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Chapter 1

Introduction

1.1 Preface

This thesis is devoted to the study of a model that finds useful and important
applications in a wide range of physical systems, from cosmology and particle
physics to condensed matter physics and quantum computers. It tries to
support the idea that working on the intersection of different fields of physics
is extremely fruitful and that studying low energy effective field theories can
give us a lot of insight about high energy fundamental theories.

The state of the art of modern physics describes matter as consisting of
fermionic particles that interact through bosonic mediators (with the Higgs
boson playing yet another special role). Attempts to build a closed, complete
and self-consistent quantum mechanical description of atomic and sub-atomic
physics started at the beginning of 20th century and culminated in the so-
called Standard Model [1]. At the moment, it describes a zoo of all particles
that have been detected so far. These particles have many interesting and
peculiar properties such as chiral interactions, non-abeliean symmetries, etc.
To study them, particle physicists build larger and larger facilities such as
accelerators, colliders, gigantic detectors.

A complementary avenue to study the properties of the particles on low
energy scales is provided by condensed matter physics. Both at the high-
(particle physics) and low-energy end (condensed matter physics), physics
is of irreducible emergent many-particle nature and it is only in the mid-
dle (atomic and nuclear physics) that few-particle systems come into play.
Collective degrees of freedom of a many-body system can be described by
so-called “quasi particles” [2]. Such many-body systems are governed by qual-
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itatively new principles (also called “laws of emergent behaviours”), compared
to few-particle systems [3].

The properties of these quasi-particles such as statistic, charge, effective
mass, etc. are typically defined not by the microscopic details, but by the
universal properties of the system, e.g. its symmetries. Modern technologies
allow to fabricate complex many-body systems that can host quasi particles
with predefined properties, which can be probed experimentally. On the other
hand, the principle of adiabatic continuity allows us to study such systems
theoretically. One can forget about microscopic details and consider simpler
“toy” effective models with specified symmetries [3].

One interesting and yet not fully studied example are the so-called Ma-
jorana fermions – neutral particles with fermionic (or, in general, anyonic)
statistics that have a peculiar property: they can be considered as their own
anti-particles [4]. Although no elementary particles has so far been confirmed
to be a Majorana fermion, they play a very important role both in funda-
mental and applied physics. From the point of the former, there are several
reasons to consider Majorana fermions:

1. ordinary Standard Model neutrinos may appear to be Majorana fermions.
This possibility is being tested in, e.g., experiments of the so-called
neutrino-less double β decay [5–7].

2. despite the great experimental success of the Standard Model, which has
been verified to a high precision in thousands of different channels, we
know for sure that it is incomplete. This means that there should exist
some new particles. Majorana fermions could be a very good candidate
for several reasons:

(a) Majorana fermions have been proposed as a dark matter particle
(e.g. WIMPs, sterile neutrinos) [8–10].

(b) a Majorana lepton breaks lepton number conservation. This is the
key element of the so-called thermal leptogenesis – one of the most
popular mechanisms for the explanation of the matter-antimatter
asymmetry [11, 12].

(c) the Majorana mass of right-handed neutrinos provides a very natu-
ral explanation of the minuteness of normal neutrino masses (seesaw
mechanism) [13].

We do not know what is the correct extension of the Standard Model.
Even if Majoranas are not the right candidates and do not exist in nature as
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a fundamental particle, we are still left with a lot of motivation to study them
from the perspective of mesoscopic physics, where they can be constructed out
of electron and hole excitations [14–16].

Recently, there has been a lot of attention to so-called Majorana zero modes
(MZMs) – subgap states in superconductors [16–19]. There they arise as a
quasiparticle excitation localized at the boundaries. Such MZMs are spatially
separated, pinned to have exactly zero energy and free of decoherence thanks
to the particle-hole symmetry of the superconducting state. Moreover, unlike
ordinary fermions and bosons, they have a non-abelian anyonic statistics under
the exchange. Thanks to these properties one can use them as building blocks
for a protected quantum memory [17, 20, 21] for a fault-tolerant quantum
computer.

The effective low energy field theory of the MZMs in superconductors is
a non-interacting theory. A very interesting physics emerges also if one looks
at a different end - strongly interacting Majorana modes in the many-body
systems. If one couples N ≫ 1 such modes in a way that the coupling is
all-to-all and random [22, 23], the resulting system would have a non-Fermi
liquid phase, where there is no clear Fermi surface even at zero temperature
and the description of the system in terms of quasiparticles is not possible [24].
The theoretical toy model for such system is called Sachdev-Ye-Kitaev (SYK)
model [25, 26] and it appears to be theoretically solvable under the mean-
field approximation. It can be fruitful to study this toy model since there is
still a need in the development of a general theory of the non-Fermi liquid
ground state(s) of an interacting many-body fermionic system [24] and there
are hints that SYK is capable of describing them to some extent. For exam-
ple, the SYK model can reproduce some aspects of certain strongly correlated
materials called strange metals [27]. Moreover, such a toy model has an emer-
gent conformal symmetry in the infrared and saturates the upper bound on
quantum chaos [28]. These aspects led to considering the SYK model to be a
holographic dual of black hole horizons [29–31].

The points mentioned above are only a small part of the extensive list of
arguments that make Majorana fermions an extremely interesting and rich
subject of study.

1.2 Majorana fermions as fundamental particles

We start our investigation by looking at how the Majorana fermions emerge
as elementary particles - real solutions of the fundamental Dirac equation [4].
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1.2.1 Dirac equation

The first attempt to write a relativistic version of the Schrödinger equation
iℏ∂t |ψ⟩ = p̂2

2m |ψ⟩ was made by Oskar Klein and Walter Gordon in 1926 by
following the same logic of exploiting the dispersion relation, but in the rel-
ativistic form E =

√
p2c2 +m2c4 [32, 33]. However, such operator would be

non-local, which is incompatible with the finite speed of light propagation.
To get the local equation one needs to take the square of the dispersion rela-
tion, arriving to the famous Klein-Gordon equation

(
□ +

(
mc
ℏ
)2)

ψ = 0, where
□ = gµν∂µ∂ν = 1

c2∂
2
t − ∇2 is a Lorentz-invariant combination.

However, the total probability P =
∫

dr⃗
∣∣ψ(r⃗, t)

∣∣2, that used to be positive
definite and conserved in time for the states obeying Schrödinger equation,
loses its probabilistic interpretation in the Klein-Gordon equation, since we
have also included the negative energy states when we took the square of E(p).
Indeed, the zeroth component of the conserved current Jµ ∼ ψ∗∂µψ − ψ∂µψ

∗

can not be treated as the probability density since J0 = −ℏ|ψ|2
mc2

∂arg(ψ)
∂t can

change sign.1
An alternative equation, proposed by Dirac in 1928, had the form of

iℏ∂t |ψ⟩ = Ĥ |ψ⟩ with Ĥ = α · p̂ + βm [32, 34]. In this case the probabilistic
interpretation occurs automatically as the probability density is conserved for
such equation with any Hermitian Ĥ. Let us first consider the case of zero
mass m = 0. Then, it can be shown that αi do not commute, but rather satisfy
{αi, αj} = 2δij which means that they are not numbers but matrices. One can
also show that these matrices should be Hermitian, even-dimensional, trace-
less and that their eigenvalues are ±1. The minimal set that satisfies these
conditions are Pauli matrices σx,y,z and the corresponding form of the Dirac
equation is called Weyl equation iσµ∂µ |ψ⟩ = 0 2. Let us call right spinor
ψR the 2-component wave function ψ = (ψ1, ψ2) that is the solution of the
corresponding Weyl equation. However, one can see that there is also another
choice of αi = −σi compatible with all the constraints that leads to the Weyl
equation on left spinor iσ̄µ∂µψL = 0, where σ̄µ = (1,−σi). The names left and
right come from the fact that one spinor relates to another through a parity
transformation P : r → −r such that ψL = P̂ψR.

Now let us try to introduce the mass into this equation. An important ob-

The contents of this chapter is mostly based on textbook material, for example one can
follow the references [32]

1Klein-Gordon equation is, in essence, classical equation.
2Where we introduced the 4-vector σµ = (1, σi).
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servation in this regard is that in order for the theory to be Lorentz-covariant,
namely iσµ∂′

µψ
′
R = iσµΛµν∂νSRψR = S (iσµ∂µψR) = 0 3 (and the same holds

for ψL but with some other matrices SL, S̃), one has to require S = SL and
S̃ = SR. In other words, the equation for he right spinor transforms as the left
spinor and vice versa. This leads to the fact that the mass would mix right
and left spinors since it is the only Lorentz-covariant way to introduce it

{
iσµ∂

µψR = mψL

iσ̄µ∂
µψL = mψR

. (1.1)

Introducing the Dirac spinor ΨT = (ψL, ψR) and the matrices γµ =
(

0 σµ

σ̄µ 0

)
,

equations 1.1 become

(iγµ∂µ −m) Ψ = 0. (1.2)

This representation of γ-matrices is not unique and is called Weyl representa-
tion.

Since the Hamiltonian of the Dirac equation commutes with pµ the solu-
tions are of a plane wave form with some spinor structure Ψ(x) = u(p)e−ipµxµ .
By plugging it in the equation 1.2 and requiring to have a non-trivial solution
for u(p) we arrive at the constraint on the two solutions: E = ±

√
p2 +m2.

Therefore, the general solution to the Dirac equation takes form Ψ(x) =
u(p)e−ipµxµ + v(p)e+ipµxµ , where the spinors u(p), v(p) have the interpreta-
tion of the particle and anti-particle.

The particle/antiparticle nature of the two solutions to the Dirac equa-
tion can be seen if one tries to build the positive energy counter-part ψc to
the negative energy solution ψ = v(p)eipµxµ . One can convince themselves
that simple complex conjugation will not work and one should instead take
ψc = Ĉψ∗, where Ĉ = iγ2. Only in this case the opposite energy states ψ
and ψc simultaneously solve Dirac equation. Physically, Ĉ is the operator of
the charge conjugation, since in the presence of the electromagnetic field ψc
satisfies the equation (iγµ(∂µ + eAµ) −m)ψc = 0, while for ψ the charge is
opposite. This interpretation of the negative energy states comes very handy
as it saves us from the catastrophe of the infinite negative energy sea of states
(so-called Dirac sea).

3Where Λµ
ν is a boost matrix.
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1.2.2 Majorana solution

In 1937, before disappearing, Majorana posed the question of whether we could
look for a real solution to the Dirac equation [4]. This would be possible if
one imposed the following constraint on the γ matrices present in the Dirac
equation: (iγ̂µ)∗ = iγ̂µ (Majorana representation)4. Since the charge conju-
gation operator is generally chosen such that −γ̂µĈ = Ĉ(γ̂µ)∗, for Majorana
representation it commutes with γ-matrices and therefore the Majorana solu-
tions are also eigenstates of the charge conjugation operator. In other words,
the Majorana particle is electrically neutral and hence its own antiparticle
Ψc ≡ ĈΨ = Ψ. The latter relation is what defines a Majorana particle in any
representation and is called Majorana condition.

The Majorana solution can be written both in terms of a real four-component
spinor, and as a complex two-component spinor. The equation on this two-
component spinor can be understood from the following consideration. The
charge conjugation operator in the Majorana representation is just a complex
conjugation. This means that it changes the momentum of the state, but not
the spin. For the massless case it would mean that the charge conjugation
operator transforms the left spinor into the right5, namely χcL/R = χR/L. The
Majorana spinor χ satisfies the equation

iσµ∂µχ−mχc = 0. (1.3)

1.3 Majorana fermions in condensed matter physics

Now when we are familiar with the Majorana fermions on the fundamental
level, let us see how these (quasi)particles emerge in many-body condensed
matter systems as effective low-energy degrees of freedom. The connection of
the effective description of the low energy modes in many-body systems with
the fundamental equations is very frequent with the most obvious example
being graphene [35], followed by Weyl semimetals [36], etc. This should not
be surprising, as the theory on low energies does not “see” the microscopic
structure of the material, only its global symmetries.

4We note that the solutions can be real, but they do not need to, same as for the case of
Klein-Gordon or Maxwell equations

5Dirac Hamiltonian commutes with the so-called helicity operator ĥ = p̂ · Σ̂/|p|. When
m = 0, γ5 also commutes with H and therefore the eigenstates have both fixed helicity and
parity.
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1.3.1 The need in superconductivity

Majorana fermions may or may not exist in Nature as elementary building
blocks, but in condensed matter they can be constructed out of electron and
hole excitations. In order to get the excitation that is charge neutral one
needs superconductivity where the quasiparticles are coherent superpositions
of electrons and holes – so-called Bogoliubov quasiparticles.

The mean-field Bardeen–Cooper–Schrieffer (BCS) Hamiltonian [37, 38] de-
scribing the conventional s-wave (the meaning of it will be elaborated further)
superconductor is quadratic but includes so-called anomalous terms

HBCS =
∑

k

[
(εk − µ)(c†

k,↑ck,↑ + c†
−k,↓c−k,↓) + ∆∗c−k,↓ck,↑ + ∆c†

k,↑c
†
−k,↓

]
,

(1.4)
where ∆ = g0

V

∑
k⟨c−k,↓ck,↑⟩, V is a system volume and g0 is some positive

interaction constant.
Such kind of Hamiltonians are known to be diagonalized by the so-called

Bogoliubov transformation which is in essence a rotation in the particle-hole
space

γ†
k,1 = ukc

†
k,↑ + vkc−k,↓

γ−k,2 = v∗
kc

†
k,↑ − u∗

kc−k,↓ (1.5)

with the condition that u2
k + v2

k = 1 and canonical commutation relations on
quasiparticles {γk,α, γ

†
k′,β} = δk,k′δα,β. The Hamiltonian becomes diagonal

HBCS = ∑
k Ek

(
γ†

k,1γk,1 + γ†
k,2γk,2

)
+ E0 with the eigenvalues

Ek =
√

(εk − µ)2 + |∆|2 (1.6)

We can view γ−k,2 as a creation operator of the particle with the negative
energy and then the spectrum would look symmetric around E = 0. This
means that the system has particle-hole symmetry – each eigenfunction Ψ
at energy E > 0 has a copy Ψ′ = ĈΨ at energy −E, where Ĉ is a charge
conjugation operator. Only at zero energy the particle and antiparticle can
coincide which means that despite the fact that the quasiparticle excitations
are coherent superposition of the particle and hole, we can not have Majorana
quasiparticles in such a system because it would mean that we need to close
the energy gap. Naively, if we allow for the superconducting gap ∆ to become
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k-dependent this obstacle can be bypassed and we can close the gap6.
Let us consider a more general case where the Cooper pairing correlation

(gap parameter) is a k-dependent tensor ∆αβ(k) ∝ ⟨cα(k)cβ(−k)⟩ with α, β
being the spin indices. When there is no spin-orbit coupling, both the spin and
the momentum are good quantum numbers, and one can separate ∆αβ(k) =
χαβ∆(k) with χαβ a spinor matrix and ∆(k) a function. Then, there are two
possibilities:

1. χαβ = −χβα,∆(k) = ∆(−k) – the spin-singlet pairing.

2. χαβ = χβα,∆(k) = −∆(−k) – the spin-triplet pairing.

One can write a general form of the order parameter as

∆αβ(k) = (∆0(k) + d(k) · σ) (iσ2)αβ, (1.7)

where ∆0(k) encodes the singlet component and d(k) is a vector encoding the
triplet state. Their functional dependence is generally unknown and depends
on the particular lattice under consideration.

1.3.2 Topologically protected zero modes

If we do not have translational invariance in the system namely we have a
system with an edge or a defect and if on top of that we also break the spin
conservation, we can build Bogoliubov quasiparticle out of the creation and
annihilation operator of the same mode [17, 39]

γn1 = cn + c†
n

γn2 = i(cn − c†
n). (1.8)

One can also think about it as simply a change of the basis where we double
the degrees of freedom going to real modes – Majorana representation. For the
systems with particle-hole symmetry we have a requirement that such states
come in pairs at ±E with the possibility of an unpaired state at E = 0. The
simplest example of the appearance of such a Majorana zero modes (MZM) is
in the toy model called Kitaev chain [17]. There, the two MZMs are localized
at the ends of the fermion chain.

Thanks to the particle-hole symmetry, the state at E = 0 is protected
against any local perturbation that does not break particle-hole symmetry –

6Due to the symmetry of the spectrum with respect to k⃗ → −k⃗ this would be at the
k = 0 or k = ±π points.
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it simply is not able to shift from zero since the spectrum should be symmet-
ric [15]. Such state is called topologically protected. One can also think about
it as following - the Hamiltonian that has particle-hole symmetry commutes
with the parity operator which means that different parity sectors are decou-
pled. The presence or absence of the zero energy state correspond to parity
odd sectors. The only way for such state to disappear would be to bring the
two Majorana modes that encode it close to each other such that their wave
functions overlap. In this case the ground state will split and no longer be
degenerate. For the example of the Kitaev chain it means that if the chain
has finite length L then the state with MZMs at the end of the wire will have
the energy of order ε ∼ e−L instead of zero.

The presence or absence of the unpaired zero energy level is therefore in
one-to-one mapping with the parity of the ground state that is a topologi-
cal invariant protected by the particle-hole symmetry. Kitaev identified this
invariant to be defined by the Pfaffian of the Hamiltonian in the basis of Majo-
rana fermions H = 1

2γ ·A·γ,P0 = signPf(−iA)7 [17]. The transition involving
the change of the sign of the Pfaffian should necessarily involve closing of the
gap.

It appears, that such topologically protected MZMs can appear not only
in the toy models, but rather in real materials. We can depart from the
superconductor with the presence of a defect or a boundary and see which
additional constraints we have to impose. The first important ingredient to
this story is that the zero energy level should be non-degenerate otherwise
the two states at E = 0 can merge as |11⟩ → |00⟩8. This process is not
forbidden in the superconductor since the latter only preserves the parity, not
the particle number. It is known that the half-integer states in the system
that has time reversal symmetry are doubly degenerate – so-called Kramers
degeneracy [40]. The time-reversal operator changes both the direction of the
spin and momentum. The two possible ways to break it are:

1. Take a p-wave superconductor with ∆αβ(k) ∝
(

1 0
0 0

)
(kx+ iky) [15, 18,

41]. Such superconductors are called unconventional which reflects the
fact that they are extremely rare in nature. Moreover, p-wave pairing is
fragile, easily destroyed by disorder.

7The fact that the Hamiltonian can be represented as H = iA, where A is a real antisym-
metric matrix follows from the particle-hole symmetry which is just H∗ = −H in Majorana
basis.

8Here we denote by |1⟩ the presence of the state at zero energy.
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2. A much simpler solution is to introduce the magnetic field that would
break the time-reversal symmetry. Since the magnetic field is repelled
from the superconductor (Meissner effect) and can only penetrate it in
the form of vortices, we introduce superconductivity by proximitizing
the semi-conductor with the superconductor. We take the s-wave su-
perconductor since most superconductors in nature are of this kind. A
singlet superconductor, however, has an important property: the total
spin of every excitation is conserved. Zeeman field conserves the spin in
z-direction, so together every single state of our system has to have a
definite spin, including the Majoranas. Majoranas are their own particle-
hole partners, and that means that they cannot have any spin (energy,
charge, or any other observable property at all). This would mean that
in such a system they can not appear. Therefore, the spin conservation
needs to be broken and the simplest plausible way to do so is via the
spin-orbit coupling (also referred to as Rashba coupling).

To conclude this analysis, in the system that consists of the semi-conductor,
proximitized by the s-wave superconductor, with magnetic field and spin-orbit
coupling one can have Majorana zero modes bound to a defect or a boundary
that are spatially separated and protected from the local perturbations. In-
deed, it happens so that by varying the strength of the magnetic field, chemical
potential and superconducting gap one can close the gap in the energy spec-
trum and reopen it entering the so-called topological phase with the protected
zero energy level.

There exist many proposals for the experimental realization of the topo-
logically protected Majorana zero modes including chiral p-wave superconduc-
tors [42, 43], topological insulators in the proximity to the s-wave supercon-
ductor [16], semiconductors with Rashba spin-orbit coupling [19, 44, 45] (see
Fig. 1.1).

1.3.3 Andreev levels

As was discussed above, the spectrum of the ideal topological superconduc-
tor under the mean field approximation is gapped (the gap being the mean
field order parameter), so the zero energy level (if present) is well separated
from the continuum. But is it still same for the “dirty” system with some
disorder? The tool that can describe universal properties of disordered metals
and superconductors [46, 47] depending on the symmetry class that it belongs
to [48] is called Random matrix theory (RMT). The main idea is that instead



1.3 Majorana fermions in condensed matter physics 11

Figure 1.1. Schematic experimental setup of Majorana nanowire device. The figure
is reprinted with permission from Zhang, Hao, Dong E. Liu, Michael Wimmer, and
Leo P. Kouwenhoven, Nature communications 10, no. 1, (2019)

of considering one “ideal” Hamiltonian we take an ensemble of the Hamilto-
nians with some probability distribution P (H) ∼ exp

(
− c
NTrH2) where c is

a parameter that is the same for the classes of Hamiltonians that share same
universal symmetries [46].

When classifying the Hamiltonian classes we look only on anti-unitary sym-
metries that come in two types: the Hamitonian can either commute (time-
reversal symmetry) or anti-commute (particle-hole symmetry) with the anti-
unitary operator. All the unitary symmetries can be disregarded by restricting
ourselves to one symmetry sector (block in the Hamiltonian matrix) and the
unitary symmetry that anti-commutes with the Hamiltonian (called chiral
symmetry) can be obtained as a product of particle-hole and time-reversal op-
erators [49]. According to this, different combinations of these “non-reducible”
symmetries give us 10 different classes of Hamiltonians [48] (corresponding to
all the possible combinations of the symmetries).

In case of the systems that can host topologically protected Majorana zero
modes, the spin-rotation symmetry is broken by spin-orbit coupling, while the
particle-hole symmetry is present. The corresponding systems are in symmetry
class D.

If one looks at the ensemble-averaged density of states for the class D
system (Fig. 1.2), one would see that in the topologically non-trivial phase
(green color and red delta-function contribution) there is a clear zero energy
mode (corresponding to MZMs) that is well separated from the continuum
– there is a dip in the density of states around zero. However, despite the
fact that there is no sharp line at E = 0 for the topologically trivial case, the
density of states is still peaked around zero [48, 50, 51].

This posses a fundamental obstacle on the route to measuring topologically
protected zero modes since the accidentally low lying states (also called An-
dreev levels) in the trivial phase can mimic the true MZMs in the observables.
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Figure 1.2. Panels a) and b) show the spectrum of a class-D superconductor. The
unpaired MZMs are present on panel b). In the middle: the ensemble-averaged density
of states. The green line and the delta-function contribution from the zero-mode
correspond to the topological phase, while the blue line - to the trivial phase. The
figure is reprinted with permission from Beenakker, C. W. J, Reviews of Modern
Physics, 2015

The particular case when the observable is the parity of the sub-system of the
system with 2N MaZMs is considered in Chapter 1.7.1 and Chapter 1.7.2.

1.4 Anyonic Majorana fermions

By definition, Majorana zero modes (MZMs) are real (γ†
i = γi) so we need two

of them to encode a single complex fermion (each Majorana is an equal-weight
superposition of the electron and hole excitation, Eq. 1.8). Moreover, in case
of the topologically protected MZMs bound to defects or at the boundaries,
such a fermion is de-localized.

For N zero energy levels we have 2N Majoranas and the degeneracy of the
ground state is 2N . The degeneracy of the ground state is a key element to the
most valuable property of the topological superconductors - the non-Abelian
statistic of the MZMs under the adiabatic exchange between one another

|Ψ⟩ → Û |Ψ⟩ , where Unm = exp
(

±π

4 γnγm
)

= 1√
2

(1 ± γnγm) . (1.9)

Such exchange of two MZMs out of the group is called braiding and is a key
element in building the quantum computer – with its help we can construct
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gates and operate the state. In case when the MZMs are bound to vortex cores,
it can be realized when a vortex from one pair is adiabatically 9 moved around
a vortex from the other pair at a large distance without ever approaching it.
Each of the two selected MZMs can be seen as one fermionic mode with fixed
parity Pn = 1 − 2c†

ncn ≡ iγ2n−1γ2n. Despite the fact that the total parity
Ptot = ∏

n Pn is conserved, the parity of each pair can be changed during
braiding, the procedure called quantum state transfer.

In order to have a fully functional quantum computer, we need to be able
to generate arbitrary n-qubit unitary gate. However, not all the unitary oper-
ations can be performed using braiding [52, 53]. For the single-qubit operation
we need the minimal set of 4 MZMs such that the qubit for the case of the
odd total parity can be encoded depending on where does the fermion “sit”:
|0⟩ ≡ |+⟩ |−⟩ , |0⟩ ≡ |−⟩ |+⟩10 (see Fig. 1.3, panel a) for an example of imple-
mentation of the qubit on 4 MZMs bound to vortices). Exchange of two MZMs
(also called “half-braid”) corresponds to the square root of the Pauli matrices√
σi depending on which Majoranas are getting exchanged [14]11 (example of

the implementation of √
σx can be seen on Fig. 1.3, panel c)). The latter

correspond to the rotation of the qubit by π/2 with respect to the orthogonal
axes on the Bloch sphere. It can be shown, that if we add a π/4 rotation
around z-axis to out set of operations, a rotation by an arbitrary angle around
any axis can be approximated with arbitrary accuracy [54]. However, that π/4
rotation which is also called T-gate can not be realized with braiding [14].

In order to construct any multi-qubit unitary operation, one needs a com-
bination of a two-qubit gate (e.g CNOT that flips or not the state of the
target qubit depending on the state of the control qubit) with single-qubit ro-
tations [55]. The latter can be realized if we add the parity measurement that
define the last step of the operation and the ancilla qubit [14] (see Fig. 1.4,
left panel).

Braiding operation is very non-trivial and yet no one has succeeded in
performing it. The MZMs bound to a defect or the end-point of a nanowire (as
compared to the quantum Hall edge states) are immobile and therefore most
proposals to demonstrate non-Abelian statistics generate the unitary braiding
operation without physically moving the zero-modes in real space [20, 56–
59]. Instead, the braiding is done in the parametric space. In the tri-junction

9The adiabaticity of the process is important to avoid Landau-Zener transitions.
10Equivalently, we could encode the qubit in the states |−⟩ |−⟩ , |+⟩ |+⟩ if the total parity

is even.
11For √

σx corresponds to the exchange of Majorana 2 and 3, √
σy - to the exchange of

Majorana 1 and 3 and √
σz - to the exchange of Majorana 1 and 2.
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Figure 1.3. Panel a): a qubit |0⟩ ≡ |+⟩ |−⟩ , |0⟩ ≡ |−⟩ |+⟩ built out of the four Majo-
rana zero modes bound to vortices. Panel b) and c): operations σx,

√
σx respectively

performed by exchanging the vortices. The figure is reprinted with permission from
Beenakker, C. W. J, SciPost Phys. Lect. Notes, 2020

Figure 1.4. Two-qubit CNOT gate realized through braiding (left) and solely real-
ized by projective parity measurements. The figure is reprinted with permission from
Beenakker, C. W. J, SciPost Phys. Lect. Notes, 2020

introduced by by Alicea et al. [20] by varying the couplings between Majotanas
H(t) = ∑3

i=1 ∆i(t)iγ0γi and can transfer a Majorana zero-mode is transferred
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from one end point to another (see Fig. 1.5). On practice, this can be either
done by the electrostatic control using gate voltage [60] or by magnetic control
tuning the magnetic flux through the Josephson junctions (see Fig 1.6) [57].
The advantage of the latter over the former is in the fact that the charge-
sensitivity can be switched on and off with exponential accuracy by varying
the magnetic flux through a split Josephson junction [61]. This gives us a
macroscopic handle on the interaction of pairs of Majorana fermions.

Figure 1.5. Braiding of Majorana zero modes (γ1 and γ2 in tri-junction.) γ0 is
an effective zero mode created when three MZMs got coupled in the middle of the
tri-junction. To perform the braiding operation, one varies the couplings between the
MZMs, thick lines denoting coupled Majoranas while dashed lines - decoupled. The
figure is reprinted with permission from Beenakker, C. W. J, SciPost Phys. Lect.
Notes, 2020

Figure 1.6. Three Cooper pair boxes with two Majorana zero-modes in each (pink
dots). The three overlapping Majorana zero-modes that meet at the center of the
at the tri-junction split to produce two no-zero levels and a single zero-mode. The
coupling between the Majoranas in each Cooper pair box γi, γ

′
i is varied by varying

the flux Φi through the corresponding Josephson junction.
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An arguably easier operation as compared to braiding appears to be able to
completely substitute it [56]. This operation is a projective measurement called
fusion. Physically, it is realized by bringing the vortices together so that the
wave-functions of the zero-modes overlap. As a result, they split energetically,
allowing to measure the fermion parity. The outcome of such a measurement
is specified by the fusion rules. If we prepare the qubit in the state where
γ1, γ2 and γ3, γ4 form states with definite fermion parity, the ground state
degeneracy of the whole system will manifest itself in the non-deterministic
outcome for the parity of the state formed from γ2, γ3. It follows from the
anti-commutation relation for MZM which leads to ⟨P23⟩ = ⟨P12P23P12⟩ =
−⟨P12P12P23⟩ = −⟨P23⟩ In a formal notation the fusion rule is expressed by

γ2 × γ3 = 1 + ψ, (1.10)

where ψ indicates the presence of an unpaired fermion and 1 – no unpaired
fermions [14]. Since the fusion rule 1.10 is a manifestation of the degenerate
ground state and we know that the latter implies non-Abelian exchange statis-
tic, one can conclude that the observation of the corresponding fusion rule is
sufficient to announce the indirect demonstration of non-Abelian statistics.

Figure 1.7. Two geometries to detect the fusion rule. The figure is reprinted with
permission from Beenakker, C. W. J, SciPost Phys. Lect. Notes, 2020

Two easiest geometries to detect the fusion rule are presented on Fig. 1.7.
In both geometries we perform a sequence of coupling and decoupling of the
MZMs between each other. The difference between the linear and tri-junction
is only in the mechanism of tuning the coupling (flux-controlled in the latter
while in the former we have flux-controlled coupling inside the island and gate-
controlled coupling between the islands). the sequence of steps is following [60]:

1. Start by coupling γ1 and γ2 performing the projective parity measure-
ment P12 such that we effectively have one superconducting nanowire.
The ground state is fixed by the total parity.
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2. Decouple γ1 and γ2 and couple γ2 and γ3. The parity P23 is expected
by have equal probability to be ±1.

To experimentally perform a projective measurement on practice, one
needs an observable that couples to it. The possible measurement schemes
are:

• Majorana interferometry [58]. One brings the superconducting nanowire
with MZMs into a weak contact with the normal metal and measures
the current passing through it. The switches in parity result in parity-
dependent Aharonov-Bohm oscillations in the magnetoconductance.

• Inductive coupling to a flux qubit [62]. The topological one-dimensional
wire gets closed into circle by broken superconducting ring [63]. The sec-
tion of the wire bridging the break of the superconducting ring remains
nontopological and acts as a weak link (Josephson junction) between
the two topological regions. Measuring the Josephson supercurrent can
probe the 4π Josephson effect [17].

• Microwave coupling to a transmon qubit12. The nanowire with MZMs is
incorporated into the Cooper pair box, the effective low energy Hamilto-
nian of which gets the term that depends on the parity of the nanowire [57].
The Cooper pair box is then placed in a microwave transmission line res-
onator changing its resonance frequency depending on the parity of the
MZMs in the Cooper pair box [64].

• Capacitive coupling to a quantum dot. The superconducting nanowire is
coupled to semiconductor quantum dots modulating the charge on them
depending on the fermion parity of the zero-modes. The charge of the
semiconductor quantum dots is then read-out capacitively [59, 65].

• If one wants to make a scalable read-out circuit performing a joint parity
measurement on arbitrary pairs of Majorana zero-modes, one has to use
Random Access Majorana Memory (RAMM) [66].

Bonderson, Freedman,and Nayak [56] showed how braiding of two MZMs
(e.g γ1 and γ2 as on Fig. 1.5) can be performed through the sequence of
projective measurements Πkl = 1

2 (1 + Pkl) (Fig. 1.8). The idea is to project
the state onto the state with definite parity (e.g +1). This can be done by
measuring the parity and disregarding all the instances when it was equal

12The transmon is a type of superconducting charge qubit
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Figure 1.8. Braiding of Majorana zero modes (γ1 and γ2 in tri-junction.) γ0 is an
effective zero mode created when three MZMs got coupled in the middle of the tri-
junction. To perform the braiding operation, one performs a sequence of projective
measurements Pkl = iγkγl. The operations proceed only in case Pkl = +1, otherwise
we need to start over. The figure is reprinted with permission from Beenakker, C. W.
J, SciPost Phys. Lect. Notes, 2020

to −1. In this case, if we initialize the system in the state of even fermion
parity and then we subsequently make sure that the parities P03 and then
P01, . . . , P03 is equal to +1 then due to the total parity conservation Majorana
1 must have been transferred to Majorana 3. The two-qubit operation CNOT
can be also fully realized using projective measurements of parity.

It looks convincing that projective parity measurement is an important
ingredient both in showing the non-Abelian statistic of the MZMs and for ac-
tually building a fault-tolerant quantum computer. As we have discussed in
section 1.3.3, however, for the generic system that can host topologically pro-
tected MZMs, namely for a topological superconductors there exist parasitic
low lying states (Andreev levels) that can contribute to the observables. The
density of states of a “dirty” topological superconductor has a peak near zero
energies, in Chapters 2 and 3 we have studied what influence these states can
have one the measurement of the fusion rule.

1.5 Chaotic Majorana fermions

The Majorana zero modes that appear in the topological superconductors are
non-interacting. The different point of view that considers the extreme case
of strongly-correlated Majorana zero-modes can be studied and it appears to
have many interesting and peculiar properties.

The SYK model was introduced by Kitaev [25] as a follow-up on the origi-
nal disordered quantum Heisenberg model by Sachdev and Ye [26]. It contains
N ≫ 1 Majorana fermions in 0+1 dimensions, with the Hamiltonian consisting
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of a sum of all possible 4-fermion terms with random matrix elements

H = 1
4!

N∑
i,j,k,l=1

Jijklγiγjγkγl, (1.11)

where γi are Majorana zero modes, the couplings Jijkl are drawn independently
from Gaussian distribution with zero mean Jijkl = 0 and finite variance J2

ijkl =
3!J2/N3. The parameter J regulates the degree on entanglement in the system
and by varying it we can enter phases with different qualitative behaviour of
the system (we will elaborate on it later).

One can make two generalizations of this model:

1. Consider q-fermion interactions instead of 4-fermion as in 1.11 [31]. How-
ever, it appears that the non-trivial behaviour of the system shows up
already for q = 4 therefore we will proceed with this “minimal” case
further on in this thesis.

2. One can write the same model for complex fermions instead of real Ma-
jorana fermions (so-called cSYK) described by the Hamiltonian13.

HSYK = 1
(2N)3/2

N∑
i,j,k,l=1

Jij;klc
†
ic

†
jckcl, (1.12)

where again Jij;kl = J∗
kl;ij is a standard complex normal random variable

with zero mean and variance J2.

The SYK model drew the attention to itself due to a list of peculiar prop-
erties such as saturating the upper bound on quantum chaos [28] which is also
the case for holographic duals of black hole horizons [29] and the absence of
the well defined quasi-particles in strong coupling limit (J/T ≫ 1). Let us
elaborate on it a bit.

The degree to which the system is chaotic of the system is usually for-
mulated in terms of the so-called Out-Of-Time-Order-Correlation function
(OTOC) introduced by Larkin and Ovchinnikov [67].

C(t) ≡ −⟨[W (t), V (0)]2⟩ (1.13)

where ⟨. . . ⟩ represents the thermal average. A naive understanding of the
connection between the OTOC and chaos can be seen from the following

13The features of the SYK model mentioned in this section are valid for both models with
real (Majorana) and complex fermions
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consideration. Take W (t) = x(t) be the position operator and V (t) = p(t)
the momentum operator in a quantum system. Then, in the semiclassical
limit we replace the commutator [x(t), p(0)] in the OTOC by the Poisson
bracket {x(t), p(0)} = δx(t)/δx(0). For a classically chaotic system, the latter
would grow exponentially in time with the so-called Lyapunov exponent λ:
δx(t)/δx(0) ∼ eλt.

It was recently shown by Maldacena, Shenker, and Stanford [28] that in the
many-body quantum system OTOC can not grow faster then exponentially
with a characteristic time-scale tL ≤ ℏ/(2πkBT ) which is correspondingly
called Lyapunov time. It was also shown that in SYK OTOC behaves exactly
in this way: it has the exponential growth with the precisely saturates the
upper bound on the Lyapunov time [28].14

Another peculiar property of the SYK model is the power-law behaviour of
the spectral function in the low energy region ω ≪ J . Meanwhile, the absence
of long-living quasiparticles in high-temperature superconducting materials
above the critical temperature is an immutable characteristic of the so-called
strange metal state. Strange metals also exhibit a power-law behavior in the
spectral function similarly to SYK. A lack of quasiparticles manifests itself
in fast equilibration at low temperature on a timescale set by the Planckian
relaxation time tP = ℏ/(2πkBT ) that is the same timescale that appears as an
upper bound on quantum chaos. The extensions of this model to the cSYK
coupled clusters predict thermal diffusivity [68] ∝ tP and reproduce the linear
in temperature resistivity, [69] observed in strange metals. [70, 71] Recently, a
proposed theory of a Planckian metal, [27] based on the destruction of a Fermi
surface by the cSYK-like interactions, shows that the universal scattering time
equals the Planckian time tP. The latter one characterizes the linear in tem-
perature resistivity property [72] and was detected in cuprates, [73] pnictides,
[74] and twisted bilayer graphene, [75] regardless of their different microscopic
nature.

1.5.1 Mean field solution for cSYK

The SYK model appears to be tractable in the limit when we have many
flavours of the fermions N ≫ 1 (so-called large N limit). Let us try to derive
the solution in this limit and study it closer. To do so, let us calculate the

14For the quantum mechanical system, however, the OTOC does not grow eternally but
saturates at the Ehrenfest time tE (by which the wave function have spread over the whole
system).
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partition function of the cSYK model and look for the saddle-point solution
(mean field approach).

We start with the Gaussian probability distribution for the complex vari-
able Jij;kl with mean zero and variance J2/2,

P(Jij;kl, J∗
ij;kl) = 1√

2πJ2
exp

−
∑
ij;kl

Jij;klJ
∗
ij;kl

2J2

 (1.14)

In the limit N → ∞ we can calculate the averaged 15 partition function
accounting for the constraints J∗

ij;kl = Jkl;ij and the symmetry under i ↔ j
and k ↔ l

Z =
∫

D[c, c†]
∫
dJij;kldJ

∗
ij;klδ(J∗

ij;kl − Jkl;ij)δ(Jij;kl + Jji;kl)δ(Jij;kl + Jij;lk)×

× P(Jij;kl, J∗
ij;kl) exp

(
iS[c, c†]

)
(1.15)

where later on we will denote δ(J∗
ij;kl −Jkl;ij)δ(Jij;kl +Jji;kl)δ(Jij;kl +Jij;lk) =

δ(J).

Kadanoff-Baym equations

When we are in the non-equilibrium case we have to employ the Schwinger-
Keldysh formalism. The action is

S[c, c†] =
∑
s=±

∫
dt

is∑
i

c†
is∂tcis − s

(2N)3/2

N∑
ij;kl=1

Jij;klc
†
isc

†
jsckscls

 , (1.16)

where s = ± denotes forward and backward branches of the Keldysh time
contour [76].

Disorder average will boil down to calculation of the following integral
where we re-scaled Jij;kl → Jij;kl/

√
2J

I =
∫
dJij;kldJ

∗
ij;kl

δ(J)√
π
e

−
∑

ij;kl

(
Jij;klJkl;ij+i

∑
s=±

s
√

2J

(2N)3/2

∫
dtJij;klc

†
isc

†
jsckscls

)
(1.17)

15For many quantities, the model is self-averaging, and computing with some randomly
chosen, but fixed, couplings should give the same result as averaging over the couplings. We
also assume that there is no replica symmetry breaking.
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We decompose the SYK part into two∑
ij;kl

Jij;klc
†
isc

†
jsckscls = 1

2
∑
ij;kl

(
Jij;klc

†
isc

†
jsckscls + J∗

ij;klc
†
lsc

†
kscjscis

)
(1.18)

Then one can see that∑
ij;kl

(
Jij;kl + iJ√

2(2N)3/2

∫
dt
∑
s=±

sc†
lsc

†
kscjscis

)
×

×
(
J∗
ij;kl + iJ√

2(2N)3/2

∫
dt
∑
s=±

sc†
isc

†
jsckscls

)
=

=
∑
ij;kl

(
Jij;klJ

∗
ij;kl + i

∑
s=±

s
√

2J
(2N)3/2

∫
dtJij;klc

†
isc

†
jsckscls−

− J2

2(2N)3

∑
s,s′=±

ss′
∫
dt

∫
dt′c†

lsc
†
kscjscisc

†
is′c

†
js′cks′cls′


(1.19)

One can integrate over the J∗
ij;kl using the delta-function and shift the

constant
Jij;kl → Jij;kl + iJ√

2(2N)3/2

∫
dt
∑
s=±

sc†
lsc

†
kscjscis

and obtain

I =
∫
dJij;klδ(Jij;kl + Jji;kl)δ(Jij;kl + Jij;lk)

1√
π

exp

−
∑
ij;kl

Jij;klJkl;ij

×

× exp

−
∑
ij;kl

J2

2(2N)3

∑
s,s′=±

ss′
∫
dt

∫
dt′c†

lsc
†
kscjscsc

†
is′c

†
js′cks′cls′

 (1.20)

Note that now we do not have the condition J∗
ij;kl = Jkl;ij . Therefore

I = K(J)e−
∑

ij;kl
J2

2(2N)3
∑

s,s′=± ss′
∫
dt
∫
dt′c†

ls
c†

ks
cjscsc

†
is′c

†
js′cks′cls′ (1.21)

which gives the following partition function

Z = K(J)
∫

D[c, c†] exp
(

−
∑
s=±

s

∫
dt
∑
i

c†
is∂tcis−

−
∑
ij;kl

J2

2(2N)3

∑
s,s′=±

ss′
∫
dtdt′c†

lsc
†
kscjscsc

†
is′c

†
js′cks′cls′

 (1.22)
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Introducing bilocals Gs,s′(t, t′) = iN−1∑
i c

†
is′(t′)cis(t) we arrive at effective

action written with Σss′(t, t′), Πss′(t, t′) as the corresponding Lagrange multi-
pliers

S = − iNtrln
[
σzss′δ(t− t′) (i∂t + µ) − Σss′(t, t′)

]
−

− iN
∑
ss′

∫
dtdt′

(
Σss′(t, t′)Gs′s(t′, t) − ss′J2

4 Gss′(t, t′)2Gs′s(t′, t)2
)

In the large N limit, the saddle-point equations are

Σss′(t, t′) = J2Gss′(t, t′)2Gs′s(t′, t) (1.23)∑
r

∫ +∞

−∞
du
(
σzsrδ(t− u) (i∂t + µ) − srΣsr(t, u)

)
Grs′(u, t′) = δss′δ(t− t′).

Schwinger-Dyson equations

The same kind of analysis with disorder averaging can be applied for the
equilibrium case at some temperature T using Matsubara formalism. The
imaginary time action averaged over disorder is

S =
∫ β

0
dτ

[
N∑
i=1

c̄i∂τ ci +
∫ β

0
dτ ′ J

2

4N3

N∑
i,j,k,l=1

c̄ic̄jckcl(τ)c̄lc̄kcjci(τ ′)
]
, (1.24)

where β is the inverse temperature. Same as for non-equilibrium, we make
Hubbard-Stratonovich transformation introducing bilocals
G(τ, τ ′) = −N−1∑N

i=1 ci(τ)c̄i(τ ′) together with Σ(τ, τ ′) as the corresponding
Lagrange multipliers we get:

S = −N
+∞∑

n=−∞
log

[
iωn − Σc(iωn)

]
−

−
∫ β

0
dτ

∫ β

0
dτ ′
[
N

(
Σc(τ, τ ′)Gc(τ ′, τ) + J2

4 Gc(τ, τ ′)4
)]
, (1.25)

where ωn = π(2n + 1)/β are Matsubara frequencies. In the limit of N ≫ 1,
the saddle-point equations are:

Σ(τ) = J2G(τ)3

G(iωn)−1 = iωn − Σ(iωn), (1.26)

where ωn = πT (2n+ 1) are Matsubara frequencies.
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Emergent conformal symmetry

In the long time limit 1 ≪ Jτ ≪ N , we can neglect the term with the
derivative ∂t and the theory becomes invariant under the re-scaling of the
time τ → f(τ). The Kadanoff-Baym equations reduce to

− J2∑
r

sr

∫ ∞

−∞
duGsr(t, u)2Grs(u, t)Grs′(u, t′) = δss′δ(t− t′) (1.27)

with the solutions

Gss(t) = −isign(t) · s · e−isπ/4√
sinh(π|t|/β)

,

Gss′(t) = −is′ · e−isign(t)s′π/4√
sinh(π|t|/β)

(1.28)

with b = π1/4/
√

2βJ .
For Matsubara formalism we get

G(τ) = b√
τ

sign(τ). (1.29)

1.5.2 SYK in the lab

We see that seemingly simple and somewhat solvable SYK model shares many
phenomena intrinsic to the mysterious strongly correlated systems that do not
yet have a clear theoretical description. It inspired several proposals to realize
the SYK model in a condensed matter platform in the lab [22, 23, 77–79]. For
the corresponding realistic systems, SYK is expected to arise as a low-energy
effective description.

Let us take a closer look into one of the mentioned proposals. Chen et.
al. [77] propose a to take a graphene flake with irregular boundary in the exter-
nal magnetic field (see Fig. 1.9. The spectrum of graphene in a perpendicular
magnetic field B consists of quantized Landau levels En ≃ ℏv

√
2n(eB/ℏc).

The chiral symmetry of graphene protects the 0th Landau level from the pres-
ence of disorder. Therefore, if we project on the low energy sector, we get
a highly degenerate subspace16 with the wave functions Φi(r) being random
in space thanks to the disordered boundary. The SYK model arises as the

16The degeneracy of the 0th Landau level is proportional to the flux of the magnetic field
through the flake
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effective model for the low energy sector when Coulomb repulsion V (r − r′)17

is added into the consideration. The the corresponding interaction matrix
elements between the zero modes are given by

Jij;kl =
∫
dr
∫
dr′Φ∗

i (r)Φ∗
j (r′)V (r − r′)Φk(r)Φl(r′). (1.30)

Thanks to the randomness in the spatial distribution of Φ(r) the distribution
of the coupling constants Jij;kl can be approximated by the Gaussian to an
arguably good extend (see Fig. 1.9, right panel). The effective Hamiltonian is
therefore of the form of the complex SYK model (cSYK) 1.12.

Figure 1.9. Left panel: Schematic depiction of the proposed design of the experi-
mental simulation of the cSYK model. Graphene flake with the irregular boundary in
the external perpendicular magnetic field. Inset: lattice structure of graphene. Right
panel: Histogram of the coupling constants |Jij;kl| from Eq. 1.30 for N = 16 com-
pared to the Gaussian distribution (orange line) with the same variance. The figure
is reprinted with permission from Anffany Chen, R. Ilan, F. de Juan, D. I. Pikulin,
and M. Franz, Phys. Rev. Lett. 121, 036403, (2018)

However, after building the setup it is good to check whether the system
that we prepared in the lab is actually close enough to the SYK and if it
possesses the same fundamental properties e.g. whether it is in the non-Fermi
liquid phase. There are many reasons why it may not be so, for example:
the wave-function of the ground state is not random enough such that the
effective coupling strength Jij;kl do not follow the Gaussian distribution or
the microscopic parameters are not tuned such that we are not in the strong
coupling regime J/T ≫ 1. Also, it is known, that adding even an infinitesimal
quadratic term (simple hopping) to the SYK model can destroy its non-trivial

17The screened Coulomb potential is V (r) = (e2/εr)e−r/λ with ε being the dielectric
constant and λ - Thomas-Fermi length.
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transform it to free random fermions (Fermi liquid phase) [80]. And probing
the experimental setup that is allegedly described by the SYK model would
mean coupling it by tunneling to a fermion bath in one way or another. In
Chapters 4 and 5 we study several possible observable signatures of the non-
Fermi liquid phase in the SYK as well as the robustness of this phase when
we couple the SYK to a fermion bath.

1.6 Cosmic Majorana fermions

One more place where we can meet Majorana fermions (in form of funda-
mental particles) is neutrino physics. When Ettore Majorana was writing his
famous equation, he was surely inspired by the particles that were introduces
seven years prior by Pauli. Despite the fact that these particles are not yet
fully understood theoretically (for example, the value of the masses and its
mechanism), they are not in any sense rare, quite the opposite – we are be-
ing surrounded by them. In fact, there are approximately as many neutrinos
flying around us as there are photons, order of hundred in every cm3!

In fact, the analogy with the photons goes further – there is a radiation
background similar to the Cosmic Microwave Background (CMB) that is cor-
respondingly called Cosmic Neutrino Background or CνB. The mechanism
of both is the same: the very early universe was filled with the relativistic
particles that scatter between one another. As the universe was expanding
approximately at the moment when the rate of the scattering processes be-
cause equal to the Hubbard parameter the corresponding particles decoupled
– the Universe because transparent for them. Starting from that moment they
were penetrating the universe moving (almost) freely. Such particles are called
relic and by detecting them we are able to look into the early universe. CMB
is a “photograph” of relic photons that were decoupled when the Universe
was hundred thousands years old. The same cold, T = 1.95 K, radiation for
neutrinos that decoupled much earlier then photons (when the Universe was
only living for seconds) is called Cosmic Neutrino Background (CνB) [81].

Despite many similarities, CνB and CMB have a drastic difference – neu-
trinos are much harder to detect. Indirect evidence for the existence of the relic
neutrinos was found in the observed CMB [82], however, due to the extreme
weakness of the interactions between neutrinos and other forms of matter,
direct detection of the CνB remains a major experimental challenge.

Today it is widely accepted that the most practicable route to the direct
detection of the CνB lies through the measurement of the fine structure of the
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Figure 1.10. Schematic depiction of the expanding Universe after the Big Bang.
The picture taken from Astronomy: Roen Kelly, after BICEP2 Collaboration

β-spectrum of a radioactive element [83–87]. Let us consider a general case of
nuclear β-decay and neutrino capture

(A,Z) → (A,Z + 1) + e− + ν̄e

νe + (A,Z) → (A,Z + 1) + e−. (1.31)

The processes of capture of cosmic neutrino having mass mν by a sample
of radioactive atoms characterized by the beta-decay energy Q are predicted
to leave a potentially discernible signature in the form of an extremely faint
peak at the energy Q + m0

νc
2 in the beta spectrum of the sample [83–87]

(see Fig. 1.11) 18. On the other hand, the major part of the spectrum of the
radioactive element consists of the events of the spontaneous β decay and forms
a continuum with the upper cut-off energy Q−m0

νc
2. Therefore, one expects

the neutrino capture peak to be separated from the end of the spontaneous
β-spectrum by an energy gap of at least one neutrino mass and for that reason
to be discernible at least in principle.

From the first glance, it is obvious why such an experiment can be very
challenging: we are trying to measure a meV 19 feature on the background
of keV. This requires extreme energy resolution (order of 10 meV). However,
another major challenge lies in the weakness of the signal. A naive estimate
for the neutrino capture cross section is σν ≃ (τQ)−1 [86], where Q ∼ 10 keV
is the energy released in the β-decay and τ is the lifetime of the β emitter.

18There are, generally, three mass generations of neutrino. This fact does not influence
our considerations so we will omit it further. Here m0

ν is a mass of the lightest neutrino.
19The best up to date bound on the effective neutrino mass is mν < 0.8 eV as obtained by

the KATRIN experiment using gaseous molecular tritium [89].



28 Chapter 1. Introduction

2m1

−0.1 −0.05 0 0.05 0.1

101

103

105

107

109

1011

Eel − (Q− Erec) [eV]

d
Γ

d
E

e
l

[y
r−

1
eV

−
1
]

Ideal detector
PTOLEMY

Figure 1.11. he β-spectrum of free monoatomic Tritium centered around Q−Erec,
where Q is the decay energy and Erec - recoil of the nucleus in the vacuum. The
normal neutrino mass hierarchy [88] is assumed with the mass of the lightest neutrino
m1 = 50 meV. The spontaneous β-decay spectrum is shown in red while the CνB
feature is shown in green. The solid lines are drawn assuming a 10 meV resolution of
the detector.

We have a lower bound on the lifetime (otherwise we would not be able to
assemble the experimental setup) τ ⪆ 1yr and also all the viable emitters
have Q ∼ 10 keV. Therefore, we arrive at the conclusion that in order to have
at least one neutrino capture event per year we need large amounts of the
radioactive atoms (at least 100 g in order to achieve one event per year in the
case of atomic Tritium).

The lower bound on the size of the experimental setup comes from a very
simple consideration – it should be bigger then the mean free path of the emit-
ted electron with respect to the hard core collisions with the other emitters.
Otherwise, the scattering processes will corrupt the energy resolution. The
mean free path is given by the cross section σ = R2

atom and the concentration
of the emitters n = N/L3. The number of the emitters is fixed N ∼ 1023 from
the requirements of sufficient activity, the radius of the atom is also known.
If we calculate the numbers, we would see that the very rough estimate of
the lower bound on the linear size of the experimental setup is of the order
of 1 km. The biggest relic neutrino detector nowadays is KATRIN that has
the cross- section area of the container about 50 cm2, so the effective mass of
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tritium molecules is only about 50 µg [90].

Figure 1.12. Left panel: Schematic depiction of the decaying Tritium atom attached
to the graphene sheet. Right panel: Graphene–hydrogen binding potential as a func-
tion of the distance from the binding site. Different colors correspond to different
local curvatures (puckering) of the binding site.Flat graphene corresponds to d = 0
(thick black line), while d > 0 corresponds to convex sites and d < 0 to concave ones.

The only viable solution to the problem of the controllable handling of
such a large amount of radioactive material nowadays is proposed by the
PTOLEMY collaboration [85]. It is based on the idea to use a sold state-based
experimental architecture. In this proposal, the tritium atoms are deposited
on the graphene substrate which can efficiently store atomic tritium by locally
binding it to carbon atoms (either by chemisorption, physisorption). Along
with the high tritium storage, PTOLEMY also offers a very precise control
over the emitted electrons with the help of the elaborate configuration of the
electric and magnetic fields that “guide” the electrons to the detector. An
overall energy resolution of 10 meV is achieved.

1.6.1 β decay on the surface

As was first pointed out [91], the coupling of the β-emitter to the many-body
solid state system comes at the price of introducing additional intrinsic energy
uncertainty to the β spectrum. Indeed, when we are interested in the processes
on as low energy scales as meV, the solid state substrate becomes a jungle filled
with many-body phenomena.

In order to understand how the spectrum will look for the β-decaying atom
bounded to the substrate, let us apply the Fermi Golden Rule to the whole
system containing β-decaying constituents and the substrate. Let us denote
the total state of such a system (atom + environment) as |α, z⟩. Since the
whole system is closed, the Fermi Golden Rule holds where the total energy
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is conserved.

Γ = 2π
ℏ

∑
final states

∣∣ ⟨final| Ĥβ |initial⟩
∣∣2δ (Ein − Efin) , (1.32)

where we know that the initial and final states have different number of protons
and neutrons that is why only the Hamiltonian of the weak interaction Hβ

survives. Let us specify how initial and final states look like and what are
their quantum numbers

|initial⟩ = |α0, z⟩
|final⟩ = |α, z + 1⟩ |k⟩ |p⟩ , (1.33)

where there are 3 quantum numbers: an abstract label for the atom together
with the environment state α, electron momentum k and neutrino momentum
p20.

The Hamiltonian density of the β-interaction in the full generality is

Hβ = Gβ√
2
ē(x)γµ(1 − γ5)νe(x)Ĵnucl

µ (x) + h.c, (1.34)

where e(x), νe(x) are electron and neutrino fields and Ĵnucl
µ (x) is a nuclear part

which depends on the atom itself and we do not specify it. We get

Γ = V 2

ℏ

∫
d3kd3p

(2π)6

∑
α

∣∣ ⟨k| ⟨p| ⟨α, z + 1|Hβ |α0, z⟩
∣∣2 ∫ dτeiτ(Ee+Eν−Eα0 +Eα),

(1.35)
where we used that δ(Ein − Efin) =

∫ dτ
2πe

iτ(Ee+Eν−Eα0 +Eα). Expanding | · |2
we get

Γ = 1
ℏ

∫
d3kd3p

(2π)6

∫
dxdx′jµlept(x, p⃗, k⃗)j∗,ν

lept(x
′, p⃗, k⃗)×

×
∑
α

⟨α0, z| Ĵnucl
µ (x) |α, z + 1⟩ ⟨α, z + 1| Ĵ†,nucl

ν (x′) |α0, z⟩ ×

×
∫
dτeiτ(Ee+Eν+Eα−Eα0 ), (1.36)

20We note that in this we neglect the Coulomb interaction of the emitted electron with
the nucleus and with the surroundings. Therefore, the emitted electron is a plane wave
that is characterized by the momentum k. Neutrino does not interact with anything so it is
generally a plane wave (specified by the momentum p).
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where jµlept(x, p⃗, k⃗) = ψ̄e(x, k⃗)γµ(1 − γ5)ψcν(x, p⃗) and ψ has both functional
dependence (plane wave eipx without normalization factor as we already took
it into account) and spinor structure. Accounting for∑

α

eiτEα |α, z + 1⟩ ⟨α, z + 1| = eiτĤ
α
z+1 , (1.37)

where Ĥα,z+1 is the Hamiltonian that describes the system that consists of
the isotope of the initial atom with the charge z+1 and environment, we get21

Γ = 1
ℏ

∫
d3kd3p

(2π)6

∣∣∣ ∫ dxjµlept(x, p⃗, k⃗)Jnucl
µ (x)

∣∣∣2×

×
∫
dτ ⟨α0, z| χ̂†eiτĤ

α
z+1χ̂ |α0, z⟩ eiτ(Ee+Eν−Eα0 ), (1.38)

where χ̂ changes the charge of the nucleus by one and |α, z⟩ only has the
information about the surroundings and the electron orbitals of the atom, not
the nucleus itself, the latter is in Jnucl(x). Denoting

1
2π

∫
dτ ⟨α0, z| χ̂eiτĤ

α
z+1χ̂† |α0, z⟩ eiτω = F(ω), (1.39)

we get the generalized Fermi Golden rule that accounts for the interactions of
the nucleus with the surroundings

Γ = 1
ℏ

∫
d3kd3p

(2π)6

∣∣∣ ∫ dxjµlept(x, p⃗, k⃗)Jnucl
µ (x)

∣∣∣2F(Ee + Eν − Eα0). (1.40)

Or

dΓ
dEe

=4Eep(Ee)
(2π)4ℏ

∫
Eνk(Eν)dEν×

×
∣∣∣ ∫ dxjµlept(x,Ee, Eν)J

nucl
µ (x)

∣∣∣2F(Ee + Eν − Eα0). (1.41)

If we compare it with the Fermi Golden Rule for the β-decay in the vacuum
21With the assumption that the wave function of the atom is a product of the wave function

of the nucleus and the wave function of the electron shells that only depends on the charge
of the nucleus.
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dΓ(0)

dEe
=4Eep(Ee)

(2π)4ℏ

∫
Eνk(Eν)dEν×

×
∣∣∣ ∫ dxjµlept(x,Ee, Eν)J

nucl
µ (x)

∣∣∣2δ(Ee + Eν − Eα0). (1.42)

We see that the presence of the substrate leads to the finite lifetime of
the daughter atom (that is encoded in the function F(ω)). This leads to the
broadening of the β-spectrum. It includes all the types of the interactions of
the emitter with the substrate. Among them (the list is not by any means
exhaustive):

1. Zero-point motion of the emitter [91].

2. Finite lifetime of the daughter ion due to redistribution of the charges
on its shells and tunneling to graphene.

3. Breakdown of the angular momentum conservation due to the presence
of the substrate.

4. Sudden emission of an electron from a beta-decayer leaves behind a pos-
itively charged centre which attracts the electric current carriers in of
the substrate. This effect results in what is known as the X-ray edge
anomaly - a gamma-shaped broadening of the emission peak [92].

5. Creation of vibrational excitations of the lattice.

6. Emission of plasmons and surface polaritons.

7. Inhomogeneous broadening due to any kind of inhomogeneities in the
emitter arrangement.

However, the spectrum described by Eq. 1.40 does not include the inter-
action of the emitted electron with the substrate that can also manifest itself
through many different mechanisms such as

1. Screening of the daughter atom by the charges in graphene.

2. Creation of shock wave emission due to the motion of the emitted elec-
tron at grazing angles at speeds exceeding the Fermi velocity.

3. Etc.
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The investigation of one of the points in this list, namely the zero-point
motion of the emitter (Chapter 6) rules out the Tritium-on graphene design
and calls for substantially heavier beta-decayers. As is described in Chapter 7,
it was found [93] that the best candidates in terms of the suppression of zero-
point motion (also accounting for other criteria such as long enough lifetimes,
stable daughter nucleus, single β decay branch, etc.) are 171Tm and 151Sm.
These isotopes have lower neutrino capture cross sections as compared to
Tritium: ≈ 50 times smaller for 171Tm and 3 orders of magnitude lower for
151Sm[93].

Some aspects of the electric effects of the interaction of the emitted electron
with the substrate are considered in Chapter 8 and it seems that they are
much less dangerous as compared to the effects due to interaction of the β-
emitter with the substrate. Naively, this can be motivated by the fact that
the emitted electron near the edge of the spectrum has quite high velocity
v ≈ 0.3c. Therefore it leaves the system pretty fast and does not “notice”
many effects that take place on longer timescales.

To conclude, the research in the condensed matter side of this experimental
setup is only starting, many effect have not yet been investigated. Before
building a full scale experiment, both theoretical and, especially, experimental
programs in condensed matter physics and surface science are required to study
quantum devices with a mono-layer of rare earth elements (such as Thulium)
attached to graphene substrate.
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1.7 This thesis
This thesis aims to touch several questions about Majoranas of various origin:

1. For Majorana modes in superconductor. In the systems of the symmetry
class D (to which topological superconductors belong) Majorana zero
modes at zero energy can be mimicked by Andreev levels.
Can the vanishing fermion parity in the superconductor fusion experi-
ment be taken as a distinctive signature of the isolated Majorana modes?
If not, what would be the alternative scenario that would allow to dis-
criminate true degenerate ground state against the accidental degenera-
cies of Andreev levels?

2. What signatures of the non-Fermi liquid phase can we see by probing
the SYK model by the means of transport and beyond?

3. It is known, that adding even an infinitesimal quadratic term (simple
hopping) to the SYK model can destroy its non-trivial transform it to
free random fermions (Fermi liquid phase) [80]. So, if we want to probe
the SYK experimentally by the means of transport, it would inevitable
mean coupling it to the some kind of lead. We want to know whether
there is some domain of stability of the non-Fermi liquid phase of SYK
under such a perturbation.

4. The last question that is considered in this thesis is very practical. We
want to know what limitation do the many-body effects in the experi-
mental device impose on the energy resolution of the whole set-up. In
particular, it concerns the experiment of the relic neutrino detection. It
is still unclear whether the neutrino is a Majorana particle or not and
what is the absolute scale of its masses [94]. Along with answering on this
question, relic neutrino detection will allow us to look in the very early
universe (much earlier then the Cosmic Microwave Background allows
us to see). Such an experiment is therefore of fundamental importance.
The state of the art proposal for it requires big amount of the source
material (order of 1023 of heavy radioactive elements) and an extreme
energy resolutions (order of 10 meV) [85]. It is widely accepted that the
only way to have a chance to full fill such requirements is to used a solid
state based experimental device which again brings us to the interplay
of high energy physics and low energy phenomena.

Below, I briefly highlight the main results presented in the thesis.
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1.7.1 Chapter 2

Kitaev’s Pfaffian formula equates the ground-state fermion parity of a closed
system to the sign of the Pfaffian of the Hamiltonian in the Majorana basis.
Using Klich’s theory of counting statistics for paired fermions we generalize
the Pfaffian formula to account for quantum fluctuations in the fermion parity
of an open subsystem. A statistical description in the framework of random-
matrix theory is used to answer the question when a vanishing fermion parity
in a superconductor fusion experiment becomes a distinctive signature of an
isolated Majorana zero-mode.

1.7.2 Chapter 3

Detection of the fusion rule of Majorana zero-modes is a near-term milestone
on the road to topological quantum computation. An obstacle is that the non-
deterministic fusion outcome of topological zero-modes can be mimicked by
the merging of non-topological Andreev levels. To distinguish these two sce-
narios, we search for dynamical signatures of the ground-state degeneracy that
is the defining property of non-Abelian anyons. By adiabatically traversing
parameter space along two different pathways one can identify ground-state
degeneracies from the breakdown of adiabaticity. We show that the approach
can discriminate against accidental degeneracies of Andreev levels.

1.7.3 Chapter 4

The Planckian relaxation rate ℏ/tP = 2πkBT sets a characteristic timescale
for both the equilibration of quantum critical systems and maximal quan-
tum chaos. In this note, we show that at the critical coupling between a
superconducting dot and the complex Sachdev-Ye-Kitaev model, known to be
maximally chaotic, the pairing gap ∆ behaves as η ℏ/tP at low temperatures,
where η is an order one constant. The lower critical temperature emerges
with a further increase of the coupling strength so that the finite ∆ domain is
settled between the two critical temperatures.

1.7.4 Chapter 5

The Sachdev-Ye-Kitaev (SYK) model describes interacting fermionic zero modes
in zero spatial dimensions, e.g. quantum dot, with interactions strong enough
to completely washout quasiparticle excitations in the infrared. In this pa-
per, we consider the complex-valued SYK model at initial temperature T and
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chemical potential µ coupled to a large reservoir by a quench at time t = 0.
The reservoir is kept at zero temperature and charge neutrality. We find that
the dynamics of the discharging process of the SYK quantum dot reveals a dis-
tinctive characteristic of the SYK non-Fermi liquid (nFl) state. In particular,
we focus on the tunneling current induced by the quench. We show that the
temperature dependent contribution to the current’s half-life scales linearly in
T at low temperatures for the SYK nFl state, while for the Fermi liquid it
scales as T 2.

1.7.5 Chapter 6

Beta-spectrum of radioactive atoms was long ago predicted to bear an imprint
of the Cosmic Neutrino Background (CνB) [95]. Over the years, it has been
recognised that the best chance of achieving the signal-to-noise ratio required
for the observation of this effect lies with solid-state designs [96]. Here we bring
to the fore a fundamental quantum limitation on the type of beta-decayer that
can be used in a such a design. We derive a simple usability criterion and show
that 3H, which is the most popular choice, fails to meet it. We provide a list
of potentially suitable isotopes and discuss why their use in CνB detection
requires further research.

1.7.6 Chapter 7

Recent analysis of the viability of solid state-based relic neutrino detectors
has revealed the fundamental necessity for the use of heavy, A > 100, β-
decayers as neutrino targets. Of all heavy isotopes, 171Tm and 151Sm stand
out for their sufficiently low decay energies, reasonable half-life times and
stable daughter nuclei. However, the crucial bit of information, that is the soft
neutrino capture cross-section is missing for both isotopes. The main reason
for that is a particular type of β-decay, which precludes a simple link between
the isotope’s half-life time and the neutrino capture rate. Here we propose an
experimental method to bypass this difficulty and obtain the capture cross-
section of a soft neutrino by a given isotope from the isotope’s β-spectrum.

1.7.7 Chapter 8

The only promising experimental architecture for the Cosmic Neutrino Back-
ground (CνB) detection nowadays exploits β-decay of the emitters bounded
to a solid state substrate. The artifact of such a design is the appearance
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of the additional intrinsic bounds on the energy resolution coming from the
various types of interactions of the β-decaying atom with the collective modes
in the substrate. In this work, we only focus on the electromagnetic effects,
namely: 1) charge relaxation of the electrons in the substrate as a response to
the ionization of the β emitter, 2) electron-hole pairs creation by the emitted
β electron.
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Chapter 2

Pfaffian formula for fermion
parity fluctuations in a
superconductor and
application to Majorana
fusion detection

2.1 Introduction

The pairing interaction in a superconductor favors a ground state with an even
number of electrons, but when both time-reversal and spin-rotation symmetry
are broken the ground state may have odd parity — for example when a
magnetic impurity binds an unpaired electron [97]. While the connection
between fermion-parity switches and level crossings was noticed already in
1970 by Sakurai [98], these only became a topic of intense research activity
after Kitaev [17] made the connection with topological phase transitions and
Majorana fermions: The absence of level repulsion at a fermion-parity switch
indicates a change in a topological quantum number, which Kitaev identified
as the sign of the Pfaffian of the Hamiltonian in the basis of Majorana fermions.

An open subsystem need not be in a state of definite fermion parity
P = ±1, the fermion parity expectation value ⟨P⟩ may take on any value in the
interval [−1, 1]. Here we generalize Kitaev’s Pfaffian formula so that it can de-
scribe both closed and open systems. This generalization has a computational
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Figure 2.1. The left panel shows two superconducting regions (quantum dots)
connected (fused) by a point contact. The entire system is in a state of definite
fermion parity P0, even (+1) or odd (−1). The parity PL of the occupation number
of the NL electronic levels in one single quantum dot has quantum fluctuations. The
expectation value ⟨PL⟩ ∈ [−1, 1] may be obtained by rapidly closing the point contact
and decoupling the quantum dots (right panel), followed by a measurement of the
fermion parity of a single dot. The effective number of levels Ndot ≃ ℏ/δ0τc in each
quantum dot that contributes to the fermion parity fluctuations is determined by the
single-particle level spacing δ0 and the time scale τc on which the interdot coupling
is broken [99]. We address the question when a vanishing fermion parity ⟨PL⟩ ≈ 0 in
such a fusion experiment is a signature of isolated Majorana zero-modes.

as well as a conceptual merit. Computationally, it reduces the complexity of
a calculation of ⟨P⟩ for N levels from order 2N , when all possible occupation
numbers are enumerated, down to order N3. Conceptually, it allows us to
make contact with the random-matrix theory of topological superconductivity
[48, 49], and identify the origin of a statistical peak at ⟨P⟩ = 0 discovered
recently in computer simulations [99]. These findings have implications for
proposed experiments [60] to search for signatures of isolated Majorana zero-
modes in the fermion parity of two superconductors that have first been fused
and then decoupled (see Fig. 2.1).

The outline of the paper is as follows. In the next section we derive the
Pfaffian formula for the average subsystem fermion parity. This generalization
of Kitaev’s formula [17] can be seen either as an application of the Wick
theorem for Majorana operators [100–102] (cf. a similar application in Ref.
[103]), or as an application of Klich’s theory of counting statistics for paired
fermions [104]. In Sec. 2.3 we use the fermion parity formula to establish
the connection between vanishing average fermion parity and the presence of
isolated Majorana zero-modes in the decoupled quantum dot. We continue in
Sec. 2.4 with a statistical description of the double quantum dot geometry of
Fig. 2.1, by identifying the random-matrix ensemble in symmetry class DIII
that describes the fermion parity fluctuations. We contrast the case of strongly
coupled quantum dots in Sec. 2.4.2 with the case of weak coupling in Sec. 2.4.3.
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In Sec. 2.5 we show how weak coupling by a single-mode quantum point contact
can distinguish quantum dots with or without isolated Majorana zero-modes.
In the concluding Sec. 2.6 we discuss the implications of our analysis for the
detection of Majorana zero-modes by means of a fusion experiment.

2.2 Pfaffian fermion-parity formula

2.2.1 Kitaev’s formula for an isolated system

To set the stage we recall some basic facts [105] needed to present Kitaev’s
formula [17] for the ground-state fermion parity of an isolated superconductor.

At the mean-field level the Hamiltonian of a superconductor is a Hermitian
quadratic form in the fermion creation and annihilation operators a†, a,

H = ∑N
n,m=1Vnm

(
a†
nam − 1

2δnm
)

+ 1
2
∑N
n,m=1

(
∆nmanam + ∆∗

nma
†
ma

†
n

)
. (2.1)

The indices n,m label spin and orbital degrees of freedom of N fermionic
modes. The N ×N Hermitian matrix V represents the kinetic and potential
energy and the antisymmetric matrix ∆ is the pair potential.

More compactly, Eq. (2.1) can be written in the matrix form

H = 1
2

N∑
n,m=1

Ψ†
n · Bnm · Ψm, (2.2a)

Ψn =
(
an
a†
n

)
, Bnm =

(
Vnm −∆∗

nm

∆nm −V ∗
nm

)
. (2.2b)

The 2N × 2N Hermitian matrix B is called the Bogoliubov-De Gennes (BdG)
Hamiltonian [106]. Its eigenvalues come in pairs ±E1,±E2, . . .±EN of opposite
sign, with the positive entries equal to the single-particle excitation energies
of the many-particle Hamiltonian H.

The unitary transformation

Bnm 7→ UBnmU † ≡ Anm, with U = 1√
2

(
1 1

−i i

)
, (2.3)

maps B onto the 2N × 2N imaginary antisymmetric matrix A with elements

Anm =
(
i Im (Vnm + ∆nm) iRe (∆nm + Vnm)
iRe (∆nm − Vnm) i Im (Vnm − ∆nm)

)
= −AT

mn. (2.4)



42 Chapter 2. Parity fluctuations in a superconductor

The superscript T denotes the transpose. An antisymmetric matrix is also
referred to as “skew-symmetric”.

The transformed state

γ = (γ1, γ2, . . . γ2N ), with
(
γ2n−1
γ2n

)
= U

(
an
a†
n

)
, (2.5)

contains 2N Hermitian operators γn = γ†
n, with anticommutator

γnγm + γmγn = δnm, γ2
n = 1/2. (2.6)

This is the Clifford algebra of Majorana operators.
The global fermion parity operator

P = (−1)
∑N

n=1 a
†
nan = (−2i)Nγ1γ2 · · · γ2N (2.7)

commutes with H, so energy eigenstates have a definite fermion parity ±1.
Kitaev’s formula [17] equates the fermion parity P0 of the ground state to the
Pfaffian1 (Pf) of the Hamiltonian in the Majorana basis,

P0 = sign Pf (−iA), for H = 1
2γ · A · γ. (2.8)

2.2.2 Pfaffian formula for a subsystem

Our objective is to calculate the ground-state expectation value of the fermion
parity PL of an open subsystem, say the left quantum dot with NL fermionic
modes in Fig. 2.1 .

A direct way to proceed, used for example in Ref. [99], is to calculate
the many-particle ground state |Ψ0⟩ in the basis of occupation numbers and
evaluate

⟨PL⟩ = ⟨Ψ0|(−1)
∑NL

n=1 a
†
nan |Ψ0⟩. (2.9)

Since the Fock space of occupation numbers has dimension 2N , this direct
approach scales exponentially with system size and is therefore prohibitively
expensive for large systems.

Klich [104] has developed an efficient method, with a polynomial scaling
in N , to calculate squares of expectation values of operators exp(iχ∑n a

†
nan).

This gives ⟨PL⟩2 if one sets χ = π and restricts the sum to indices n in L. In
App. 2.7 we show how the Klich method can be adapted to give also the sign

1Wikipedia has a helpful collection of Pfaffian formulas.
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of ⟨P⟩L. That calculation is technically rather involved, but the final result
can be easily understood as follows.

We make the flat-band transformation A 7→ Ā, which consists in replacing
each of the 2N eigenvalues ±En of A by their sign. (We assume that no
eigenvalue is identically zero, meaning that we are not precisely at a fermion-
parity switch.) Since no eigenvalue crosses zero when it is replaced by its sign,
the flat-band transformation leaves the sign of the Pfaffian (2.8) invariant.
And because the Pfaffian of −iĀ can only equal ±1 we no longer need to take
the sign in Eq. (2.8), hence the global fermion parity is

P0 = Pf (−iĀ). (2.10)

At this point one may surmise that the desired subsystem generalization of
Eq. (2.8) simply amounts to taking the Pfaffian of the 2NL × 2NL submatrix
[Ā]LL restricted to the subspace of modes in the left quantum dot,

⟨PL⟩ = Pf [−iĀ]LL. (2.11)

This is indeed the correct expression, as one can see by application of the Wick
theorem for Majorana operators [100–102],

⟨γ1γ2 · · · γ2s⟩ = Pf
1≤k<l≤2s

⟨γkγl⟩. (2.12)

Substitution of PL = (−2i)NLγ1γ2 · · · γ2NL on the left-hand-side and −2i⟨γkγl⟩ =
−iĀkl on the right-hand-side results in Eq. (2.11). This is how an equivalent
formula was derived recently for a different problem [103].

Eq. (2.11) is computationally efficient because the Pfaffian of an N × N
matrix can be calculated in a time that scales polynomially with N [107,
108]: It has the same O(N3) complexity as the eigenvalue decomposition
one needs for the flat-band transformation A 7→ Ā. Note that the flat-band
transformation needs to be performed before the subblock restriction Ā 7→
[Ā]LL — the two operations do not commute.

2.3 Connection with the Majorana fusion rule

As a fundamental application of Eq. (2.11), consider the case that each quan-
tum dot in Fig. 2.1 has a single electronic mode (NL = NR = 1), each con-
sisting of two Majorana modes with inter-dot coupling matrix Γ but vanish-
ing intra-dot coupling — so these become fully isolated zero-modes when the
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quantum dots are decoupled. The Hamiltonian in the Majorana basis is

A =
(

0 iΓ
−iΓT 0

)
. (2.13)

The global fermion parity is

P0 = sign Pf (−iA) = −sign Det Γ. (2.14)

To obtain the average local fermion parity we use that the real 2×2 coupling
matrix Γ has the singular value decomposition Γ = O1 diag (κ1, κ2)O2, with
O1, O2 real orthogonal matrices and κ1, κ2 > 0. The eigenvalues of A are
±κ1,±κ2. In the flat-band transformation {κ1, κ2} 7→ {1, 1}, which gives

Ā =
(

0 iO1O2
−iOT

2 O
T
1 0

)
⇒ [Ā]LL = 0 ⇒ ⟨PL⟩ = 0, (2.15)

so the average fermion parity in a single quantum dot vanishes. This is a
manifestation of the Majorana fusion rule [53]: The fusion of the two Majorana
zero-modes γ1 and γ2 produces an equal-weight superposition of a state of even
and odd fermion parity.2

Several recent experimental proposals [60, 99, 109] are based on the connec-
tion between the Majorana fusion rule and vanishing average fermion parity.
The implication “isolated Majorana zero-modes ⇒ ⟨PL⟩ = 0” holds if there
are only two pairs of Majorana zero-modes. For NL or NR greater than 1 the
implication breaks down, as is demonstrated by the following counterexample
for NL = NR = 2:

A =
(

iΩ iΓ
−iΓT iΩ

)
, Ω =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0

 , Γ =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 , (2.16a)

⇒ Ā = 1√
5

(
iΩ′ iΓ′

−iΓ′T iΩ′

)
, Γ′ = 2Γ, Ω′ =


0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

 , (2.16b)

⇒ [Ā]LL = i√
5

Ω′ ⇒ Pf [−iĀ]LL = −1
5 , (2.16c)

2The converse is not excluded: ⟨PL⟩ = 0 without an isolated Majorana zero-mode is
possible, for example for

A = i

(
0 λ1 0 λ2

−λ1 0 −λ2 0
0 λ2 0 λ1

−λ2 0 −λ1 0

)
with λ1 < λ2.
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and hence ⟨PL⟩ = −1/5 does not vanish even though each quantum dot has a
pair of Majorana zero-modes without intra-dot coupling (γ1 and γ2 in the left
dot, γ5 and γ6 in the right dot).

Since Pf (−iA) = +1 the global fermion parity is even, hence the negative
sign for ⟨PL⟩ means that the states with odd-odd occupation numbers in the
left and right quantum dot have a greater weight in the ground state than the
states with even-even occupation numbers — even though the fusion of the
Majorana modes γ1 and γ2 would favor equal weight of even and odd fermion
parity.

As a check on the formalism, we have also calculated the average fermion
parity directly from the many-particle ground state wave function |Ψ0⟩ of the
Hamiltonian H = 1

2γ · A · γ. We find

|Ψ0⟩ =
√

5
10
[
2i(a†

1a
†
2 + a†

3a
†
4) − (1 +

√
5)a†

1a
†
3

− (1 −
√

5)a†
2a

†
4
]
|0⟩, (2.17)

which indeed gives ⟨PL⟩ = −1/5 upon calculation of the expectation value
(2.9).

In this case with N = NL + NR = 4 electronic levels the size 2N−1 = 8
of the basis of many-particle states in the even-parity sector is the same as
the size 2N = 8 of the basis of single-particle states, so the two calculations
based on Eq. (2.9) or on Eq. (2.11) are equally efficient. For larger N the
single-particle approach based on the Pfaffian formula has the more favorable
scaling (polynomial instead of exponential).

2.4 Random-matrix theory
For a statistical description of the fermion parity fluctuations we apply the
methods of random-matrix theory (RMT). In Sec. 2.4.2 we assume a strong
mixing of the states in the two quantum dots of Fig. 2.1, and then in Sec. 2.4.3
we consider the opposite regime of weakly coupled quantum dots. We will need
results [110] from the RMT in symmetry class DIII, which we summarize in
Sec. 2.4.1.

2.4.1 Skew Circular Real Ensemble

The matrix [−iĀ]LL which in view of Eq. (2.11) determines the local fermion
parity is a 2NL × 2NL submatrix of a matrix S = −iĀ that is an antisym-
metric (skew-symmetric) element of the real orthogonal group O(2N), with
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N = NL +NR. The corresponding ensemble from RMT is the class-DIII circu-
lar ensemble, which differs from the class-D circular ensemble by the antisym-
metry restriction [49]. The latter is called the Circular Real Ensemble (CRE)
and we will refer to the former as the skew-Circular Real Ensemble (skew-
CRE).3 The switch from symmetry class D to DIII is remarkable, because
class DIII was originally introduced [48] in superconductors with preserved
time-reversal symmetry — which is broken in our physical system.

Two equivalent methods to randomly choose a matrix from the skew-CRE
are:

1. Generate a real antisymmetric matrix −iA with independent Gaussian
elements on the upper diagonal (zero mean and unit variance), and per-
form the flat-band transformation to obtain S = −iĀ.

2. Draw a random element O from O(2N), uniformly with the invariant
Haar measure, and construct

S = O

(
0N×N 1N×N

−1N×N 0N×N

)
OT. (2.18)

The two methods are equivalent because the distribution P (A) ∝ exp(1
4Tr A2)

as well as the flat-band transformation A 7→ Ā are invariant under orthogonal
transformations A 7→ OAOT, so the matrix O in the decomposition (2.18) is
distributed according to the invariant Haar measure.

The matrix S has the block decomposition

S =
(

SLL SLR
SRL SRR

)
, SLL = [−iĀ]LL, (2.19)

with SXY a matrix of dimension NX × NY . In the context of scattering
problems, where the skew-CRE ensemble was studied previously [49], this
is analogous to a decomposition of the scattering matrix into reflection and
transmission matrices. In that context the eigenvalues ±iλn of the upper-left
submatrix SLL correspond to reflection amplitudes.4 Their joint probability

3The qualifier “real” for the O(N) ensemble is used instead of “orthogonal” because the
name Circular Orthogonal Ensemble (COE) was already used by Dyson [111] for the coset
U(N)/O(N).

4Eq. (2.20) follows from equation 5 of Ref. [110] upon change of variables from transmis-
sion probabilities Tn to reflection amplitudes λn =

√
1 − Tn.
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distribution in the skew-CRE is known [110],

P (λ1, λ2, . . . λNmin) ∝
∏
n

(1 − λ2
n)|NL−NR| ∏

j<k

(λ2
k − λ2

j )2,

Nmin = min(NL, NR), 0 ≤ λn ≤ 1. (2.20)

If NL > NR there are additionally 2(NL − NR) trivial eigenvalues pinned at
±1, not included in the distribution (2.20).

Symmetry class DIII has the Z2 invariant Pf S = ±1, which in view of
Kitaev’s formula (2.10) is the global fermion parity P0. This does not enter in
Eq. (2.20) because in the skew-CRE the distribution of the λn’s is independent
of the Z2 invariant [110].

The density ρ(λ) of the nontrivial eigenvalues has ±λ symmetry with a
three-peak structure: There are two peaks at the band edges ±λc, with [110]

λc = (2/N)(NLNR)1/2, (2.21)

and a peak at the band center5 described by [48, 51, 112]

ρ(λ) = 1
δeff

+ sin(2πλ/δeff)
2πλ , λ ≲ 1/δeff . (2.22)

The parameter δeff = π/2Nmin is the mean eigenvalue spacing in the center of
the band. The peak at λ = 0 is a weak antilocalization effect in the scattering
context [113].

Fig. 2.2 shows the eigenvalue density for NL = NR = Ndot ranging from
1 to 6. The three-peaked structure is evident except for Ndot = 1, when the
density profile is flat.

2.4.2 Distribution of the local fermion parity in the skew-CRE

The peak at λ = 0 in the eigenvalue density ρ(λ) increases the probability for
vanishing local fermion parity, since

|⟨PL⟩| =
Nmin∏
n=1

λn =
√

Det SLL. (2.23)

5For the density profile near λ = 0 we can approximate the distribution (2.20) by
P ({λ}) ∝

∏
j<k

(λ2
k − λ2

j )2 and ignore the restriction |λn| ≤ 1. The distribution of the
λn’s is then identical to the distribution of the energy levels of a Hermitian matrix in sym-
metry class D, which has the spectral peak (2.22). A Hermitian matrix in class DIII, rather
than class D, has a vanishing density of states at zero energy, but this is not relevant for
ρ(λ).
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Figure 2.2. Density ρ(λ) of the eigenvalues of the 2NL × 2NL matrix [−iĀ]LL in
the skew-CRE, calculated by integration of the distribution (2.20) for NL = NR =
Ndot ∈ {1, 2, 4, 6}. The density has a peak at the band edges and at the band center.

Indeed, as shown in Fig. 2.3, while the distribution of ⟨PL⟩ in the skew-CRE
is broad for a single electronic level Ndot = 1 in each quantum dot, it quickly
narrows to a sharp peak at ⟨PL⟩ = 0 with just a few levels — in accord with
numerical calculations reported by Clarke, Sau, and Das Sarma [99].

The peak at zero ⟨PL⟩ ≡ p appears as a sharp cusp in Fig. 2.3, it has a
logarithmic singularity ∝ (p2 ln |p|)Ndot−1, for example

P (⟨PL⟩ = p) = 45
32

(
1 − p4 + 4p2 ln |p|

)
, Ndot = 2, |p| ≤ 1. (2.24)

For large-Ndot the width of the distribution becomes exponentially small, as
follows from the variance

Var ⟨PL⟩ = (2Ndot)!3
(Ndot)!2(4Ndot)!

=
√

2
4Ndot

[1 + O(1/Ndot)], (2.25)

see App. 2.8.
We may quantify the effect of the spectral peak in ρ(λ) on the distribution

of the local fermion parity by comparing with a set of independent λn’s with
uniform density. In that uniform case one would have the fermion parity
distribution

Puniform(⟨PL⟩ = p) = (− ln |p|)Ndot−1

2(Ndot − 1)! , |p| ≤ 1, (2.26)
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Figure 2.3. Probability distribution of the local fermion parity in the ensemble of
antisymmetric orthogonal matrices (skew-CRE), representative of strongly coupled
quantum dots. The curves are calculated from Eq. (2.20) for NL = NR = Ndot ∈
{1, 2, 3, 4}. It takes just a few levels in the quantum dot to have ⟨PL⟩ ≈ 0 with high
probability, so equal weight of even and odd fermion parity.

with a variance 3−Ndot that decays less rapidly than Eq. (2.25).

2.4.3 RMT model of weakly coupled quantum dots

The RMT description in terms of the skew-CRE from the previous subsection
assumes a strong (chaotic) mixing in the entire phase space, appropriate for
strongly coupled quantum dots. To describe also the weakly coupled regime,
we consider an alternative approach where the RMT ensemble is applied to
the two quantum dots individually, rather than to the system as a whole.

In the Majorana representation, the Hamiltonian H = 1
2γ · A · γ of the two

coupled quantum dots of Fig. 2.1 has the block structure

A =
(
iΩL iΓ

−iΓT iΩR

)
. (2.27)

The real antisymmetric matrices ΩX of size 2NX × 2NX , with X ∈ {R,L},
describe the left and right quantum dot in isolation, while the 2NL × 2NR
real matrix Γ describes the coupling via a quantum point contact (QPC) with
NQPC propagating fermionic modes. In what follows we takeNL = NR = Ndot.
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Figure 2.4. Probability distribution of the local fermion parity for the RMT model
(2.27) of two weakly coupled quantum dots, calculated numerically by sampling the
Gaussian matrix elements in ΩL,ΩR,Γ for NQPC = 1, NL = NR = Ndot ∈ {1, 3, 6}.
In contrast to the strongly coupled skew-CRE ensemble of Fig. 2.3, the distribution
narrows only slowly with increasing Ndot.

The number Ndot counts the number of electronic modes in each quantum
dot. One electronic mode an corresponds to two Majorana modes γ2n−1 and
γ2n, according to

an = (γ2n−1 + iγ2n)/
√

2, (2.28)

cf. Eq. (3.4). Because of this double-counting, the mean level spacing δ0 of
eigenstates of ΩX is one half the electronic mean level spacing of a quantum
dot (taken the same in each dot, for simplicity).

For a statistical description we take independent Gaussian distributions
for the two matrices ΩX . Each upper-diagonal matrix element has zero mean
and variance 2Ndotδ

2
0/π

2, corresponding to superconductors in symmetry class
D (broken time-reversal and broken spin-rotation symmetry) [48, 49].

Following Refs. [114, 115], the quantum dots are coupled by a Gaussian
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Figure 2.5. Comparison of the variance of P (⟨P⟩) in the skew-CRE of strongly
coupled quantum dots [red data points, calculated from Eq. (2.25)] and in the weakly
coupled ensemble (blue data points, numerical results for NQPC = 1). The inset shows
that the decay is exponential in both cases, but with widely different decay rates.

random matrix Γ of rank NQPC, with elements6

Γkl = 2Ndotδ

π

2NQPC∑
n=1

v
(n)
k w

(n)
l , (2.29)

in terms of 2NQPC real Gaussian vectors v(n) and w(n) of unit average length
(each element independently distributed with zero mean and variance 1/2Ndot).

For the weak coupling regime we focus on the case of a single propagating
electronic mode in the point contact, NQPC = 1, corresponding to two prop-
agating Majorana modes. We do not have an analytical solution, so we show
numerical results in Fig. 2.4 for the probability distribution of ⟨PL⟩ = Pf (−iĀ)
in the ensemble of random matrices ΩL, ΩR, and Γ. The variance of the dis-
tribution is compared with that in the skew-CRE in Fig. 2.5. The two figures
show that the distribution of the local fermion parity is much broader when
the coupling is via a single-mode point contact.

6The coupling matrix (2.29) describes a ballistic point contact. For tunnel coupling,
rather than ballistic coupling, the coupling strength δ0/π is to be multiplied by T −1

n (2 −
Tn − 2

√
1 − Tn), with Tn the tunnel probability of the n-th mode in the QPC, see Ref. [49].
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Figure 2.6. Same as Fig. 2.4, but now comparing the situation with or without
isolated Majorana zero-modes in a quantum dot. The quantum dots are weakly
coupled (NQPC = 1) and they have the same number of electronic levels NL = NR =
Ndot. For the blue histograms each quantum dot has a pair of isolated Majorana
zero-modes (no intradot coupling, only interdot coupling). For the brown histograms
there are either no isolated zero-modes at all (panels a and b), or they are only in one
of the two quantum dots (panel c). Weak coupling ensures that the peak at vanishing
local fermion parity becomes a distinctive feature of isolated Majorana zero-modes in
each quantum dot.

2.5 Effect of an isolated Majorana zero-mode
The random Hamiltonians of the previous section do not contain isolated Ma-
jorana zero-modes: the 2Ndot Majorana modes in each quantum dot have
intradot coupling as well as interdot coupling. We may introduce a pair of
isolated Majorana zero-modes in a quantum dot by setting to zero one row
and one column of the submatrix ΩL or ΩR in the Hamiltonian (2.27). (The
row and column number should be the same to preserve the antisymmetry of
ΩX .) The effect on the distribution of the local fermion parity is shown in Fig.
2.6. The distribution of the local fermion parity is strongly peaked at zero if
and only if there is a pair of isolated Majorana zero-modes in each of the two
quantum dots.

2.6 Conclusion
In summary, we have studied the fusion of Majorana zero-modes using a gen-
eralization of Kitaev’s Pfaffian formula [17] for the global fermion parity of
the superconducting ground state, to include local fermion parity fluctuations
in an open subsystem. The Pfaffian formula in Eq. (2.11), and an equivalent
formulation from Ref. [103], is computationally efficient since it works with
the single-particle (Bogoliubov-De Gennes) Hamiltonian rather than with the
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many-particle Hamiltonian. One limitation of the single-particle formulation
is that it is limited to a mean-field description of the superconductor — in
particular we are assuming that the quantum dots in the geometry of Fig. 2.1
have a sufficiently large capacitance that Coulomb charging energies can be
neglected.

The Pfaffian fermion parity formula is particularly suited to an analysis
in terms of random-matrix theory, in an ensemble of antisymmetric matrices
[49]. For strongly coupled quantum dots the circular ensemble in symmetry
class DIII is the appropriate ensemble, which allows for analytical results for
the statistical distribution of the local fermion parity. There is no eigenvalue
repulsion at the particle-hole symmetry point in such an ensemble [48], and the
resulting accumulation of near-zero eigenvalues enforces a nearly equal-weight
superposition of even and odd fermion parity in a quantum dot.

This is a nontopological mechanism for vanishing expectation value ⟨PL⟩ ≈
0 of the local fermion parity. The Majorana fusion rule provides a fundamen-
tally different, topological mechanism [53]: The merging or “fusion” of two iso-
lated Majorana zero-modes (“isolated” in the sense of zero intradot coupling,
while allowing for interdot coupling) also favors a vanishing ⟨PL⟩ because the
two fusion channels, with or without an unpaired quasiparticle, have equal
weight.

To carry out such a fusion experiment it is proposed [60] that one would
rapidly decouple the subsystems, on a time scale τc sufficiently short that
quasiparticles from the environment cannot leak in. The complication [99]
is that even if there are isolated Majorana zero-modes, the presence of even
a small number Ndot of higher levels at energies below ℏ/τc may hide the
presence of the zero-modes by favoring ⟨PL⟩ ≈ 0 (see Fig. 2.3).

Fig. 2.6 illustrates our proposal to distinguish the two mechanisms for
vanishing local fermion parity: A low-rank coupling between the quantum
dots, via a single-mode quantum point contact, suppresses the nontopological
effect from levels at nonzero energy, without affecting the topological effect
from the fusion of isolated Majorana zero-modes.

2.7 Appendix: Derivation of the Pfaffian formula
from Klich’s counting statistics theory

We follow the steps of Klich’s theory of counting statistics of paired fermions
[104], to reproduce his result for ⟨PL⟩2. Then we will resolve the sign ambiguity
to arrive at Eq. (2.11) for ⟨PL⟩. An equivalent formula is obtained by a different
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method in Ref. [103], Appendix B.
The superconductor in Fig. 2.1 is assumed to be an isolated system, so

that the global fermion parity does not fluctuate. For the derivation of the
subsystem fermion parity formula (2.11) it is convenient to start from the more
general case that the superconductor is in contact with a reservoir in thermal
equilibrium at temperature T . We will then take the T → 0 limit at the end
of the calculation in order to describe an isolated system.

At inverse temperature β = 1/kBT the average fermion parity ⟨PL⟩ of
subsystem L (the left quantum dot in Fig. 2.1) is given by the trace of the
equilibrium density matrix

ρeq = 1
Z
e−βH , Z = Tr ρeq, (2.30)

acting on the fermion parity operator

PL = exp

iπ∑
n∈L

a†
nan

 . (2.31)

Because H = 1
2
∑
n,m Anmγnγm in the basis of Majorana operators γn, and

a†
nan = iγ2n−1γ2n + 1

2 , this can be written as

⟨PL⟩ = eiπNL/2

Z
Tr
[
exp

(
−1

2β
∑
n,m

Anmγnγm

)

× exp
(

−1
2 iπ

∑
n,m

(σy ⊗ PL)nmγnγm
)]

. (2.32)

The matrix σy is a Pauli matrix and the operator PL projects ontoNL fermionic
modes in subsystem L.

Application of the identity [104][
Tr
∏
k

eγ·Ok·γ
]2

= e
∑

k
TrOk Det

(
1 +

∏
k

eOk−OT
k

)
, (2.33)

results in

⟨PL⟩2 = eiπNL
Det [1 + exp (−βA) exp (−iπσy ⊗ PL)]

Det [1 + exp (−βA)]

= (−1)NL Det
[
1 − 2

1 + exp (βA)(σ0 ⊗ PL)
]
. (2.34)
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In the second equality we made use of the identity

eiχ σy⊗PL = 1 + σ0 ⊗ PL(cosχ− 1) + iσy ⊗ PL sinχ, (2.35)

with χ = π. (The matrix σ0 = σ2
y is the 2 × 2 unit matrix.) Note that, in a

basis of energy eigenstates of the BdG Hamiltonian, the operator (1 + eβA)−1

is the Fermi function f(E) = (1 + eβE)−1.
Eq. (2.34) is Klich’s result for the square of the average fermion parity

(equation 84 in Ref. [104]). Klich shows how the sign of ⟨PL⟩ can be recovered
if the determinant is known analytically as a function of the matrix elements.
Here we take a different route, more suitable for numerical calculations, which
gives the sign directly upon evaluation of a Pfaffian instead of a determinant.

Any 2N × 2N imaginary anti-symmetric matrix A can be decomposed as

A = iO(J ⊗ E)OT, J =
(

0 1
−1 0

)
, (2.36)

where O is a 2N × 2N real orthogonal matrix and
E = diag (E1, E2, . . . EN ) is an N ×N real diagonal matrix. Substitution into
Eq. (2.34) gives

⟨PL⟩2 = (−1)NL Det
[
1 −O

2
1 + exp (iβJ ⊗ E)O

T(σ0 ⊗ PL)
]

= (−1)NL Det
[
1 −O[1 − iJ ⊗ tanh(1

2βE)]OT(σ0 ⊗ PL)
]
. (2.37)

This may be written in a more compact form by defining the restriction
[M ]LL of a 2N×2N matrix M to the 2NL ×2NL submatrix of modes in region
L,

⟨PL⟩2 = (−1)NL Det
[
O[iJ ⊗ tanh(1

2βE)]OT]
LL

= Det
[
O[J ⊗ tanh(1

2βE)]OT]
LL. (2.38)

Note that, because of the submatrix restriction, the product rule Det (AB) =
(DetA)(DetB) cannot be applied to Det[AB]LL, so the orthogonal matrix O
cannot be cancelled with the inverse OT.

We have now arrived at the determinant of a real antisymmetric matrix,
hence we can take the square root without introducing branch cuts,

⟨PL⟩ = Pf
[
O[J ⊗ tanh(1

2βE)]OT]
LL. (2.39)
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In the zero-temperature, β → ∞ limit this reduces to

⟨PL⟩ = Pf
[
O[J ⊗ ( sign E)]OT]

LL, (2.40)

which is Eq. (2.11) with −iĀ = O[J ⊗ (sign E)]OT. Kitaev’s formula (2.8)
for the global ground-state fermion parity is recovered when L is the entire
isolated system. This correspondence also identifies

√
Det with +Pf rather

than with −Pf.

2.8 Appendix: Moments of determinants of anti-
symmetric random matrices

In Sec. 2.4.2 we used a formula for the average determinant of a submatrix
(a principal minor) of an antisymmetric real orthogonal matrix. This would
seem like a classic result in RMT, but we have not found it in the literature
on such matrices [116–118]. We therefore give the derivation in this appendix,
and for completeness and reference also derive the corresponding result for
antisymmetric Hermitian matrices.

2.8.1 Principal minor of antisymmetric orthogonal matrix

Consider a 2N × 2N antisymmetric real orthogonal matrix S, with a uniform
distribution in O(2N) subject to the antisymmetry constraint. This is the
class-DIII circular ensemble of RMT [48, 49], referred to as the skew-Circular
Real Ensemble (skew-CRE) in the main text.7

The 2NL×2NL upper-left submatrix SLL has eigenvalues ±iλn, 0 ≤ λn ≤ 1.
Denoting NR = N −NL and Nmin = min(NL, NR), we have that N −Nmin of
the λn’s are pinned to +1. The set {λn} = {λ1, λ2, . . . λNmin} can vary freely
in the interval [0, 1], with joint probability distribution [110]

P ({λn}) ∝
∏
n

(1 − λ2
n)|NL−NR| ∏

i<j

(λ2
i − λ2

j )2. (2.41)

The determinant of SLL is a principal minor given by

Det SLL =
NL∏
n=1

(iλn)(−iλn) =
Nmin∏
n=1

λ2
n. (2.42)

7The antisymmetric orthogonal matrices form a disconnected set in O(2N), distinguished
by the sign of the Pfaffian. For the probability distribution (2.41) it does not matter whether
or not we restrict the ensemble to Pf S = ±1.
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We seek the moments µq = E
[
(Det SLL)q

]
of this determinant in the skew-

CRE.
For that purpose we make a change of variables from λn to Rn = λ2

n ∈ [0, 1],
with distribution

P ({Rn}) ∝
∏
n

R−1/2
n (1 −Rn)|NL−NR| ∏

i<j

(Ri −Rj)2. (2.43)

We can then compute the moments of the determinant from

µq =

∫ 1

0
d{Rn}

∏
i<j

(Ri −Rj)2∏
n

(1 −Rn)|NL−NR|Rq−1/2
n∫ 1

0
d{Rn}

∏
i<j

(Ri −Rj)2∏
n

(1 −Rn)|NL−NR|R−1/2
n

, (2.44)

where we abbreviated
∫ 1

0 d{Rn} =
∫ 1

0 dR1 · · ·
∫ 1

0 dRNmin .
These socalled Selberg integrals have a closed-form expression [119],

µq =
Nmin−1∏
j=0

Γ
(
max(NL, NR) + j + 1

2

)
Γ
(
q + j + 1

2

)
Γ
(
max(NL, NR) + q + j + 1

2

)
Γ
(
j + 1

2

) . (2.45)

For the first few moments, Eq. (2.45) reduces to

µ1 = (2NL)!(2NR)!N !
NL!NR!(2N)! , (2.46)

µ2 = (2NL + 1)(2NR + 1)
2N + 1 µ2

1. (2.47)

Eq. (2.25) in the main text is Eq. (2.46) for NL = NR = Ndot = N/2.

2.8.2 Antisymmetric Hermitian matrix

A similar calculation can be carried out for moments of the determinant of
a 2N × 2N antisymmetric Hermitian matrix A, in the Gaussian ensemble of
independent upper-diagonal elements with a normal distribution (zero mean
and unit variance).

The 2N eigenvalues come in pairs ±λn. The N eigenvalues λn ≥ 0 have
the joint distribution [51]

P ({λn}) ∝
∏
n

e−λ2
n/2 ∏

i<j

(λ2
i − λ2

j )2. (2.48)
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The determinant is

Det A = (−1)N
N∏
n=1

λ2
n. (2.49)

Let us introduce the variables xn = λ2
n/2 ≥ 0, with distribution

P ({xn}) ∝
∏
n

x−1/2
n e−xn

∏
i<j

(xi − xj)2. (2.50)

The q-th moment µq of the determinant of A is given by

µq = (−2)Nq

∫ ∞

0
d{xn}

∏
i<j

(xi − xj)2∏
n

xq−1/2
n e−xn

∫ ∞

0
d{xn}

∏
i<j

(xi − xj)2∏
n

x−1/2
n e−xn

, (2.51)

with
∫∞

0 d{xn} =
∫∞

0 dx1 · · ·
∫∞

0 dxN . This is the ratio of normalisation con-
stants of Laguerre distributions, which is known [119]. We thus obtain

µq = (−2)Nq
N−1∏
j=0

Γ
(
q +N − j − 1

2

)
Γ
(
N − j − 1

2

) . (2.52)

For q = 1, 2 this reduces to

µ1 = (−1)N (2N)!
2NN ! , µ2 = (2N + 1)!(2N)!

22N (N !)2 ,

⇒ Var (Det A) = 2N [E(Det A)]2.
(2.53)

The average determinant of antisymmetric Hermitian matrices increases ex-
ponentially with N ,

µ1 =
√

2(−2/e)NNN [1 + O(1/N)], (2.54)

in contrast to the exponential decay for antisymmetric orthogonal matrices,
cf. Eq. (2.25).



Chapter 3

Dynamical signatures of
ground-state degeneracy to
discriminate against Andreev
Levels in a Majorana fusion
experiment

3.1 Introduction

Non-Abelian anyons hold much potential for a quantum information process-
ing that is robust to decoherence [52, 53]. The qubit degree of freedom is
protected from local sources of decoherence since it is encoded nonlocally in a
ground-state manifold of exponentially large degeneracy (of order dM for M
anyons with quantum dimension d > 1). The degeneracy is called topologi-
cal to distinguish it from accidental degeneracies that require fine tuning of
parameters. The non-Abelian statistics follows from the ground-state degen-
eracy because exchange operations (braiding) correspond to non-commuting
unitary operations in the ground-state manifold [120].

Majorana zero-modes, midgap states in a superconductor, are non-Abelian
anyons with quantum dimension d =

√
2 [21, 121]: Two zero-modes may or

may not share an unpaired fermion, so that the ground state of M zero-modes
has degeneracy 2M/2. To demonstrate the topological degeneracy of Majorana
zero-modes is a near-term milestone on the road towards a quantum computer
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based on Majorana qubits [60].
The general strategy for such a demonstration has been put forward by

Aasen et al. [60]. A set of four Majorana zero-modes γ1, γ2, γ3, γ4 is pairwise
coupled (fused) in two different ways: Either γ2 with γ3 or γ1 with γ2. The
zero-modes are then decoupled and the fermion parity P12 of γ1 and γ2 is
measured (P12 = +1 for even fermion number and P12 = −1 for odd fermion
number). The E = 0 ground-state degeneracy manifests itself in a nondeter-
ministic outcome in the first case, with expectation value P̄12 = 0. The second
case serves as a control experiment with a deterministic outcome of +1 or −1
depending on the sign of the coupling.

A challenge for the approach is formed by the tendency for non-topological
Andreev levels to accumulate at E = 0, resulting in a mid-gap peak in the
density of states and a proliferation of accidental ground-state degeneracies
[49]. The ground-state wave function of a few Andreev levels has local fermion-
parity fluctuations that may mimic the non-deterministic fusion of Majorana
zero-modes [99, 122].

Here we present a dynamical description of the fusion strategy of Aasen et
al., to search for signatures that make it possible to exclude spurious effects
from Andreev levels. We traverse the parameter space of coupling constants
along two pathways A and B such that the fermion parity measurement is
non-deterministic along both pathways, but with identical expectation value
P̄12(A) = P̄12(B) when the evolution is adiabatic. Ground-state degeneracies
are identified from the breakdown of adiabaticity, which causes P̄12(A) ̸=
P̄12(B) in a way that is statistically distinct for Andreev levels and Majorana
zero-modes.

3.2 Adiabatic evolution to test for ground-state de-
generacy

We consider a Majorana qubit consisting of 4 Majorana zero-modes with 3
adjustable couplings, in either a linear geometry or a tri-junction geometry,
see Fig. 3.1. The linear circuit contains two superconducting islands with
adjustable Coulomb couplings in each island and a tunnel coupling between
the islands. In the tri-junction there are three strongly coupled islands and
only the Coulomb coupling within each island is adjustable.

The state |±⟩ of the Majorana qubit is encoded in the fermion parity of one
of the islands, say the island containing Majorana zero-modes 1 and 2. The
fermion parity operator P12 = −2iγ1γ2 is the product of the two Majorana
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Figure 3.1. Two pathways A and B for the evolution of a Majorana qubit, encoded
in four Majorana zero-modes (red dots) in a linear or tri-junction geometry. The blue
contours represent superconducting islands and the black solid lines indicate which
zero-modes are coupled. At the end of the evolution the Hamiltonian is the same
for both pathways, but the final states |ψA⟩ or |ψB⟩ may depend on the pathway if
adiabaticity breaks down because of a degenerate ground state.

operators. Its eigenvalues are +1 or −1 depending on whether the fermion
parity in that island is even or odd. For definiteness we will assume that the
fermion parity of the entire system is even, and then P34 = P12.

As illustrated in Fig. 3.1, in each geometry the system is initialized in the
ground state with two of the three couplings on and the third coupling off.
The final state with all couplings off is reached via one of two pathways, A or
B, depending on which coupling is turned off first.

Notice that at each instant in time the system contains at least two uncou-
pled zero-modes: γ4 and an E = 0 superposition γ0 of γ1, γ2, γ3 (which must
exist because of the ±E symmetry of the spectrum [20]). Pathway A is the
fusion process discussed by Aasen et al. [60], while pathway B is an element
in the braiding process of Ref.[57].

If the ground state remains nondegenerate during this dynamical process,
separated from excited states by a gap Egap larger than the decoupling rate,
then the adiabatic theorem ensures that the final state |ψ⟩A = |ψ⟩B does not
depend on the pathway. By measuring the expectation values

P̄A = ⟨ψA|P12|ψA⟩, P̄B = ⟨ψB|P12|ψB⟩, (3.1)
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one can detect a breakdown from adiabaticity. This might be due to an acci-
dental gap closing during the evolution, or due to the topological ground-state
degeneracy of Majorana zero-modes.

We will consider the effect of an accidental degeneracy in Sec. 3.4, in the
next section we first address the topological degeneracy.

3.3 Topologically degenerate ground state
We summarize some basic facts about Majorana zero-modes (see reviews [14,
53] for more extensive discussions).

An even number M = 2N of uncoupled Majorana zero-modes has a 2N−1-
fold degenerate ground-state manifold for a given global fermion parity. The
degeneracy is removed by coupling, as described by the Hamiltonian

H = 1
2

2N∑
n,m=1

Anmiγnγm. (3.2)

The 2N × 2N matrix A is real antisymmetric, Anm = −Amn = A∗
nm and the

Majorana operators γn = γ†
n are Hermitian operators with anticommutator

γnγm + γmγn = δnm, γ2
n = 1/2. (3.3)

The fermion creation and annihilation operators a†, a are related to the
γ’s by (

γ2n−1
γ2n

)
= U

(
an
a†
n

)
, U = 1√

2

(
1 1

−i i

)
. (3.4)

The fermion operators define a basis of occupation numbers, |s1, s2, . . . sN ⟩,
such that a†

nan|s1, s2, . . . sN ⟩ = sn|s1, s2, . . . sN ⟩, sn ∈ {0, 1}.
For N = 2 and assuming even global fermion parity the Hamiltonian (3.2)

in the basis of occupation numbers |00⟩ ≡ |+⟩ and |11⟩ ≡ |−⟩ reads

H = 1
2

(
−Γ Γ′∗

Γ′ Γ

)
, Γ = A12 +A34,

Γ′ = −A14 −A23 − iA24 + iA13.

(3.5)

The fermion parity operator P12 = σz in this basis. Its expectation value in
the ground state |GS⟩ follows from

|GS⟩ ∝ (Γ +
√

Γ2 + |Γ′|2)|+⟩ + Γ′|−⟩

⇒ ⟨GS|P12|GS⟩ = Γ√
Γ2 + |Γ′|2

.
(3.6)



3.4 Accidentally degenerate Andreev levels 63

Figure 3.2. Solid curves: Expectation value P̄12(t) = ⟨ψ(t)|P12|ψ(t)⟩ calculated
numerically from the solution of the differential equation (3.7), for the Hamilto-
nian (3.5) with time dependent coupling constants Γ(t) = 1 − tanh[(t − t0)/δt]
and Γ′(t) = 1 − tanh[(t − t′0)/δt] for δt = 2. The decoupling times are chosen at
t0 = 4, t′0 = 8 for pathway A and t0 = 8, t′0 = 4 for pathway B. The dashed curves
show the corresponding evolution of the expectation value in the ground state of H(t),
calculated from Eq. (3.6). The close agreement of solid and dashed curves indicates
that the dynamics is nearly adiabatic.

Eq. (3.6) is a known result [99], which shows that for |Γ| ≪ |Γ′| the ground
state of the Majorana qubit is in an even-odd superposition of nearly equal
weight. Applied to Fig. 3.1 the same Eq. (3.6) shows that the two pathways A
and B correspond to an exchange of limits: Γ → 0 before Γ′ → 0 for pathway
A, resulting in P̄12 → 0, or the other way around for pathway B with |P̄12| → 1.

In Fig. 3.2 we show how this works out dynamically, by integrating the
evolution equation

iℏ
∂

∂t
|ψ(t)⟩ = H

(
Γ(t),Γ′(t)

)
|ψ(t)⟩, (3.7)

with initial condition that |ψ(0)⟩ is the ground state of H at t = 0.

3.4 Accidentally degenerate Andreev levels

To assess the breakdown of the adiabatic evolution as a result of (nearly)
degenerate Andreev levels we consider the double quantum dot geometry of
Fig. 3.3. There are NL Andreev levels in the left dot and NR Andreev levels in
the right dot. The quantum dots are coupled to each other by an adjustable
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Figure 3.3. Two quantum dots on a superconducting substrate (blue), containing
NL and NR Andreev levels coupled via a tunnel barrier. The coupling strength is
adjustable via a pair of gate electrodes (black). The fermion parity PL, PR in each
quantum dot is regulated by the ratio EJ/EC of Josephson and charging energies,
which is adjustable via the magnetic flux through a Josephson junction. In this way
we can drive the system away from the ground state via the two pathways of Fig. 3.1,
either by switching off first the fermion-parity coupling and then the tunnel coupling
(pathway A) or the other way around (pathway B). At the end of each process the
fermion parity PL is measured.

tunnel barrier and each has an adjustable coupling to a bulk superconductor
by a Josephson junction.

For strong Josephson coupling the Coulomb charging energy may be ne-
glected and the Hamiltonian of the double-quantum dot is bilinear in the
creation and annihilation operators,

H0 = 1
2

N∑
n,m=1

Ψ†
n · Bnm · Ψm, (3.8a)

Ψn =
(
an
a†
n

)
, Bnm =

(
Vnm −∆∗

nm

∆nm −V ∗
nm

)
. (3.8b)

The indices n,m label spin and orbital degrees of freedom of the N = NL +NR
Andreev levels. The N × N Hermitian matrix V represents the kinetic and
potential energy. The N ×N antisymmetric matrix ∆ is the pair potential.

As the ratio EJ/EC of Josephson and charging energy is reduced, the
Coulomb interaction in a quantum dot becomes effective. In the regime
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Figure 3.4. Scatter plot that illustrates how the expectation value P̄L of the fermion
parity in the left quantum dot depends on the pathway A or B that is followed in
parameter space. Each blue dot results from one realization of the class-D ensemble of
random Hamiltonians H0. In units such that the mean Andreev level spacing δ0 ≡ 1,
the parameters in Eqs. (3.10) and (3.12) are δt = δt′ = 2, κ0 = 1/4 for both pathways,
and t0 = 4, t′0 = 8 for pathway A, t0 = 8, t′0 = 4 for pathway B. The fermion parity
is evaluated at time t = 15. The red circle indicates the expected outcome for a
Majorana qubit, which is well separated from the scatter plot of Andreev levels.

EJ/EC ≳ 1 the interaction term only depends on the fermion parity [57],

HC = −κLPL − κRPR,

PL = (−1)
∑

n∈L a
†
nan , PR = (−1)

∑
n∈R a

†
nan .

(3.9)

The two coupling constants κL and κR depend exponentially ∝ e−
√

8EJ/EC on
the Josephson energy [123], which can be varied by adjusting the magnetic
flux through the Josephson junction connected to the left or right quantum
dot. We set κR ≡ 0 for all times while κL(t) drops from κ0 to 0 in an interval
δt around t = t0. We choose a tanh profile,

κL(t) = 1
2κ0 − 1

2κ0 tanh[(t− t0)/δt]. (3.10)

For each of the two dynamical pathways A and B we start at t = 0 with a
strong tunnel coupling between the quantum dots. We model this statistically
by means of the Gaussian ensemble of random-matrix theory in symmetry
class D (broken time-reversal and broken spin-rotation symmetry) [48, 49].

The ensemble is constructed as follows. A unitary transformation to the
Majorana basis,

UBnmU † = iAnm, U = 1√
2

(
1 1

−i i

)
, (3.11)
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see Eq. (3.4), expresses the Hamiltonian (3.8) in terms of a real antisymmetric
2N × 2N matrix A. We take independent Gaussian distributions for each
upper-diagonal matrix element of A, with zero mean and variance 2Nδ2

0/π
2,

where δ0 is the mean spacing of the Andreev levels.
For strongly coupled quantum dots we do not distinguish statistically be-

tween matrix elements Anm that refer to levels n and m in the same dot or
in different dots. To decouple the quantum dots by the tunnel barrier we
suppress the inter-dot matrix elements,

Anm(t) = Anm(0) ×
{

1 if n,m in the same dot,
κLR(t) if n,m in different dots,

(3.12a)

κLR(t) = 1
2 − 1

2 tanh[(t− t′0)/δt′]. (3.12b)

We solve the Schrödinger equation

iℏ
∂

∂t
|ψ⟩ = (H0 + HC)|ψ⟩, (3.13)

by first calculating the Hamiltonian in the 2NL+NR−1 dimensional basis of
occupation numbers in the left and right dot, for even global fermion parity
PLPR = +1. (We used the zitko2011sneg package to take over this tedious
calculation [124].) Starting from the ground state at t = 0 we switch off κL
and κLR along pathways A or B (first switching off κL or first switching off
κLR, respectively). At the end of the process we calculate the expectation
value of the fermion parity P̄L in the left dot.

The calculation is repeated for a large number of realizations of the Hamil-
tonian H0 in the class-D ensemble. A scatter plot of P̄L(A) versus P̄L(B) is
shown in Fig. 3.4 for a few values of NL, NR. Significant deviations are ob-
served from the line P̄L(A) = P̄L(B) of adiabatic evolution, but the scatter plot
stays clear of the point P̄L(A) = 0, P̄L(B) = 1 that characterizes a Majorana
qubit.

Two ingredients in the fusion protocol are essential for this to work: Firstly,
the fermion-parity coupling should be smaller than or comparable to the tunnel
coupling, in order for pathway B to have a nondeterministic fusion outcome.
Secondly, the tunnel coupling should be cut slowly on the scale of the inverse
mean level spacing, to promote adiabatic evolution in pathway A. In Fig. 3.5
we show the scatter plot when both these conditions are violated: There is
now no clear separation from the Majorana qubit.
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Figure 3.5. Same as Fig. 3.4, but now for a stronger fermion-parity coupling
(κ0 = 2) and abrupt removal of the tunnel coupling (δt′ = 1/4, all other parame-
ters unchanged). The outcome for a Majorana qubit is now no longer well separated
from the scatter plot of the outcome from Andreev levels.

3.5 Conclusion

A succesful demonstration of the non-deterministic fusion of two Majorana
zero-modes would be a milestone in the development of a topological quan-
tum computer [60]. Its significance would be both conceptual (because it
implies non-Abelian braiding statistics [120]) and practical (because fusion
can substitute for braiding in a quantum computation [14, 125]).

In this work we have investigated the dynamics of the fusion process, to
see how spurious effects from the merging of Andreev levels can be eliminated.
We compare the time-dependent evolution in the parameter space of coupling
constants (tunnel coupling and Coulomb coupling) via two alternative path-
ways. The topological ground-state degeneracy of Majorana zero-modes causes
a breakdown of adiabaticity that can be measured as a pathway-dependent
fermion parity. Andreev levels can produce accidental degeneracies, and a
non-deterministic fermion parity outcome, but the correlation between the
two pathways is distinct from what would follow from the Majorana fusion
rule (see Fig. 3.4).
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Initial experimental steps towards the detection of the Majorana fusion
rule have been reported [126]. Typical spacings δ0 of sub-gap Andreev levels
in these nanowire geometries are 10µeV, so the adiabatic decoupling time scale
δt = 2ℏ/δ0 in Fig. 3.4 would be on the order of 0.1 ns, well below expected
quasiparticle poisoning times of 1µs [127].



Chapter 4

Reentrant superconductivity
in a quantum dot coupled to
a Sachdev-Ye-Kitaev metal

4.1 Introduction

The Bardeen-Cooper-Schrieffer mechanism of conventional superconductivity
[38] requires two species of fermions coupled by an attractive two-body inter-
action. [128] The mean-field analysis of such a model results in the gapped
quasiparticle excitation spectrum below the critical temperature. Meanwhile,
the absence of long-living quasiparticles in high-temperature superconducting
materials above the critical temperature is an immutable characteristic of the
so-called strange metal state. [129, 130] In contrast to the quasiparticle na-
ture of superconductors, strange metals exhibit a power-law behavior in the
spectral function, [131] similarly to quantum critical systems. [132] A lack
of quasiparticles manifests itself in fast equilibration at low temperature on a
timescale set by the Planckian relaxation time tP = ℏ/ (2πkBT ). [132, 133]
The same timescale appears as an upper bound on quantum chaos setting the
maximal rate of information scrambling. [31] It is usually formulated [31, 134,
135] in terms of the out-of-time ordered correlator [67] (OTOC): In quantum
many-body systems the OTOC grows no faster than exponentially et/tL with
the Lyapunov time tL bounded from below as tL ≥ tP. [31]

The widely known Sachdev-Ye-Kitaev (SYK) model, [136] describing strongly
interacting Majorana zero modes in 0 + 1 dimensions, saturates the chaos
bound tL = tP. [28, 136] It does not possess an underlying quasiparticle de-
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scription while being solvable in the infrared, with a spectral function that
scales as a power law of frequency. These properties do not change upon re-
placing Majoranas with conventional fermions (complex SYK model). [137,
138] The extensions of this model to the cSYK coupled clusters predict thermal
diffusivity [68] ∝ tP and reproduce the linear in temperature resistivity, [69]
observed in strange metals. [70, 71] Recently, a proposed theory of a Planckian
metal, [27] based on the destruction of a Fermi surface by the cSYK-like inter-
actions, shows that the universal scattering time equals the Planckian time tP.
The latter one characterizes the linear in temperature resistivity property [72]
and was detected in cuprates, [73] pnictides, [74] and twisted bilayer graphene,
[75] regardless of their different microscopic nature.

The success in applying the SYK model to qualitative studies of strange
metals and the minimalistic structure of the model itself fostered the effort
to find a mechanism by which the superconducting state is formed out of an
incoherent SYK metal. [139–142] Driven by the same curiosity, we consider a
(0+1)-dimensional toy model which consists of a superconducting quantum dot
[143] coupled to the complex-valued SYK model. [137] At the critical coupling
the pairing gap turns out to be proportional to the Planckian relaxation rate
at low temperatures,

∆ ≈ η
ℏ
tP
, (4.1)

where η is a number close to one. This theoretical finding that we refer to
as a Planckian superconductor draws parallels to the phenomenon of reen-
trant superconductivity [144, 145] in Kondo superconductors [146–148] and
the physics of Andreev billiards. [149–153]

4.2 Main part

We start with a superconducting Hamiltonian HSC that contains 2M modes
described by the Richardson Hamiltonian [154–156] without single-particle
energies coupled to the SYK model HSYK with N fermions through a random
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tunneling term Htun,

H=HSC +HSYK +Htun , (4.2)

HSC = − U

M

M∑
i,j=1

ψ†
↑iψ

†
↓iψ↓jψ↑j − µ

M∑
i=1

∑
σ=↑,↓

ψ†
σiψσi, (4.3)

HSYK = 1
(2N)3/2

N∑
i,j,k,l=1

Jij;klc
†
ic

†
jckcl, (4.4)

Htun = 1
(MN)1/4

N∑
i=1

M∑
j=1

∑
σ=↑,↓

(
tσijc

†
iψσj + h.c.

)
. (4.5)

The couplings tσij and Jij;kl are assumed to be independent Gaussian random
variables with finite variances tσ∗

ijt
σ′
ij = t2δσσ′ , |Jij;kl|2 = J2 (Jij;kl = −Jji;kl =

−Jij;lk = J∗
kl;ij), and zero means.

The interaction terms in the Hamiltonian (4.2) are decoupled within the
Hubbard-Stratonovich transformations, [128, 137] so that in the large M,N
limit the self-consistent saddle-point equations are (see Appendix 4.4)

Σc(τ) = J2Gc(τ)3 + 2√
p t2G+(τ) , (4.6)

Gc(iωn)−1 = iωn − Σc(iωn), (4.7)

G+(iωn) =
iωn − t2√

pGc(iωn)(
iωn − t2√

pGc(iωn)
)2

− |∆|2
, (4.8)

1
U

= T
+∞∑

n=−∞

1(
ωn + it2√

pGc(iωn)
)2

+ |∆|2
, (4.9)

where ωn = πT (2n+ 1) are Matsubara frequencies and p = M/N controls the
ratio between the “sites” [157–159] in the superconductor/SYK sector. The
self-energy of the SYK fermions appears in the equations 4.6,4.7 as Σc(τ), while
Gc(τ) denotes the corresponding Green’s function −N−1∑N

i=1 ⟨Tτ ci(τ)c̄i(0)⟩.
The Green’s functions of the ↑,↓ fermions in the superconductor Gσ(τ) =
−M−1∑M

i=1

〈
Tτψiσ(τ)ψ̄iσ(0)

〉
enter the equation 4.8 as a half trace of the

Gor’kov’s function [160] G+(τ) = 1
2(G↑ + G↓)(τ). Finally, relation 4.9 is a

modified gap equation, [128] which accounts for the amount of the SYK impu-
rity in the superconductor through Gc(τ) under the assumption of frequency
independent pairing ∆. The chemical potential µ can be accounted in the
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equations 4.6-4.9 by the shift |∆|2 → |∆|2 + µ2. Below, we set µ = 0. In the
normal phase (∆ = 0) the equations 4.6-4.8 can be written as

Σ(τ) = J2Gc(τ)3, (4.10)

(iωn − Σ(iωn))Gc(iωn) =
iωn − t2(1−2p)√

p Gc(iωn)

iωn − t2√
pGc(iωn)

, (4.11)

ensuring a convenient self-energy translation Σ ≡ Σc − 2√
p t2G+. If p ≪ 1/2

(2M ≪ N), the bare SYK Green’s functionGSYK(iωn) = −iπ1/4sgn (ωn) /
√

|Jωn|
solves the equations 4.10,4.11 in the infrared ωn ≪ J . In this regime, the
Green’s function of the ψ fermionsG+(iωn) scales as √

ωn for ωn/J ≪ p−1/3(t/J)4/3.
In the equal sites case 2M = N , which corresponds to p = 1/2, the bare SYK
Green’s function survives for (t/J)4/3 ≪ ωn/J ≪ 1. Another solution ap-
pears at p = 1/2 if one supposes ωn ≪

{
t2 |Gc| , |Σ|

}
. Then the equation 4.11

shortens to

Σ(iωn) = iωn√
2t2

Gc(iωn)−2. (4.12)

The Green’s function that satisfies the equations 4.10,4.12 is
Gc(iω) ∝ −i sgn(ω)/

(
J2t2|ωn|

)−1/5 for the frequencies (t/J)3 ≪ ωn/J ≪
(t/J)4/3, that are achievable in the weak tunneling limit t ≪ J . Note that the
frequency window strictly depends on the coupling t. For p ≫ 1/2, the Green’s
function of the c fermions in the low-frequency limit is Gc(iωn) ∝ −iωn, [159]
which leads to the density of states −π−1ImGc(iωn → ω + i0+) ≃ 0 vanishing
in the SYK sector. Therefore, at large p, the normal phase is given by the
free fermions in the ψ–dot, whose Green’s function is G+(iωn) = −i/ωn. To
follow the frequency scaling of the Green’s function Gc(iωn) while changing p,
we introduce the logarithmic derivative ν = ∂ lnGc/∂ lnωn plotted in Figure
?? at low temperatures. Summarizing, the normal phase in the infrared limit
is described by the inverse Green’s function of the SYK model at small p,
whereas it crosses over to free fermions for large p values.

The gap equation 4.9 at ∆ = 0 makes a boundary in between the normal
phase and the superconducting one by setting the critical temperature Tc as
a function of the coupling rate t. Let us notice that the SYK model 4.4 does
not have a spin degree of freedom after disorder averaging (see Appendix 4.4).
Thus, it may be thought of as spin polarized. It suppresses superconductivity
similar to magnetic impurities: Increase of the coupling to the SYK subsystem
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Figure 4.1. Scaling of the Green’s function Gc in the normal phase. We
plot ν = ∂ lnGc/∂ lnωn as a function of p at given frequencies and finite coupling
t = 0.475J . At low frequencies, ν close to −1/2 is robust against p increase for
p < 1/2. The frequency rise moves ν towards −1 (free fermion limit), while ν crosses
over to 1 for large p. The temperature is T = 10−4J .
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Figure 4.2. Left panel: Critical temperature as a function of the coupling
strength to the SYK dot. The curves for p < 0.5 are bent at low temperatures.
This illustrates the presence of two critical temperatures. At p = 0.5 the bend
disappears, whereas for the values of p > 0.5 a single critical temperature decays to
zero asymptotically. Right panel: The pairing gap as a function of temperature
at p = 0.02. The critical coupling value is tc ≈ 0.127J . U is set equal to J in both
panels.

decreases the critical temperature. [106] There exists a critical coupling tc,

1
U

=
∫ +∞

−∞

dω

2π

(
ω + it2c√

p
Gc(ω)

)−2

, (4.13)
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such as to abolish superconductivity at zero temperature. The constraint 4.13
follows from the gap equation 4.9 when ∆, T = 0.

There are three competing phases contributing to the denominator of the
self-consistency relation 4.9: SYK non-Fermi liquid, free fermions, and super-
conducting condensate ∆. If there are enough of the SYK fermions (N > 2M),
∆ interplays with the non-Fermi liquid at zero temperature. The latter one
falls off with an increase in temperature, making room for the superconduct-
ing phase beyond the critical coupling, which results in the growth of the
critical temperature. Indeed, Figure 4.2 (left) shows the bend of the critical
temperature in the vicinity of the critical coupling 1. This phenomenon re-
sembles the reentrant superconductivity [144, 145] in superconductors with
Kondo impurities. [146–148] The pairing gap goes down at low temperatures
with an increase in coupling as in Figure 4.2 (right). Achieving the criti-
cal coupling when ∆ vanishes at zero temperature leads to the appearance
of the lower critical temperature. In contrast, the reentrant superconducting
regime is absent for N < 2M , since the normal phase behaves as the conven-
tional Fermi liquid at low temperatures and large p, as was noticed earlier.
In Figure 4.2 (left), we show 1 that p = 1/2 (N = 2M) separates the re-
gions with one or two critical temperatures. Similarly, consideration of the
random free fermion model ∑ij Jijc

†
icj instead of the SYK model does not

give the reentrance effect. In this case, the self-energy equation 4.6 changes to
Σc(iωn) = J2Gc(iωn)+2√

p t2G+(iωn). The results for the critical temperature
are presented in Figure 4.3. It is still possible to suppress the superconduc-
tivity at zero temperature providing sufficient impurities, but there is only
a single critical temperature as the normal phase is always set by the free
fermions 2 .

From Figure 4.2 (right), one notices the pairing gap at the critical coupling
is ∝ T at low temperatures. We numerically examine 1 ∆ in the reentrant
phase p < 1/2 for several values of p and U (see Figure 4.4). The gap saturates
2πT almost irrespective of parameters of the problem. Unit recovery brings
us to the above-mentioned relation 4.1 so that the gap is set by the inverse
Planckian time 1/tP multiplied by ℏ.

This observation seems to be reminiscent of quite a peculiar feature of
an Andreev billiard: [163] In a clean chaotic cavity proximate to a super-

1The full self-consistent scheme 4.6-4.9 is solved numerically with the adaptive golden
ratio algorithm [161] (see Appendix 4.5)

2Earlier it was shown that the superconducting instability in the unparticle system leads
to the reentrance effect as well [162], whereas restoration of the quasiparticles makes the
critical temperature a single-valued function of the pairing strenth.
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conductor, the induced gap equals ℏ/tE = ℏ/
(
tL ln pFl

ℏ

)
,[151–153] where tE

is the Ehrenfest time (the typical timescale of quantum dynamics), tL is the
Lyapunov time, pF is the Fermi momentum, and l is the characteristic cav-
ity length. The effect is predicted in the regime of the Ehrenfest time far
exceeds τ the typical lifetime of an electron/hole excitation in the cavity. Op-
positely, if tE ≪ τ , the gap behaves as ℏ/τ , where τ does not depend on
the Planck constant. [149, 150] In the SYK model the Lyapunov time co-
incides with the Planckian relaxation time tL = ℏ/ (2πkBT ) = tP, [28, 136]
although those are different physical quantities 3. However, the Ehrenfest time
is tL lnN ≫ ℏ/(2πkBT ), which differs from tP predicted in the pairing gap 4.1
by lnN .

To estimate the gap behavior at the critical coupling we consider the equa-

3The equilibration time and the Lyapunov time are a priori different physical quanti-
ties. Nevertheless, the fact that both quantities are subjected to the same bound raises
the question of whether those two seemingly independent quantities might be related. This
hypothesis has been intensively investigated in the context of the AdS/CFT correspondence,
in large–N vector models and spin systems (see [164] and the references therein). In systems
with a small parameter (large–N quantum field theories or weakly coupled field theories)
where a regime of exponential growth is present in the OTOC, however, they are set by the
same physics even though they are quantitatively different [165, 166].
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Figure 4.3. Critical temperature as a function of the coupling strength to the
random free fermions model.
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both cases, ∆ saturates 2πT at low temperatures. In the right panel, we notice that a
decrease of the interaction in the superconducting dot reduces the critical temperature
as in the bare Richardson model 4.3.

tions 4.6-4.8 at finite ∆,

(
iωn − Σ(iωn)

)
Gc(iωn) =

(
iωn− t2√

pGc(iωn)
)(

iωn− t2(1−2p)√
p Gc(iωn)

)
−|∆|2(

iωn− t2√
pGc(iωn)

)2
−|∆|2

,

(4.14)

whereas the self-energy equation 4.10 stays unchanged. The right-hand side of
the equation 4.14 tends to unity for p ≪ 1/2. Thus it is sufficient to substitute
the SYK Green’s function in the gap equation 4.9 in this regime.

As we look for a low-temperature correction to zero ∆ at the critical cou-
pling, we expand the gap equation 4.9 in powers of ∆ up to the second order,

1
U

≃ 2T
+∞∑
n=0

1(
ωn+ it2c√

pGc(ωn)
)2
1− |∆|2(

ωn+ it2c√
pGc(ωn)

)2
. (4.15)

The SYK Green’s function diverges at low frequencies as 1/√ωn and decays as
1/ωn in the ultraviolet. Hence the principal contribution to the sum 4.15 from
the high frequencies is given by the bare ωn in the denominator. On the other
hand, a divergent Green’s function is crucial at low frequencies. Assuming Gc
decays fast enough in comparison to ωn, we replace Gc with the infrared SYK
Green’s function GSYK(iωn) = −iπ1/4sgn (ωn) /

√
|Jωn| in expression 4.15.
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The low-temperature version of relation 4.15 can be written by means of
the Euler-Maclaurin formula, [167]

1
U

≃
∫ +∞

0

dω

π

1(
ω+ it2c√

pGSYK(ω)
)2
1− |∆|2(

ω+ it2c√
pGSYK(ω)

)2


− pT

t4c GSYK(πT )2

(
1 + 2πT

3
∂GSYK(πT )/∂ω
GSYK(πT )

)
, (4.16)

where we expand up to T 2 keeping in mind that ∆ ∝ T at the critical cou-
pling 4. Finally, one notices two terms in the top row of the equation 4.16 that
match the critical coupling condition 4.13. Therefore, we obtain 5.

∆(T ) ≃
√

6πT. (4.17)

Although this estimate gives η ≈ 1.22 that exceeds the found numerical value
η ≈ 0.96 for the pairing gap ∆ ≈ η ℏ/tP, the derived low-temperature gap
behavior 4.17 is independent of the problem parameters as in Figure 4.4 6.

4.3 Conclusion
In this manuscript, we considered the superconducting proximity effect for
the Sachdev-Ye-Kitaev model. We have shown, that the superconducting dot
coupled to the complex SYK model possesses reentrant superconductivity. At
the critical coupling, which gives rise to the occurrence of a lower critical
temperature, the pairing gap disappears at T = 0 and grows linearly with an
increase in temperature. The linear–T growth of the gap is given by ℏ/tP,
where tP = ℏ/ (2πkBT ) is the Planckian relaxation time. The same timescale
serves as an ultimate bound on many-body quantum chaos, [31] saturated in
strongly coupled systems without quasiparticle excitations. Thereby a natural
question arises whether the pairing gap is an appropriate physical observable
for the Lyapunov spectrum [169] of the SYK model. Accurate studies of the

4Similarly, in large–N models, the primary contribution of low Matsubara frequencies
ωn = ±πT to the gap equation leads to ∆ ∝ T [168].

5We use
∫∞

0
dω

π

(
ω + it2

c√
p

GSY K(ω)
)−4

= πJ

9π3/2t4
c

6The gap decrease in Figure 4.4 at very low temperatures (see the enlarged segments)
has a numerical origin. As Matsubara frequencies are ∝ T , achieving temperatures close to
zero requires a sufficient increase of the numerical grid. This leads to the accuracy reduce
due to the computer memory overflow (see Appendix 4.5).
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OTOC in the proposed system 4.2 might shed light on that. On its own, ∆ ≈
η ℏ/tP may be used to characterize the cSYK quantum dots. [77, 78] However,
this requires consideration of a more realistic setup such as a superconducting
lead attached to the particular realization of the complex SYK model.

4.4 Appendix:Derivation of the gap equation

The imaginary time action averaged over disorder is

S =
∫ β

0
dτ

[
N∑
i=1

c̄i∂τ ci +
M∑
i=1

∑
σ=↑,↓

ψ̄σi (∂τ − µ)ψσi − U

M

M∑
i,j=1

ψ̄↑iψ̄↓iψ↓jψ↑j

]

−
∫ β

0
dτ

∫ β

0
dτ ′
[

t2√
NM

N∑
i=1

M∑
j=1

∑
σ=↑,↓

c̄iψσj(τ)ψ̄σjci(τ ′)−

− J2

4N3

N∑
i,j,k,l=1

c̄ic̄jckcl(τ)c̄lc̄kcjci(τ ′)
]
, (4.18)

where β is the inverse temperature. Following Refs. [128, 137], we decou-
ple the interaction term on the top line of the action 4.18 with the Hub-
bard–Stratonovich transformation and introduce three non-local fields

Gσ(τ, τ ′) = −M−1
M∑
i=1

ψiσ(τ)ψ̄iσ(τ ′) (4.19)

Gc(τ, τ ′) = −N−1
N∑
i=1

ci(τ)c̄i(τ ′) (4.20)

together with Σσ(τ, τ ′), Σc(τ, τ ′) as the corresponding Lagrange multipli-



4.4 Appendix:Derivation of the gap equation 79

ers:

S =
∫ β

0
dτ

∫ β

0
dτ ′

[
M

U
δ(τ − τ ′)|∆|2−

−
M∑

i=1
Ψ̄i(τ)

(
−δ(τ − τ ′) (∂τ − µ) − Σ↑(τ, τ ′) δ(τ − τ ′)∆

δ(τ − τ ′)∆̄ −δ(τ − τ ′) (∂τ + µ) − Σ↓(τ, τ ′)

)
Ψi(τ ′)

−
N∑

i=1
c̄i(τ)

(
− δ(τ − τ ′)∂τ − Σc(τ, τ ′)

)
ci(τ ′)−

−M
∑

σ=↑,↓

(
Σσ(τ, τ ′) −

√
N

M
t2Gc(τ, τ ′)

)
Gσ(τ ′, τ)

−N

(
Σc(τ, τ ′)Gc(τ ′, τ) + J2

4 Gc(τ, τ ′)4
)]

, (4.21)

where Ψ̄i =
(
ψ̄↑i ψ↓i

)
and Ψi =

(
ψ↑i ψ̄↓i

)T
are Nambu spinors. Integrat-

ing out fermions and assuming constant ∆, we get:

S =βM

U
|∆|2 −M

+∞∑
n=−∞

log
[
(iωn − Σ↑(iωn) + µ) (iωn − Σ↓(iωn) − µ) − |∆|2

]
−

−N
+∞∑

n=−∞
log

[
iωn − Σc(iωn)

]
−

−
∫ β

0
dτ

∫ β

0
dτ ′
[
M
∑
σ=↑,↓

Σσ(τ, τ ′) −

√
N

M
t2Gc(τ, τ ′)

Gσ(τ ′, τ)+

+N

(
Σc(τ, τ ′)Gc(τ ′, τ) + J2

4 Gc(τ, τ ′)4
)]
, (4.22)

where ωn = π(2n+1)/β are Matsubara frequencies. In the limit of M , N ≫ 1,
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the saddle-point equations are:

Σ↑(τ) = t2
√
p
Gc(τ), Σ↓(τ) = t2

√
p
Gc(τ), (4.23)

Σc(τ) = J2Gc(τ)3 + √
p t2

∑
σ=↑,↓

Gσ(τ), (4.24)

G↑(iωn) = iωn − µ− Σ↓(iωn)
(iωn − Σ↑(iωn) + µ) (iωn − Σ↓(iωn) − µ) − |∆|2

, (4.25)

G↓(iωn) = iωn + µ− Σ↑(iωn)
(iωn − Σ↑(iωn) + µ) (iωn − Σ↓(iωn) − µ) − |∆|2

, (4.26)

Gc(iωn)−1 = iωn − Σc(iωn), (4.27)
1
U

= 1
β

+∞∑
n=−∞

1
(ωn + iΣ↑(iωn) − iµ) (ωn + iΣ↓(iωn) + iµ) + |∆|2

, (4.28)

where we introduced the parameter p = M/N representing the amount of the
SYK “impurities” in the superconductor sector.

We exclude the self-energies Σσ 4.23, so that one obtains four Schwinger-
Dyson equations:

Σc(τ) = J2Gc(τ)3 + 2√
p t2G+(τ), (4.29)

G+(iωn) =
iωn − t2√

pGc(iωn)(
iωn − t2√

pGc(iωn)
)2

− µ2 − |∆|2
, (4.30)

Gc(iωn)−1 = iωn − Σc(iωn), (4.31)
1
U

= 1
β

+∞∑
n=−∞

1(
ωn + it2√

pGc(iωn)
)2

+ µ2 + |∆|2
, (4.32)

where the latter one 4.32 is a modified BCS gap equation [128] and G+ =
1
2 (G↑ +G↓).

4.5 Appendix: Saddle-point numerical analysis

4.5.1 The algorithm

To solve the equations 4.29-4.32, we use an iterative approach that is equivalent
to finding the fixed point (the point to which the iterative procedure converges)
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of the operator T̂ representing the Schwinger-Dyson equations 4.29-4.31 set
on a fixed grid of Matsubara frequencies 7. One starts with an empty seed G0

and applies iterations

Gk+1 = T̂Gk (4.33)

until
∥Gk+1 −Gk∥ ≤ ε, (4.34)

where we set the precision to ε = 10−4 and ∥ · ∥ denotes the euclidean norm
of the vector.

The straightforward approach 4.33 converges rarely. One improves conver-
gence modifying 4.33 as

Gk+1 = λGk + (1 − λ)T̂Gk, (4.35)

where 0 < λ < 1 is a tunable parameter. This particular approach 4.35 has
been used to compute the Green’s function of the SYK model. [28] However,
the convergence of the algorithm 4.35 may sufficiently slow down when one
considering extra Schwinger-Dyson equations coupled to those of the bare
SYK model or expands the parameter space. In our case, that happens due to
coupling of the SYK model to a superconductor. To cope with this problem,
we suggest using the adaptive golden ratio algorithm, [161] where the weight λ
is not fixed but automatically adjusted to the local properties of the operator
T̂ :

λk = min
{

10
9 λk−1,

9
16λk−2

∥Gk −Gk−1∥2

∥Gk − T̂Gk −Gk−1 + T̂Gk−1∥2

}
, (4.36)

Ḡk = Gk + 2Ḡk−1

3 , (4.37)

Gk+1 = Ḡk − λkG
k + λkT̂G

k. (4.38)

Above we introduce Ḡ as an auxiliary function that requires Ḡ0 = G1 and
λ0 = λ−1 > 0. Computationally, the algorithm 4.36-4.38 is of the same
complexity as 4.33 and 4.35, while the adaptive step allows for a significant
speedup.

We treat the pairing gap ∆, the temperature T , and the coupling strength
t that enter the equations 4.29-4.31 as an external set of parameters. Once

7We compute the corresponding Green’s functions in time representation with the adapted
Fast Fourier Transform each iteration.
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Figure 4.5. The pairing gap as a function of temperature at the critical coupling.
Left panel: fixed U = J . Right panel: fixed p = 0.02.

p 0.002 0.02 0.02 0.02 0.05
U 1.0 1.0 0.75 0.5 1.0
tc 0.0710112J 0.126827J 0.10057J 0.07294J 0.1607J
η 0.9588 0.9621 0.9487 0.9533 0.9721
δ −2.96 × 10−5 −5.47 × 10−4 −3.73 × 10−4 −1.54 × 10−3 −9.86 × 10−5

Table 4.1. The values of the critical coupling and the interpolation parameters
for given p and U .

the Green’s functions are found within the procedure 4.36-4.38, we choose
the data that satisfies the self-consistency relation 4.32 to produce the finite-
temperature phase diagrams.

4.5.2 Precision and grid

Matsubara frequencies ωn = πT (2n + 1) define a natural discrete grid. We
set the ultraviolet cut-off N such that n ∈ [−N,−N + 1, . . . , N − 1, N ], where
the reliable N is of the order 104–105 with the accuracy criteria 4.34 ε =
10−4. The numerical analysis becomes more demanding as one enters the low-
temperature regime in the vicinity of the critical coupling. We reach the lowest
temperature of T ∼ 10−3 using N = 1.5 × 106, with a main computational
bottleneck coming from the computer memory. Also, the computation of the
lowest critical temperatures requires an increase of the accuracy for the self-
consistency condition 4.32 and ε 4.34 to 10−5–10−6.

One of the objectives of this manuscript is to study the pairing gap at the
critical coupling and low temperatures. In this regime, the gap grows linearly
in temperature as shown in Figure 4.5. The critical coupling tc is found as
a condition when the off-set δ of the interpolating function ∆ = 2πη T + δ
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vanishes (see numerical values in Table 4.1). The system is sensitive to the
coupling changes for small values of p, therefore, the precision of tc reaches
10−7 for p = 0.002.
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Chapter 5

Quantum tunneling dynamics
in a complex-valued
Sachdev-Ye-Kitaev model
quench-coupled to a cool bath

5.1 Introduction
Non-equilibrium dynamics of the celebrated Sachdev-Ye-Kitaev (SYK) model
[25, 26] – dual to a black hole in a two-dimensional anti-de Sitter space –
instantaneously coupled to a larger cold media has been recently scrutinized
[170, 171] intending to mimic black hole evaporation [172–176] in a compact
quantum mechanical setup. Alongside, several platforms have been proposed
for experimental realization of the SYK model: as a low-energy effective de-
scription of a topological insulator/superconductor interface with an irregular
opening [23], Majorana wires coupled through a disordered quantum dot [22],
ultracold atoms trapped in optical lattices [177, 178], graphene flake with a
random boundary [77], and digital quantum simulation [179–181]. In this con-
text, opening up the system to an outer environment arises naturally as the
“black-hole chip” [23] is necessarily in contact with a substrate and probes.

Once the system is opened due to quench-coupling, it starts to equilibrate
with the external reservoir. Of particular interest is how the initial shock
and the subsequent equilibration affects the initial SYK state and transport
observables. The SYK model describes strongly interacting fermions in (0+1)-
dimensions. As such, it can be considered as a quantum dot that is usually
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characterized via tunneling current. In this manuscript, we consider the com-
plex SYK model [137, 182] abruptly coupled to a zero temperature bath. We
input the initial electrochemical potential in the SYK subsystem to enable
quantum charge tunneling apart from the temperature drop between the SYK
dot and the reservoir [170, 171]. Unlike equilibrium transport in the SYK
quantum dot coupled to metallic leads [183–187], we are focused on the time
evolution of both spectral properties and the tunneling current.

It was indicated earlier that right after the quench the SYK subsystem
surprisingly heats up despite coupling to the colder bath [170, 171] and cools
down later equilibrating with the reservoir’s temperature. In the holographic
picture this initial heating is aligned with the increase of the subsystem energy
that accompanies the information carried by the quench-induced shock-wave
falling into the black hole [175]. We recover this result in the absence of a
potential difference and confirm that the applied quench protocol cools down
the SYK dot preserving an exotic SYK non-Fermi liquid phase after the relax-
ation. Proceeding to transport, we analyze the tunneling current evolution at
low temperatures. We observe numerically that the current half-life – the time
required for current to relax back to half its maximum value – growths linearly
with the initial temperature of the SYK quantum dot. In contrast, replacing
the SYK subsystem with a disordered Fermi liquid leads to a quadratic tem-
perature increment of the current’s half-life. This enables one to distinguish
the SYK non-Fermi liquid from a more common disordered phase by means
of the quench-tunneling protocol.

5.2 The model
We begin our analysis with the SYK model in thermal equilibrium (chemical
potential µ, temperature T ) coupled to a reservoir at zero chemical potential
and zero temperature via tunneling term at time t = 0. The Hamiltonian
reads

H = HSYK +Hres + θ(t)Htun, (5.1)

HSYK = 1
(2N)3/2

N∑
i,j,k,l=1

Jij;klc
†
ic

†
jckcl − µ

N∑
i=1

c†
ici, (5.2)

Hres = 1√
M

M∑
α,β=1

ξαβψ
†
αψβ + h.c., (5.3)
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Htun = 1
(NM)1/4

N∑
i=1

M∑
α=1

λiαc
†
iψα + h.c., (5.4)

where Jij;kl = J∗
kl;ij = −Jji;kl = −Jij;lk, ξαβ, and λiα are Gaussian random

variables with finite variances |Jij;kl|2 = J2, |ξαβ|2 = ξ2, |λiα|2 = λ2 and zero
means. Below we assume the reservoir much larger than the SYK subsystem,
which imposes M ≫ N for the modes numbers. The charging energy [185,
187–189] is supposed to be negligible comparing to the SYK band-width J .

The conventional way to address non-equilibrium dynamics of a quan-
tum many-body system is solving Kadanoff-Baym (KB) equations for the

two-point functions G≷(t, t′) = −iN−1
N∑
i=1

⟨ci(t∓)c̄i(t′±)⟩, where ± denotes

the top/bottom branches of the Keldysh time contour [76]. Inasmuch as
Schwinger-Keldysh formalism has been widely applied to the SYK model in
both thermalization [170, 171, 190–193] and transport [183, 184, 194] context,
we leave the detailed derivation for Appendix 5.6 and proceed straight to the
Kadanoff-Baym equations that hold in the large N,M limit:

(i∂t + µ)G≷(t, t′) =
∫ +∞

−∞
du
(
ΣR(t, u)G≷(u, t′)

+ Σ≷(t, u)GA(u, t′)
)
, (5.5)

(−i∂t′ + µ)G≷(t, t′) =
∫ +∞

−∞
du
(
GR(t, u)Σ≷(u, t′)

+G≷(t, u)ΣA(u, t′)
)
, (5.6)

The self-energy

Σ≷(t, t′) =J2G≷(t, t′)2G≶(t′, t)
+ √

p λ2θ(t)θ(t′)Q≷(t, t′) (5.7)

includes the contribution of the cool-bath as a time dependent background

Q≷(t, t′) = −H1(2ξ(t− t′)) ± iJ1(2ξ(t− t′))
2ξ(t− t′) (5.8)

expressed through Struve H1 and Bessel J1 functions [167]; see Appendix 5.6.
Here we introduce the ratio p = M/N and limit ourselves to the large reservoir
case p ≫ 1. Below we assume ξ = J for brevity.
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The initial state of the system is settled by the thermal state of the bare
SYK model (5.2) in absence of coupling to the reservoir. At the moment of
quench the SYK subsystem (5.2) begins to deviate from the initial thermal
state until it finally thermalizes at late times. Characterizing thermaliza-
tion dynamics requires notion of the retarded, advanced, and Keldysh Green’s
functions

GR(t, t′) = θ(t− t′)
(
G>(t, t′) −G<(t, t′)

)
, (5.9)

GA(t, t′) = −θ(t′− t)
(
G>(t, t′) −G<(t, t′)

)
, (5.10)

GK(t, t′) = G>(t, t′) +G<(t, t′) (5.11)

expressed above in terms of the “greater” and “lesser” components. The same
rules (5.9–5.11) apply to the self-energy (5.7).

The Green’s functions are found numerically from the KB equations (5.5,5.6)
with the self-energies (5.7,5.8). At first, we calculate the equilibrium Green’s
functions of the bare SYK model using an iterative approach [195, 196]. We ap-
ply an extra constraint manifesting the fluctuation-dissipation relation at ini-
tial temperature and chemical potential 1. The equilibrium Green’s functions
set the initial condition for the Kadanoff-Baym equations and evolve as fol-
lows: the integrals in the KB equations are computed with the trapezoidal rule
and the remaining differential equations are solved by the predictor-corrector
scheme. The corrector adjusts self-consistently at every iteration [190, 191].
For the spectral properties we use the two-dimensional time grid with a step
δt = 0.02 and n ∼ 104 points in each direction, while for the transport cal-
culations the numerical grid is more refined δt = 0.005 but has a smaller size
n ∼ 103.

5.3 Relaxation after the quench

In a while after the quench the system relaxes and approaches a thermal
state. To demonstrate that, we rotate the time frame t, t′ in the numerically
computed Green’s functions towards τ = t − t′, T = (t + t′)/2 and make a
Fourier transform along τ . Indeed, the system returns to a nearly-thermal

1In thermal equilibrium the fluctuation dissipation relation states [76]: GK(ω) =
2i ImGR(ω) tanh ω − µ

2T
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Figure 5.1. [Top] Deviation of the SYK subsystem from the initial thermal
state: ratio between the Keldysh Green’s function and the spectral function of the
SYK model at charge neutrality (Left panel) and at finite chemical potential (Right
panel). The equilibrium distribution functions at the initial temperature are profiled
with the dashed lines. The oscillations noticeable in the orange curves have a numer-
ical origin, viz. the quality of the computation depends on the size and refinement of
the time grid. The time grid is designated in the t, t′ space, while Fourier transform is
done along diagonal τ = t− t′. Ergo, the τ -lattices differ by length for separate slices
of T . Extension and refinement of the time grid suppress the oscillations. [Bottom]
Spectral function of the SYK model as a function of frequency at charge neutral-
ity (Left panel) and at finite chemical potential (Right panel). The dashed/dash-dot
lines show the equilibrium SYK spectral function in the infrared regime for different
parameters.

state if the extended fluctuation dissipation relation
iGK(ω, T )
A(ω, T ) = tanh ω − µ̃(T )

2T̃ (T )
(5.12)
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Figure 5.2. Effective chemical potential in the SYK quantum dot coupled
to a large reservoir with Tres = 0 and µres = 0.

is fulfilled at frequencies in the vicinity of µ̃, where A(ω, T ) = −2ImGR(ω, T )
is the SYK spectral function. In contrast to the equilibrium case, the ex-
tended fluctuation dissipation relation (5.12) is manifestly time dependent via
the “centre of mass” coordinate T which enters the effective temperature T̃
and chemical potential µ̃. Overall, the ratio (5.12) determines the effective
distribution function of the SYK fermions in a quasi-equilibrium state, since
tanh ω−µ̃

2T̃
= 1 − 2nF(ω − µ̃, T ), where nF is the Fermi distribution function.

The effective temperature can be extracted from the fluctuation dissipation
relation (5.12) by an inverse slope of the Green’s functions ratio

T̃ (T ) =
(
∂

∂ω

2iGK(ω, T )
A(ω, T )

∣∣∣∣
ω=µ̃

)−1

(5.13)

at ω = µ̃. Following the top panel of Fig. 5.1, that shows the ratio (5.12), one
notices the temperature increase around T = 0, in spite of coupling to a colder
reservoir. The initial temperature increment is followed by the subsequent
temperature decay to the reservoir’s temperature T = 0. This behavior was
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revealed earlier for the SYK model with Majorana zero-modes [170, 171]. At
late times JT ≃ 17.8, the system clearly relaxes after the quench since the
ratio (5.12) corresponds to the Fermi distribution at low temperature.

In comparison to the previous studies [170, 171], the new ingredient here
is a charge imbalance between the SYK quantum dot and the cool-bath.
Thereby, we track the electrochemical potential in the SYK subsystem which
changes substantially once the quench is on. The effective chemical potential
µ̃(T ) is set by the frequency where the ratio (5.12) turns to zero, as shown
in Fig. 5.1 (top right). We plot the SYK chemical potential in Fig. 5.2,
where µ̃ originates from the initial value µ = 0.1J in the SYK quantum dot
for T → −∞ and adjusts to the reservoir’s µres = 0 at late times T → +∞.
As noted in Fig. 5.2, the chemical potential responds to the quench with a
non-monotonic behavior as a function of time T , akin to the temperature.
Note that the “centre of mass” time coordinate T and the actual time are
not equivalent unless in a long-time limit. This explains why the chemical
potential can already rise at small negative T .

Since the tunneling between the SYK quantum dot and the reservoir turns
on not adiabatically, of importance is whether the SYK non-Fermi liquid phase
survives the quench. We compare the SYK spectral function A(ω, T ) a while
after the quench to the equilibrium spectral function of the bare SYK model
AIR(ω) = −2ImGIR

R (ω) in the infrared regime J/N ≪ ω, T ≪ J , where

GIR
R (ω) = −iC(θ)e−iθ

√
2πJT

Γ
(

1
4 − i ω

2πT + iE
)

Γ
(

3
4 − i ω

2πT + iE
) , (5.14)

e2πE =
sin
(
π
4 + θ

)
sin
(
π
4 − θ

) , C(θ) =
(

π

cos 2θ

)1/4
. (5.15)

The low-frequency asymptotic (5.14), known as the conformal Green’s function
of the SYK model, does not explicitly depend on chemical potential. Instead, it
depends on the independent parameter – the spectral asymmetry angle [137,
182]. The asymmetry angle θ [197] is nonzero away from charge neutrality
(µ ̸= 0) and related to the charge per site on the SYK quantum dot

⟨Q⟩ = 1
N

N∑
i=1

⟨c†
ici⟩ − 1

2 = − θ

π
− sin 2θ

4 , (5.16)

where ⟨Q⟩ ∈ (−1/2, 1/2) and θ ∈ (−π/4, π/4) [137, 182].
As mentioned earlier, the system relaxes to the low-temperature Fermi

distribution at JT ≃ 17.8 (see Fig. 5.1 (top left)). In Fig. 5.3 we plot
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Figure 5.3. Spectral of the SYK quantum dot after the quench as a function
of frequency. The blue dots show the result of the saddle-point numerics done for
the evolution of the SYK subsystem with the initial temperature T = 0.1J connected
to a zero temperature reservoir with a coupling strength √

pλ2/J2 = 0.2. The red
dash-dot curve is the equilibrium saddle-point numerics for the bare SYK model at
low temperature, the black dashed line is the infrared (IR) solution of the bare SYK
model (5.14), and the green line is the spectral function of the disordered Fermi liquid
(dFl). The energy scale δω = pλ4/J3 indicates the region where the SYK nFl crosses
over to a Fermi liquid.

the spectral function of the SYK quantum dot in this regime. The spectral
function after the quench is well aligned with the bare SYK spectral function
at low temperature. The SYK nFl state is known to break down in presence
of a Fermi liquid [80, 198]. Here we can estimate the timescale of the crossover
to a Fermi liquid from the self-energy (5.7) comparing the SYK nFl and the
reservoir’s contributions. Indeed, substitution of the Green’s functions G(t) ∝
1/

√
Jt and Q(t) ∝ 1/(Jt) to the self-energy (5.7) shows that the crossover to

a Fermi liquid happens for tFL ≳ 1/δω, where δω = pλ4/J3. This implies that
after relaxation from the quench the SYK nFl behavior can be read out from
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the spectral function for

δω ≲ ω ≪ J. (5.17)

The lower bound in inequality (5.17) can be suppressed as √
pλ2/J ≪ J in

the weak tunneling limit. This observation agrees with the long timescale of
the SYK nFl/Fermi liquid crossover found earlier in equilibrium studies [80,
185, 194, 199].

In Figs. 5.1 (top right), 5.2 we demonstrate that the system at finite initial
µ tends to zero chemical potential in the long time limit. This is aligned with
the discharging of the SYK quantum dot coupled to the large reservoir, which
is kept at charge neutrality. At the level of the the equilibrium SYK Green’s
function (5.14), this naively implies θ ≈ 0. However, the spectral function in
Fig. 5.1 (bottom right) at long times is close enough to the conformal one with
non-zero asymmetry angle θ. We plot the conformal spectral function with
θ = 0.2 as a reference. The origin of this mismatch may be that the asymmetry
parameter θ is usually related to ∂µ/∂T but not to the equilibrium value of
the chemical potential [137]. In its turn, the temperature-independent part
of the chemical potential in the SYK model is not a monotonic function of
the asymmetry parameter [200]. Additionally, the SYK subsystem after the
quench suffers the particle leak, that may require to account not only for
a self-energy shift by the real-valued µ [137], but also an extra imaginary
contribution to the self-energy. This issue could lead to the renormalization
of θ in the final state, which is beyond the scope of this paper.

5.4 Tunneling current
Having discussed the SYK subsystem inner properties we proceed to transport.
Specifically, we focus on the tunneling current:

Q̇= i[H,Q]=− i

N

θ(t)
(NM)1/4

N∑
i=1

M∑
α=1

λiαc
†
iψα + h.c. (5.18)

The current’s expectation value in the SYK quantum dot/cool-bath system is
found from the generating functional lnZ[χ] [183]

I = 1
tm

∫ tm

0
dt⟨Q̇(t)⟩ = 1

tm

∂

∂(iχ) lnZ[χ]
∣∣∣∣
χ=0

, (5.19)

Z[χ] =
〈

TCe
−i
∫

C
dtH(χ)

〉
=
∫

D[c̄, c]D[ψ̄, ψ]eiS[χ], (5.20)
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where TC is the time ordering along the Keldysh contour, tm is the measure-
ment time, and S[χ] is the effective action of the model with a counting field
χ [201, 202]. The counting field χ transforms the tunneling Hamiltonian

H(χ) = HSYK +Hres + θ(t)Htun(χ), (5.21)

Htun(χ) = 1
(NM)1/4

N∑
i=1

M∑
α=1

λiαe
iχ(t)
2N c†

iψα + h.c., (5.22)

so that

χ(t) =
{
χ for 0 < t < tm

0 otherwise
, (5.23)

The factor of two in the coupling phase in the tunneling term (5.22) accounts
for the doubling due to the forward and backward branches of the Keldysh
time contour.

One notices that the Hamiltonian transformation (5.22) is equivalent to a
simple rotation of the coupling constants λiα → λiαe

iχ(t)
2N in the original theory

(5.1). Thus, the Kadanoff-Baym equations (5.5,5.6) describe the valid saddle-
point for the partition function (5.20) up to the redefinition of the coupling
constants λi. Indeed, the current can be deduced from the tunneling part of
the effective action

Stun(χ) =i
√
NMλ2 ∑

ss′=±

∫ +∞

0
dtdt′ss′e

i(sχ(t)−s′χ(t′))
2N

×Gss′(t, t′)Qs′s(t′, t). (5.24)

Here the Green’s functions Gss′ and Qss′ describe the saddle-point of the SYK-
bath system and are found from the equations (5.5-5.8), where s = ± denotes
the forward and backward branch of the Keldysh contour. Accordingly, the
counting field χ is defined on the Keldysh contour as χs(t) = sχ(t). Leaving
the detailed derivation of the full effective action of the SYK-bath coupled
system for the Appendix 5.6, we proceed to the tunneling current

Applying the prescription (5.19), we derive the expectation value of current
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Figure 5.4. Tunneling current as a function of time normalized on its maximum
value. The insets show time dependence of the current in log-log and log scales for√
pλ2/J2 = 0.3. The log-log plot reveals the initial power law increase of the tunneling

current, while the log plot is consistent with the exponential decay. We illustrate the
current’s half-life t1/2 for √

pλ2/J2 = 0.4.

as a function of the measurement time tm:

I = −
√
pλ2

2tm
∑
ss′

∫ tm

0
dt

∫ +∞

0
dt′
(
Gss′(t, t′)s′Qs′s(t′, t)

−Qs′s(t, t′)sGss′(t′, t)
)

= −
√
pλ2

2tm

∫ tm

0
dt

∫ +∞

0
dt′ tr

(
σxĜ(t, t′)Q̂(t′, t)

− σxQ̂(t, t′)Ĝ(t′, t)
)
, (5.25)

where

Ĝ =
(
GR GK
0 GA

)
, Q̂ =

(
QR QK
0 QA

)
(5.26)
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Figure 5.5. Half-life of the tunneling current as a function of the initial
temperature. In the left panel, we compare the half-lives for the SYK model connected
to a cool-bath for different coupling strengths. Meanwhile in the right panel, we
show the difference between SYK4 (SYK non-Fermi liquid initial state) and SYK2
(disordered Fermi liquid initial state) behavior as a tested subsystem; the curves
are shifted to the same origin for better visual comparison. The initial temperature
changes from T = 0.1J to T = J with a step δT = 0.01J . The dashed/dashdot lines
stand for the linear/quadratic fits made for the temperature interval T ∈ [0.1J, 0.2J ].

are the Green’s functions of the SYK quantum dot and the cool-bath set by
the equations (5.5-5.8) and transformed to the R,A,K basis according to the
rules (5.9-5.11) 2. From here, the dynamics of the tunneling current is given
by

⟨Q̇(t)⟩ = −
√
pλ2

2 θ(t)
∫ t

0
dt′J (t, t′), (5.27)

J (t, t′) =GR(t, t′)QK(t′, t) −QK(t, t′)GA(t′, t)
−QR(t, t′)GK(t′, t) +GK(t, t′)QA(t′, t). (5.28)

Time dependence of the tunneling current is shown in Fig. 5.4. The
current grows initially as a power law, reaches the maximum value, and decays
exponentially to zero consistently with the discharging process of the SYK

2In equilibrium the fluctuation dissipation relation holds GK(ω) = −2πi(1 −
2nSYK(ω))νSYK(ω), QK(ω) = −2πi(1 − 2nres(ω))νres(ω), where nSYK and nres are the
Fermi distribution functions and νSYK = − 1

π
ImGR and νres = − 1

π
ImQR are the densities

of states. Substituting those to Eq. (5.25), one gets a familiar Fermi golden rule formula for
the tunneling current [76]:
I = 2π

√
pλ2∫ dω νSYK(ω)νres(ω)(nSYK(ω) − nres(ω)).
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quantum dot. With intention to mark the lifetime of the effect we extract the
half-life – the time in which the current is decreased in half of its maximum
value. Varying the initial temperature T of the SYK quantum dot, we show the
current’s half-life for several coupling strengths in Fig. 5.5 (left). The stronger
the coupling, the shorter the half-life of the tunneling current. Oppositely,
the half-life increases with the initial temperature rise. For the temperatures
T ≲ 0.4J the tunneling current half-life growths linearly in T .

To check if the T -linear current’s half-life is specific for the SYK state, we
substitute the SYK model with the one-body random Hamiltonian (5.3), often
refereed to as the SYK2 model, the same that describes the reservoir. This
model has a typical Fermi liquid Green’s function GR(t) ∝ 1/t in the long time
limit Jt ≫ 1, which makes it legitimate to build the SYK nFl/Fermi liquid
comparison. Matching the tunneling current half-life for the SYK vs SYK2
model in Fig. 5.5 (right), we ascertain that their temperature dependencies
are drastically different. The current’s half-life in the system of the SYK2
quantum dot coupled to the cold bath increases as T 2 at low temperatures,
which discerns it from the SYK model cooling protocol displaying the linear
in temperature increase.

Duration of the tunneling event in our system is defined by the tunneling
contact resistance, similarly to an exponentially relaxing capacitor discharge.
As such, our results resemble the prominent resistivity predictions for strange
metals ρSM ∼ T [194, 199, 203] and Fermi liquid ρFL ∼ T 2.

5.5 Conclusion

The Sachdev-Ye-Kitaev model quench-coupled with a cold bath has been a
subject of close attention aiming to simulate evaporation of a black hole [170,
171]. At the same time, both connecting the system to the environment and
its further characterization are inherent for realization proposals of the SYK
model in condensed matter systems [22, 23, 77, 177, 178]. In this manuscript,
we consider a quantum dot described by the complex SYK model at finite
temperature instantaneously coupled to a zero temperature reservoir. Ana-
lyzing the dynamical spectral function of the SYK quantum dot at charge
neutrality, we show that the considered quench protocol preserves the SYK
non-Fermi liquid state for the energies δω ≪ ω ≪ J . Here the lower bound
δω is suppressed in the weak tunneling limit. Further, we put an initial elec-
trochemical potential in the quantum dot and compute the tunneling current
dynamics due to discharging of the dot. The tunneling current half-life shows
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distinct temperature dependencies for different systems that are being cooled
down. In case of the SYK quantum dot, the half-life increases linearly in the
initial temperature T , while for the Fermi liquid the increase is ∝ T 2. There-
fore, this temperature dependence of the tunneling current half-life provides
a distinguishing feature for the disordered quantum dot exhibiting the SYK
nFl phase against more common Fermi liquid behavior.

5.6 Appendix: Derivation of the Kadanoff-Baym
equations from the SYK saddle-point

Here we derive the Kadanoff-Baym equations for the SYK quantum dot cou-
pled to a cool-bath by a quench.

5.6.1 Saddle-point equations

We perform the disorder average of with the Hamiltonian (5.1), pursuing [184,
194]. The effective action can be written in terms of bilocal fields Gs′s(t′, t) =
iN−1∑

i c̄is(t)cis(t′), Qs′s(t′, t) = iM−1∑
α ψ̄αs(t)ψαs(t′) and Σss′(t, t′), Πss′(t, t′)

as the corresponding Lagrange multipliers

S = − iNtrln
[
σzss′δ(t− t′) (i∂t + µ) − Σss′(t, t′)

]
−

− iN
∑
ss′

∫
dtdt′

(
Σss′(t, t′)Gs′s(t′, t) − ss′J2

4 Gss′(t, t′)2Gs′s(t′, t)2
)

−

− iMtrln
[
σzss′δ(t− t′) i∂t − Πss′(t, t′)

]
−

− iM
∑
ss′

∫
dtdt′

(
Πss′(t, t′)Qs′s(t′, t) − ss′ξ2

2 Qss′(t, t′)Qs′s(t′, t)
)

+ i
√
NM

∑
ss′

∫
dtdt′ss′λ2θ(t)θ(t′)Gss′(t, t′)Qs′s(t′, t). (5.29)
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where s = ± denotes forward and backward branches of the Keldysh time
contour [76]. In the large N , M limit, the saddle-point equations are

Σss′(t, t′) = J2Gss′(t, t′)2Gs′s(t′, t) + √
p λ2θ(t)θ(t′)Qss′(t, t′), (5.30)

Πss′(t, t′) = ξ2Qss′(t, t′) + λ2
√
p
θ(t)θ(t′)Gss′(t, t′), (5.31)

∑
r

∫ +∞

−∞
du
(
σzsrδ(t− u) (i∂t + µ) − srΣsr(t, u)

)
Grs′(u, t′) = δss′δ(t− t′),

(5.32)∑
r

∫ +∞

−∞
du
(
σzsrδ(t− u)i∂t − srΠsr(t, u)

)
Qrs′(u, t′) = δss′δ(t− t′), (5.33)

where p = M/N is the mode ratio.
Following Ref. [190], we derive the self-consistent Kadanoff-Baym equa-

tions considering s, s′ = ±,∓ components of Eqs. (5.32, 5.33):

(i∂t + µ)G≷(t, t′) =
∫ +∞

−∞
du
(
ΣR(t, u)G≷(u, t′) + Σ≷(t, u)GA(u, t′)

)
,

(5.34)

(−i∂t′ + µ)G≷(t, t′) =
∫ +∞

−∞
du
(
GR(t, u)Σ≷(u, t′) +G≷(t, u)ΣA(u, t′)

)
,

(5.35)

i∂tQ
≷(t, t′) =

∫ +∞

−∞
du
(
ΠR(t, u)Q≷(u, t′) + Π≷(t, u)QA(u, t′)

)
,

(5.36)

−i∂t′Q≷(t, t′) =
∫ +∞

−∞
du
(
QR(t, u)Π≷(u, t′) +Q≷(t, u)ΠA(u, t′)

)
,

(5.37)

where the self-energies are

Σ≷(t, t′) = J2G≷(t, t′)2G≶(t′, t) + √
p λ2θ(t)θ(t′)Q≷(t, t′), (5.38)

Π≷(t, t′) = ξ2Q≷(t, t′) + λ2
√
p
θ(t)θ(t′)G≷(t, t′). (5.39)
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5.6.2 Reservoir as an external potential

Since we assume the reservoir to be large enough p ≫ 1, it can be considered
as a closed dynamic background to the SYK subsystem∫ +∞

−∞
du
(
δ(t− u)i∂t − ξ2Q̂(t, u)

)
Q̂(u, t′) = δ(t− t′) (5.40)

describing a decoupled random free fermion in equilibrium. Here we perform
a rotation towards retarded, advanced, and Keldysh basis

Q̂ =
(
QR QK
0 QA

)
= Lσz

(
Q++ Q+−
Q−+ Q−−

)
L†, L = 1√

2

(
1 −1
1 1

)
.

The retarded Green’s function is found from(
ω − ξ2QR(ω)

)
QR(ω) = 1 (5.41)

QR(ω) = ω

2ξ2 − i

ξ

√
1 − ω2

4ξ2 = 2

ω + 2iξ
√

1 − (ω/2ξ)2
(5.42)

where the spectral function obeys the semicircle law ρ(ω) = −2 ImQR(ω) =
2
ξ

Re
√

1 − ω2

4ξ2 . Let’s derive the time representation of QR:

QR(t, t′) = QA(t′, t)∗ =
∫ +∞

−∞

dω

2π e
−iω(t−t′)QR(ω) =

= − lim
δ→0+

∫ +∞

−∞

dω

2π e
−iω(t−t′)eδ(t−t

′) 1
2ξ2

√
(ω + iδ)2 − 4ξ2. (5.43)

Here the branch cut is in the lower half plane, so we close the contour cor-
respondingly for t − t′ > 0. Since there are no poles in the lower half
plane, we shrink the contour to the anticlockwise traverse around the branch
cut. Note that an additional phase is acquired when crossing the branch cut√
ω2 − 4ξ2 → e

1
2 ln(ω2+4ξ2)+iπ = eiπ

√
ω2 − 4ξ2. Therefore, we get

QR(t, t′) = −θ(t− t′)1 − eiπ

4πξ2

∫ 2ξ

−2ξ
dω e−iω(t−t′)

√
ω2 − 4ξ2 =

= −iθ(t− t′) J1(2ξ(t− t′))
ξ(t− t′) , (5.44)
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where J1 is the first Bessel function of the first kind. The Keldysh component
at zero temperature is

QK(t, t′) =
∫ +∞

−∞

dω

2π e
−iω(t−t′)QK(ω) =

∫ +∞

−∞

dω

2π e
−iω(t−t′)2i sgn(ω)ImQR(ω)

= − i

2πξ2

∫ 2ξ

−2ξ
dω e−iω(t−t′) sgn(ω)

√
4ξ2 − ω2 = −H1(2ξ(t− t′))

ξ(t− t′) , (5.45)

where H1 is the first Struve function.

5.6.3 Dynamics of the SYK subsystem

In the large p limit, the dynamics of the SYK subsystem is described by Eqs.
(5.34,5.35,5.38), where the reservoir Green’s function Q(t− t′) enters the SYK
self-energy (5.38) as the external potential derived in Section ??. Thereby, the
Kadanoff-Baym equations simplify to

(i∂t + µ)G≷(t, t′) =
∫ +∞

−∞
du
(
ΣR(t, u)G≷(u, t′) + Σ≷(t, u)GA(u, t′)

)
,

(5.46)

(−i∂t′ + µ)G≷(t, t′) =
∫ +∞

−∞
du
(
GR(t, u)Σ≷(u, t′) +G≷(t, u)ΣA(u, t′)

)
,

(5.47)

with the self-energy (5.30)

Σ≷(t, t′) = J2G≷(t, t′)2G≶(t′, t) + √
p λ2θ(t)θ(t′)Q≷(t, t′), (5.48)

Q≷(t, t′) = − 1
2ξ(t− t′)

(
H1
(
2ξ(t− t′)

)
± iJ1

(
2ξ(t− t′)

) )
. (5.49)

Here we introduced [76]G>(t, t′) ≡ G−+(t, t′), G<(t, t′) ≡ G+−(t, t′), Σ>(t, t′) ≡
Σ−+(t, t′), Σ<(t, t′) ≡ Σ+−(t, t′) and account for

G++(t, t′) = θ(t− t′)G>(t, t′) + θ(t′− t)G<(t, t′), (5.50)
G−−(t, t′) = θ(t′− t)G>(t, t′) + θ(t− t′)G<(t, t′), (5.51)
Σ++(t, t′) = θ(t− t′)Σ>(t, t′) + θ(t′− t)Σ<(t, t′), (5.52)
Σ−−(t, t′) = θ(t′− t)Σ>(t, t′) + θ(t− t′)Σ<(t, t′). (5.53)



102 Chapter 5. Tunneling dynamics in cSYK coupled to a bath

The retarded, advanced, and Keldysh components are expressed in terms of
> and < as

GR(t, t′) = θ(t− t′)
(
G>(t, t′) −G<(t, t′)

)
, (5.54)

GA(t, t′) = −θ(t′− t)
(
G>(t, t′) −G<(t, t′)

)
, (5.55)

GK(t, t′) = G>(t, t′) +G<(t, t′), (5.56)

ΣR(t, t′) = θ(t− t′)
(
Σ>(t, t′) − Σ<(t, t′)

)
, (5.57)

ΣA(t, t′) = −θ(t′− t)
(
Σ>(t, t′) − Σ<(t, t′)

)
, (5.58)

ΣK(t, t′) = Σ>(t, t′) + Σ<(t, t′). (5.59)



Chapter 6

Navigating the pitfalls of relic
neutrino detection

6.1 Introduction

The Cosmic Neutrino Background (CνB) is an unexplored source of precious
cosmological data [95]. Like the CMB, it carries a photographic image of
the early Universe, albeit from a much older epoch of neutrino decoupling.
Although indirect evidence for the CνB was recently found in the Planck
data [204], direct detection of the relic neutrinos remains a major experimental
challenge and a problem of great significance for the understanding of the pre-
recombination age. The importance and basic principles of a CνB detection
experiment were discussed as early as 1962 in a paper by S. Weinberg [95]
who put forward the idea of a kinematical signature of the cosmic neutrino
capture processes in beta-spectra of radioactive atoms. This idea was further
elaborated in Ref. [86].

The main roadblock in the way of the realisation of Weingerg’s original
proposal is the weakness of the neutrino-matter interaction, which makes it
difficult to achieve a sufficient number of the relic neutrino capture events in a
given radioactive sample. The problem is further compounded by the presence
of a massive neutrino-emission background which imposes extremely stringent
requirements on the energy resolution of the experiment [205, 206]. The magni-
tude of the challenge is illustrated in FIG. 6.1 showing the β-emission spectrum
of monoatomic 3H in vacuum. One can see that the spectrum is dominated
by the spontaneous β-decay background, shown in red, while the predicted
signal [85] due to the relic neutrino capture process consists of a tiny feature
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shown in green 1. Not only is the predicted CνB feature quite weak, consisting
of only a few events per year per 100 g of 3H, but it is also positioned within
a few tens of meV from the massive spontaneous decay background, which
implies that the energy resolution of the experiment needs to be as good as
20 meV. While the energy resolution specifications push the experimental ap-
paratus towards a smaller scale, the extreme scarceness of useful events calls
for a bigger working volume. The tension between these opposite require-
ments makes working with gaseous samples difficult, possibly impracticable.
The best to date experiment, KATRIN [207], which uses gaseous molecular
Tritium as the working isotope falls short of the required sample activity by
six orders of magnitude. It is worth noting that the sensitivity of experiments
working with gaseous Tritium is further reduced due to excitation of inter-
nal motions of the Tritium molecule and is further limited by the non-tritium
background [205, 208].

Currently, the only viable alternative to the gas phase experiment is a solid
state architecture where the β-emitters are adsorbed on a substrate [96]. Such
a design can increase the event count by orders of magnitude while preserving
the necessary degree of control over the emitted electrons. However, these
advantages come at a price. In this paper we demonstrate that any solid state
based β-decay experiment has fundamental limitations on its energy resolu-
tion, which are not related to the construction of the measuring apparatus.
Such limitations arise from the quantum effect of the zero-point motion of the
adsorbed β-emitter. We show that due to the extremely weak sensitivity of
the zero-point motion to the details of the chemistry of adsorption, the effect
mainly imposes intrinsic requirements on the physical properties of the emit-
ter 2. In particular, we find that Tritium used in many existing and proposed
experiments is not suitable for detecting CνB in a solid state setup. At the
end, we list candidates for a suitable β-emitter and comment on what future
theoretical and experimental research is needed to both confirm the choice of
the atom and improve the resolution of the experiment.

1The capture spectrum comprises of three peaks corresponding to the three neutrino mass
eigenstates. The first two peaks overlap and are barely distinguishable.

2In general, the interaction of an adsorbed radioactive atom with the substrate is compli-
cated and it gives rise to several effects each contributing to the broadening of the measured
β-emission spectrum. In this paper, we only focus on one which is arguably the simplest and
the strongest of all: the zero-point motion of an atom arising from the atom’s adsorption.
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6.2 Defining the problem

Although our analysis is not limited to a particular solid state design, we use
for reference the setup of PTOLEMY [96], a state of the art experimental
proposal for the CνB detection that aims to achieve a sufficient number of
events together with the required energy resolution of the apparatus [209–
213]. In PTOLEMY, mono atomic Tritium is deposited on graphene sheets
arranged into a parallel stack and a clever magneto-electric design is used to
extract and measure the energy of the electrons created in the two β-decay
channels

3H → 3He + e+ ν̄e

νe + 3H → 3He + e (6.1)

2m1

−0.1 −0.05 0 0.05 0.1

101

103

105

107

109

1011

Eel − (Q− Erec) [eV]

d
Γ

d
E

e
l

[y
r−

1
eV

−
1
]

Ideal detector
PTOLEMY

Figure 6.1. The β-spectrum of free monoatomic Tritium centered around
Q−Erec, where Q is the decay energy and Erec - recoil of the nucleus in the vacuum.
The normal neutrino mass hierarchy [88] is assumed with the mass of the lightest
neutrino m1 = 50 meV. The spontaneous β-decay spectrum is shown in red while
the CνB feature is shown in green. The solid lines are drawn assuming a 10 meV
resolution of the detector.

The main goal of the CνB detection experiments is to detect the electrons
produced in the neutrino capture channel (see FIG. 6.1) that depends on the
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mass of the lightest neutrino and the hierarchy [85, 96, 214, 215]. Since the
captured relic neutrinos are soft, it has a shape of 3 narrow peaks 3 separated
from the end of the main part of the spectrum by double the mass of the
lightest neutrino. The spectrum depicted on FIG. 6.1 is calculated for an
isolated Tritium atom in the rest frame, where the recoil energy is defined by
the conservation laws. However, if Tritium is absorbed on a substrate, it can
not be considered at rest and the recoil energy of the nucleus acquires some
amount of uncertainty and so does the measured spectrum of the emitted
electron (see FIG. 6.3).

Two complementary views on such an uncertainty are possible, both lead-
ing to the same conclusion in the present context. In the “semiclassical” view
the source of the uncertainty is the zero-point motion of the Tritium atom,
which results in a fluctuating centre of mass frame at the moment of β-decay.
In the fully quantum view the uncertainty results from quantum transitions
of an atom into the highly excited vibrational states in the potential which
confines it to the graphene sheet. We shall begin our discussion with the
semi-classical picture.

It follows from Heisenberg uncertainty principle that an atom restricted to
some finite region in space by the bonding potential cannot be exactly at rest.
Even in the zero temperature limit it performs a zero-point motion so that
its velocity fluctuates randomly obeying some probability distribution F(u).
For localized states, F(u) has a vanishing mean and dispersion defined by the
Heisenberg uncertainty principle ∆u ∼ ℏ/mnuclλnucl. Due to these random
fluctuations in the velocity of the nucleus, the observed velocity distribution
of the emitted electron in the laboratory frame is given by the convolution

G̃(v) =
∫
duF(u)G(v + u). (6.2)

where G(v) is the velocity distribution of an electron emitted by a free Tritium
atom at rest corresponding to the energy distribution given by a Fermi Golden
Rule (see FIG. 6.1). The formal applicability condition of Eq. (8.2) is that the
spacing between the energy levels of the 3He+ ion emerging from β-decay be
much less than the typical recoil energy ∆ε ≪ Erec. This condition is readily
satisfied for the recoil energy in vacuum Erec = 3.38 eV. We shall revisit this
argument when we turn to the fully quantum picture.

In the following analysis we will restrict ourselves to the particular case
of the Tritium atoms adsorbed on the graphene following the PTOLEMY

3Each of the peak corresponds to a separate mass eigenstate.
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proposal. However the obtained results are also valid for more general bonding
potentials (see the discussion at the end).

In the zero temperature limit, the function F(u) appearing in Eq. (8.2)
is encoded in the wave function of the stationary state of a Tritium atom in
the potential of the interaction of the atom with graphene. Although such a
potential has a rather complicated shape, as can be seen from multiple ab-
initio studies [216–219], the large mass of the nucleus justifies the use of the
harmonic approximation near a local potential minimum

U = 1
2κi,jrirj + U0

where ri are the components of the atom’s displacement vector and κ is the
Hessian tensor. Then, it follows that F(u) is a multivariate normal distribu-
tion

F(u) = 1
(2π)3/2

1√
det Σ

exp

−1
2

3∑
i,j=1

uiΣ−1
i,j uj

 . (6.3)

with zero mean and a covariance matrix Σ = ℏm3/2√
κ. To find the latter, we

proceed to the analysis of the bonding potential near its minima.
An adsorbed Tritium atom is predicted to occupy a symmetric position

with respect to the graphene lattice, characterised by a C3 point symmetry
group. For this reason, the Hessian will generally have two distinct principal
values, one corresponding to the axis orthogonal to graphene and one to the
motion in the graphene plane yielding two different potential profiles.

According to the ab initio studies [216–219], the potential that bonds
the Tritium atom in the perpendicular direction has two minima, a deep
chemisorbtion minimum (in the range of 0.7−3 eV for different studies) about
1.5 Å away from the graphene plane, and a shallow (about 0.2 eV) physisorp-
tion minimum 3 Å away from graphene 4 (see FIG. 6.2).

The lateral motion of an atom is governed by the so-called migration po-
tential [220]. The lateral stiffness in the case of chemisorption smaller than the
vertical stiffness, however is substantial, as can be seen from Table 6.1. The
case of a substrate producing a negligible migration potential will be discussed
below.

Introducing the normal displacement z of an atom relative to the potential
minimum, we can approximate the potential in the direction perpendicular to

4We note, that we use the results of ab initio calculations for hydrogenated graphene.
This is appropriate because Hydrogen is chemically equivalent to Tritium
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Figure 6.2. Schematic profile of the potential that bonds the Tritium atom in
the direction perpendicular to the graphene.

the graphene as U(z) = κz2/2 + U0. The uncertainty in the position of the
nucleus is then characterised by the oscillator length λ2 = ℏ/√mnuclκ. The val-
ues of the constants κ and λ for different potential minima obtained from the
fitting of the theoretical bonding profiles [216–219] are given in Table 6.1. The
pronounced variability in the predicted values of the spring constant κ is ex-
plained by the diversity of approximations used in different ab initio schemes.
Note, however that the variability in the predicted values of the oscillator
length is much less significant as λ ∼ κ− 1

4 . For this reason one can crudely ne-
glect the difference between the strength of the lateral and normal confinement
and consider the function F(u) as approximately isotropic

F(u) ≈ 1√
2π∆u

exp
(

−1
2
u2

∆u2

)
. (6.4)

We also note that, according to the Table 6.1, the typical predicted oscil-
lator length is about an order of magnitude less than the typical length of the
bond, which provides a posterior justification for the harmonic approximation.

6.3 Estimate

We are now in a position to obtain an estimate for the uncertainty in the
energy of an emitted electron. By virtue of Heisenberg uncertainty principle,
the variance of the velocity of the nucleus near a local potential minimum
is ∆u ≈ ℏ/mnuclλ. For an electron emitted at speed vel in the centre of mass
frame the uncertainty of the energy measured in the laboratory frame is ∆E ≈
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Potential Source κ,
[
eV/Å2]

λ,
[
Å
]

∆E, [eV]

[218] 2.15 0.16 0.60
Chemisorption [216], GGA 4.62 0.13 0.73

[216], vdW-DF 4.9 0.13 0.75

Physisorption

[219] 0.08 0.37 0.26
[218] 0.09 0.34 0.28

[216], GGA 0.18 0.29 0.33
[216], vdW-DF 0.13 0.32 0.3

[217], GGA 0.04 0.43 0.22
[217], LDA 0.01 0.55 0.17

Migration [220] 0.283 0.264 0.37

Table 6.1. Harmonic fit with the stiffness κ of the chemisoption, physisorption
potentials and the migration potential of the chemisorbed atom profiles near the
minimum. λ2 = ℏ/√mnuclκ and ∆E is the energy broadening of the emitted electron
estimated from Eq. (6.5).

melvel∆u, which near the edge of the electron emission spectrum can be written
as

∆E ≈ ℏc
λel
γ (6.5)

where λ2
el ≡ ℏ/√melκ and we have introduced the dimensionless parameter

γ =
[
Q2mel
m3

nuclc
4

]1/4

, (6.6)

where Q is the amount of energy released during the β decay. Eqns. (6.5), (6.6)
are the main result of this paper. This result, obtained so far using semi-
classical considerations, can be cross-checked with a more precise quantum
mechanical calculation. For the latter, one applies the Fermi Golden Rule to
the β-decay process where the initial state is the ground state of the atom in
the harmonic potential and the final state is a product of neutrino, electron
and atomic wave-functions that are highly excited WKB states (see Appendix
A for the detailed calculation). The result of such a calculation fully agrees
with Eqns. (6.5), (6.6). It is worth noting that in the fully quantum picture the
final β-spectrum in the CνB channel may be continuous, discrete or mixed,
depending on the depth of the bonding potential, but the overall envelope
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Figure 6.3. The estimate of the smearing of the electron emission spec-
trum due to the bonding of emitter to graphene. Left panel: The electron emission
spectrum for the physisorbed atomic Tritium (λosc = 0.6 Å) taking the hierarchy, m1
and energy resolution of the apparatus same as for the FIG. 6.1. Right panel: Vis-
ibility(defined by the number of CνB event that do not overlap with the continuous
spectrum at all) of the CνB peak depending on the mass of the lightest neutrino m1
and a dimensionless parameter γ defined in Eq. (6.6) that characterizes the emitter
(for the physisorbed Tritium γ ≈ 3 × 10−4). The white areas on the bottom right
and top left are correspondingly the areas of full and zero visibility and the coloured
region in between corresponds to the partial visibility.

will be Gaussian with the width ∆E. This is in agreement with the previous
results for the molecular Tritium [208] 5.

6.4 Discussion
In this paper, we have investigated the feasibility of the solid state based ap-
proach to the long-standing problem of detection of relic neutrino background.
We conclude that, due to the remarkable progress in the technology used for
the measurement of electron emission spectrum (see e.g. [96]) , the actual
energy resolution of the experiment is now controlled by a different bottleneck
- the uncertainties resulting from the interaction of the beta-emitter with the
substrate. This paper addresses one type of such uncertainty considered – the
zero-point motion of the β-emitter. For any given emitter it is practically ir-

5As an example, the value of the stiffness κ for the molecular tritium according to [208]
is κ ≈ 75 eV/Å2. This is roughly 20 times as large as the corresponding value for the
chemisorption (see Table 6.1). This means that the energy uncertainties ∆E in these two
cases are of the same order which is in agreement with [208].
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reducible, which excludes certain emitters from the list of suitable candidates
for solid state setups. In particular, for Tritium the uncertainty in the energy
of the electrons is around 0.3 − 0.7 eV (see Table 6.1 for the different bond-
ing potentials according to different ab initio calculations), i.e. several times
greater than the required energy resolution.

We see from Eqns. (6.5), (6.6) that the defining factor for the energy un-
certainty is the parameter γ (see Eq. 6.6), which only depends on the internal
properties of a β-emitter such as the mass of the nucleus and the energy re-
leased in the decay process. Therefore, a promising route to achieve a better
performance of the detector would be to substitute a widely used Tritium [85,
96, 207, 209, 211, 221] with a heavier emitter (while simultaneously satisfying
other experimental constraints, e.g. sufficiently long half-life time). The effect
of the parameter γ on the visibility of the CνB peak is shown on the right
panel of FIG. 6.3. One can see that, e.g., Tritium which has γ ≈ 3 × 104, lies
deep inside the region where the observation of the CνB peak is impossible.
On the same figure we also indicate more suitable β-emitters whose energy
uncertainties are not prohibitive for the detection of the relic neutrinos with
the masses > 20 meV.

Another important conclusion of our work is that although the energy un-
certainty also depends on the bonding potential, this dependence only enters
through the stiffness parameters and it is extremely weak ∆E ∝ κ1/4. This
implies that experimentation with different types of substrate is unlikely to
make a substantial difference. Indeed, an order of magnitude improvement in
∆E, (which is needed for the state of the art experimental proposal [96]) would
require a four orders of magnitude reduction in the value of κ. Such a substan-
tial deformation of the bonding potential presents a significant experimental
challenge.

A certain improvement in terms of the bonding potential could still be
achieved with adsorption that has a very weak lateral potential. One such
example is physisorption of Tritium on graphene. In the limiting case of a
constant lateral potential, electrons emitted at grazing angles will not have any
additional uncertainty to their energy. Correspondingly, for the out-of-plane
angles θ < θmax = arcsin (∆Emax/∆E) the energy uncertainty will be bounded
by ∆Emax. Here ∆E denotes the energy uncertainty for the isotropic case with
finite mobility. Restricting the detection collection to θ < θmax reduces the
number of events by a factor η−1 ≈ πθmax/90◦. As an example, for ∆Emax =
10 meV one obtains θmax ≈ 3◦, η ≈ 10 which would entail the challenge of
producing and handling 10 times as much radioactive material. This direction
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requires a full in-depth analysis which we leave for future studies.
We conclude, that a careful selection of the β-emitter (Fig. 6.3) together

with the use of an optimized substrate place CνB detection potentially within
the reach of the detection technologies developed by the PTOLEMY collabo-
ration.

One should, however, note that the zero-point motion of the emitter does
not exhaust the list of mechanisms that introduce uncertainty and errors into
the beta-decay spectrum. Other potentially harmful mechanisms include the
electrostatic interaction of the ionized atom with the substrate, charge relax-
ation in graphene, X-ray edge singularity, and phonon emission. We therefore
strongly believe that further progress towards CνB detection requires a seri-
ous concerted effort both theoretical and experimental in the characterization
of the physics and chemistry of the interaction of the β-emitter with its solid
state environment.

We are grateful to Chris Tully, A.P. Colijn and the whole PTOLEMY
collaboration for fruitful discussions and feedback on the manuscript that al-
lowed for its significant improvement. We also thank Kyrylo Bondarenko and
Anastasiia Sokolenko for the useful discussion. YC is supported by the fund-
ing from the Netherlands Organization for Scientific Research (NWO/OCW)
and from the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme. AB is supported by the
European Research Council (ERC) Advanced Grant “NuBSM” (694896). VC
is grateful to the Dutch Research Council (NWO) for partial support, grant
No 680-91-130.

6.5 Appendix: Quantum derivation of the energy
uncertainty

The aim of the fully quantum derivation is to underpin the semiclassical heuris-
tic that was obtained in the main text as well as demonstrating its limitations.
We note that we will not keep track of the pre-factors ℏ, c and will restore them
in the end. The rate of β-emission of an electron is given by the Fermi Golden
Rule rule

dΓ
dE

=
∑
f

2π| ⟨f |V̂ |i⟩ |2δ(Ei − Ef )δ(E − Ef,el). (6.7)

Here the vector |i⟩ represents the initial state of the system having the energy
Ei, the vector |f⟩, represents a final eigenstate of the Hamiltonian having the
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energy Ef = Ef,el + Ef,He where Ef,el, is the kinetic energy of the outgoing
electron and Ef,He, is the energy of the 3He+ ion. The sum is performed
over all such final states. The interaction potential V̂ is responsible for β-
decay vertex and is for our purposes an ultralocal product of the creation and
annihilation operators of the fields involved in the process.

We make an assumption that the neutrino has zero kinetic energy. It is
equivalent to restricting ourselves to region near the edge of the spectrum,
which is exactly the region of interest to us. The energy conservation implies

k⃗2

2mel
+ p⃗2

2mnucl
= Q̃, (6.8)

where k⃗, p⃗ - are two-dimensional final momenta of the electron and nucleus
respectively. Q̃ is the total energy of the nucleus before β-decay.

The initial state of the system is a product of a plane wave state of an
incoming relic neutrino, which it is safe to describe as a plane wave with
nearly zero momentum, and the lowest energy eigenstate of a Tritium atom
in the local minimum of the bonding potential. As was discussed in the main
text, such a state can be safely approximated as a ground state of a harmonic
oscillator with two distinct principal stiffness eigenvalues (see table 6.1). The
wave funcion of such a state has the form

ψi(r) ∝ exp
(

− z2

2λ2
⊥

− ϱ2

2λ2
∥

)
, (6.9)

where z stands for the orthogonal displacement and ϱ for the magnitude of
the lateral displacement relative to the local potential minimum. Due to the
in-plane symmetry of the graphene with respect to rotation, we can effectively
restrict ourselves to a two-dimensional space z, ϱ.

The space of all possible final states |f⟩ is quite large, and their wave
functions may be quite complicated due to the intricate interaction of the
3He+ ion with the graphene sheet. However, as we shall see momentarily the
dominant contribution to the sum in (6.7) comes from the states which are
amenable to the WKB approximation and are therefore analytically tractable.
Introducing the notation ψf (r) for the final state of the 3He+ ion, we write
the matrix element in (6.7) as

⟨f | V̂ |i⟩ ∼
∫
drψ∗

f (r)ψi(r)e−ikr (6.10)

where k is the wave vector of the emitted electron at kinetic energy close to Q.
Since the electron’s wave vector is quite large k ∼ 102 Å−1 the rapid oscillations
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suppress the integral in Eq. (6.10) unless the state ψf (r) also contains an
oscillatory factor, which has a roughly opposite De Broglie wave vector near
r = 0, where the support of ψi(r) is concentrated. This implies that the kinetic
energy of the ion needs to be on the order of 3eV, which exceeds the predicted
chemisorption binding energy [216–219] and is orders of magnitude greater
than the vibrational quantum near the potential minimum (ℏω ∼ 0.01 eV).
Such highly excited states are generally characterised by a level spacing which
is much narrower than the vibrational quantum near the minimum. They are
also well described by semiclassical WKB wave functions, which on the scale
of the oscillator length are indistinguishable from a plane wave.

With these considerations in mind, the application of the Fermi Golden
Rule to such states gives

dΓ
dE

∝

∣∣∣∣∣∣
∫ ∞

−∞
dx

∫ ∞

−∞
dy

∫ ∞

−∞
dze

−i(kx+px)x−i(ky+py)y−i(kz+pz)z− x2
2λ2

∥
− y2

2λ2
∥

− z2
2λ2

⊥

∣∣∣∣∣∣
2

,

(6.11)

where we have extended the integration over z to −∞. One can do it since
the integrand is localized. k/px,y,z, are respectively the components of the
electron and nucleus momenta that satisfy the energy conservation law

|p| =
√

2mnucl
(
Q̃− Eel

)
|k| =

√
2melEel (6.12)

We re-scale coordinates r̃i = ri√
2λi

and obtain

dΓ
dE

∝
∣∣∣∣∫ ∞

−∞
dx̃

∫ ∞

−∞
dỹ

∫ ∞

−∞
dz̃e−i

√
2λ∥(kx+px)−i

√
2λ∥(ky+py)−i

√
2λ⊥(k⊥+p⊥)z̃−x̃2−ỹ2−z̃2

∣∣∣∣2 ,
(6.13)

that can be brought to a Gauss integral

dΓ
dE

∝ e
−λ2

⊥(k⊥+p⊥)2−λ2
∥(k∥+p∥)2

∣∣∣∣∫ ∞

−∞
dx̃

∫ ∞

−∞
dỹ

∫ ∞

−∞
dz̃ (6.14)

exp

−
(
x̃+

iλ∥(kx + px)
√

2

)2

−
(
ỹ +

iλ∥(ky + py)√
2

)2

−
(
z̃ + iλ⊥(kz + pz)√

2

)2
2

,
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Figure 6.4. Distribution function (not normalized) of the energy of the electron
near the edge of the spectrum. Electron and nucleus are emitted with the correspond-
ing angles φe/nucl (relative to the axes perpendicular to the graphene substrate).

where k∥/p
2
∥ = kx/p

2
x + ky/p

2
y, p⊥/p⊥ = kz/pz. Integrating Eq. 6.14 gives the

Gaussian distribution
dΓ
dE

∝ e
−λ2

⊥(k⊥+p⊥)2−λ2
∥(k∥+p∥)2

. (6.15)

The distribution Eq. (6.15) depends on the angles of the emitted nucleus
and electron φ1,2. These angles are taken relative to the axes perpendicular
to the graphene substrate.

dΓ
dE

∝ e
−λ2

⊥(|k| cosφ2+|p| cosφ1)2−λ2
∥(|k| sinφ2+|p| sinφ1)2

, (6.16)

Let us estimate the variance of this distribution for the normal emission of the
electron

dΓ
dE

∝ e−λ2(k−p)2
, (6.17)

where k =
√

2melEel, p =
√

2mnucl
(
Q̃− Eel

)
.

In order to obtain the variance, wee need to expand near the maximum of
the distribution that corresponds to its mean. If we write everything in terms
of the deviation from the mean energy of the electron δEel = Q̃− Erec − Eel

k =
√

2mel
(
Q̃− Erec − δEel

)
≈
√

2mel
(
Q̃− Erec

)(
1 − δEel

2(Q̃− Erec)

)

p =
√

2mnucl (Erec + δEel) ≈
√

2mnuclErec

(
1 + δEel

2Erec

)
. (6.18)
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Accounting to the fact that Erec ≈ mel
mnucl

Q̃,

k ≈
√

2melQ̃

(
1 − δEel

2Q̃

)
p ≈

√
2melQ̃

(
1 + mnucl

mel

δEel

2Q̃

)
. (6.19)

With this we obtain Gaussian distribution

dΓ
dE

∝ exp
(

−λ2m2
nucl

2melQ̃
δE2

el

)
,

with the variance with the restored units is

σ = ℏ
λ

√
Q̃mel

mnucl
. (6.20)



Chapter 7

Can we use heavy nuclei to
detect relic neutrinos?

7.1 Introduction

The ambitious goal of detection [83] and the measurement of the mass [222]
of the relic neutrino relies on the precise experimental knowledge of the β-
spectrum of radioactive elements [84, 85]. Relic neutrinos, which fill the to-
tality of space in the form of an almost ideal gas of temperature Tν ≈ 1.95 K,
are expected to manifest themselves in rare neutrino capture events. Such
events involving cosmic neutrinos of mass mν and a sample of radioactive
atoms characterized by the β-decay energy Q would produce an extremely
faint peak at the energy Q + mνc

2 in the β-spectrum of the sample. We re-
call that for all radioactive elements the overwhelming bulk of the β-spectrum
arises from spontaneous β-decay and forms a continuum with the upper cutoff
energy Q−m0

νc
2 where m0

ν is the mass of the lightest neutrino. For this reason
one expects the neutrino capture peak to be separated from the end of the
spontaneous β-spectrum by an energy gap of at least one neutrino mass and
for that reason to be discernible at least in principle.

Despite the simplicity of its theoretical premise, a neutrino capture exper-
iment establishing the existence of relic neutrinos has not yet materialized.
The reason for this is the weakness of the neutrino-matter interaction, which
makes it difficult to achieve the sufficient number of capture events in a rea-
sonably sized radioactive sample. The requirement of a large neutrino capture
cross-section combined with other important considerations such as the man-
ageable half-life time and the stability of the daughter isotope turn out to be so
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restrictive that only a handful of atoms can be viewed as viable candidates for
the CνB detection experiment. From this perspective, Tritium has long been
regarded as the best candidate β-emitter [85–87, 223–227], even though it was
found that the workable sample of gaseous molecular Tritium falls short of
the required activity levels by six orders of magnitude. Currently, the only vi-
able alternative to the gas phase experiment is a solid state based architecture
where the atomic tritium is adsorbed on a substrate [85].

The low event rate is not the only hindrance in the way of relic neutrino
detection. The upper bounds on the neutrino mass [228] show that the energy
gap between the signal from neutrino capture and the background is extremely
small mν/Q ≪ 1 therefore the detection of the CνB requires extraordinary en-
ergy resolution. It has been demonstrated that the electromagnetic guidance
system and the calorimetry module of the detection apparatus can be built to
such stringent specifications [85], however, as it was found recently [91], de-
position of β-emitters on a solid-state substrate produces a new fundamental
limitation on the experimental resolution originating in the zero-point mo-
tion of the emitter’s centre of mass. For Tritium on solid surfaces, the best
theoretical resolution is ∆E ∼ 0.5 eV which is an order of magnitude worse
than what is required in order to see the relic neutrino peak. Furthermore,
it was shown [91] that the main factor that determines it is the the ratio
of the β-decay energy Q to the mass of the emitter nucleus mnucl, namely
γ =

√
Q2me/m3

nucl. This finding opens a new avenue to search for a possi-
ble alternative for Tritium that would have both a sufficient event rate and
low enough energy uncertainty. In the same work [91], it was found that the
two promising candidates that have low enough γ-values are Thulium (171Tm)
and Samarium (151Sm) with γ3H/γ171Tm = 0.11 and γ3H/γ151Sm = 0.1 respec-
tively. This means that the intrinsic energy uncertainty for these isotopes is an
order of magnitude smaller than that of Tritium. This value approaches the
upper bound for the neutrino mass and therefore could, in principle, provide
sufficient energy resolution for its detection.

The γ-value introduced in the previous paragraph is defined in terms of
the simple intrinsic characteristics of a nucleus such as its mass and Q-value
and therefore is straightforward to calculate. In contrast, the neutrino capture
cross-section has not been calculated for every isotope, in particular it is not
known for either of the isotopes of interest, 171Tm and 151Sm. The reason for
this is twofold. Firstly, the theory of β-decay of certain nuclei (the ones that
undergo the so-called non-unique forbidden transitions) is complicated [229–
231] and does not provide a direct link between the observed half-life time and
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the predicted neutrino capture rate. Secondly, experimental β-spectra are not
normally known with the energy resolution sufficient for a direct inference of
the capture cross section. The goal of the present paper is to show how the
neutrino capture cross section of a given radioactive isotope decaying through
non-unique forbidden transitions can be estimated from the experimentally
accessible β-spectrum of that isotope.

7.2 Quantum mechanics of β-interaction and crude
estimate of neutrino capture

Neutrino capture and β decay are the same process driven by the weak in-
teraction; they differ only in whether the (anti)neutrino is in the initial or
final state. To establish the exact connection between their respective rates,
we start from briefly reminding the main concepts of β decay theory. We
consider the sibling processes of β-decay and neutrino capture by a generic
nucleus

(A,Z) → (A,Z + 1) + e− + ν̄e

νe + (A,Z) → (A,Z + 1) + e−. (7.1)

which are driven by the same weak β-decay Hamiltonian

Hβ = Gβ√
2
ψ̄eγ

µ(1 − γ5)ψν p̄γµ(gV + gAγ5)n+ h.c., (7.2)

where Gβ = GF cos θC and θC is Cabbibo angle, ψe, ψν are electron and neu-
trino fields and p, n being the proton and neutron fields respectively. The
vector gV and axial gA coupling constants are renormalized by strong interac-
tions with |gA/gV | ≈ 1.27 [232, 233].

The differential β-decay rate dΓβ and the capture cross-section for spin-
averaged neutrino are given by the Fermi Golden Rule and can be written
as1:

dΓβ = 1
2π3 × pνEνpeEedEe ×Wβ(pe, pν)

(σv)ν = lim
pν→0

1
π

× peEe ×Wν(pe, pν), (7.3)

1Here we use the fact that absorption of antineutrino with momentum pν is equivalent
to emission of neutrino with momentum −pν
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where pe(ν) and Ee(ν) are the momenta and energies of the leptons, Wβ(pe, pν)
is the average transition rate for the decay of an atom into two lepton plane
waves with momenta pe, pν , and Wν(pe, pν) is the average transition rate for
the capture of a neutrino having the momentum pν and the emission of an
electron with momentum pe.

The average transition rates are expressed in terms of transition amplitudes
by

Wβ,ν(pe, pν) =
∫
dΩe

4π

∫
dΩν

4π
∑

|Mβ,ν
if (pe,pν)|2. (7.4)

Here Mif is the quantum transition amplitude between the initial and the final
state induced by the reduced weak interaction Hamiltonian [230, 231, 234]

Mif = Gβ√
2

∫
ψ̄e(r)γµ(1 − γ5)ψν(r) × Jµnuclear(r) dr, (7.5)

which encapsulates all information about the changes in the internal nuclear
structure in a function Jµnuclear(r). This function cannot be calculated from first
principles, however its transformation properties under the symmetry group
of space are known for each transition. The summation symbol in Eq. (7.4)
is a shorthand for the sum over the spin quantum numbers of the out-states
as well as averaging over the spins of the in-states. The averaging over the
directions of pe and pν is shown explicitly. Two important remarks are in
order

1 For an overwhelming part of the β-spectrum one can consider the neu-
trino as a massless (Weyl) particle in both the energy conservation law
and the wave functions entering the transition amplitudes. There exists
a tiny energy window on the order of mν near the high-energy end of
the β-spectrum where the neutrino mass plays a role, however the reso-
lution required for the observation of the β-spectrum inside that window
is by far beyond the reach of the existing experimental technique. Since
the existing β-decay experiment cannot distinguish between the massive
and massless cases, we shall throughout this note discuss the function
Wβ(pe, pν) assuming the mν → 0 limit.

2 Our main focus is on neutrino capture processes involving the cosmic
neutrino background. For such neutrinos pν ≪ mν , which is the opposite
of the ultra-relativistic limit discussed in item 1. It is straightfoward to
see that for a left-handed particle with a Majorana mass term,

Wν(pe, 0) = 1
2 lim
pν→0

Wβ(pe, pν) (7.6)
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Indeed, in the pν → 0 limit the incoming massive neutrino is a super-
position of a left-handed Weyl particle and a right-handed Weyl anti-
particle |Majorana⟩ = (|ν⟩ + |ν̄⟩)/

√
2. In a process where an electron is

created, the operator (7.5) only picks one term of the two, hence the
corresponding transition rate is one half of the transition rate Wβ of a
Weyl neutrino.

7.2.1 Crude estimate of neutrino capture

In this subsection, we want to provide a simple order-of-magnitude estimate
for neutrino capture cross-section. To this end, we assume that the matrix
element has no dependence on the lepton energy and reduces to a constant
encoding the information about the initial and final nuclear states∑

|Mβ
if(pe, pν)|

2 = const. (7.7)

Such an approximation neglects the Coulomb interaction between the emitted
electron and the nucleus. It also assumes that the selection rules admit for the
existence of the emission channel with the total angular momentum of leptons
J = 0.

Assuming Eq. (7.7) to be true, all the structural information about the
nuclei gets absorbed into a constant numerical factor, therefore the ratio of the
β decay and the neutrino capture rates, Eqns. (7.3), is completely determined
by the phase volume factors p2

νpeEe and peEe accordingly. Using Eq. (7.6),
this gives rise to the following relationship between the capture cross-section
(σv)ν , the total lifetime τ = (

∫
dΓβ)−1 of a β-decaying isotope, and the total

kinetic energy Q released in the reaction:

(σv)ν = τ−1 (2π)−1peEe

(2π3)−1 ∫me+Q
me

E′
ep

′
e(Q− T ′

e)2 dE′
e

, (7.8)

with Te = Ee − me being the kinetic energy of the electron, and neutrino
momentum in β decay is pν = Q−Te. In the particular case of nonrelativistic
electron Q ≪ me, this relation gives the following simple scaling:

(σv)est. = 5.3 · 10−46 cm2 × 1 year
τ

×
(100 keV

Q

)3
. (7.9)

In order to quantify the error introduced by the simplifying assumptions
leading up to Eq. (7.7), we introduce a correction factor δ such that the actual
cross-section is given by

(σv)ν = δ × (σv)est. (7.10)
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The values of δ for a number of elements where the exact results for the
neutrino capture cross-section are known [86] are given in Fig. 7.1. One can
see that in all those cases δ is is reasonably close to unity.

Isotope Q, keV τ , year (σv)ν , 10−46 cm2 δ
3H 18.591 17.8 39.2 0.86

63Ni 66.945 145 6.9 · 10−2 0.57
93Zr 60.63 2.27 · 106 1.20 · 10−5 1.15

106Ru 39.4 1.48 29.4 0.51
107Pd 33 9.38 · 106 1.29 · 10−5 0.83
187Re 2.646 6.28 · 1010 2.16 · 10−6 0.48

Table 7.1. Neutrino capture cross-sections for different isotopes from [86]. Note
that (σv)ν differ from those of [86] by two due to neutrino spin averaging, as pointed
out in [227]. One can see that the parameter δ defined by Eq. (7.10) varies only by a
factor of two from the identity that signals that Eq. (7.9) gives a good approximation
for the capture rates of the given isotopes.

We are interested in neutrino capture by possible candidates for solid-state
based CνB detection experiments — 171Tm and 151Sm. For these isotopes,
the parameterization (7.10) reads

(σv)171Tm = 2.1 · 10−46 cm2 × δ171Tm ≈ 0.054 (σv)3H × δ171Tm

(σv)151Sm = 9.1 · 10−48 cm2 × δ151Sm ≈ 0.0023 (σv)3H × δ151Sm. (7.11)

However, unlike the isotopes listed in Table 7.1, the theoretical values of the
δ factors for 171Tm and 151Sm are not known. This is because both isotopes
have a rather peculiar structure of the matrix element (7.5), as explained in
the following paragraph.

For purely illustrative purposes we neglect the effect of the Coulomb attrac-
tion between the β-electron and the daughter nucleus, bearing in mind that in
practice such an approximation may result in significant inaccuracy. We recall
that the function Jµnuclear(r) is mainly localized inside the nucleus r < R, and
decays rapidly with increasing r for r > R. Here R = A1/3 × 1.2 ×10−13 cm is
the radius of the nucleus. Since the typical lepton momentum is on the order
1 MeV ≪ R−1, one can expand the matrix elements and the sum ∑

|Mif|2 as
a series in small parameters pe/νR ≪ 12

2If Coulomb attraction is taken into account, the constants in this expansion get multi-
plied by correction factors Fi(pe), which do not depend on unknown nuclear physics and can
be computed explicitly.
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∑
|Mif|2 = c0 + c1 · peR+ c2 · pνR+ . . . (7.12)

The constants ci in this expression are in essence combinations of the spher-
ical multipole moments of Jµnuclear(r) containing structural information about
the many-body wave functions of the parent and daughter nuclei. The sim-
plifying approximation (7.7) amounts to keeping only the leading-order term
c0 in the expansion (7.12), which in many cases is well justified. For some
isotopes, however, electroweak selection rules demand that c0 = 0. Indeed,
if the mother and daughter isotopes have different spin and parity then at
least one of the leptons is required to carry a non-vanishing orbital angu-
lar momentum. Since a lepton’s wave function corresponding to the orbital
angular momentum l has the asymptotic form (pr)l at small r, the matrix
element of such a transition, Eq. (7.5), will necessarily contain terms propor-
tional to (peR)l (pνR)l′ with l + l′ > 0. The worst case scenario, known as
a forbidden non-unique transition, is when the selection rules admit for the
presence of several commensurate leading-order terms on the fight hand side
of the asymptotic expansion Eq. (7.12). For such a transition one has to as-
sume that the matrix element (7.12) contains several unknown constants ci
each multiplying its own unique function of energy. If that happens, the can-
cellation of the unknown constants, such as the one seen in Eq. (7.8), does
not occur and the neutrino capture cross-section cannot be inferred from the
isotope’s life time. This is precisely what happens for 171Tm and 151Sm. We
conclude, that for the isotopes of our interest, 171Tm and 151Sm, the values of
the δ factors, Eq. (7.11), are beyond the reach of pure theory, which naturally
brings us to the next section.

7.3 Experimental determination of the neutrino cap-
ture rate from the end of the β decay spectrum

We have established that for isotopes such as 171Tm and 151Sm the knowledge
of the lifetime and the Q-value is insufficient in order to predict the neutrino
capture cross-section. Here, we discuss how the required cross-section can be
inferred directly from the experimentally measured β-spectrum. Our approach
is based on two key observations. Firstly, both the emission and capture
processes are governed by the same unknown structure function Wβ(pe, pν),
albeit taken at different values of arguments. Specifically, a capture process
corresponds to the limit pν → 0 and pe =

√
(Q+me)2 −m2

e, whilst in a
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spontaneous β-decay process pe =
√

(Q+me − pν)2 −m2
e, where pν can take

any value between 0 and Q, resulting in a broad β-spectrum. Secondly, the
function Wβ(pe, pν) is an analytic function of both arguments near the end
point pν = 0 of the β-spectrum [93]. We recall that in our discussionWβ(pe, pν)
is the rate involving transitions with massless neutrino states (see discussion
at the end of section 7.2).

Using the analyticity of Wβ(pe, pν) and making use of equations (7.3) and
(7.6) we write the following expansion3 for the observable β-spectrum near the
edge pν = 0

π2

p2
ν

dΓβ
dEe

= (σv)ν ×
[
1 + α1pν/Q+O(p2

ν/Q
2)
]

(7.13)

where α1 is a constant. The characteristic energy scale where the linear ap-
proximation is applicable can be estimated from the microscopic theory of β
decay [93]. For the purposes of the present work, we notice that the physics of
β decay of heavy nuclei involves three important of energy scales, that is Q,
me, and 1/R0 where R0 is the radius of the nucleus. The smallest of the three
defines the energy range where the expansion (7.13) works well. For 171Tm
and 151Sm the smallest energy scale is Q.

Now we are in position to discuss the experimental procedure. We assume
a finite energy resolution ∆E of the experiment (say, 1 keV). We propose a
way to deduce the neutrino capture rate of the 171Tm and 151Sm from the end
of their experimentally measured β spectra:

1. Define some experimentally accessible energy resolution ∆E ≪ Q and
measure the number of β decay events N in several energy bins4 Te ∈
[Q− (n+ 1)∆E,Q− n∆E] as a function of the electron energy residue
εn = ∆E(n+ 1/2)

2. We assume that all the decay events are detected. In this case, one
can check whether the experimental points N(εn) × (εn in keV)−2 fit the
linear curve. If so, continue the obtained fit up till the value εn = 0.

3Such a linear behaviour can be seen in the spectra generated by the BetaShape software,
which predicts (σv)ν = 1.2·10−46 cm2(171Tm), 4.8·10−48 cm2(151Sm) and α1 = 0.25(171Tm),
0.21(151Sm). For further discussion see Sec. 7.4 and our accompanying paper [93].

4We note that the spectrum itself behaves as dΓ/dEe ∼ p2
ν and, therefore, events within

a single bin are not uniformly distributed. Most of the events occur near the left side of
a bin, which may introduce an additional systematic uncertainty. A possible way to avoid
this problem and is to measure the integral number of events N(pν) =

∫ Q

Q−pν

dN
dTe

dTe and
consider the function N(pν) · p−3

ν . This can be also fitted by a linear function and therefore
used to extract (σv)ν . In addition, this method allows to collect more statistics compared
to the one with bins for sufficiently large pν .
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3. Assuming that the time of the measurement is Tm ≪ τ and there are
Nat decaying atoms, the neutrino capture rate can be estimated as

(σv)ν = 7.0 · 10−37 cm2

(Tm in hours)(∆E in keV) × 1
Nat

(
N(εn)

(εn in keV)2

) ∣∣∣∣
εn=0

(7.14)

A remark should be made concerning the generality of (7.14). Until now
we neglected possible contributions to the electron spectrum due to β-decay
into excited states of daughter nuclear or/and electronic shell of the atom. Let
us comment on these contributions:

1. Excited nuclear states have typical energies Eex ∼ 10 keV, for instance,
66.7 keV for 171Yb [235] (daughter isotope for 171Tm) and 21.5 keV of
151Eu [236] (daughter isotope of 151Sm). They do not contribute to the
spectrum near the endpoint for Te > Q − Eex. Therefore, they are not
relevant for the energy resolution of order 1 keV.

2. Atomic excitations are of order 1 eV. If the energy resolution is much
above this scale, Eq. (7.14) overestimates the value of cross-section. For
Z ∼ 60, the probability to excite the electronic configuration is expected
to be less than 30% [237], which translates into the same possible error
in the value of the cross-section.

The corrections discussed above may only introduce a difference by a prefactor
of order one are therefore are beyond our considerations.

7.4 Conclusion and discussion

The most promising route towards the relic neutrino detection is currently
through the use of solid state based detectors where the β emitters are ad-
sorbed on a substrate. Such a design has the potential to to achieve sufficient
density of emitters in a controllable way (such that electron scattering remains
suppressed), and hence get a sufficient number of capture events. However, any
β decay experiment that uses bound emitters (either in molecular form or ad-
sorbed on a substrate) suffers from an irreducible intrinsic energy uncertainty
due to the emitter’s zero-point motion. It was shown in [91] that such an un-
certainty is proportional to the dimensionless parameter γ =

√
Q2me/m3

nucl,
Q being the energy released in the β decay, me,mnucl - masses of the electron
and nucleus respectively. It was also shown that this parameter is too large for
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3H, therefore Tritium-based detectors are unable to achieve the required en-
ergy resolution. Instead, the most promising candidates are 171Tm and 151Sm
as they have the intrinsic energy uncertainty that is an order of magnitude
lower than that of 3H.

However, contrary to the case of 3H for which the neutrino cross section is
known [86, 87], theoretical calculation of (σv)ν for 171Tm and 151Sm poses a
challenge. The quantum numbers (spin and parity) of the parent and daughter
nuclei for these isotopes differ, hence the leptons are required to have a non-
zero total orbital momentum. The latter can be composed in a non-unique
way, which results in several different unknown nuclear constants entering the
matrix element (7.5) that do not factor out.

We propose a way to estimate the relic neutrino capture cross section. Our
proposal relies on the experimental measurement of the spectrum of β-decay
near the endpoint. We show, that the extraction of the relic neutrino cross
section can be achieved using the experimental data (via Eq. (7.14)) even if
the energy resolution ∆E of the experiment that is much larger than neutrino
mass ∆E ≫ mν .

Finally, to get a rough idea of the feasibility of the relic neutrino cap-
ture experiment based on 171Tm (Q = 96.5 keV, τ = 2.77 years) or 151Sm
(Q = 76.6 keV, τ = 130 years), we estimate the corresponding cross sections
using the β-decay spectra computed in BetaShape [238, 239]. For 171Tm and
151Sm, this code uses the so-called ξ-approximation, whose validity has to be
established on the case to case basis.

BetaShape predicts the following neutrino capture rates Γν = ην(σv)ν per
single atom:

Γcapture
y−1 = ην

⟨ην⟩

{
12.7 (6.4) × 10−27 171Tm
5.1 (2.5) × 10−28, 151Sm

(7.15)

for Majorana (Dirac) neutrino, where ην is the local cosmic number density of
one neutrino species which could be significantly larger than the average over
the universe ⟨ην⟩ ∼ 56 cm−3 due to gravitational clustering. The correspond-
ing cross-sections are in agreement with the crude estimate (δ ≈ 0.5).

Since the emitters in the solid-state based experiments are attached to
the substrate atom by atom, the single event exposure based on the esti-
mate (7.4) corresponds to 2 · 1027 atoms · year of 151Sm or 1026 atoms · year
of 171Tm. For comparison, the same number of events can be achieved with
2 · 1024 atoms · year of 3H. According to this, using 171Tm as β emitter in a
full size CνB experiment is promising since it can provide with both sufficient
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event rate and energy resolution for the relic neutrino detection.
We emphasize that the results based on BetaShape might be inaccurate and

the measurement is still needed to confirm them. We discuss the approxima-
tion used in BetaShape in the follow-up paper [93], together with independent
theoretical bounds on (σv)ν .



128 Chapter 7. Can we use heavy nuclei to detect relic neutrinos?



Chapter 8

Screening effects in the
graphene-based relic neutrino
detection experiment

8.1 Introduction.

The detection of the Cosmic Neutrino Background (CνB) is a long standing
highly important scientific goal [95, 209, 240]. Analogous to the CMB, it
carries a photographic image of the early Universe, albeit from a much older
epoch of neutrino decoupling. Indirect evidence for the existence of the relic
neutrinos was found in the observed CνB [82], however, due to the extreme
weakness of the interactions between neutrinos and other forms of matter,
direct detection of the CνB remains a major experimental challenge.

Today it is widely accepted that the most practicable route to the direct
detection of the CνB lies through the measurement of the fine structure of the
β-spectrum of a radioactive element [84–87, 95]. The main challenges are: the
weakness of the signal which can be only compensated by the large amounts
of the radioactive atoms (at least 100 g in order to achieve one event per year
in the case of atomic Tritium) and the need in the extraordinary high energy
resolution (50 meV or better) of the experiment.

So far, the only the only known way to overcome these roadblocks is a solid
state architecture where the β-emitters are adsorbed on a substrate [96]. Such
a design can increase the event count by orders of magnitude while preserving
the necessary degree of control over the emitted electrons.

State-of-the-art PTOLEMY experiment [96] that exploits Tritium adsorbed
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on the graphene motivated deeper theoretical studies of the physics of the β-
decay in the vicinity of the solid state substrate [91, 241, 242]. It was revealed,
that deposition of β-emitters on a solid-state substrate produces a new intrin-
sic fundamental limitation on the experimental resolution originating in the
zero-point motion of the emitter’s centre of mass [91]. This limitation strongly
depends on the properties of the β-emitter such as its mass and energy released
in β decay. While for Tritium it yields the uncertainty in the spectrum that is
of the order ∆E ∼ 0.5 eV, heavier emitters such as 171Tm and 151Sm reduce
it by an order of magnitude [91, 242].

Zero point motion is not the only effect that leads to the intrinsic energy
uncertainty [92, 241]. Solid state substrate hosts a whole zoo of elementary
excitations which will affect the intrinsic uncertainty of the detector through
a range of mechanisms. Each of those has to be studied one by one in order
to find the ways to mitigate it.

This paper offers a second step into the physics of the β-decay of the emitter
bounded to a solid state substrate. After the first and most simple mechanism
of the emitter zero point motion was understood and the ways to mitigate
it were found [91, 242], we proceed to, subjectively, second most simple and
important effect - electromagnetic interaction of the β-decaying system and
substrate. Specifically, we consider two kinds of processes: screening of the
Helium ion by the charges in graphene and promotion of the graphene electrons
from the valence to conduction band by the electric field of the emitted β-
electron.

For simplicity, we assume that the decaying atom is Tritium, although the
calculation can be straightforwardly generalized to the arbitrary atom.

8.2 Defining the problem
Consider mono-atomic Tritium deposited on graphene sheets arranged into a
parallel stack where a clever magneto-electric design is used to extract and
measure the energy of the electrons created in the two β-decay channels.

3H → 3He + e+ ν̄e

νe + 3H → 3He + e (8.1)

As a result of these processes, a Helium ion is formed and a β-electron is
emitted. Both the ion and the emitted electron interact electromagnetically
with each other and with the surroundings, namely graphene substrate. While
the former is also present in the vacuum and its effect is accounted for in what
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we call the “bare” β-decay spectrum [230], the effect of the latter two on the
bare spectrum has to be evaluated. Let us try to do it treating each of them
independently:

1. Electromagnetic interaction of the Helium ion with the substrate. Con-
version of the tritium atom into Helium ion acts as a sudden creation of
the charged impurity that brings the electrons in graphene out of equi-
librium. The corresponding rearrangement of the charges Q(r⃗, t) (see
Fig. 8.1) leads to a higher charge concentration near the impurity that
would effectively screen it. This reduces the interaction strength between
the emitted β-electron and Helium ion thus changing the β-spectrum.

2. Electromagnetic interaction of the emitted β-electron with the substrate.
Before reaching the detector, emitted β-electron can scatter on the elec-
trons in graphene promoting them from the valence to conduction band.
Each of such processes is accompanied by the energy loss of the emitted
electron equivalent to ∆E = vF (|p|+|p|′), where p⃗, p⃗′ are respectively the
initial and final momenta of the electron in graphene thus also changing
the β-spectrum.

Figure 8.1. Schematic picture of screening mechanism in the graphene after the β
decay of the Tritium bounded at the distance d from the substrate. As a result, a
Helium ion is formed that leads to the rearrangement of the charges Q(r⃗, t) in the
graphene. These charges screen the potential of the ion therefore performing work on
the emitted β-electron.

Both of the processes described above have stochastic character (screened
charge Q(r⃗, t) can have quantum fluctuations while the scattering of the elec-
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tron on graphene is intrinsically probabilistic) which means that the change in
the energy of the emitted β-electron is described by some distribution function
F(·) and the initial β-spectrum G(·) changes to

G̃(Ee) =
∫
dεF(ε)G(Ee + ε) (8.2)

if one is to account for the corresponding interaction process.
For simplicity, we discuss both the screening and electron scattering pro-

cesses independent from all the other effects such as zero point motion, etc. [91]
and independent from each other. So, G(·) is taken to be the one for the elec-
tron emitted by a free Tritium atom at rest.

8.3 Charge screening effects
Let us start from studying the effect of the screening of the Helium potential by
electrons in graphene. In this case, the distribution function F(·) in Eq. (8.2)
corresponds to the distribution of the work performed by the induced charge
Q(r⃗, t) on the β-electron.

In this work, however, we are only going to calculate the average work
⟨W (Ee)⟩ that is a purely classical contribution leaving out the calculation of he
quantum fluctuations for the future studies. Large values of the average work
(⟨W (Ee)⟩ ≳ mν) is going to be a signal that quantum mechanical fluctuations
should be also taken into account. We also neglect the back-reaction of the
induced charge on the ion assuming that it is fixed.

First, we make a dimensional estimate of the classical screening effect. The
only dimension-full parameters relevant to this problem are:

1. Distance from the graphene substrate to the atom d ≈ 3 Å

2. Fermi velocity in graphene vF ≈ 10 Å fs−1.

According to it, the typical time scale τrelax at which the electrons in
graphene would screen the Helium ion can be estimated as

τrelax = d

vF
≈ 0.3 × 10−15s. (8.3)

During the relaxation time τrelax, the electron will fly away on the distance
λ = vβτrelax, where vβ is the typical velocity of the β-electron. For region of
our interest that is the end of the β spectrum it that can be estimated as
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vβ
c

=

√√√√√√√√ 2Q
mec2

1 + U

Q︸︷︷︸
≈0.001

 ≈ v∞
c

≈ 0.27, (8.4)

where Q = 18.6 keV is the energy released in the β-decay and U is a Coulomb
potential from the Helium ion that electron feels right after the decay.

This means that at the moment when the Helium ion is fully screened by
the charges in the graphene, β-electron will fly away on

λ = vβτrelax ≈ 243 Å. (8.5)

The difference in β-electron energy compared to unscreened case ∆Ee is

∆Ee = k
Ze2

λ
≈ 59 meV (8.6)

We see that already the classical effect of the charge screening in graphene
leads to a significant shift in the β-electron energy ∆Ee ≳ mν that is compa-
rable to the size of the energy gap that we want to measure.

The full quantum-mechanical calculation for the case of the perpendicular
emission was also done using the linear response theory (see Appendix ??).
The average work performed by the induced charge on the β-electron emitted
with the velocity ve is

⟨W (ve)⟩ =

≈0.5 eV︷ ︸︸ ︷
πα2

16EFd2 W̃

(
vF
ve

)
, (8.7)

where W̃
(
vF
ve

)
is defined by Eq. (8.21) and shown on (see Fig. 8.2).

For the β-electron at the edge of the spectrum (Ee = Q), Eq. (8.7) yields
⟨W (Ee = Q)⟩ ≈ 75 meV. This result is in a very good agreement (same order of
magnitude) with the one that we have obtained with the simple estimate (8.6).
We also see that the parameter that defines the relaxation time is indeed Fermi
velocity in graphene vF . The energy dependence of the work has the form of
zeroth order Bessel function of the first kind ⟨W (Ee)⟩ ∼ J0

(√
EF /Eex

)
(see

Fig. 8.2).
We emphasise, however, that despite the fact that the uncertainty in the

energy of the β-electron at the edge of the spectrum is rather big as compared
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Figure 8.2. Average work (Eq. (8.21)) performed by the induced charges in graphene
on the emitted β-electron depending on the ratio of the Fermi velocity in graphene
vF ≈ 0.3 × 10−15s to the velocity of the β-electron ve.

to the required energy precision, ∆Ee ≈ 75 meV ≳ mν , it is not the right
quantity that determines the final energy precision of the experiment. Instead,
one should look at the functional dependence of the ⟨W (Ee)⟩, namely at the
derivative like d⟨W (Ee)⟩/dEe since it determines the relative shift of the points
of the spectrum. For example, if d⟨W (Ee)⟩/dEe ≡ 0, the whole spectrum will
just shift and the energy gap between the bulk β-decay spectrum and neutrino
capture part will remain unchanged.

|dW (Ee)| = γ

2Ee
dW (γ)
dγ

dEe, (8.8)

where we denoted γ =
√
EF /Ee. For the edge of the spectrum,

|dW (Ee)|/dEe
∣∣
Ee=Q ∼ 10−5.

This means that all the energies simply get “shifted" by the same amount and
the gap in the spectrum does not disappear.

To conclude the analysis above, the classical screening effects in the graphene
substrate appear to only lead to the total nearly constant energy shift of the
end of the spectrum. This shift should be back-engineered and does not lead
to any limitations on the energy resolution of the experiment.

Nevertheless, since the classical (mean) part of the work distributing ap-
peared to be rather big, one needs to also study quantum charge fluctuations
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σ(W ) = ⟨Ŵ 2⟩ − W 2. As opposed to the classical effect, these lead to the
irreducible changes in the spectrum. We leave the latter for future studies.

8.4 Electron-hole pair creation
The other electromagnetic effect that we consider in this work is the scattering
process where the electron in graphene is promoted from the valence to the
conduction band with possible momentum transfer p⃗ → p⃗′. As a result, β
electron changes its momentum as well p⃗β → p⃗′

β.
Let us first estimate the average number such processes Nsc that will hap-

pen until the β-electron will leave the system. Using the Fermi Golden Rule
(for the full calculation see Appendix ??), we obtain

Nsc =me

v⊥

(
κe2

2π

)2 ∫
d2qd2p

1 − cos (φ(p⃗) − φ(q⃗ + p⃗))
p′⊥
β ((p⊥

β − p′⊥
β )2 + q2)2 (8.9)

where p′⊥
β =

√
mevF (|p⃗| + |q⃗ + p⃗|) − (q⃗ − p⃗

∥
β)2 + p2

β.
For the β-decay of Tritium, the typical velocity of the emitted electron

is v = 0.3c. We use system of units, where c = 1, me = 1 (and so κe2 =
14.4 eV Å = 7.5 · 10−3 and vF = 10 Å fs−1 = 3.3 · 10−3). We see that ve ≫ vF ,
so let us for simplicity re-scale everything introducing u⃗ = q⃗/ve, w⃗ = p⃗/ve and
write down an approzimate simplified expression

N
3H
sc (θ) =1.6 × 10−5

cos2 θ
× I(θ)

I(θ) =
∫
d2ud2w

1 − cos (φ(w⃗) − φ(u⃗+ w⃗))
((cos θ − δ(θ, u⃗, w⃗))2 + u2)2 , (8.10)

where θ is the emission angle with respect to the perpendicular to the graphene
and δ(u⃗, w⃗) =

√
0.01(|w⃗| + |u⃗+ w⃗|) − (u⃗− sin θe⃗∥

β)2 + 1 (e⃗∥
β is a projection of

the initial β-electron velocity vector on the graphene plane).
It can be seen that the integral in Eq. (8.10) has both UV and IR diver-

gences. However, one can introduce two natural cut-offs:

• IR cutoff that is defined by the system size (0.4·10−12 for the system-size
of 1 m).

• UV cutoff that is defined by the graphene lattice spacing (1/a = 1/(2.46 Å) =
1.5 · 10−3).
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v=0.3c. Solid - ΔE>10 meV, dashed - ΔE>1 meV
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Figure 8.3. Red line: probability that the emitted electron will create a particle-hole
excitation in graphene before it leaves the detector as a function of the emission angle
θ. The velocity of the emitted electron is 0.3c. Blue line: value of the integral 8.10
for the same parameters. The solid and dashed lines correspond to different infra-red
cut-offs that are defined by the size of the detector.

8.5 Conclusions

Solid state materials host a whole zoo of elementary excitations which will
affect the intrinsic uncertainty of the detector through a range of mechanisms.
For example, the sudden emission of an electron from a beta-decayer leaves
behind a positively charged centre which attracts the electric current carriers
in of the substrate. This effect results in what is known as the X-ray edge
anomaly - a gamma-shaped broadening of the emission peak [92]. Other effects
include the creation of vibrational excitations of the lattice, distortion of the
spectrum due to the interaciton of the beta-electron with its image charge,
creation of shock wave emission due to the motion of the emitted electron at
grazing angles at speeds exceeding the Fermi velocity, emission of plasmons
and surface polaritons. The investigation of all these mechanisms and finding
ways of mitigation requires a close collaboration between high-level experts in
both theoretical and experimental solid state physics and may lead to further
modifications of the experimental architecture.
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8.6 Appendix: Average work performed by the elec-
trons in graphene on the emitted β-electron

Define Q(r, t) to be the total charge that has flown into the circle of radius r
during the time t (See Fig. 8.1). For simplicity, we restrict ourselves to the
case when the electron is emitted perpendicular to the substrate. Due to the
rotational symmetry, it only depends on the absolute value of the distance r.
Then, the total electrostatic potential at the point r⃗ (see Fig. 8.1) is

φtot(r, t) = φbare(r) + k
Q(r, t)
r

, (8.11)

where φbare(r) = −ke/
√
r2 + d2 is the electrostatic potential of the bare He-

lium ion at he corresponding point. Performing the Fourier transformation
gives:

φtot(q, ω) = φbare(q) + 2πk
∫ ∞

0
drJ0(qr)Q(r, ω), (8.12)

where Jn(x) is nth Bessel function of the first kind.
The total electrostatic potential (8.12) can be also deduced from the re-

sponse function of the graphene on charge impurity, so-called polarization
operator Π(ω, q) or, alternatively, its dielectric permittivity ε(ω, q) [128]:

φtot(ω, q) = 1
φ−1

bare(q) − Π(ω, q)
= φbare(q)

ε(ω, q) . (8.13)

The form of the polarization operator (or dielectric permittivity) depends on
the type of the relaxation we are considering. We consider intrinsic (undoped)
graphene where two valleys are independent, so no intra-valley scattering. In
this case, the random phase approximation approach gives the following results
for the polarization operator and dielectric permittivity [243]:

Π(q, t) = q2

8 J0(vF qt) (8.14)

ε(q, t) =
(
δ(t) + απ

4 qe−qdJ0(vF qt)
)
, (8.15)

where vF is the Fermi velocity in graphene and α = ke2.
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By requiring Eqns. (8.12),(8.13) be self-consistent, we can calculate the
induced charge Q(r, t):

φbare(q)
2πk

( 1
ε(ω, q) − 1

)
=
∫ ∞

0
drJ0(qr)Q(r, ω) (8.16)

Using the orthogonality identity for Bessel functions
∫∞

0 xJ0(ux)J0(vx)dx =
1
uδ(v − u) and the fact that φbare(q) = −e−qd × 2πke/q, we find:

Q(r, ω) = e

∫ ∞

0
re−qdJ0(qr)

(
1 − 1

ε(ω, q)

)
dq. (8.17)

The induced charge (8.17) creates repulsive Coulomb force Find acting on
the β-electron that is flying away from the surface. Let us restrict ourselves to
the case where the electron is flying away perpendicular from the surface. We
believe that the result will be the same up to a pre-factor of order one for any
emission angle due to the nature of the process. In this simplified case, due to
the rotational symmetry, the force is perpendicular to the substrate and has
the following magnitude:

Find(h) = ke(h+ d)
∫

∂rQ(r, t)dr
(r2 + (h+ d)2)3/2 , (8.18)

where h = vet is the distance from the electron to the Helium ion. The
corresponding work performed by the induced charge (8.17) on the β-electron
is:

⟨W (Ee)⟩ =
∫ ∞

0
dhFind(h), (8.19)

where we have neglected the deceleration of the electron. This is justified for
the electrons near the edge of the spectrum 1. Plugging in all the expressions,
we obtain the final result

1The initial velocity v0 of the emitted electron is related to its velocity on infinity v∞ as
follows:

v∞ = v0

√
1 − 2ke2

med

1
v2

0
= v0

√√√√√1 − 0.18 × 10−4c2

v2
0︸ ︷︷ ︸

δ

(8.20)

Since v0 ≈ 0.3c, δ ≪ 1, so v∞ ≈ v0.
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⟨W (ve)⟩ =

≈0.5 eV︷ ︸︸ ︷
πα2

16EFd2 W̃

(
vF
ve

)
W̃

(
vF
ve

)
=
∫ ∞

0
y
(
1 − (1 + 2y)e−2y

)
J0

(
vF
ve
y

)
dy

∫ ∞

0

(J0(x) − xJ1(x))
(x2 + y2)3/2 dx

(8.21)

8.7 Appendix: Cross section of the process of the
electron-hole creation in graphene

We denote dωi→f - the probability per unit time of the following event: β-
electron with the momentum p⃗β scatters with the electron in graphene that
is in the valence band having momentum p⃗. After the scattering, β-electron
changes its momentum to p⃗′

β and the electron in graphene is promoted to the
conduction band with momentum p⃗′. According to the Fermi Golden Rule, it
is equal to

dωi→f (p⃗β, p⃗; p⃗′
β, p⃗

′) = 4π
∣∣∣∣∫ d2ρ⃗d2ρ⃗′dz′

〈
ψf (p⃗′

β, p⃗
′)
∣∣∣ Ŵ (ρ⃗, ρ⃗′, z′) |ψi(p⃗β, p⃗)⟩

∣∣∣∣2 ×

× δ

(
p′2
β − p2

β

2me
− vF

(
|p| + |p′|

)) V S2d3p⃗′
βd

2p⃗d2p⃗′

(2π)7 ,

(8.22)

where the additional factor 2 is accounted for that comes from the summa-
tion over the valleys in graphene. We assume that the intial β-electron has
fixed chirality therefore it does not contribute to the sum. Writing down the
interaction potential explicitly

Ŵ (ρ⃗, ρ⃗′, z′) = κe2 ϕ̂
†(ρ⃗′, z′)ϕ̂(ρ⃗′, z′)ψ̂†(ρ⃗)ψ̂(ρ⃗)√

z′2 + (ρ⃗− ρ⃗′)2 , (8.23)
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where Fourier decomposition for field operators of the β-electron (ϕ̂) and elec-
tron in graphene (ψ̂) are 2

ϕ̂(ρ⃗, z) =
∑
s

∫ ∞

−∞

d3k⃗

(2π)3
1√

2V E
k⃗

ei(k⃗∥ρ⃗+k⊥z)
(
ĉs
k⃗
ũs(k⃗) + d̂s−k⃗ṽ

s(−k⃗)
)

(8.24)

ψ̂(ρ⃗) =
∑
α

∫ ∞

−∞

d2p⃗

(2π)2
1√
2S
eip⃗ρ⃗

(
âαp⃗u

α(p⃗) + b̂α−p⃗v
α(−p⃗)

)
. (8.25)

The initial and final states are

|ψi⟩ = c†
pβ

|FS⟩ , |ψf ⟩ = c†
p′

β
a†
p′b−p |FS⟩ . (8.26)

Plugging everything in and treating β-electrons in the non-relativistic limit
we arrive at

dω̃i→f (p⃗β, p⃗; p⃗′
β, p⃗

′) = π

4V
(
κe2

)2
×

×

∣∣∣∣∣∣∣∣
∫
d2ρ⃗d2ρ⃗′dz′ e

i

(
p⃗

∥
β

−p⃗′∥
β

)
ρ⃗′+i(p⊥

β −p′⊥
β )z′

ei(p⃗−p⃗′)ρ⃗ũ†(p⃗′
β)ũ(p⃗β)u†(p⃗′)v(−p⃗)√

Ep⃗β
Ep⃗′

β

√
z′2 + (ρ⃗− ρ⃗′)2

∣∣∣∣∣∣∣∣
2

×

× δ

(
p′2
β − p2

β

2me
− vF

(
|p⃗| + |p⃗′|

)) d3p′
βd

2p′d2p

(2π)7 . (8.27)

The integral can be evaluated to be

dω̃i→f (p⃗β, p⃗; p⃗′
β, p⃗

′) = 4π3S

V

(
κe2

)2
∣∣∣ũ†(p⃗′

β)ũ(p⃗β)u†(p⃗∥
β + p⃗− p⃗

′∥
β )v(−p⃗)

∣∣∣2
((p⊥

β − p′⊥
β )2 + (p∥

β − p
′∥
β )2)2E′

βEβ
×

× δ

(
p′2
β − p2

β

2me
− vF

(
|p| + |p⃗∥

β + p⃗− p⃗
′∥
β |
)) d3p′

βd
2p

(2π)5 . (8.28)

The spinors of the β-electron are

ũ(p⃗β) =
√

2Ep⃗β
χ⃗, where χ⃗+ = (0, 0, 1, 0) , χ⃗− = (1, 0, 0, 0) , (8.29)

2We note that we distinguish electrons in graphene and β-electron. Namely, no exchange
can occur.
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where χ⃗ denotes chirality. The spinors of the electron in graphene are

uα(p) = 1√
2

(
1

αeiφ(p)

)
, vα(−p′) = 1√

2

(
1

−αeiφ(p′)

)
(8.30)

with φ(p) = arctan (py/px). So, we arrive at

dω̃i→f (p⃗β, p⃗; p⃗′
β, p⃗

′) = (2π)3S

V

(
κe2

)2 1 − cos
(
φ(p⃗) − φ(p⃗∥

β + p⃗− p⃗
′∥
β )
)

((p⊥
β − p′⊥

β )2 + (p∥
β − p

′∥
β )2)2

×

× δ

(
p′2
β − p2

β

2me
− vF

(
|p| + |p⃗∥

β + p⃗− p⃗
′∥
β |
)) d3p′

βd
2p

(2π)5 . (8.31)

where φ(k⃗) denotes the angle in the polar coordinate system of the vector
k⃗. The total probability per unit time of the transition into any final state
can be obtained by integrating over all final states

dP

dt
=(2π)2Sme

V

(
κe2

)2 ∫ d2qd2p

(2π)4
1 − cos (φ(p⃗) − φ(q⃗ + p⃗))
p′⊥
β ((p⊥

β − p′⊥
β )2 + q2)2 , (8.32)

where q⃗ = p⃗
∥
β − p⃗

′∥
β and p′⊥

β (q⃗, p⃗) =
√
mevF (|p⃗| + |q⃗ + p⃗|) − (q⃗ − p⃗

∥
β)2 + p2

β due
to energy conservation. In other words, the inverse time of a single interaction
τ is

1
τ

=(2π)2Sme

V

(
κe2

)2 ∫ d2qd2p

(2π)4
1 − cos (φ(p⃗) − φ(q⃗ + p⃗))
p′⊥
β ((p⊥

β − p′⊥
β )2 + q2)2 . (8.33)

If the typical time that electron spends in the setup is tmeasure = L/v⊥ =
V/(Sv⊥), where v⊥ is the perpendicular component of the electron velocity
then during this time electron will experience Nsc = tmeasure/τ number of
events

Nsc =me

v⊥

(
κe2

2π

)2 ∫
d2qd2p

1 − cos (φ(p⃗) − φ(q⃗ + p⃗))
p′⊥
β ((p⊥

β − p′⊥
β )2 + q2)2 (8.34)

where p′⊥
β (q⃗, p⃗) =

√
mevF (|p⃗| + |q⃗ + p⃗|) − (q⃗ − p⃗

∥
β)2 + p2

β.
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Summary

Majorana fermions have never been observed as fundamental particles. How-
ever, they appear in various system as low energy excitations - quasiparticles.
Moreover, ordinary Standard Model neutrinos as well as a dark matter parti-
cle may appear to be Majorana fermion. This thesis studies different aspects
and properties of the Majorana fermions in free and interacting systems.

Lowest energy excitations in topological superconductor have Majorana
nature (called Majorana zero modes or MZMs). These modes are not fermions
in a normal sense, but when the two of them are coupled such that their wave-
functions overlap (fused) - they form a fermion. Such MZMs are spatially
separated, pinned to have exactly zero energy, are free of decoherence and have
a non-abelian anyonic statistics under the exchange. One can see signatures of
MZMs and their anyonic statistic through fusion. If one prepares four MZMs
(denoted γi) in the state where γ1, γ2 and γ3, γ4 form states with definite
fermion parity, the outcome for the parity of the state formed from γ2, γ3 will
be non-deterministic, namely ⟨iγ2γ3⟩ = 0. This happens for an ideal system
where the MZMs are well separated from the continuum. However, as was
shown in chapter 2, in a real system with some degree of disorder this is no
longer a distinctive feature of non-abelian MZMs. The underlying reason for
this is an unfortunate coincidence that the systems that host topologically
protected MZMs are also prone to accumulate other parasitic states near zero
energy that can mimic the true MZMs in the observables.

Nevertheless, as is shown in chapter 3, one can overcome this obstacle by
looking at the dynamical signatures of the ground-state degeneracy. In par-
ticular, one needs to compare the time-dependent evolution in the parameter
space of coupling constants via two alternative pathways. The topological
ground-state degeneracy of Majorana zero-modes causes a breakdown of adi-
abaticity that can be measured as a pathway-dependent fermion parity. The
correlation between two pathways for the accidental degeneracies of the An-
dreev levels is distinct from what would follow from the Majorana fusion rule.
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An opposite case of strongly interacting Majorana fermions becomes very
interesting if the number of fermions N is big, interactions are all-to-all and
randomly distributed. Such a model is called Sachdev-Ye-Kitaev model (SYK)
and it comprises several perculiar properties: it possesses an exact solution at
strong coupling lacking quasiparticles, it has an emergent conformal symmetry
in the infrared and it saturates the upper bound on quantum chaos. In this
thesis we study how these properties manifest themselves in observables. In
particular, in chapter 4 we find that if one couples the SYK system to a super-
conductor, upon increasing the coupling strength up to the critical value, the
pairing gap ∆ behaves as ηℏ/tP at low temperatures, where η ∼ 1. The lower
critical temperature emerges with a further increase of the coupling strength
so that the finite ∆ domain is settled between the two critical temperatures.
This does not happen if one, instead, couples the superconductor to disordered
but non-interacting fermions. In that case, upon increasing the coupling the
superconductivity just dies out.

In chapter 5 we studied SYK system at initial temperature T coupled by
a quench to a large fermionic reservoir kept at zero temperature. In such
a system, a tunneling current appears and the dynamics of the discharging
process of the SYK quantum dot reveals a distinctive characteristic of the
non-Fermi liquid state. In particular, the current’s half-life scales linearly in
T at low temperatures, while for the Fermi liquid it scales as T 2.

The last part of this thesis which is chapters 6,7 and 8 is devoted to an
experiment that aims at the detection of relic neutrinos. We show that in case
of solid state base experimental architecture, namely when the β-decayers are
attached to some kind of substrate (which is the only viable possibility so
far) there is a fundamental intrinsic limitation on its energy resolution. It
comes from a simple Heisenberg’s uncertainty principle: when we restrict the
β-emitter to a finite volume in space, it acquires uncertainty in its momen-
tum which smears the spectrum. We also show that the only way to mitigate
this effect is to use a heavier β-emitter, more detailed study shows that the
only viable candidate is 171Tm. However, this does not solve all the problems
since solid state materials host a whole zoo of elementary excitations that af-
fect the intrinsic uncertainty of the detector through a range of mechanisms.
The investigation of all these mechanisms and finding ways of mitigation re-
quires close collaboration between high-level experts in both theoretical and
experimental solid state physics and may lead to further modifications of the
experimental architecture.



Samenvatting

Majorana-fermionen zijn nooit waargenomen als fundamentele deeltjes. Ze
verschijnen echter in verschillende systemen als excitaties met lage energie -
quasideeltjes. Bovendien kunnen gewone neutrino’s uit het Standaardmodel
en een deeltje van donkere materie lijken op Majorana-fermionen. Dit proef-
schrift bestudeert verschillende aspecten en eigenschappen van de Majorana-
fermionen in vrije en wisselwerkende systemen. De laagste energie-excitaties in
topologische supergeleiders hebben Majorana-aard (de zogenaamde Majorana-
zero-modes of MZM’s). Deze toestanden zijn geen fermionen in de normale
zin, maar wanneer de twee zodanig worden gekoppeld dat hun golffuncties
elkaar overlappen (fusion), vormen ze een fermion. Dergelijke MZM’s zijn
ruimtelijk gescheiden, hebben precies nul excitatie-energie, zijn vrij van deco-
herentie en hebben een niet-abelse anyonische statistiek onder de uitwisseling.
Men kan tekenen van MZM’s en hun anyonische statistiek zien door middel
van fusie. Als men vier MZM’s (aangeduid met γi) voorbereidt in de toestand
waarin γ1, γ2, γ3, γ4 een toestand vormen met een bepaalde fermionpariteit,
dan zal de uitkomst voor de pariteit van de toestand gevormd uit γ2,γ3 niet-
deterministisch zijn, namelijk ⟨iγ2γ3⟩ = 0. Dit gebeurt voor een ideaal systeem
waarbij de MZM’s goed gescheiden zijn van het continuüm. Zoals echter in
hoofdstuk 2 word aangetoond, is dit in een echt systeem met enige mate van
wanorde niet langer een onderscheidend kenmerk van niet-abelse MZM’s. De
onderliggende reden hiervoor is dat de systemen die topologisch beschermde
MZM’s hosten ook vatbaar zijn voor andere parasitaire toestanden in de buurt
van nul-energie die de echte MZM’s in de waarneembare objecten kunnen na-
bootsen. Desalniettemin, zoals wordt aangetoond in hoofdstuk 3, kan men
dit obstakel overwinnen door te kijken naar de dynamische kenmerken van de
ontaarding van de grondtoestand. In het bijzonder moet men de tijdsafhanke-
lijke evolutie in de parameterruimte van koppelingsconstanten vergelijken via
twee alternatieve routes. De topologische ontaarding van de grondtoestand
van Majorana-zero-modes veroorzaakt een afbraak van adiabaticiteit die kan
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worden gemeten als een padafhankelijke fermionpariteit. De correlatie tussen
twee paden voor de toevallige ontaardingen van de Andreev-niveaus is ver-
schillend van wat zou volgen uit de Majorana-fusieregel. Een systeem van
sterk wisselwerkende Majorana-fermionen wordt erg interessant als het aan-
tal fermionen N groot is, interacties allen-op-allen zijn en willekeurig worden
verdeeld. Zo’n model wordt het Sachdev-Ye-Kitaev-model (SYK) genoemd
en bevat verschillende speciale eigenschappen: het heeft een exacte oplossing
bij sterke koppeling zonder quasideeltjes, het heeft een conforme symmetrie
in het infrarood en het is quantum-chaotisch. In dit proefschrift bestuderen
we hoe deze eigenschappen zich manifesteren in waarneembare objecten. In
het bijzonder vinden we in hoofdstuk 4 hoe de paar gap ∆ zich gedraagt als
men het SYK-systeem koppelt aan een supergeleider. Een lagere kritische
temperatuur ontstaat met een verdere toename van de koppelingssterkte. Dit
gebeurt niet als men in plaats daarvan de supergeleider koppelt aan ongeor-
dende maar niet-wisselwerkende fermionen. In dat geval valt bij het vergroten
van de koppeling de supergeleiding gewoon weg. In hoofdstuk 5 hebben we
het SYK-systeem bestudeerd als het gekoppeld is aan een groot fermionische
reservoir dat op temperatuur nul wordt gehouden. In een dergelijk systeem
verschijnt een tunnelstroom en de dynamiek van het ontlaadproces van het
SYK-systeem (een quantum dot) onthult een onderscheidend kenmerk van de
niet-Fermi toestand. In het bijzonder schaalt de halfwaardetijd van de stroom
lineair met de temperatuur bij lage temperaturen, terwijl deze voor de Fermi-
vloeistof kwadratisch schaalt. Het laatste deel van dit proefschrift, de hoofd-
stukken 6,7 en 8, is gewijd aan een experiment dat zich richt op de detectie van
neutrino’s. We laten zien dat er een fundamentele intrinsieke beperking is op
de energieresolutie van een gangbaar experiment. Het komt voort uit het on-
zekerheidsprincipe van Heisenberg: wanneer we de β-straal-emitter beperken
tot een eindig volume in de ruimte, verwerft het een onzekerheid in zijn impuls
die het spectrum uitsmeert. We laten ook zien dat de enige manier om dit
effect te verminderen is om een zwaardere β-emitter te gebruiken. Meer gede-
tailleerd onderzoek toont aan dat de enige levensvatbare kandidaat 171Tm is.
Dit lost echter niet alle problemen op, aangezien vastestofmaterialen een hele
reeks elementaire excitaties herbergen die de intrinsieke onzekerheid van de
detector beinvloeden via een reeks mechanismen. Het onderzoek van al deze
mechanismen vereist nauwe samenwerking tussen experts in zowel theoretische
als experimentele vastestoffysica en kan leiden tot verdere aanpassingen van
de experimentele apparatuur.
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