

Anyonic, cosmic, and chaotic: three faces of Majorana fermions

Cheipesh, Y.I.

Citation

Cheipesh, Y. I. (2022, November 17). *Anyonic, cosmic, and chaotic: three faces of Majorana fermions. Casimir PhD Series.* Retrieved from https://hdl.handle.net/1887/3487143

Version:	Publisher's Version
License:	<u>Licence agreement concerning inclusion of doctoral</u> <u>thesis in the Institutional Repository of the University</u> <u>of Leiden</u>
Downloaded from:	https://hdl.handle.net/1887/3487143

Note: To cite this publication please use the final published version (if applicable).

Anyonic, cosmic, and chaotic: three faces of Majorana fermions

Proefschrift

ter verkrijging van de graad van doctor aan de Universiteit Leiden, op gezag van rector magnificus prof. dr. ir. H. Bijl, volgens besluit van het college voor promoties te verdedigen op donderdag 17 november 2022 klokke 13.45 uur

 door

Yevheniia Ihorivna Cheipesh

geboren te Uzhgorod, Oekraïne in 1994

Promotores:	Prof. dr. C. W. J. Beenakker
	Dr. A. R. Akhmerov (TU Delft)
Promotiecommissie:	Dr. L. Fritz (Universiteit Utrecht)
	Dr. A. Kou
	(University of Illinois, Urbana, USA)
	Prof. dr. J. Aarts
	Prof. dr. K. E. Schalm
	Prof. dr. J. Zaanen

Casimir PhD Series Delft-Leiden 2022-32 ISBN 978-90-8593-542-1 An electronic version of this thesis can be found at https://openaccess.leidenuniv.nl

The cover shows artistic representation of the portraits of three scientists that made significant contribution to the fields studied in this thesis. Ettore Majorana (upper right) proposed a solution to the Dirac equation that corresponds to a fermion that can be its own anti-particle. Such fermion was later called Majorana. Alexei Kitaev (left) contributed a lot to the study of the SYK model. Wolfgang Pauli (lower right) invented neutrinos to explain β -decay spectrum of radioactive atoms. The green stripe symbolizes unification of the corresponding topics in this thesis. The plant on the back is Marjoram which in Ukrainian is spelled in the same way as Majorana. The cover is a digital painting made by the author of the thesis. To my first scientific mentor, V.Yu Reshetnyak Моєму першому науковому наставнику, В. Ю. Решетняку

Contents

1	Intro	duction
	1.1	Preface 1
	1.2	Majorana fermions as fundamental particles
		1.2.1 Dirac equation
		1.2.2 Majorana solution
	1.3	Majorana fermions in condensed matter physics
		1.3.1 The need in superconductivity
		1.3.2 Topologically protected zero modes
		1.3.3 Andreev levels
	1.4	Anyonic Majorana fermions
	1.5	Chaotic Majorana fermions 18
		1.5.1 Mean field solution for cSYK
		1.5.2 SYK in the lab
	1.6	Cosmic Majorana fermions
		1.6.1 β decay on the surface
	1.7	This thesis
		1.7.1 Chapter 2
		1.7.2 Chapter 3
		1.7.3 Chapter 4
		1.7.4 Chapter 5
		1.7.5 Chapter 6
		1.7.6 Chapter 7
		1.7.7 Chapter 8
2	Pfaf	an formula for fermion parity fluctuations in a superconductor and
-	appl	cation to Majorana fusion detection 39
	2.1	Introduction
	2.2	Pfaffian fermion-parity formula 41

		2.2.1 Kitaev's formula for an isolate	ed system	41		
		2.2.2 Pfaffian formula for a subsyste	em	42		
	2.3	Connection with the Majorana fusion	rule	43		
	2.4	Random-matrix theory		45		
		2.4.1 Skew Circular Real Ensemble		45		
		2.4.2 Distribution of the local fermi	on parity in the skew-CRE	47		
		2.4.3 RMT model of weakly coupled	d quantum dots $\ldots \ldots $	49		
	2.5	Effect of an isolated Majorana zero-n	node	52		
	2.6	Conclusion		52		
	2.7	Appendix: Derivation of the Pfaffian f	ormula from Klich's count-			
		ing statistics theory 5				
	2.8	Appendix: Moments of determinants of antisymmetric random				
		matrices		56		
		2.8.1 Principal minor of antisymme	tric orthogonal matrix	56		
		2.8.2 Antisymmetric Hermitian mat	trix	57		
3	Dyn	namical signatures of ground-state deger	neracy to discriminate against			
	And	dreev Levels in a Majorana fusion expe	riment	59		
	3.1	Introduction		59		
	3.2	Adiabatic evolution to test for ground	d-state degeneracy (60		
	3.3	Topologically degenerate ground stat	e	52		
	3.4	Accidentally degenerate Andreev leve	$els \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	63		
	3.5	Conclusion		67		
4	Ree	entrant superconductivity in a quantum	1 dot coupled to a Sachdev-			
	Ye-I	Kitaev metal		69		
	4.1	Introduction		<u> </u>		
	4.2	Main part	, , , , , ,	70		
	4.3	Conclusion	· · · · · · · · · · · · · · · · · · ·	77		
	4.4	Appendix:Derivation of the gap equa	$ ext{tion}$ '	78		
	4.5	Appendix: Saddle-point numerical ar	alysis 8	80		
		$4.5.1 \text{The algorithm} \dots \dots \dots$	8	80		
		4.5.2 Precision and grid	8	32		
5	Qua	antum tunneling dynamics in a complex	x-valued Sachdev-Ye-Kitaev			
	mod	del quench-coupled to a cool bath	:	85		
	5.1	Introduction	8	35		
	5.2	The model	8	36		
	5.3	Relaxation after the quench \ldots .	8	38		

	5.4	Tunneling current	93
	5.5	Conclusion	97
	5.6	Appendix: Derivation of the Kadanoff-Baym equations from	
		the SYK saddle-point	98
		5.6.1 Saddle-point equations	98
		5.6.2 Reservoir as an external potential	100
		5.6.3 Dynamics of the SYK subsystem	101
6	Nav	igating the pitfalls of relic neutrino detection	103
	6.1	Introduction	103
	6.2	Defining the problem	105
	6.3	Estimate	108
	6.4	Discussion	110
	6.5	Appendix: Quantum derivation of the energy uncertainty	112
7	Can	we use heavy nuclei to detect relic neutrinos?	117
	7.1	Introduction	117
	7.2	Quantum mechanics of β -interaction and crude estimate of neu-	
		trino capture	119
		7.2.1 Crude estimate of neutrino capture	121
	7.3	Experimental determination of the neutrino capture rate from	
		the end of the β decay spectrum $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	123
	7.4	Conclusion and discussion	125
8	Scre	eening effects in the graphene-based relic neutrino detection exper-	-
	ime	at	129
	8.1	Introduction.	129
	8.2	Defining the problem	130
	8.3	Charge screening effects	132
	8.4	Electron-hole pair creation	135
	8.5	Conclusions	136
	8.6	Appendix: Average work performed by the electrons in graphene on the emitted β electron	197
	87	Appendix: Cross section of the process of the electron hole cro	191
	0.1	ation in graphene	139
Bi	hliog	ranhv	1/12
ום	onogi	apuy -	140
Su	ımma	ry	163

Samenvatting	165
Curriculum Vitæ	167
List of Publications	169