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Abstract
It remains unclear whether the increased risk of new-onset type 2 diabetes (T2D) seen in statin users is due to low LDL-C
concentrations, or due to the statin-induced proportional change in LDL-C. In addition, genetic instruments have not been
proposed before to examine whether liability to T2D might cause greater proportional statin-induced LDL-C lowering.
Using summary-level statistics from the Genomic Investigation of Statin Therapy (GIST, nmax= 40,914) and DIAGRAM
(nmax= 159,208) consortia, we found a positive genetic correlation between LDL-C statin response and T2D using LD score
regression (rgenetic= 0.36, s.e.= 0.13). However, mendelian randomization analyses did not provide support for statin
response having a causal effect on T2D risk (OR 1.00 (95% CI: 0.97, 1.03) per 10% increase in statin response), nor that
liability to T2D has a causal effect on statin-induced LDL-C response (0.20% increase in response (95% CI: −0.40, 0.80) per
doubling of odds of liability to T2D). Although we found no evidence to suggest that proportional statin response influences
T2D risk, a definitive assessment should be made in populations comprised exclusively of statin users, as the presence of
nonstatin users in the DIAGRAM dataset may have substantially diluted our effect estimate.

Introduction

3-Hydroxy-3-methylglutaryl–coenzyme A reductase inhi-
bitors, also known as statins, have demonstrated consistent
benefits to cardiovascular disease (CVD) risk reduction,
while being safe and well-tolerated for most people [1].
However, statin treatment has been linked to a modestly
increased risk of new-onset type 2 diabetes (T2D), an
observation first noted in the JUPITER trial [2], which has
since been replicated in large-scale meta-analyses of

randomized controlled trials [3–5]. As promising novel
strategies for lowering low-density lipoprotein cholesterol
(LDL-C) such as proprotein convertase subtilisin–kexin
type 9 (PCSK9) inhibitors emerge, the safety of lipid-
modifying treatments with regard to diabetes risk remains
an important question.

In recent years, genetic epidemiology has started to
untangle the complex link between LDL-C lowering and
T2D risk. For example, analyses of patients with familial
hypercholesterolemia have shown that the prevalence of
T2D is significantly lower than among unaffected relatives,
with variability by underlying mutation type [6]. Further-
more, apparent causal effects on T2D have been shown both
for overall genetic predisposition to lower LDL-C con-
centrations [7–9] as well as for HMGCR-, NPC1L1-, and
PCSK9-gene specific (i.e., on target) mechanisms of low-
ering LDL-C [9–13]. These findings, and recent reanalysis
of statin trial data using Egger regression [14], suggest that
statin-related dysglycaemia might be mediated largely
through LDL-C lowering mechanisms rather than through
proposed pleiotropic mechanisms of statins [15].
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However, meta-regression approaches modeling hetero-
geneity among treatment effects from statin trials have
produced conflicting results as to whether statin-induced
proportional change of LDL-C influences T2D risk [3–5].
Previous Mendelian randomization (MR) studies have been
unable to directly answer this question, as genetic instru-
ments solely proxying lifelong lower levels of LDL-C have
been utilized. In addition, genetic instruments have not been
proposed before to examine whether the greater absolute
CVD risk reduction conferred by statin therapy in indivi-
duals with T2D could result from greater proportional
statin-induced LDL-C lowering. Findings from the largest
pharmacogenomic meta-analysis for differential LDL-C
response to statin therapy to date by the Genomic Investi-
gation of Statin Therapy (GIST) consortium might be used
to investigate these questions. We therefore aimed to use
these data to examine the causal direction of the relationship
between proportional statin response and T2D using a
bidirectional two-sample MR approach.

Methods

To assess the likelihood of a shared etiology between statin
response and T2D, which may be the product of a causal
relationship, we assessed their genetic correlation using
cross-trait linkage disequilibrium (LD) score regression. To
detect potential direct causality we performed a bidirec-
tional two-sample MR-analysis, combining summary-level
statistics from the GIST [16] and DIAbetes Genetics

Replication And Meta-analysis (DIAGRAM) [17] consortia
(Fig. 1), to estimate: (1) the causal effect of statin-induced
LDL-C response on T2D risk, and (2) the causal effect of
liability to T2D on statin-induced LDL-C response. We
refer to liability to T2D in this second analysis as it is not
possible to determine whether individuals in the GIST
dataset have been diagnosed with T2D.

Causal effect of statin-induced LDL-C response on
T2D

The GIST consortium’s 2014 meta-analysis on statin-
induced LDL-C response included up to 18,596 statin-
treated subjects in the discovery stage, of whom 9064
(48.7%) were known to have a history of diabetes (type
unspecified). The most promising signals (n= 246) were
taken forward for replication, to be validated in an addi-
tional 22,318 statin recipients [16]. Statin response had been
defined as the difference between natural log-transformed
on- and off-treatment LDL-C levels. Linear regression
analyses using this statin response phenotype as dependent
variable and genetic variant as independent variable were
adjusted for natural log-transformed off-treatment LDL-C
level, age, sex, and study-specific covariates including
principal components of ancestry. Observational studies had
additionally adjusted for statin type-specific equivalent dose
in their regression models. The resulting regression coeffi-
cient thus approximates the fraction of differential LDL
lowering in carriers vs. noncarriers of the SNP. While lead
variants for four independent loci (APOE, LPA, SLCO1B1,

Fig. 1 Overview of two-sample Mendelian randomization (MR)
study on the bidirectional association between statin-induced LDL
cholesterol response and type 2 diabetes (T2D). Top panel shows

direction of statin response to T2D, bottom panel liability to T2D to
statin response. Layout of figure based upon the work by Taylor et al.
(2016) (PMID 27215954).
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SORT1/CELSR2/PSRC1) were presented as the top
genome-wide significant hits for statin response in the GIST
paper [16], 63 correlated variants attained a p value lower
than 5 × 10−5 in a combined meta-analysis of the discovery
and replication-stage results.

To assess the effects of these instruments on T2D, we
extracted discovery stage summary statistics for these 63
variants from DIAGRAM’s 2017 meta-analysis of genome-
wide association data from 26,676 T2D case and 132,532
control subjects of European ancestry after imputation using
the 1000 Genomes all ancestries reference panel (March,
2012 release) [17]. Contributing studies had performed
logistic regression association analysis of T2D against each
genetic variant, adjusted for age, sex, and principal com-
ponents of ancestry. The summary statistics were extracted
from the publicly available summary statistics dataset on the
DIAGRAM website (http://www.diagram-consortium.org/).
All variants were available in the DIAGRAM dataset, except
two, for which we could not find suitable (i.e., high LD)
proxies. We subsequently LD clumped the set of variants
using 0.001 as the maximum LD r2 value to ensure that the
remaining instruments were essentially independent. This
reduced the set of statin response instruments from 61 to 35
(Supplemental Table 1). We separately examine the effects
of the full set of 35 statin response instruments and of the
four top hits together. Possible dilution by the presence of
nonstatin users in DIAGRAM was explored through simple
simulations (Supplementary Note).

Causal effect of liability to T2D on statin-induced
LDL-C response

As candidate genetic instruments for liability of T2D we
selected 128 genetic instruments at 113 loci. These 128
variants represent the established loci from the literature
before the DIAGRAM’s 2017 publication as well as the
novel signals detected therein, with 42 being genome-wide
significant (p < 5 × 10−8) in this DIAGRAM dataset. Dis-
covery stage regression coefficients and standard errors for
a total of 128 single nucleotide polymorphisms (SNPs) at
113 loci were extracted from the publicly available sum-
mary statistics dataset on the DIAGRAM website
(http://www.diagram-consortium.org/).

Next, we extracted summary statistics for the identified
T2D liability instruments from GIST’s 2014 genome-wide
meta-analysis on statin-induced LDL-C response. Of note,
none of the identified T2D liability instruments were among
those SNPs carried forwards to the replication stage of the
GIST meta-analysis. In total, 78 of the 128 instruments
were available in the discovery GIST dataset. We subse-
quently LD clumped the set of variants, again using 0.001
as the maximum LD r2 value. This reduced the set of
instruments from 78 to 62 (including 24 genome-wide

significant instruments), which include 19 proxies with an
r2 ≥ 0.8 with the original variant in 1000 Genomes Eur-
opean samples (Supplemental Table 2). To tease out pos-
sible bias from using weaker instruments, we aimed to
examine the combined effects of the T2D liability instru-
ments before and after restricting the analysis to the
genome-wide significant instruments.

Sample overlap

Of the studies that contributed to the discovery-stage meta-
analysis of GIST, four (Atherosclerosis Risk in Communities
Study, Framingham Heart Study, Genetics of Diabetes Audit
and Research in Tayside Scotland (GoDARTS) I and II) also
contributed to the DIAGRAM meta-analysis. Of the studies
contributing to the replication-stage meta-analysis of GIST,
one (Rotterdam Study) also contributed to the DIAGRAM
meta-analysis. We were unable to precisely determine the
overlap between the datasets. However, if we assume that all
participants from these five studies contributed to both ana-
lyses, up to 5% (with respect to the larger dataset, i.e.,
DIAGRAM) of overlap may be present for our analyses.

Statistics—LD score regression

A causal relationship between two heritable traits should
induce a genetic correlation between these traits. The use
of LD score regression to quantify genetic correlation has
been described in detail elsewhere [18, 19]. Briefly, under
the assumption that biologically relevant variants are
uniformly distributed across the genome, genetic variants
in high LD with many nearby variants are more likely to
tag causal variants, and therefore have larger squared
effect size estimates. This can be quantified by each var-
iant’s ‘LD score’: the sum of squared correlations with all
nearby variants. Cross-trait LD score regression calculates
the cross product of test statistics from different GWAS
meta-analyses, and then regresses the cross product on
that variant’s LD score. In our study, the genome-wide
summary-level datasets of both GIST (discovery stage,
including only variants with N > 5000, and without gen-
ome control-correction) and DIAGRAM’s 2012 GWAS
[20] were thus used to estimate the genetic correlation of
statin-induced LDL-C proportional response with T2D
using the LD Hub platform (http://ldsc.broadinstitute.org/
ldhub/) [21]. After QC, 1,039,702 genetic variants which
overlapped between the two GWAS datasets were inclu-
ded for this analysis.

Statistics—MR-analysis

Partial F-statistics were calculated per instrument as measure
of instrument strength [22]. For each set of instruments
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separately (i). statin response-all (n= 35), (ii). statin response-
restricted (n= 4 genome-wide significant instruments), (iii).
T2D liability-all (n= 62), (iv). T2D liability-restricted (n= 24
genome-wide significant instruments) an MR-analysis was
performed using an inverse-variance weighted (IVW) linear
regression, with instrument-outcome associations as depen-
dent variable, instrument-exposure associations as indepen-
dent variable, and with the intercept constrained to zero [23]
Estimates of the causal effect of statin response on T2D are
presented as odds ratio for T2D per 10% increase in statin
response. For examining the effects of liability to T2D on
statin response we rescaled effect estimates such that they
represent increase in statin response (% extra lowering of
LDL-C) per doubling of the odds of liability to T2D in the
population, by multiplying the causal estimate by 0.693 (i.e.,
loge 2) prior to exponentiating.

Instrument-outcome associations were plotted against
instrument-exposure associations to visualize the resulting
regression line from the IVW analysis using the full and
restricted sets of instruments. Furthermore, causal effect
estimates for the individual instruments (i.e., Wald ratios)
were plotted against the inverse of their standard error to
facilitate visual detection of possible horizontal pleiotropy
(i.e., a direct effect on the outcome rather than via the
exposure). We subsequently performed three complementary
sensitivity analyses which relax the assumption of no hor-
izontal pleiotropy amongst the genetic variants. First, MR-
Egger regression, of which the intercept formally tests for the
presence of unbalanced horizontal pleiotropy, and the slope
reflects the causal effect estimate after adjusting for this
pleiotropy by adding an intercept to the IVW method [24].
Additional approaches that are similarly more robust to
potential violations of the instrumental variable assumptions
than the conventional (i.e., IVW) MR-analysis were the
weighted median-based estimator [25] and the weighted
mode-based estimator [26], which respectively use the
weighted median of, and the highest density of, the ratio
estimates across the individual instruments as estimate of the
true causal effect. We additionally tested for heterogeneity in
effects estimates by means of Cochran’s Q and Rucker’s Q’
[27, 28]. First-order weights were utilized for this calculation.
Finally, as several of the proposed instruments for statin-
induced LDL-C response are known to independently
associate with fasting LDL-C levels, we performed a multi-
variable MR-analysis for the analysis of statin response to
T2D, adjusted for effects on fasting LDL-C levels [29]. This
multivariable analysis included 32 statin response instru-
ments, and 64 instruments for fasting LDL-C concentrations
from the Global Lipids Genetics Consortium 2013 GWAS on
blood lipid levels [30]. The number of instruments used for
the multivariable MR-analysis differ from the other MR
analyses due to not all instruments being available in all three
GWAS datasets. All MR analyses were carried out in R

version 3.4.2 [31], without correction for multiple testing,
using the TwoSampleMR R-package which accompanies the
MR-base analytical platform, and the sample code provided
by the methodology paper on multivariable MR [29, 32]
(code available upon request).

Results

We found a statistically significant positive genetic corre-
lation of statin-induced LDL-C response with T2D (rgenetic
(s.e.)= 0.36 (0.13), p= 0.0071) using LD score regression.

The median F-statistic (25, 75th percentile) was 23.2 (16.3,
37.8) for the full set of statin response instruments, and 18.1
(16.2, 20.9) for the full set of T2D liability instruments. These
respectively increased to 44.8 (35.5, 70.7) and 73.1 (38.8,
120.3) for the restricted sets of instruments. As shown in
Fig. 2 and the Table 1, we did not find statistical evidence that
statin-induced differential LDL-C response has a causal effect
on T2D risk, nor that liability to T2D has a causal effect on
statin-induced differential LDL-C response. This held true for
both the full and restricted sets of instruments, and results
from all sensitivity analyses were consistent with these find-
ings. More specifically, our results for the full sets of instru-
ments indicate the OR of T2D is 1.00 (95% CI: 0.97, 1.03)
per 10% increase in statin-induced LDL-C response, and that
statin-induced LDL-C response is increased by 0.20% (95%
CI: −0.40, 0.80) per doubling of the odds of T2D liability.
Evidence of unbalanced horizontal pleiotropy was present
only for the restricted set of statin response instruments, as
indicated by the MR-Egger intercept (intercept (95% CI):
1.04 (1.01, 1.07)) and Fig. 3, but this is likely an artifact of
including such a small number of instruments (n= 4). Neither
Cochran’s Q nor Rucker’s Q’ were suggestive of substantial
heterogeneity in the effect estimates. Finally, a multivariable
MR-analysis where we adjust for effects of all SNPs on fasted
LDL-C did not lead to different conclusions regarding the
effect of statin response on T2D risk (OR 1.02 (95% CI: 0.97,
1.07 per 10% increase in statin-induced LDL-C response).

Discussion

Using LD score regression we found a positive genetic
correlation of proportional statin response with T2D using
genome-wide data, pointing to shared genetic determinants
between these traits. However, our bidirectional MR ana-
lyses did not provide evidence of direct causal mechanisms
of either statin-induced LDL lowering on risk for T2D, nor
liability to T2D on statin response. Sensitivity analyses of
these MR analyses showed consistent results, suggesting
that the issue of horizontal pleiotropy is unlikely to sub-
stantially influence our results.
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The findings from the MR analyses suggest that statin-
induced proportional change of LDL-C is unlikely to
influence T2D risk. If true, this would indicate that it is not
the degree of proportional lowering of LDL-C levels in
response to statin therapy which increases the risk for dia-
betes, but the low levels in an absolute sense which may
result from this transition. Indeed, results from the JUPI-
TER trial have shown that achieving LDL-C concentrations
<30 mg/dl with high-intensity statin therapy was associated
with more physician-reported diabetes [33], which was not
observed when a threshold of <50 mg/dl was considered
[34]. Of further note here is a recent comparison of the risk
of T2D in a large electronic health record database between
individuals with low and normal LDL-C levels, which

showed that LDL-C levels below 60 mg/dl occurring in
absence of statin therapy are also associated with higher
T2D risk [35]. Moreover, also in line with our results,
researchers using data from 129,170 participants free from
T2D at baseline from 20 statin trials did not observe evi-
dence of a clinically relevant association between LDL-C
proportional lowering at 1 year and within-trial odds ratios
for new-onset T2D (log-odds per 1% reduction in LDL-C:
0.004 (95% CI −0.001, 0.009)) [10].

However, we cannot exclude the possibility that a direct
causal effect of statin-induced proportional LDL-C response
on T2D may exist, but was (substantially) diluted by the
presence of nonstatin users in the DIAGRAM dataset. This
is because proposed genetic instruments for pharmacological

Table 1 Mendelian randomization (MR) estimators for the bidirectional association between type 2 diabetes (T2D) and statin-induced LDL-C
response.

Number of
instruments

F-statistic, median
(25th, 75th
percentile)

Estimate (IVW
method, 95% CI)

Sensitivity analyses Tests of heterogeneity

Weighted mode
estimate (95% CI)

Weighted median
estimate (95% CI)

MR-Egger
estimate (95% CI)

MR-Egger intercept
(95% CI)

Cochrane’s
Q
(p value)

Rucker’s
Q’
(p value)

Statin
response
→ T2Da

35 18.1 (16.2, 20.9) 1.00 (0.97, 1.03) 0.99 (0.93, 1.04) 0.98 (0.94, 1.02) 0.99 (0.94, 1.04) 1.02 (0.92, 1.14) 31.0 (0.61) 31.0 (0.57)

4 73.1 (38.8, 120.3) 1.01 (0.93, 1.09) 0.98 (0.91, 1.05) 0.98 (0.91, 1.05) 0.91 (0.81, 1.01) 1.04 (1.01, 1.07) 3.4 (0.33) 0.2 (0.93)

T2D
liability →
Statin
responseb

62 23.2 (16.3, 37.8) 0.20 (−0.40, 0.80) 0.11 (−0.95, 1.18) 0.03 (−0.97, 1.02) 0.62 (−0.55, 1.80) −0.04 (−0.15, 0.06) 65.5 (0.32) 65.3 (0.30)

24 44.8 (35.5, 70.7) 0.32 (−0.47, 1.12) 0.04 (−1.07, 1.14) 0.08 (−0.99, 1.15) 1.24 (−0.67, 3.15) −0.12 (−0.36, 0.11) 32.4 (0.09) 32.3 (0.07)

IVW denotes inverse-variance weighted. The different MR estimators can be interpreted as: aodds ratio for T2D per 10% increase in proportional
statin response, and bthe effect on proportional statin response (%) per doubling in the odds of liability to T2D, respectively. A positive statin
response value corresponds to an increased LDL cholesterol lowering effect of statin therapy

Fig. 2 Scatterplots of per-allele effects. The plots display the
instrument-outcome (y-axis) against individual instrument-exposure
(x-axis) per-allele effects, shown separately for statin response (left
panel) and liability of type 2 diabetes instruments (T2D, right panel).

The filled dots correspond to the restricted lists of variants (see text),
while the full set included all dots. The lines correspond to the inverse-
variance weighted combined MR estimator, for the restricted (dashed
line) and full set of instruments.
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response phenotypes can only exert their effect in the pre-
sence of (i.e., are conditional on) drug usage. More intui-
tively, if this type of instrument were to associate with an
outcome in a population which includes no relevant drug
users, this must reflect an alternative pathway unrelated to
that specific drug response (i.e., horizontal pleiotropy), or at
least a shared genetic etiology between the two traits.
Therefore, assessment of any causal effect of instruments
derived from pharmacogenetic studies should ideally also be
examined in populations composed solely of individuals
using the drug of interest. An analogous dilemma has been
described in the context of smoking heaviness, where an
SNP which strongly predicts cigarettes per day was detected
in a GWAS sample including daily smokers, and found to
exert an effect only after a person has become an established
smoker [36, 37]. Due to our use of summary statistics, we
were unable to stratify our analyses on statin use. In addi-
tion, it was not possible to weight for the prevalence of statin
use, as this is unknown for the DIAGRAM consortium,
where statin use is additionally likely to be differential by
case/control status. Therefore, given our null results, it is
more appropriate to conclude that our MR analyses did not
provide evidence for a shared genetic etiology between
statin-induced proportional LDL-C response and T2D.

Furthermore, our observation that liability to T2D does
not associate with LDL-C response resulting from statin
treatment is consistent with previous studies showing that,
while individuals with T2D are likely to gain greater clinical
benefit from statin therapy in terms of absolute CVD risk
reduction, this does not result from differential lowering of

their LDL-C concentrations when compared with non-
diabetics [38].

An alternative noncausal explanation for the genetic
correlation, which does suggest the presence of (some form
of) directionally consistent pleiotropy, may be that both
traits are independently influenced by the same underlying
biological pathway [39]. Similar observations have been
made in the field of neuropsychiatric diseases, where pat-
terns of genetic correlation often reflect shared biological
processes rather than causal relationships [40]. More gen-
erally, caution has been advised against treating LD score
regression results as a singular assessment of causality,
amongst others due to its lack of validation against some
known causal relationships [41].

While an important strength of our analyses is the use of
large-scale GWAS data, increasing the power of our investi-
gations for both directions of causality, we purposely included
instruments which did not attain genome-wide significance in
their corresponding GWAS to increase the number of instru-
ments. Though instrument-exposure associations will have
been estimated with less precision for the weaker (i.e., sub-
threshold) instruments, we considered this issue analogous to
possible misspecification of weights in allele scores, which
causal estimates have been shown to be generally robust to
[42]. However, we cannot exclude the possibility of weak
instrument bias, particularly for the full set of T2D liability
instruments, which included several instruments with an
individual F-statistic below 10 [22]. Given the relatively small
overlap between the GWAS datasets, it is likely that any weak
instrument bias would be towards the null [43]. However, the

Fig. 3 Funnel plots of individual causal effect estimates. Data pre-
sented as funnel plots of Wald ratios for statin response on type 2
diabetes (T2D, left panel), and liability to T2D on statin response (right
panel). The black dots correspond to the restricted lists of variants (see

text), while the full set included all dots. The lines correspond to the
inverse-variance weighted combined MR estimator, for the restricted
(dashed) and full set of instruments.
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analysis using the restricted list of strong instruments reas-
suringly showed similar results.

In conclusion, our results suggest that liability to T2D is
unlikely to influence LDL-C response to a statin, but pro-
vided some evidence of a shared genetic etiology between
statin-induced LDL-C response and T2D. Future studies
should make a definitive assessment of direct causal effects
of statin-induced proportional LDL-C response on T2D in
populations of statin users.
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