorana zero modes (γ1 and γ2 in tri-junction.) γ0 is
an effective zero mode created when three MZMs got coupled in the middle of the
tri-junction. To perform the braiding operation, one varies the couplings between the
MZMs, thick lines denoting coupled Majoranas while dashed lines - decoupled. The
figure is reprinted with permission from Beenakker, C. W. J, SciPost Phys. Lect.
Notes, 2020

Figure 1.6. Three Cooper pair boxes with two Majorana zero-modes in each (pink
dots). The three overlapping Majorana zero-modes that meet at the center of the
at the tri-junction split to produce two no-zero levels and a single zero-mode. The
coupling between the Majoranas in each Cooper pair box γi, γ

′
i is varied by varying

the flux Φi through the corresponding Josephson junction.
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An arguably easier operation as compared to braiding appears to be able to
completely substitute it [56]. This operation is a projective measurement called
fusion. Physically, it is realized by bringing the vortices together so that the
wave-functions of the zero-modes overlap. As a result, they split energetically,
allowing to measure the fermion parity. The outcome of such a measurement
is specified by the fusion rules. If we prepare the qubit in the state where
γ1, γ2 and γ3, γ4 form states with definite fermion parity, the ground state
degeneracy of the whole system will manifest itself in the non-deterministic
outcome for the parity of the state formed from γ2, γ3. It follows from the
anti-commutation relation for MZM which leads to ⟨P23⟩ = ⟨P12P23P12⟩ =
−⟨P12P12P23⟩ = −⟨P23⟩ In a formal notation the fusion rule is expressed by

γ2 × γ3 = 1 + ψ, (1.10)

where ψ indicates the presence of an unpaired fermion and 1 – no unpaired
fermions [14]. Since the fusion rule 1.10 is a manifestation of the degenerate
ground state and we know that the latter implies non-Abelian exchange statis-
tic, one can conclude that the observation of the corresponding fusion rule is
sufficient to announce the indirect demonstration of non-Abelian statistics.

Figure 1.7. Two geometries to detect the fusion rule. The figure is reprinted with
permission from Beenakker, C. W. J, SciPost Phys. Lect. Notes, 2020

Two easiest geometries to detect the fusion rule are presented on Fig. 1.7.
In both geometries we perform a sequence of coupling and decoupling of the
MZMs between each other. The difference between the linear and tri-junction
is only in the mechanism of tuning the coupling (flux-controlled in the latter
while in the former we have flux-controlled coupling inside the island and gate-
controlled coupling between the islands). the sequence of steps is following [60]:

1. Start by coupling γ1 and γ2 performing the projective parity measure-
ment P12 such that we effectively have one superconducting nanowire.
The ground state is fixed by the total parity.
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2. Decouple γ1 and γ2 and couple γ2 and γ3. The parity P23 is expected
by have equal probability to be ±1.

To experimentally perform a projective measurement on practice, one
needs an observable that couples to it. The possible measurement schemes
are:

• Majorana interferometry [58]. One brings the superconducting nanowire
with MZMs into a weak contact with the normal metal and measures
the current passing through it. The switches in parity result in parity-
dependent Aharonov-Bohm oscillations in the magnetoconductance.

• Inductive coupling to a flux qubit [62]. The topological one-dimensional
wire gets closed into circle by broken superconducting ring [63]. The sec-
tion of the wire bridging the break of the superconducting ring remains
nontopological and acts as a weak link (Josephson junction) between
the two topological regions. Measuring the Josephson supercurrent can
probe the 4π Josephson effect [17].

• Microwave coupling to a transmon qubit12. The nanowire with MZMs is
incorporated into the Cooper pair box, the effective low energy Hamilto-
nian of which gets the term that depends on the parity of the nanowire [57].
The Cooper pair box is then placed in a microwave transmission line res-
onator changing its resonance frequency depending on the parity of the
MZMs in the Cooper pair box [64].

• Capacitive coupling to a quantum dot. The superconducting nanowire is
coupled to semiconductor quantum dots modulating the charge on them
depending on the fermion parity of the zero-modes. The charge of the
semiconductor quantum dots is then read-out capacitively [59, 65].

• If one wants to make a scalable read-out circuit performing a joint parity
measurement on arbitrary pairs of Majorana zero-modes, one has to use
Random Access Majorana Memory (RAMM) [66].

Bonderson, Freedman,and Nayak [56] showed how braiding of two MZMs
(e.g γ1 and γ2 as on Fig. 1.5) can be performed through the sequence of
projective measurements Πkl = 1

2 (1 + Pkl) (Fig. 1.8). The idea is to project
the state onto the state with definite parity (e.g +1). This can be done by
measuring the parity and disregarding all the instances when it was equal

12The transmon is a type of superconducting charge qubit



18 Chapter 1. Introduction

Figure 1.8. Braiding of Majorana zero modes (γ1 and γ2 in tri-junction.) γ0 is an
effective zero mode created when three MZMs got coupled in the middle of the tri-
junction. To perform the braiding operation, one performs a sequence of projective
measurements Pkl = iγkγl. The operations proceed only in case Pkl = +1, otherwise
we need to start over. The figure is reprinted with permission from Beenakker, C. W.
J, SciPost Phys. Lect. Notes, 2020

to −1. In this case, if we initialize the system in the state of even fermion
parity and then we subsequently make sure that the parities P03 and then
P01, . . . , P03 is equal to +1 then due to the total parity conservation Majorana
1 must have been transferred to Majorana 3. The two-qubit operation CNOT
can be also fully realized using projective measurements of parity.

It looks convincing that projective parity measurement is an important
ingredient both in showing the non-Abelian statistic of the MZMs and for ac-
tually building a fault-tolerant quantum computer. As we have discussed in
section 1.3.3, however, for the generic system that can host topologically pro-
tected MZMs, namely for a topological superconductors there exist parasitic
low lying states (Andreev levels) that can contribute to the observables. The
density of states of a “dirty” topological superconductor has a peak near zero
energies, in Chapters 2 and 3 we have studied what influence these states can
have one the measurement of the fusion rule.

1.5 Chaotic Majorana fermions

The Majorana zero modes that appear in the topological superconductors are
non-interacting. The different point of view that considers the extreme case
of strongly-correlated Majorana zero-modes can be studied and it appears to
have many interesting and peculiar properties.

The SYK model was introduced by Kitaev [25] as a follow-up on the origi-
nal disordered quantum Heisenberg model by Sachdev and Ye [26]. It contains
N ≫ 1 Majorana fermions in 0+1 dimensions, with the Hamiltonian consisting
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of a sum of all possible 4-fermion terms with random matrix elements

H = 1
4!

N∑
i,j,k,l=1

Jijklγiγjγkγl, (1.11)

where γi are Majorana zero modes, the couplings Jijkl are drawn independently
from Gaussian distribution with zero mean Jijkl = 0 and finite variance J2

ijkl =
3!J2/N3. The parameter J regulates the degree on entanglement in the system
and by varying it we can enter phases with different qualitative behaviour of
the system (we will elaborate on it later).

One can make two generalizations of this model:

1. Consider q-fermion interactions instead of 4-fermion as in 1.11 [31]. How-
ever, it appears that the non-trivial behaviour of the system shows up
already for q = 4 therefore we will proceed with this “minimal” case
further on in this thesis.

2. One can write the same model for complex fermions instead of real Ma-
jorana fermions (so-called cSYK) described by the Hamiltonian13.

HSYK = 1
(2N)3/2

N∑
i,j,k,l=1

Jij;klc
†
ic

†
jckcl, (1.12)

where again Jij;kl = J∗
kl;ij is a standard complex normal random variable

with zero mean and variance J2.

The SYK model drew the attention to itself due to a list of peculiar prop-
erties such as saturating the upper bound on quantum chaos [28] which is also
the case for holographic duals of black hole horizons [29] and the absence of
the well defined quasi-particles in strong coupling limit (J/T ≫ 1). Let us
elaborate on it a bit.

The degree to which the system is chaotic of the system is usually for-
mulated in terms of the so-called Out-Of-Time-Order-Correlation function
(OTOC) introduced by Larkin and Ovchinnikov [67].

C(t) ≡ −⟨[W (t), V (0)]2⟩ (1.13)

where ⟨. . . ⟩ represents the thermal average. A naive understanding of the
connection between the OTOC and chaos can be seen from the following

13The features of the SYK model mentioned in this section are valid for both models with
real (Majorana) and complex fermions
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consideration. Take W (t) = x(t) be the position operator and V (t) = p(t)
the momentum operator in a quantum system. Then, in the semiclassical
limit we replace the commutator [x(t), p(0)] in the OTOC by the Poisson
bracket {x(t), p(0)} = δx(t)/δx(0). For a classically chaotic system, the latter
would grow exponentially in time with the so-called Lyapunov exponent λ:
δx(t)/δx(0) ∼ eλt.

It was recently shown by Maldacena, Shenker, and Stanford [28] that in the
many-body quantum system OTOC can not grow faster then exponentially
with a characteristic time-scale tL ≤ ℏ/(2πkBT ) which is correspondingly
called Lyapunov time. It was also shown that in SYK OTOC behaves exactly
in this way: it has the exponential growth with the precisely saturates the
upper bound on the Lyapunov time [28].14

Another peculiar property of the SYK model is the power-law behaviour of
the spectral function in the low energy region ω ≪ J . Meanwhile, the absence
of long-living quasiparticles in high-temperature superconducting materials
above the critical temperature is an immutable characteristic of the so-called
strange metal state. Strange metals also exhibit a power-law behavior in the
spectral function similarly to SYK. A lack of quasiparticles manifests itself
in fast equilibration at low temperature on a timescale set by the Planckian
relaxation time tP = ℏ/(2πkBT ) that is the same timescale that appears as an
upper bound on quantum chaos. The extensions of this model to the cSYK
coupled clusters predict thermal diffusivity [68] ∝ tP and reproduce the linear
in temperature resistivity, [69] observed in strange metals. [70, 71] Recently, a
proposed theory of a Planckian metal, [27] based on the destruction of a Fermi
surface by the cSYK-like interactions, shows that the universal scattering time
equals the Planckian time tP. The latter one characterizes the linear in tem-
perature resistivity property [72] and was detected in cuprates, [73] pnictides,
[74] and twisted bilayer graphene, [75] regardless of their different microscopic
nature.

1.5.1 Mean field solution for cSYK

The SYK model appears to be tractable in the limit when we have many
flavours of the fermions N ≫ 1 (so-called large N limit). Let us try to derive
the solution in this limit and study it closer. To do so, let us calculate the

14For the quantum mechanical system, however, the OTOC does not grow eternally but
saturates at the Ehrenfest time tE (by which the wave function have spread over the whole
system).



1.5 Chaotic Majorana fermions 21

partition function of the cSYK model and look for the saddle-point solution
(mean field approach).

We start with the Gaussian probability distribution for the complex vari-
able Jij;kl with mean zero and variance J2/2,

P(Jij;kl, J∗
ij;kl) = 1√

2πJ2
exp

−
∑
ij;kl

Jij;klJ
∗
ij;kl

2J2

 (1.14)

In the limit N → ∞ we can calculate the averaged 15 partition function
accounting for the constraints J∗

ij;kl = Jkl;ij and the symmetry under i ↔ j
and k ↔ l

Z =
∫

D[c, c†]
∫
dJij;kldJ

∗
ij;klδ(J∗

ij;kl − Jkl;ij)δ(Jij;kl + Jji;kl)δ(Jij;kl + Jij;lk)×

× P(Jij;kl, J∗
ij;kl) exp

(
iS[c, c†]

)
(1.15)

where later on we will denote δ(J∗
ij;kl −Jkl;ij)δ(Jij;kl +Jji;kl)δ(Jij;kl +Jij;lk) =

δ(J).

Kadanoff-Baym equations

When we are in the non-equilibrium case we have to employ the Schwinger-
Keldysh formalism. The action is

S[c, c†] =
∑
s=±

∫
dt

is∑
i

c†
is∂tcis − s

(2N)3/2

N∑
ij;kl=1

Jij;klc
†
isc

†
jsckscls

 , (1.16)

where s = ± denotes forward and backward branches of the Keldysh time
contour [76].

Disorder average will boil down to calculation of the following integral
where we re-scaled Jij;kl → Jij;kl/

√
2J

I =
∫
dJij;kldJ

∗
ij;kl

δ(J)√
π
e

−
∑

ij;kl

(
Jij;klJkl;ij+i

∑
s=±

s
√

2J

(2N)3/2

∫
dtJij;klc

†
isc

†
jsckscls

)
(1.17)

15For many quantities, the model is self-averaging, and computing with some randomly
chosen, but fixed, couplings should give the same result as averaging over the couplings. We
also assume that there is no replica symmetry breaking.
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We decompose the SYK part into two∑
ij;kl

Jij;klc
†
isc

†
jsckscls = 1

2
∑
ij;kl

(
Jij;klc

†
isc

†
jsckscls + J∗

ij;klc
†
lsc

†
kscjscis

)
(1.18)

Then one can see that∑
ij;kl

(
Jij;kl + iJ√

2(2N)3/2

∫
dt
∑
s=±

sc†
lsc

†
kscjscis

)
×

×
(
J∗
ij;kl + iJ√

2(2N)3/2

∫
dt
∑
s=±

sc†
isc

†
jsckscls

)
=

=
∑
ij;kl

(
Jij;klJ

∗
ij;kl + i

∑
s=±

s
√

2J
(2N)3/2

∫
dtJij;klc

†
isc

†
jsckscls−

− J2

2(2N)3

∑
s,s′=±

ss′
∫
dt

∫
dt′c†

lsc
†
kscjscisc

†
is′c

†
js′cks′cls′


(1.19)

One can integrate over the J∗
ij;kl using the delta-function and shift the

constant
Jij;kl → Jij;kl + iJ√

2(2N)3/2

∫
dt
∑
s=±

sc†
lsc

†
kscjscis

and obtain

I =
∫
dJij;klδ(Jij;kl + Jji;kl)δ(Jij;kl + Jij;lk)

1√
π

exp

−
∑
ij;kl

Jij;klJkl;ij

×

× exp

−
∑
ij;kl

J2

2(2N)3

∑
s,s′=±

ss′
∫
dt

∫
dt′c†

lsc
†
kscjscsc

†
is′c

†
js′cks′cls′

 (1.20)

Note that now we do not have the condition J∗
ij;kl = Jkl;ij . Therefore

I = K(J)e−
∑

ij;kl
J2

2(2N)3
∑

s,s′=± ss′
∫
dt
∫
dt′c†

ls
c†

ks
cjscsc

†
is′c

†
js′cks′cls′ (1.21)

which gives the following partition function

Z = K(J)
∫

D[c, c†] exp
(

−
∑
s=±

s

∫
dt
∑
i

c†
is∂tcis−

−
∑
ij;kl

J2

2(2N)3

∑
s,s′=±

ss′
∫
dtdt′c†

lsc
†
kscjscsc

†
is′c

†
js′cks′cls′

 (1.22)
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Introducing bilocals Gs,s′(t, t′) = iN−1∑
i c

†
is′(t′)cis(t) we arrive at effective

action written with Σss′(t, t′), Πss′(t, t′) as the corresponding Lagrange multi-
pliers

S = − iNtrln
[
σzss′δ(t− t′) (i∂t + µ) − Σss′(t, t′)

]
−

− iN
∑
ss′

∫
dtdt′

(
Σss′(t, t′)Gs′s(t′, t) − ss′J2

4 Gss′(t, t′)2Gs′s(t′, t)2
)

In the large N limit, the saddle-point equations are

Σss′(t, t′) = J2Gss′(t, t′)2Gs′s(t′, t) (1.23)∑
r

∫ +∞

−∞
du
(
σzsrδ(t− u) (i∂t + µ) − srΣsr(t, u)

)
Grs′(u, t′) = δss′δ(t− t′).

Schwinger-Dyson equations

The same kind of analysis with disorder averaging can be applied for the
equilibrium case at some temperature T using Matsubara formalism. The
imaginary time action averaged over disorder is

S =
∫ β

0
dτ

[
N∑
i=1

c̄i∂τ ci +
∫ β

0
dτ ′ J

2

4N3

N∑
i,j,k,l=1

c̄ic̄jckcl(τ)c̄lc̄kcjci(τ ′)
]
, (1.24)

where β is the inverse temperature. Same as for non-equilibrium, we make
Hubbard-Stratonovich transformation introducing bilocals
G(τ, τ ′) = −N−1∑N

i=1 ci(τ)c̄i(τ ′) together with Σ(τ, τ ′) as the corresponding
Lagrange multipliers we get:

S = −N
+∞∑

n=−∞
log

[
iωn − Σc(iωn)

]
−

−
∫ β

0
dτ

∫ β

0
dτ ′
[
N

(
Σc(τ, τ ′)Gc(τ ′, τ) + J2

4 Gc(τ, τ ′)4
)]
, (1.25)

where ωn = π(2n + 1)/β are Matsubara frequencies. In the limit of N ≫ 1,
the saddle-point equations are:

Σ(τ) = J2G(τ)3

G(iωn)−1 = iωn − Σ(iωn), (1.26)

where ωn = πT (2n+ 1) are Matsubara frequencies.
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Emergent conformal symmetry

In the long time limit 1 ≪ Jτ ≪ N , we can neglect the term with the
derivative ∂t and the theory becomes invariant under the re-scaling of the
time τ → f(τ). The Kadanoff-Baym equations reduce to

− J2∑
r

sr

∫ ∞

−∞
duGsr(t, u)2Grs(u, t)Grs′(u, t′) = δss′δ(t− t′) (1.27)

with the solutions

Gss(t) = −isign(t) · s · e−isπ/4√
sinh(π|t|/β)

,

Gss′(t) = −is′ · e−isign(t)s′π/4√
sinh(π|t|/β)

(1.28)

with b = π1/4/
√

2βJ .
For Matsubara formalism we get

G(τ) = b√
τ

sign(τ). (1.29)

1.5.2 SYK in the lab

We see that seemingly simple and somewhat solvable SYK model shares many
phenomena intrinsic to the mysterious strongly correlated systems that do not
yet have a clear theoretical description. It inspired several proposals to realize
the SYK model in a condensed matter platform in the lab [22, 23, 77–79]. For
the corresponding realistic systems, SYK is expected to arise as a low-energy
effective description.

Let us take a closer look into one of the mentioned proposals. Chen et.
al. [77] propose a to take a graphene flake with irregular boundary in the exter-
nal magnetic field (see Fig. 1.9. The spectrum of graphene in a perpendicular
magnetic field B consists of quantized Landau levels En ≃ ℏv

√
2n(eB/ℏc).

The chiral symmetry of graphene protects the 0th Landau level from the pres-
ence of disorder. Therefore, if we project on the low energy sector, we get
a highly degenerate subspace16 with the wave functions Φi(r) being random
in space thanks to the disordered boundary. The SYK model arises as the

16The degeneracy of the 0th Landau level is proportional to the flux of the magnetic field
through the flake
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effective model for the low energy sector when Coulomb repulsion V (r − r′)17

is added into the consideration. The the corresponding interaction matrix
elements between the zero modes are given by

Jij;kl =
∫
dr
∫
dr′Φ∗

i (r)Φ∗
j (r′)V (r − r′)Φk(r)Φl(r′). (1.30)

Thanks to the randomness in the spatial distribution of Φ(r) the distribution
of the coupling constants Jij;kl can be approximated by the Gaussian to an
arguably good extend (see Fig. 1.9, right panel). The effective Hamiltonian is
therefore of the form of the complex SYK model (cSYK) 1.12.

Figure 1.9. Left panel: Schematic depiction of the proposed design of the experi-
mental simulation of the cSYK model. Graphene flake with the irregular boundary in
the external perpendicular magnetic field. Inset: lattice structure of graphene. Right
panel: Histogram of the coupling constants |Jij;kl| from Eq. 1.30 for N = 16 com-
pared to the Gaussian distribution (orange line) with the same variance. The figure
is reprinted with permission from Anffany Chen, R. Ilan, F. de Juan, D. I. Pikulin,
and M. Franz, Phys. Rev. Lett. 121, 036403, (2018)

However, after building the setup it is good to check whether the system
that we prepared in the lab is actually close enough to the SYK and if it
possesses the same fundamental properties e.g. whether it is in the non-Fermi
liquid phase. There are many reasons why it may not be so, for example:
the wave-function of the ground state is not random enough such that the
effective coupling strength Jij;kl do not follow the Gaussian distribution or
the microscopic parameters are not tuned such that we are not in the strong
coupling regime J/T ≫ 1. Also, it is known, that adding even an infinitesimal
quadratic term (simple hopping) to the SYK model can destroy its non-trivial

17The screened Coulomb potential is V (r) = (e2/εr)e−r/λ with ε being the dielectric
constant and λ - Thomas-Fermi length.
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transform it to free random fermions (Fermi liquid phase) [80]. And probing
the experimental setup that is allegedly described by the SYK model would
mean coupling it by tunneling to a fermion bath in one way or another. In
Chapters 4 and 5 we study several possible observable signatures of the non-
Fermi liquid phase in the SYK as well as the robustness of this phase when
we couple the SYK to a fermion bath.

1.6 Cosmic Majorana fermions

One more place where we can meet Majorana fermions (in form of funda-
mental particles) is neutrino physics. When Ettore Majorana was writing his
famous equation, he was surely inspired by the particles that were introduces
seven years prior by Pauli. Despite the fact that these particles are not yet
fully understood theoretically (for example, the value of the masses and its
mechanism), they are not in any sense rare, quite the opposite – we are be-
ing surrounded by them. In fact, there are approximately as many neutrinos
flying around us as there are photons, order of hundred in every cm3!

In fact, the analogy with the photons goes further – there is a radiation
background similar to the Cosmic Microwave Background (CMB) that is cor-
respondingly called Cosmic Neutrino Background or CνB. The mechanism
of both is the same: the very early universe was filled with the relativistic
particles that scatter between one another. As the universe was expanding
approximately at the moment when the rate of the scattering processes be-
cause equal to the Hubbard parameter the corresponding particles decoupled
– the Universe because transparent for them. Starting from that moment they
were penetrating the universe moving (almost) freely. Such particles are called
relic and by detecting them we are able to look into the early universe. CMB
is a “photograph” of relic photons that were decoupled when the Universe
was hundred thousands years old. The same cold, T = 1.95 K, radiation for
neutrinos that decoupled much earlier then photons (when the Universe was
only living for seconds) is called Cosmic Neutrino Background (CνB) [81].

Despite many similarities, CνB and CMB have a drastic difference – neu-
trinos are much harder to detect. Indirect evidence for the existence of the relic
neutrinos was found in the observed CMB [82], however, due to the extreme
weakness of the interactions between neutrinos and other forms of matter,
direct detection of the CνB remains a major experimental challenge.

Today it is widely accepted that the most practicable route to the direct
detection of the CνB lies through the measurement of the fine structure of the
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Figure 1.10. Schematic depiction of the expanding Universe after the Big Bang.
The picture taken from Astronomy: Roen Kelly, after BICEP2 Collaboration

β-spectrum of a radioactive element [83–87]. Let us consider a general case of
nuclear β-decay and neutrino capture

(A,Z) → (A,Z + 1) + e− + ν̄e

νe + (A,Z) → (A,Z + 1) + e−. (1.31)

The processes of capture of cosmic neutrino having mass mν by a sample
of radioactive atoms characterized by the beta-decay energy Q are predicted
to leave a potentially discernible signature in the form of an extremely faint
peak at the energy Q + m0

νc
2 in the beta spectrum of the sample [83–87]

(see Fig. 1.11) 18. On the other hand, the major part of the spectrum of the
radioactive element consists of the events of the spontaneous β decay and forms
a continuum with the upper cut-off energy Q−m0

νc
2. Therefore, one expects

the neutrino capture peak to be separated from the end of the spontaneous
β-spectrum by an energy gap of at least one neutrino mass and for that reason
to be discernible at least in principle.

From the first glance, it is obvious why such an experiment can be very
challenging: we are trying to measure a meV 19 feature on the background
of keV. This requires extreme energy resolution (order of 10 meV). However,
another major challenge lies in the weakness of the signal. A naive estimate
for the neutrino capture cross section is σν ≃ (τQ)−1 [86], where Q ∼ 10 keV
is the energy released in the β-decay and τ is the lifetime of the β emitter.

18There are, generally, three mass generations of neutrino. This fact does not influence
our considerations so we will omit it further. Here m0

ν is a mass of the lightest neutrino.
19The best up to date bound on the effective neutrino mass is mν < 0.8 eV as obtained by

the KATRIN experiment using gaseous molecular tritium [89].



28 Chapter 1. Introduction

2m1

−0.1 −0.05 0 0.05 0.1

101

103

105

107

109

1011

Eel − (Q− Erec) [eV]

d
Γ

d
E

e
l

[y
r−

1
eV

−
1
]

Ideal detector
PTOLEMY

Figure 1.11. he β-spectrum of free monoatomic Tritium centered around Q−Erec,
where Q is the decay energy and Erec - recoil of the nucleus in the vacuum. The
normal neutrino mass hierarchy [88] is assumed with the mass of the lightest neutrino
m1 = 50 meV. The spontaneous β-decay spectrum is shown in red while the CνB
feature is shown in green. The solid lines are drawn assuming a 10 meV resolution of
the detector.

We have a lower bound on the lifetime (otherwise we would not be able to
assemble the experimental setup) τ ⪆ 1yr and also all the viable emitters
have Q ∼ 10 keV. Therefore, we arrive at the conclusion that in order to have
at least one neutrino capture event per year we need large amounts of the
radioactive atoms (at least 100 g in order to achieve one event per year in the
case of atomic Tritium).

The lower bound on the size of the experimental setup comes from a very
simple consideration – it should be bigger then the mean free path of the emit-
ted electron with respect to the hard core collisions with the other emitters.
Otherwise, the scattering processes will corrupt the energy resolution. The
mean free path is given by the cross section σ = R2

atom and the concentration
of the emitters n = N/L3. The number of the emitters is fixed N ∼ 1023 from
the requirements of sufficient activity, the radius of the atom is also known.
If we calculate the numbers, we would see that the very rough estimate of
the lower bound on the linear size of the experimental setup is of the order
of 1 km. The biggest relic neutrino detector nowadays is KATRIN that has
the cross- section area of the container about 50 cm2, so the effective mass of
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tritium molecules is only about 50 µg [90].

Figure 1.12. Left panel: Schematic depiction of the decaying Tritium atom attached
to the graphene sheet. Right panel: Graphene–hydrogen binding potential as a func-
tion of the distance from the binding site. Different colors correspond to different
local curvatures (puckering) of the binding site.Flat graphene corresponds to d = 0
(thick black line), while d > 0 corresponds to convex sites and d < 0 to concave ones.

The only viable solution to the problem of the controllable handling of
such a large amount of radioactive material nowadays is proposed by the
PTOLEMY collaboration [85]. It is based on the idea to use a sold state-based
experimental architecture. In this proposal, the tritium atoms are deposited
on the graphene substrate which can efficiently store atomic tritium by locally
binding it to carbon atoms (either by chemisorption, physisorption). Along
with the high tritium storage, PTOLEMY also offers a very precise control
over the emitted electrons with the help of the elaborate configuration of the
electric and magnetic fields that “guide” the electrons to the detector. An
overall energy resolution of 10 meV is achieved.

1.6.1 β decay on the surface

As was first pointed out [91], the coupling of the β-emitter to the many-body
solid state system comes at the price of introducing additional intrinsic energy
uncertainty to the β spectrum. Indeed, when we are interested in the processes
on as low energy scales as meV, the solid state substrate becomes a jungle filled
with many-body phenomena.

In order to understand how the spectrum will look for the β-decaying atom
bounded to the substrate, let us apply the Fermi Golden Rule to the whole
system containing β-decaying constituents and the substrate. Let us denote
the total state of such a system (atom + environment) as |α, z⟩. Since the
whole system is closed, the Fermi Golden Rule holds where the total energy
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is conserved.

Γ = 2π
ℏ

∑
final states

∣∣ ⟨final| Ĥβ |initial⟩
∣∣2δ (Ein − Efin) , (1.32)

where we know that the initial and final states have different number of protons
and neutrons that is why only the Hamiltonian of the weak interaction Hβ

survives. Let us specify how initial and final states look like and what are
their quantum numbers

|initial⟩ = |α0, z⟩
|final⟩ = |α, z + 1⟩ |k⟩ |p⟩ , (1.33)

where there are 3 quantum numbers: an abstract label for the atom together
with the environment state α, electron momentum k and neutrino momentum
p20.

The Hamiltonian density of the β-interaction in the full generality is

Hβ = Gβ√
2
ē(x)γµ(1 − γ5)νe(x)Ĵnucl

µ (x) + h.c, (1.34)

where e(x), νe(x) are electron and neutrino fields and Ĵnucl
µ (x) is a nuclear part

which depends on the atom itself and we do not specify it. We get

Γ = V 2

ℏ

∫
d3kd3p

(2π)6

∑
α

∣∣ ⟨k| ⟨p| ⟨α, z + 1|Hβ |α0, z⟩
∣∣2 ∫ dτeiτ(Ee+Eν−Eα0 +Eα),

(1.35)
where we used that δ(Ein − Efin) =

∫ dτ
2πe

iτ(Ee+Eν−Eα0 +Eα). Expanding | · |2
we get

Γ = 1
ℏ

∫
d3kd3p

(2π)6

∫
dxdx′jµlept(x, p⃗, k⃗)j∗,ν

lept(x
′, p⃗, k⃗)×

×
∑
α

⟨α0, z| Ĵnucl
µ (x) |α, z + 1⟩ ⟨α, z + 1| Ĵ†,nucl

ν (x′) |α0, z⟩ ×

×
∫
dτeiτ(Ee+Eν+Eα−Eα0 ), (1.36)

20We note that in this we neglect the Coulomb interaction of the emitted electron with
the nucleus and with the surroundings. Therefore, the emitted electron is a plane wave
that is characterized by the momentum k. Neutrino does not interact with anything so it is
generally a plane wave (specified by the momentum p).
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where jµlept(x, p⃗, k⃗) = ψ̄e(x, k⃗)γµ(1 − γ5)ψcν(x, p⃗) and ψ has both functional
dependence (plane wave eipx without normalization factor as we already took
it into account) and spinor structure. Accounting for∑

α

eiτEα |α, z + 1⟩ ⟨α, z + 1| = eiτĤ
α
z+1 , (1.37)

where Ĥα,z+1 is the Hamiltonian that describes the system that consists of
the isotope of the initial atom with the charge z+1 and environment, we get21

Γ = 1
ℏ

∫
d3kd3p

(2π)6

∣∣∣ ∫ dxjµlept(x, p⃗, k⃗)Jnucl
µ (x)

∣∣∣2×

×
∫
dτ ⟨α0, z| χ̂†eiτĤ

α
z+1χ̂ |α0, z⟩ eiτ(Ee+Eν−Eα0 ), (1.38)

where χ̂ changes the charge of the nucleus by one and |α, z⟩ only has the
information about the surroundings and the electron orbitals of the atom, not
the nucleus itself, the latter is in Jnucl(x). Denoting

1
2π

∫
dτ ⟨α0, z| χ̂eiτĤ

α
z+1χ̂† |α0, z⟩ eiτω = F(ω), (1.39)

we get the generalized Fermi Golden rule that accounts for the interactions of
the nucleus with the surroundings

Γ = 1
ℏ

∫
d3kd3p

(2π)6

∣∣∣ ∫ dxjµlept(x, p⃗, k⃗)Jnucl
µ (x)

∣∣∣2F(Ee + Eν − Eα0). (1.40)

Or

dΓ
dEe

=4Eep(Ee)
(2π)4ℏ

∫
Eνk(Eν)dEν×

×
∣∣∣ ∫ dxjµlept(x,Ee, Eν)J

nucl
µ (x)

∣∣∣2F(Ee + Eν − Eα0). (1.41)

If we compare it with the Fermi Golden Rule for the β-decay in the vacuum
21With the assumption that the wave function of the atom is a product of the wave function

of the nucleus and the wave function of the electron shells that only depends on the charge
of the nucleus.
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dΓ(0)

dEe
=4Eep(Ee)

(2π)4ℏ

∫
Eνk(Eν)dEν×

×
∣∣∣ ∫ dxjµlept(x,Ee, Eν)J

nucl
µ (x)

∣∣∣2δ(Ee + Eν − Eα0). (1.42)

We see that the presence of the substrate leads to the finite lifetime of
the daughter atom (that is encoded in the function F(ω)). This leads to the
broadening of the β-spectrum. It includes all the types of the interactions of
the emitter with the substrate. Among them (the list is not by any means
exhaustive):

1. Zero-point motion of the emitter [91].

2. Finite lifetime of the daughter ion due to redistribution of the charges
on its shells and tunneling to graphene.

3. Breakdown of the angular momentum conservation due to the presence
of the substrate.

4. Sudden emission of an electron from a beta-decayer leaves behind a pos-
itively charged centre which attracts the electric current carriers in of
the substrate. This effect results in what is known as the X-ray edge
anomaly - a gamma-shaped broadening of the emission peak [92].

5. Creation of vibrational excitations of the lattice.

6. Emission of plasmons and surface polaritons.

7. Inhomogeneous broadening due to any kind of inhomogeneities in the
emitter arrangement.

However, the spectrum described by Eq. 1.40 does not include the inter-
action of the emitted electron with the substrate that can also manifest itself
through many different mechanisms such as

1. Screening of the daughter atom by the charges in graphene.

2. Creation of shock wave emission due to the motion of the emitted elec-
tron at grazing angles at speeds exceeding the Fermi velocity.

3. Etc.
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The investigation of one of the points in this list, namely the zero-point
motion of the emitter (Chapter 6) rules out the Tritium-on graphene design
and calls for substantially heavier beta-decayers. As is described in Chapter 7,
it was found [93] that the best candidates in terms of the suppression of zero-
point motion (also accounting for other criteria such as long enough lifetimes,
stable daughter nucleus, single β decay branch, etc.) are 171Tm and 151Sm.
These isotopes have lower neutrino capture cross sections as compared to
Tritium: ≈ 50 times smaller for 171Tm and 3 orders of magnitude lower for
151Sm[93].

Some aspects of the electric effects of the interaction of the emitted electron
with the substrate are considered in Chapter 8 and it seems that they are
much less dangerous as compared to the effects due to interaction of the β-
emitter with the substrate. Naively, this can be motivated by the fact that
the emitted electron near the edge of the spectrum has quite high velocity
v ≈ 0.3c. Therefore it leaves the system pretty fast and does not “notice”
many effects that take place on longer timescales.

To conclude, the research in the condensed matter side of this experimental
setup is only starting, many effect have not yet been investigated. Before
building a full scale experiment, both theoretical and, especially, experimental
programs in condensed matter physics and surface science are required to study
quantum devices with a mono-layer of rare earth elements (such as Thulium)
attached to graphene substrate.
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1.7 This thesis
This thesis aims to touch several questions about Majoranas of various origin:

1. For Majorana modes in superconductor. In the systems of the symmetry
class D (to which topological superconductors belong) Majorana zero
modes at zero energy can be mimicked by Andreev levels.
Can the vanishing fermion parity in the superconductor fusion experi-
ment be taken as a distinctive signature of the isolated Majorana modes?
If not, what would be the alternative scenario that would allow to dis-
criminate true degenerate ground state against the accidental degenera-
cies of Andreev levels?

2. What signatures of the non-Fermi liquid phase can we see by probing
the SYK model by the means of transport and beyond?

3. It is known, that adding even an infinitesimal quadratic term (simple
hopping) to the SYK model can destroy its non-trivial transform it to
free random fermions (Fermi liquid phase) [80]. So, if we want to probe
the SYK experimentally by the means of transport, it would inevitable
mean coupling it to the some kind of lead. We want to know whether
there is some domain of stability of the non-Fermi liquid phase of SYK
under such a perturbation.

4. The last question that is considered in this thesis is very practical. We
want to know what limitation do the many-body effects in the experi-
mental device impose on the energy resolution of the whole set-up. In
particular, it concerns the experiment of the relic neutrino detection. It
is still unclear whether the neutrino is a Majorana particle or not and
what is the absolute scale of its masses [94]. Along with answering on this
question, relic neutrino detection will allow us to look in the very early
universe (much earlier then the Cosmic Microwave Background allows
us to see). Such an experiment is therefore of fundamental importance.
The state of the art proposal for it requires big amount of the source
material (order of 1023 of heavy radioactive elements) and an extreme
energy resolutions (order of 10 meV) [85]. It is widely accepted that the
only way to have a chance to full fill such requirements is to used a solid
state based experimental device which again brings us to the interplay
of high energy physics and low energy phenomena.

Below, I briefly highlight the main results presented in the thesis.
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1.7.1 Chapter 2

Kitaev’s Pfaffian formula equates the ground-state fermion parity of a closed
system to the sign of the Pfaffian of the Hamiltonian in the Majorana basis.
Using Klich’s theory of counting statistics for paired fermions we generalize
the Pfaffian formula to account for quantum fluctuations in the fermion parity
of an open subsystem. A statistical description in the framework of random-
matrix theory is used to answer the question when a vanishing fermion parity
in a superconductor fusion experiment becomes a distinctive signature of an
isolated Majorana zero-mode.

1.7.2 Chapter 3

Detection of the fusion rule of Majorana zero-modes is a near-term milestone
on the road to topological quantum computation. An obstacle is that the non-
deterministic fusion outcome of topological zero-modes can be mimicked by
the merging of non-topological Andreev levels. To distinguish these two sce-
narios, we search for dynamical signatures of the ground-state degeneracy that
is the defining property of non-Abelian anyons. By adiabatically traversing
parameter space along two different pathways one can identify ground-state
degeneracies from the breakdown of adiabaticity. We show that the approach
can discriminate against accidental degeneracies of Andreev levels.

1.7.3 Chapter 4

The Planckian relaxation rate ℏ/tP = 2πkBT sets a characteristic timescale
for both the equilibration of quantum critical systems and maximal quan-
tum chaos. In this note, we show that at the critical coupling between a
superconducting dot and the complex Sachdev-Ye-Kitaev model, known to be
maximally chaotic, the pairing gap ∆ behaves as η ℏ/tP at low temperatures,
where η is an order one constant. The lower critical temperature emerges
with a further increase of the coupling strength so that the finite ∆ domain is
settled between the two critical temperatures.

1.7.4 Chapter 5

The Sachdev-Ye-Kitaev (SYK) model describes interacting fermionic zero modes
in zero spatial dimensions, e.g. quantum dot, with interactions strong enough
to completely washout quasiparticle excitations in the infrared. In this pa-
per, we consider the complex-valued SYK model at initial temperature T and
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chemical potential µ coupled to a large reservoir by a quench at time t = 0.
The reservoir is kept at zero temperature and charge neutrality. We find that
the dynamics of the discharging process of the SYK quantum dot reveals a dis-
tinctive characteristic of the SYK non-Fermi liquid (nFl) state. In particular,
we focus on the tunneling current induced by the quench. We show that the
temperature dependent contribution to the current’s half-life scales linearly in
T at low temperatures for the SYK nFl state, while for the Fermi liquid it
scales as T 2.

1.7.5 Chapter 6

Beta-spectrum of radioactive atoms was long ago predicted to bear an imprint
of the Cosmic Neutrino Background (CνB) [95]. Over the years, it has been
recognised that the best chance of achieving the signal-to-noise ratio required
for the observation of this effect lies with solid-state designs [96]. Here we bring
to the fore a fundamental quantum limitation on the type of beta-decayer that
can be used in a such a design. We derive a simple usability criterion and show
that 3H, which is the most popular choice, fails to meet it. We provide a list
of potentially suitable isotopes and discuss why their use in CνB detection
requires further research.

1.7.6 Chapter 7

Recent analysis of the viability of solid state-based relic neutrino detectors
has revealed the fundamental necessity for the use of heavy, A > 100, β-
decayers as neutrino targets. Of all heavy isotopes, 171Tm and 151Sm stand
out for their sufficiently low decay energies, reasonable half-life times and
stable daughter nuclei. However, the crucial bit of information, that is the soft
neutrino capture cross-section is missing for both isotopes. The main reason
for that is a particular type of β-decay, which precludes a simple link between
the isotope’s half-life time and the neutrino capture rate. Here we propose an
experimental method to bypass this difficulty and obtain the capture cross-
section of a soft neutrino by a given isotope from the isotope’s β-spectrum.

1.7.7 Chapter 8

The only promising experimental architecture for the Cosmic Neutrino Back-
ground (CνB) detection nowadays exploits β-decay of the emitters bounded
to a solid state substrate. The artifact of such a design is the appearance
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of the additional intrinsic bounds on the energy resolution coming from the
various types of interactions of the β-decaying atom with the collective modes
in the substrate. In this work, we only focus on the electromagnetic effects,
namely: 1) charge relaxation of the electrons in the substrate as a response to
the ionization of the β emitter, 2) electron-hole pairs creation by the emitted
β electron.
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