:
S
gJl.'S

Universiteit
“dd) Leiden
Mb The Netherlands

1

)
3|
B 3
.
=
.

4

&

o

System-level design for efficient execution of CNNs at the
edge

Minakova, S.

Citation
Minakova, S. (2022, November 24). System-level design for efficient execution of

CNNs at the edge. Retrieved from https://hdl.handle.net/1887/3487044

Version: Publisher's Version
License: Licence agreement concerning inclusion of doctoral thesis
’ in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3487044

Note: To cite this publication please use the final published version (if
applicable).


https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3487044

Summary

Convolutional Neural Networks (CNNs) are biologically inspired computa-
tional models, characterized with the ability to handle large, unstructured
data. Due to this ability, CNNs excel at tasks such as image classification,
image segmentation, natural language processing, and are widely used to per-
form these tasks in applications such as navigation, facial recognition, medical
images analysis, and others. Nowadays, many CNN-based applications are
executed on edge platforms: mobile phones, tablets, cameras, etc. This stands
in contrast to the more common practice in which CNN-based applications
are executed on data centers (in the cloud). Unlike execution in the cloud,
execution at the Edge does not require transmission of the collected data (e.g.,
images from a CCTV camera) over the Internet, and thus guarantees higher
responsiveness and security.

However, execution of CNN-based applications at the Edge is challenging
due to requirements posed on the CNNs by the application and the target edge
platform. Among these requirements, the most common are high accuracy,
high throughput, low latency, low memory cost, and low energy cost. These
requirements make the design of a CNN executed at the Edge a complex
task. Typically, this task is performed using the state-of-the-art (SOTA) design
flow. The SOTA design flow explores CNNs with different architectures and
parameters and tries to find a CNN which adheres to all the requirements
posed on it.

While taking a good care of what is executed at the Edge (i.e., which
architecture and which parameters does a CNN have), the SOTA design flow
does not explore how a CNN or CNN-based application is executed (i.e., how
it utilizes computational, memory, and energy resources available on the edge
platform). Instead, the SOTA design flow adopts limitations that negatively
affect the design of CNNs and CNN-based applications executed at the Edge.
The first limitation is that a CNN is always executed layer-by-layer. This
sequential manner of CNN execution is widespread due to its simplicity, but
cannot guarantee efficient utilization of the resources available on the edge



platform. Consequently, a CNN designed using the SOTA design flow may
utilize the limited resources of an edge platform inefficiently. The second
limitation is that a CNN-based application only uses one CNN to perform
its task. Due to this limitation, the SOTA design flow lacks the means for
inter-CNN optimizations and run-time adaptivity, which are important to
some CNN-based applications.

In this thesis, we aim to relax the two aforementioned limitations and re-
duce their negative impact on the design of CNN-based applications executed
at the Edge. To this end, we extend the SOTA design flow and propose four
novel methodologies within the extended design flow.

The first two methodologies focus on relaxing the first limitation. These
methodologies find and enforce a non-sequential manner of CNN execution
to ensure efficient utilization of the platform resources by a CNN. The first
methodology efficiently distributes (maps) the computations within a CNN to
the computational resources of a target edge platform and thereby increases
the CNN throughput. The second methodology splits the data exchanged
between CNN layers into parts and reuses the platform memory among the
data parts, thus reducing the memory footprint of the CNN.

The last two methodologies focus on relaxing the second limitation. These
methodologies optimize CNN-based application beyond optimizing the indi-
vidual CNNs. The third methodology introduces run-time adaptivity into a
CNN-based application. This enables for the design and efficient execution of
an application which needs can change at run-time. The fourth methodology
performs joint memory optimization of multi-CNN applications (applications
that use multiple CNNSs to perform their task). Thus, the methodology offers
high rates of memory compression to fit multi-CNN applications into the
limited memory resources of an edge platform.



