
System-level design for efficient execution of CNNs at the
edge
Minakova, S.

Citation
Minakova, S. (2022, November 24). System-level design for efficient execution of
CNNs at the edge. Retrieved from https://hdl.handle.net/1887/3487044
 
Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis
in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3487044
 
Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3487044


Chapter 7

Summary and concluding
remarks

CONVOLUTIONAL Neural Networks (CNNs) are biologically inspired
computational models that are extremely effective at processing multi-

dimensional data and solving tasks such as images classification, objects de-
tection and others [4]. Nowadays, to ensure high responsiveness, low energy
cost and data privacy, many CNN-based applications execute CNNs on edge
(mobile and embedded) platforms. However, while execution of CNNs at
the Edge is desirable and beneficial, it is also challenging due to numerous
requirements, posed on the CNNs by the application and the target edge plat-
form. Among these requirements, the most common are high CNN accuracy,
high CNN throughput, low CNN latency, low CNN memory cost, and low
CNN energy cost. The aforementioned requirements make the design of a
CNN executed at the Edge a complex task. Typically, this task is performed
by means of the state-of-the-art (SOTA) design flow, shown in Figure 1.3. The
heart of the SOTA design flow are platform-aware NAS and the CNN opti-
mization methodologies. These methodologies explore CNNs with different
architectures and parameters (weights and biases) and try to find a CNN
which adheres to all the requirements posed on it. This CNN is then imple-
mented by means of existing DL frameworks such as Keras [19], Tensorflow [1],
TensorRT [72] and others [74], and deployed on an edge platform.

The SOTA design flow, however, has limitations that negatively affect
the design of CNN-based applications executed at the Edge. First of all, it
restricts the execution of a CNN to a so called sequential (layer-by-layer)
manner. The sequential manner of CNN execution is widespread due to
its simplicity but it cannot always guarantee efficient CNN execution (i.e.,



134 Chapter 7. Summary and concluding remarks

efficient utilization of resources, available on the target edge platform by a
CNN). As a dataflow kind of model, characterized with large amount of
parallelism available within and among its layers, a CNN can be executed in
alternative (non-sequential) manners, that ensure efficient utilization of the
target edge platform resources, and thus significantly improve the platform-
aware characteristics of the CNN [14,101]. However, this is not explored in the
SOTA design flow. Secondly, the SOTA design flow assumes that a CNN-based
application only uses one CNN to perform its task. As a result, the SOTA
design flow lacks means for inter-CNN optimizations and run-time adaptivity,
important to some CNN-based applications. In this thesis, we try to relax
the two limitations, mentioned above, and reduce their negative impact on
the design of CNN-based applications executed at the Edge. To this end, we
have extended the SOTA design flow as shown in Figure 1.5 and explained
in Section 1.5. To implement the extended design flow shown in Figure 1.5,
we have proposed four novel methodologies, presented in Chapters 4 to 6 in
this thesis. Below, we summarize the proposed methodologies and give some
concluding remarks.

To relax the first limitation, mentioned above, we have proposed the
methodologies, presented in Chapter 3 and Chapter 4. These methodologies
explore and exploit alternative (non-sequential) manners of CNN execution,
thereby improving platform-aware characteristics of a CNN.

The methodology presented in Chapter 3 ensures high CNN inference
throughput, required by many CNN-based applications executed at the Edge
[14]. To ensure high CNN inference throughput, our methodology efficiently
distributes (maps) the computations within a CNN to the computational re-
sources of a target edge platform. The mapping, found by our methodology,
features combined exploitation of two types of parallelism, namely task-level
parallelism and data-level parallelism, available within a CNN. This feature
distinguishes our methodology from other existing methodologies because
these methodologies utilize only task-level or only data-level parallelism,
when mapping a CNN onto an edge platform. Based on the experimental
results, we conclude that for CNNs executed on the Jetson TX2 edge plat-
form [71], our methodology offers a 1.36% to 42% higher inference throughput,
compared to the mapping methodology employed by the best-known and
state-of-the-art TensorRT DL framework for the Jetson TX2 edge platform.

The methodology presented in Chapter 4 ensures low-memory CNN in-
ference at the Edge, required for CNN-based applications executed on edge
platforms with extremely small memory resources, such as embedded Internet-
of-Things (IoT) devices [17]. To ensure low CNN memory footprint, our



135

methodology splits the data exchanged between layers of a CNN into parts,
processed in a specific order, and efficiently reuses the platform memory
among the data parts. However, as the data processing by parts may cause
CNN execution time overheads (e.g., CNN layers may require time to switch
among the data parts), our methodology may decrease the CNN through-
put. The evaluation results show that, compared to the memory reduction,
achieved by the most relevant CNN buffers reuse methodology, employed
by the TensorRT DL framework for efficient CNN execution at the Edge, our
memory reduction methodology allows to reduce the CNN memory footprint
by 2.8% to 38% at the cost of 2% to 23% decrease of the CNN throughput.

The methodologies proposed in Chapter 5 and Chapter 6 of this thesis, are
aimed at relaxation of the second limitation, mentioned above.

The scenario-based run-time switching (SBRS) methodology in Chapter 5
introduces the use of multiple CNNs and run-time adaptive switching between
these CNNs to a CNN-based application. Every CNN in the application corre-
sponds to a scenario and is designed to adhere to a specific set of requirements,
posed on the CNN. During the application execution, the application envi-
ronment can trigger the application to switch between the scenarios, thereby
adapting the characteristics of a CNN-based application to changes in the
application environment (such as a change in device battery level or a change
of the throughput of the input data stream). Thus, our methodology ensures
efficient execution of an application which needs are affected by the applica-
tion environment at run-time. To the best of our knowledge, our proposed
methodology is the first methodology, able to design an adaptive CNN-based
application, which considers platform-aware requirements and constraints
that are specifically affected by environment changes at run-time. The most
relevant to our methodology, the MSDNet methodology, does not consider
real-world platform-aware requirements and constraints and does not offer
means for automated switching among the application scenarios, based on the
changes in the application environment. Based on the experimental results,
we conclude that: 1) by introducing run-time adaptivity into CNN-based
applications, affected by changes in the application environment at run-time,
our methodology significantly improves the applications’ characteristics; 2)
our methodology outperforms the most relevant MSDNet methodology.

The methodology proposed in Chapter 6 extends our low-memory CNN
inference methodology, proposed in Chapter 4, with support for pipeline
parallelism and inter-CNN memory reuse. Thus, our methodology offers
efficient memory reduction to a wide spectrum of applications, designed
using both the SOTA design flow and our extended design flow. Based on the



136 Chapter 7. Summary and concluding remarks

evaluation results, we conclude that our methodology: 1) enables for up to 5.9
times memory reduction compared to deployment of CNN-based applications
with no memory reduction, and 7% to 30% memory reduction compared
to other memory reduction methodologies that reduce the CNN memory
cost without CNN accuracy decrease; 2) can be efficiently combined with
well-known pruning and quantization methodologies (that are orthogonal to
our methodology) in order to offer high rates of CNN memory compression
without significant decrease of the application accuracy and throughput.


