
System-level design for efficient execution of CNNs at the
edge
Minakova, S.

Citation
Minakova, S. (2022, November 24). System-level design for efficient execution of
CNNs at the edge. Retrieved from https://hdl.handle.net/1887/3487044

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis
in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3487044

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3487044

Chapter 6

Methodology for joint memory
optimization of multiple CNNs

Svetlana Minakova and Todor Stefanov. "Memory-Throughput Trade-off for
CNN-based Applications at the Edge". Accepted for publication in ACM Transactions on
Design Automation of Electronic Systems (TODAES), March 2022.

IN this chapter, we present our methodology for joint memory optimization
of multiple CNNs, which corresponds to the fourth research contribution

of this thesis summarized in Section 1.5.4. The proposed methodology is a
part of the post-selection optimization component, introduced in Section 1.5,
and is an extension of our methodology for low-memory CNN inference at
the Edge, presented in Chapter 4. The reminder of this chapter is organized
as follows. Section 6.1 introduces, in more details, the problem addressed by
our novel methodology. Section 6.2 summarizes the novel research contribu-
tions, presented in this chapter. An overview of the related work is given in
Section 6.3. Section 6.4 presents a formal definition of a CNN-based appli-
cation, used in this chapter. Section 6.5 presents our proposed methodology.
Section 6.6 presents the experimental study performed by using the proposed
methodology. Finally, Section 6.7 ends the chapter with conclusions.

6.1 Problem statement

As mentioned in Chapter 4 (see Section 4.1), the memory footprint of an appli-
cation using a single CNN, let alone multiple CNNs, often has to be reduced
to fit the application into the limited memory of an edge device. Typically,

108 Chapter 6. Methodology for joint memory optimization of multiple CNNs

the memory footprint of a CNN-based application is reduced using method-
ologies such as pruning and quantization [11, 17, 31, 98], briefly introduced in
Section 1.3 as a part of the CNN optimization engine. These methodologies
reduce the number or/and precision of parameters (weights and biases) of a
CNN, thereby reducing the memory footprint of a CNN-based application.
However, at high memory reduction rates, these methodologies may decrease
the CNN accuracy, while as mentioned in Section 1.2, high CNN accuracy is
very important for many CNN-based applications.

To achieve high CNN memory reduction and avoid substantial decrease of
the CNN accuracy, the CNN pruning and quantization methodologies can be
combined with CNN memory reuse methodologies such as the methodologies
in [28, 47, 65, 76]. Orthogonal to the pruning and quantization methodologies,
the CNN memory reuse methodologies reuse the platform memory allocated
to store intermediate computational results, exchanged between the layers of
a CNN. Thus, these methodologies further reduce the application memory
cost without decreasing the CNN accuracy. However, the methodologies
in [28,47,65,76] reuse platform memory within a CNN, but not among multiple
CNNs, thereby missing opportunities for inter-CNN memory reuse. As a
result, these methodologies are inefficient for multi-CNN applications (i.e.,
applications that use multiple CNNs to perform their functionality) such as
the applications demonstrated in [70, 84, 97, 104]. Moreover, due to Limitation
1, explained in Section 1.4.1, the methodologies in [28,47,65,76] do not account
for non-sequential manners of CNN execution, introduced in Section 2.4.
Consequently, these methodologies are also unfit for CNN-based applications
that execute CNNs in a non-sequential manner, such as the applications in [65,
67, 101]. To address the two issues, mentioned above, we propose our novel
methodology for joint memory optimization of multiple CNNs.

6.2 Contributions

In this chapter, we propose a methodology for joint memory optimization of
multiple CNNs. Our methodology offers memory reduction for CNN-based
applications that use multiple CNNs or/and execute CNNs in a non-sequential
manner. To this aim, our methodology significantly extends and combines
two existing CNN memory reduction methodologies: the CNN buffers reuse
methodology proposed in [76] and our methodology for low-memory CNN
inference, presented in Chapter 4 and based on our publication [65]. Our
methodology presented in Section 6.5 is the main novel contribution of this
chapter. Other important novel contributions are:

6.3. Related Work 109

• A schedule-aware CNN buffers reuse algorithm (see Section 6.5.1). This
algorithm extends the CNN buffers reuse methodology proposed in [76]
with consideration of various manners of CNN execution, including
the most common sequential execution manner briefly introduced in
Section 2.2, and alternative manners of CNN execution, explored by
the system-level optimization engine, introduced in Section 1.5. Fur-
thermore, unlike the methodology in [76], our novel CNN buffers reuse
algorithm reuses memory among different CNNs as well as within a
CNN. Therefore, our schedule-aware CNN buffers reuse algorithm
offers memory reduction for applications that use multiple CNNs to
perform their tasks or/and execute CNNs in a non-sequential manner.

• A CNN buffers size reduction algorithm (see Section 6.5.2). This algo-
rithm combines the buffers reuse, offered by the schedule-aware CNN
buffer reuse algorithm proposed in Section 6.5.1, with data processing
by parts proposed in our methodology for low-memory CNN inference
in Chapter 4. Additionally, our CNN buffers size reduction algorithm ex-
tends the methodology presented in Chapter 4 with memory-throughput
trade-off balancing, thus avoiding unnecessarily reducing the through-
put of the CNN. Therefore, our CNN buffers size reduction algorithm
offers further reduction of the memory of a CNN-based application at
the cost of possible CNN throughput decrease.

• up to 5.9 times memory reduction compared to deployment of CNN-
based applications with no memory reduction and 7% to 30% memory
reduction compared to other CNN memory reuse methodologies (see
Section 6.6.1);

Additionally, in Section 6.6.2 we demonstrate that our methodology can
be efficiently combined with orthogonal memory reduction methodologies
such as CNN quantization.

6.3 Related Work

The most common CNN memory reduction methodologies, namely pruning
and quantization, reviewed in surveys [11, 17, 31, 98], reduce the memory cost
of CNN-based applications by reducing the number or size of CNN parameters
(weights and biases) [4]. However, at high CNN memory reduction rates these
methodologies decrease the CNN accuracy, whereas high accuracy is very
important for many CNN-based applications [4]. In contrast, our memory

110 Chapter 6. Methodology for joint memory optimization of multiple CNNs

reduction methodology does not change the CNN model parameters and
therefore does not decrease the CNN accuracy.

The knowledge distillation methodologies, reviewed in surveys [17,98], try
to replace an initial CNN in a CNN-based application by an alternative CNN
with the same functionality but smaller size. However, these methodologies
involve CNN training from scratch and do not guarantee that the accuracy
of the initial CNN can be preserved. In contrast, our memory reduction
methodology is a general systematic methodology which always guarantees
preservation of the CNN accuracy.

The CNN buffers reuse methodologies, such as the methodology proposed
in [76], and the methodologies reviewed in [47], reduce the required CNN
memory by reusing platform memory, allocated for storage of intermediate
CNN computational results. These methodologies can significantly reduce
the CNN memory cost without decreasing the CNN throughput or accuracy.
However, these methodologies do not support reuse of the platform mem-
ory among multiple CNNs. Reusing the memory among CNNs as well as
within every CNN is vital for deployment of multi-CNN applications, such
as [84, 86, 95]. Thus, the methodologies in [47, 76] are not suitable for multi-
CNN applications. Moreover, these methodologies do not account for parallel
execution of CNN layers. Therefore, they are not applicable to CNN-based
applications, exploiting task-level (pipeline) parallelism [67, 101], available
within the CNNs. In contrast to these methodologies, our methodology is
applicable to the CNN-based applications, exploiting pipeline parallelism,
and multi-CNN applications.

The CNN buffers reduction methodology proposed in [65] and presented
in Chapter 4 of this thesis allows to significantly reduce the CNN-based
application memory cost at the expense of CNN throughput decrease. In this
methodology, CNN layers process their input data by parts and the device
memory is reused to store different parts of the layers input data. However,
this methodology always tries to achieve a very low CNN memory cost at
the expense of large CNN throughput decrease. In practice, partial reduction
of the CNN memory cost is often sufficient to fit a CNN-based application
into a device with a given memory constraint. In contrast to the methodology
proposed in [65], our proposed methodology involves a balanced memory-
throughput trade-off in a CNN-based application, and therefore does not
involve unnecessary decrease of the CNN throughput.

The CNN layers fusion methodologies, such as the methodologies in [5,73]
and the methodologies adopted by Deep Learning (DL) frameworks, such as
the TensorRT DL framework [72] or the PyTorch DL framework [75], enable

6.4. CNN-based application 111

to reduce the CNN memory cost by transforming the network into a simpler
form but preserving the same overall behavior. Being a part of the CNN
model definition, the CNN layer fusion methodologies are orthogonal to
our proposed methodology and can be combined with our methodology for
further CNN memory optimizations. In our experimental study (Section 6.6)
we implicitly use the CNN layers fusion by implementing the CNNs with the
TensorRT DL framework [72], which has built-in CNN layers fusion.

6.4 CNN-based application

A CNN-based application is an application which requires execution of one
or multiple CNNs to perform its functionality. In this section, we give an
example and a formal definition of a CNN-based application. Our example
application APP is shown in Figure 6.1 and is inspired by the real-world
CNN-based application for adaptive images classification proposed in [95].
For simplicity, in our application APP we use small made-up CNNs instead
of the real-world state-of-the-art CNNs used in [95]. Also, unlike the original
application in [95], our application APP utilizes alternative (non-sequential)

Figure 6.1: Example CNN-based application APP

112 Chapter 6. Methodology for joint memory optimization of multiple CNNs

manners of CNN execution.
To perform its functionality, application APP uses two CNNs, CNN1

and CNN2, designed to perform image classification on the same dataset,
but characterized with different accuracy and platform-aware characteristics.
CNN1 is a large and complex CNN, characterized with high accuracy, i.e.,
CNN1 performs the images classification very well. CNN2 is a small and
simple CNN. It is characterized with smaller accuracy than CNN2, but has
higher throughput, i.e., it is able to process images very fast. During its
execution, application APP accepts a stream of images, also called frames,
analyses these images, and adaptively selects one of its CNNs (CNN1 or
CNN2) to perform the image classification of the input frame. The complex
images are sent for processing to CNN1, while the simple images are sent for
processing to CNN2. By using CNN1 and CNN2 interchangeably, application
APP achieves higher classification accuracy and higher throughput, than by
using only CNN1 or only CNN2 [95].

As mentioned in Section 2.2, when deployed on a target edge platform,
a CNN-based application utilizes the platform memory and computational
resources to execute the CNNs. The memory of the edge device is used to
store parameters (weights and biases) and intermediate computational results
of the CNNs. The intermediate computational results are typically stored
in CNN buffers, briefly introduced in Section 2.2. Recall that a CNN buffer
is an area of platform memory, which stores intermediate computational
results (data) associated with one or multiple CNN edges and is characterized
with size, specifying the maximum number of data elements, that can be
stored in the buffer. To store data associated with every edge en

ij of CNN1

and CNN2, our example application APP uses a set of buffers Bnaive , where
every edge en

ij has its own buffer Bk of size |en
ij.data|. Hereinafter, we refer to

such buffers allocation as naive buffers allocation. In total, application APP
uses |Bnaive| = 9 CNN buffers. These buffers are shown in Table 6.1, where
Row 1 lists the buffers; Row 2 lists the edges using the CNN buffers to store
associated data; Row 3 lists the sizes of the CNN buffers expressed in number
of data elements.

The computational resources of the edge device are utilized to perform the
functionality of the CNNs. Typically the CNNs are executed layer-by-layer,

Table 6.1: Naive CNN buffers allocation

B B1 B2 B3 B4 B5 B6 B7 B8 B9

edges e1
12 e1

23 e1
24 e1

34 e1
45 e2

12 e2(1)
23 e2(2)

23 e2
34

size 3072 8192 8192 8192 8192 3072 6272 6272 10

6.5. Methodology 113

i.e. at every moment in time only one CNN layer is executed on the edge
platform. However, as explained in Section 2.4, a CNN-based application
executed on a multi-processor platform may split CNNs into partitions (sub-
networks) executed in a parallel pipelined fashion on different processors
of the platform. Our example application APP shown in Figure 6.1 exploits
pipeline parallelism available in CNN2 by splitting CNN2 into two partitions
(P2 and P3) and executing these partitions in parallel pipelined fashion.

To enable for representation of pipeline parallelism in a CNN-based ap-
plication, we: 1) represent CNNs used by the application as a set of CNN
partitions P. For application APP, P = {P1, P2, P3}, where P1 is a single parti-
tion of CNN1 (i.e., P1 = CNN1), P2 and P3 are partitions of CNN2; 2) use set J,
which explicitly defines the exploitation of pipeline parallelism among CNN
partitions P. Every element Ji ∈ J contains one or several CNN partitions.
If two CNN partitions Pm and Px, m ̸= x belong to the element Ji ∈ J, the
CNN-based application exploits task-level (pipeline) parallelism among these
partitions. For application APP, set J = {{P2, P3}} specifies that partitions P2
and P3 of the application are executed in parallel pipelined fashion.

The execution order of CNN layers within every CNN partition Pi, i ∈
[1, |P|] used by a CNN-based application is specified using sequence schedulei
of computational steps. At every step, represented as an element of schedulei,
a layer of partition Pi is executed. For example, schedule1 = {{l1

1}, {l1
2}, {l1

3},
{l1

4}, {l1
5}} specifies that the layers within partition P1 of application APP are

executed in 5 steps, and at j-th step, j ∈ [1, 5], layer l1
j is executed.

Based on the discussion above , we formally define a CNN-based ap-
plication as a tuple ({CNN1, ..., CNNN}, B, P, J, {schedule1, ..., schedule|P|}),
where {CNN1, ..., CNNN} are the CNNs utilized by the application; B is the
set of CNN buffers, utilized by the application; P is the set of CNN parti-
tions; J is the set which explicitly defines exploitation of task-level (pipeline)
parallelism by the application; schedulei, i ∈ [1, |P|] is a schedule of parti-
tion Pi which determines the execution order of the layers within partition
Pi. The example application shown in Figure 6.1 and explained above is for-
mally defined as a tuple APP = ({CNN1, CNN2}, Bnaive, {P1, P2, P3}, {{P2,
P3}}, {{{l1

1}, {l1
2}, {l1

3}, {l1
4}, {l1

5}}, {{l2
1}, {l2

2}}, {{l2
3}, {l2

4}}}), where buffers
Bnaive = {B1, ..., B9} are given in Table 6.1.

6.5 Methodology

In this section, we present our methodology for joint memory optimization of
multiple CNNs. The design flow of our methodology is shown in Figure 6.2.

114 Chapter 6. Methodology for joint memory optimization of multiple CNNs

Figure 6.2: Our methodology design flow

Our methodology accepts as inputs a CNN-based application, as formally
defined in Section 6.4, a memory constraint (in Megabytes) and an optional
throughput constraint (in frames per second) posed on the CNN-based applica-
tion. As an output, our methodology produces a final CNN-based application
that is functionally equivalent to the input CNN-based application, but char-
acterized with reduced memory cost and possibly decreased throughput. Our
methodology consists of three main steps.

At Step 1, we introduce CNN buffer reuse into the CNN-based application,
thereby reducing the application memory cost. This step is performed auto-
matically using our buffers reuse algorithm proposed in Section 6.5.1. As an
output, this step provides a set of CNN buffers to be reused among the CNNs
and within the CNNs of the CNN-based application.

If the memory reduction introduced by Step 1 is insufficient to fit a CNN-
based application within the given memory constraint, at Step 2, we try to
further reduce the the memory cost of the CNN-based application at the
expense of application throughput decrease. To do so, we introduce data
processing by parts (as proposed in Chapter 4) and the buffers reuse (as
proposed in Section 6.5.1) to the CNN-based application. We note that unlike
the methodology in [65], where the data processing by parts has been originally
proposed, Step 2 of our methodology does not introduce data processing by
parts into every layer of every CNN used by the application. Instead, Step 2
searches for a subset of layers such that data processing by parts in these layers
combined with buffers reuse introduces a balanced memory-throughput trade-
off to the CNN-based application. This step is performed automatically using
our buffers reduction algorithm proposed in Section 6.5.2. As explained in
Section 4.4 in Chapter 4 , the introduction of data processing by parts in a CNN
requires the layers of the CNN to be executed in a specific order. Therefore,
our buffers reduction algorithm also finds and enforces in the CNNs used by

6.5. Methodology 115

the application a specific schedule, which explicitly specifies the execution
order of layers and phases in the CNNs. As an output, Step 2 provides a
CNN-based application with buffers reuse and data processing by parts.

At Step 3, we use the CNN-based application, obtained at Step 2, to derive
the final CNN-based application provided as the output by our methodology.
This step is described in Section 6.5.3.

6.5.1 Buffers Reuse Algorithm

In this section, we present our buffers reuse algorithm, Algorithm 8, which is
a greedy algorithm. It visits, one-by-one, every edge in every CNN of a CNN-
based application and allocates a CNN buffer to this edge. When possible,
Algorithm 8 reuses CNN buffers among the visited edges, thereby introducing
memory reuse into the CNN-based application and reducing the application
memory cost. Algorithm 8 accepts as an input a CNN-based application with
naive buffers allocation, explained in Section 6.4. As an output Algorithm 8
produces a set of buffers B, reused among all the CNNs of the CNN-based
application. An example of buffers B generated by Algorithm 8 for the example
CNN-based application APP, explained in Section 6.4, is given in Table 6.2.

Unlike the naive CNN buffers allocation given in Table 6.1, the buffers in
Table 6.2 are reused among CNNs and within the CNNs of application APP.
For example, as shown in Column 2 in Table 6.2, CNN buffer B1, generated
by Algorithm 8, is reused among edges e1

12 and e1
34 of CNN1 and edge e2

12 of
CNN2. We note that according to Equation 2.7, explained in Section 2.2, the
reused buffers B, produced by Algorithm 8, occupy 24586* token_size bytes of
memory, while the initial, non-reuse buffers, given in Table 6.1 in Section 6.4,
occupy 51446* token_size bytes of memory.

In Line 1, Algorithm 8 sets the CNN buffers B to an empty set. In Lines
4 to 35, Algorithm 8 visits every edge en

ij of every partition Pm ∈ P of the
CNN-based application. In Line 4, Algorithm 8 creates an empty list Breuse
of existing CNN buffers that can be assigned to edge en

ij. In Lines 5 to 18,
Algorithm 8 checks every buffer Bk ∈ B, and determines if buffer Bk can be
assigned to edge en

ij. Buffer Bk cannot be assigned to edge en
ij if it is already

assigned to another edge er
zq used by the CNN-based application simultane-

Table 6.2: Reused CNN buffers

B B1 B2 B3 B4

edges e1
12, e1

34, e2
12 e1

23, e1
45, e2(1)

23 e1
24, e2(2)

23 e2
34

size 8192 8192 8192 10

116 Chapter 6. Methodology for joint memory optimization of multiple CNNs

Algorithm 8: Buffers reuse
Input: APPin = ({CNN1, ..., CNNN , Bnaive, P, J, {schedule1, ..., schedule|P|}})
Result: B

1 B← ∅;
2 for Pm ∈ P do
3 for en

ij ∈ Pm.E do
4 Breuse ← ∅;
5 for Bk ∈ B do
6 suits = true;
7 for er

zq ∈ Bk.edges do
8 find Px : er

zq ∈ Px;
9 if m ̸= x then

10 if ∃Jr ∈ J : {Pm, Px} ∈ Jr then
11 suits = f alse;

12 else
13 startz ← find in schedulem first step of lr

z;
14 endq ← find in schedulem last step of lr

q;
15 starti ← find in schedulem first step of ln

i ;
16 endj ← find in schedulem last step of ln

j ;
17 if [starti, endj] ∩ [startz, endq] ̸= ∅ then
18 suits = f alse;

19 if suits = true then
20 Breuse ← Breuse + Bk;

21 if Breuse = ∅ then
22 edges← ∅; edges← edges + en

ij;

23 find Bz in Bnaive such that en
ij ∈ Bz.edges;

24 Bbest = new shared buffer (edges, Bz.size);
25 B← B + Bbest;
26 else
27 costmin = in f ;
28 for Bk ∈ Breuse do
29 find Bz in Bnaive such that en

ij ∈ Bz.edges;
30 cost = max(Bz.size−Bk.size, 0);
31 if cost < costmin then
32 Bbest = Bk;
33 costmin = cost;

34 Bbest.edges← Bbest.edges + en
ij;

35 Bbest.size = Bbest.size + costmin;

36 return B

ously with edge en
ij, i.e., if: 1) edges er

zq and en
ij belong to different partitions

6.5. Methodology 117

and the CNN-based application exploits parallelism between these partitions
(conditions in Line 9 and Line 10 are met). For example, buffer B1 of appli-
cation APP, assigned to edge e2

12 of partition P2 cannot be also assigned to
edge e2

34 of partition P3 because the application APP exploits pipeline paral-
lelism between partitions P2 and P3; 2) edges er

zq and en
ij, belong to one and

the same partition (condition in Line 9 is not met) and simultaneously use the
platform memory. To determine whether edges er

zq and en
ij use the platform

memory simultaneously, in Lines 13 to 16 Algorithm 8 takes the schedule of
partition Pm, i.e, schedulem, and finds in this schedule intervals (in steps) when
the platform memory is used by edges er

zq and en
ij. Edge er

zq starts to use the
platform memory when layer lr

z is first executed, i.e., when layer lr
z first writes

data associated with edge er
zq to the platform memory. Edge er

zq stops using
the platform memory when layer lr

q is last executed, i.e., when layer lr
q reads

the (last part of) data associated with edge er
zq from the platform memory.

Analogously, edge en
ij starts to use the platform memory when layer ln

i is first
executed and stops using the platform memory when layer ln

j is last executed.
Thus, edges er

zq and en
ij use the platform memory simultaneously if the steps

interval of memory usage of er
zq overlaps with the interval of en

ij, i.e., if the
condition in Line 17 is met. For example, buffer B2 of the example application
APP, assigned to edge e1

23 of partition P1 cannot be also assigned to edge
e1

24 of partition P1. The layers within partition P1 are executed according to
schedule1 = {{l1

1}, {l1
2}, {l1

3}, {l1
4}, {l1

5}}, explained in Section 6.4. According
to schedule1, edge e1

23 uses the platform memory in steps interval [2,3], and
edge e1

24 uses the platform memory in steps interval [2,4]. Intervals [2,3] and
[2,4] overlap, which means that edges e1

23 and e1
24 use the platform memory

simultaneously and cannot be assigned to one buffer. If neither of conditions
1) and 2) mentioned above is met, buffer Bk can be reused for storage of data
associated with edge en

ij and is added to the list Breuse in Line 20.

In Lines 21 to 35 Algorithm 8 finds a reuse buffer Bbest, which is best suited
to store the data associated with edge en

ij. If list Breuse, created in Lines 4 to
20, is empty (the condition in Line 21 is met), in Lines 21 to 25, Algorithm 8
defines Bbest as a new buffer and allocates this buffer to edge en

ij. The size of
buffer Bbest is computed as the size of buffer Bz ∈ Bnaive allocated to edge en

ij in
the naive buffers allocation.

Otherwise, in Lines 27 to 35, Algorithm 8 selects Bbest from the list Breuse.
Buffer Bbest is selected such that the increase in memory cost, computed in
Line 30, and introduced by reusing of buffer Bbest to store data associated with
edge en

ij is minimal. In Lines 34 to 35, Algorithm 8 assigns buffer Bbest to edge

118 Chapter 6. Methodology for joint memory optimization of multiple CNNs

en
ij and increases the size of buffer Bbest by the memory cost costmin, introduced

into the CNN-based application by reuse of buffer Bbest for storage of data
associated with edge en

ij. Finally, in Line 36, Algorithm 8 returns the CNN
buffers B.

6.5.2 Buffers Reduction Algorithm

In this section, we present our buffers sizes reduction algorithm, Algorithm 9.
This algorithm introduces data processing by parts (as proposed in Chapter 4)
and buffers reuse (as proposed in Section 6.5.1) to a CNN-based application.
To enable a balanced memory-throughput trade-off in the application, data
processing by parts is introduced only in a subset of layers used by the ap-
plication. To find this subset, Algorithm 9 uses a multi-objective Genetic
Algorithm (GA) [83]: a well-known heuristic approach, which basic concepts
and parameters are introduced in Section 2.6.

Algorithm 9 accepts as inputs: 1) a CNN-based application with naive
buffers allocation, explained in Section 6.4; 2) a list of reused buffers B ob-
tained using Algorithm 8, presented in Section 6.5.1; 3) Constraints Mc and Tc

posed on the application. The memory constraint Mc specifies the maximum
amount of memory (in MegaBytes) that can be occupied by the CNN-based ap-
plication. The throughput constraint Tc is defined as a set {Tc

1 , ..., Tc
N}, where

Tc
n, n ∈ [1, N] specifies the minimum throughput (in fps) which has to be

demonstrated by CNNn used by the application; 4) A set GA_par of standard
user-defined GA parameters, briefly introduced in Section 2.6. As outputs, Al-
gorithm 9 provides: 1) a CNN-based application functionally equivalent to the
input application but utilizing data processing by parts and buffers reuse as
explained above. Compared to the input application, the output application is
characterized with reduced memory cost and possibly decreased throughput.
Also, due to the utilization of data processing by parts, the output application
may execute CNN layers in a different order than the input application; 2) a
set of phases Φ which specifies the number of phases in every layer of every
CNN used by the application. These two outputs are required to generate the
final application as proposed in Section 6.5.3.

As an example, taking CNN-based application APP = ({CNN1, CNN2},
Bnaive, {P1, P2, P3}, {{P2, P3}}, {{{l1

1}, {l1
2}, {l1

3}, {l1
4}, {l1

5}}, {{l2
1}, {l2

2}},
{{l2

3}, {l2
4}}}) introduced in Section 6.4, reused buffers B shown in Table 6.2,

constraints Mc = 0.02 MegaBytes (20000 bytes), Tc = {0, 0}, and standard
GA parameters GA_par proposed in work [83], Algorithm 9 produces as
an output application APP′ = ({CNN1, CNN2}, Breduced, {P1, P2, P3}, {{P2,
P3}}, {{l1

1}, {l1
2}, [{l1

3}, {l1
4}, {l1

5}] x 32}, {{l2
1}, {l2

2}}, {{l2
3}, {l2

4}}}) and a set

6.5. Methodology 119

Algorithm 9: Buffers reduction
Input: APPin=({CNN1, ..., CNNN}, Bnaive, P, J, {schedule1, ..., schedule|P|}),

B, Constraints = (Mc, Tc), GA_par
Result: APPout=({CNN1, ..., CNNN}, Breduced, P, J, {schedule′1, ..., schedule′|P|}), Φ

1 APPout ← ({CNN1, ..., CNNN}, B, P, J, {schedule1, ..., schedule|P|});
2 M = compute memory cost of APPout, using Equation 2.5;
3 if M ≤ Mc then
4 Φ← {(ln

i , 1)}, n ∈ [1, N], i ∈ [1, |Ln|];
5 return (APPout, Φ);

6 X ← binary string of length ∑N
n=1 |Ln|;

7 f itness = minimize(EvalMemory(APPin, X),
−EvalThroughput(APPin, X, 1), ..., −EvalThroughput(APPin, X, N));

8 pareto ← GA(X, GA_par, f itness);
9 S← ∅;

10 for X ∈ pareto do
11 if M = EvalMemory(APPin, X) ≤ Mc ∧ Tn =

EvalThroughput(APPin, X, n) ≥ Tc
n ∈ Tc, n ∈ [1, N] then

12 S← S ∪ X;

13 if S ̸= ∅ then
14 Xbest = select from S chromosome X with minimal memory footprint

M = EvalMemory(APPin, X);
15 else
16 Xbest = select from pareto chromosome X with minimal memory footprint

M = EvalMemory(APPin, X);

17 (APPout, Φ)← Algorithm 10(APPin, Xbest);
18 return (APPout, Φ);

19 Function EvalMemory(APPin, X):
20 (APPX , Φ)← Algorithm 10(APPin, X);
21 M = compute memory cost of APPX , using Equation 2.5;
22 return M;

23 Function EvalThroughput(APPin, X, n):
24 (APPX , Φ)← Algorithm 10(APPin, X);
25 Tn = evaluate throughput of CNNn used by APPX and executed with

phases Φ;
26 return Tn;

of phases Φ = {1, 1, 32, 32, 32, 1, 1, 1, 1}. Elements of set Φ specify the number
of phases performed by layers l1

1 , l1
2 , l1

3 , l1
4 , l1

5 , l2
1 , l2

2 , l2
3 , and l2

4 , respectively.
Application APP′ uses buffers Breduced, produced by Algorithm 9 and shown

120 Chapter 6. Methodology for joint memory optimization of multiple CNNs

Table 6.3: reduced CNN buffers

B B1 B2 B3 B4

edges e1
12, e1

34,e2
12 e1

23, e2(1)
23 e1

24, e2(2)
23 e1

45, e2
34

size 3072 8192 8192 256

in Table 6.3. We note that according to Equation 2.7, the reduced CNN buffers
produced by Algorithm 9 occupy 19712* token_size bytes of memory (see
Table 6.3), while the CNN buffers obtained by only using buffers reuse oc-
cupy 24586* token_size bytes of memory (see Table 6.2). The difference occurs
because, besides buffers reuse, Algorithm 9 introduces data processing by
parts to layers l1

3 , l1
4 , and l1

5 of CNN1. To enable for buffers reduction with
data processing by parts, Algorithm 9 enforces a specific execution order
for the layers of CNN1 which processes data by parts. This is expressed in
APP′ through schedule′1 = {{l1

1}, {l1
2}, [{l1

3}, {l1
4}, {l1

5}]x32}. In schedule′1, the
square brackets enclose a repetitive sub-sequence of steps. At every step, a
phase of a CNN layer is executed. During the first 2 steps, layers l1

1 and l1
2 ,

respectively, execute their single phase. Then, phases 1-32 of layers l1
3 , l1

4 , and
l1
5 are executed in an alternating manner, where a phase of layer l1

3 is followed
by a phase of layer l1

4 , and a phase of layer l1
5 . The set Φ specifies that each

of layers l1
3 , l1

4 , and l1
5 in CNN1 performs 32 phases (processes its input data

by 32 parts), while layers l1
1 , l1

2 of CNN1 and all layers of CNN2 perform one
phase (do not process data by parts).

In Lines 1 to 3, Algorithm 9 checks if utilization of only buffers reuse is
sufficient to meet the memory constraint. To perform the check, in Line 1,
Algorithm 9 generates an application that employs only buffers reuse (uses
buffers B, obtained using Algorithm 8). In Lines 2 and 3, Algorithm 9 checks
whether this application meets the memory constraint. If so (the condition
in Line 3 is met), in Line 5, Algorithm 9 performs an early exit. It returns
as an output the application, generated in Line 1. It also returns the set of
phases Φ generated in Line 4 specifying that every layer in every CNN in the
application performs one phase, i.e., does not process data by parts.

Otherwise, Algorithm 9 performs a GA-based search to find a set of layers
that have to process data by parts. To this end, Algorithm 9 uses a standard
GA with two-parent crossover and a single-gene mutation as presented in
Section 2.6, and two problem-specific GA attributes: a chromosome and a
fitness function. Recall that the chromosome is a genetic representation of
a GA solution. In Algorithm 9, a chromosome X specifies data processing
by parts in a CNN-based application. It is defined in Line 6 as a string of
length ∑N

n=1 |Ln|, where N is number of CNNs used by the application, |Ln|

6.5. Methodology 121

Table 6.4: Chromosome

l1
1 l1

2 l1
3 l1

4 l1
5 l2

1 l2
2 l2

3 l2
4

0 0 1 1 1 0 0 0 0

is the total number of layers in the n-th CNN used by the application. Every
gene of the chromosome takes value 0 or 1 and specifies whether a layer
processes data by parts (gene=1) or not (gene=0). Table 6.4 gives an example
of a chromosome, which specifies data processing by parts as in the example
application APP′, mentioned above.

The fitness-function, briefly introduced in Section 2.6, evaluates the quality
of GA solutions, represented as chromosomes, and guides the GA-based
search. The fitness function used by Algorithm 9 is defined in Line 7. It
specifies that during the GA-based search Algorithm 9 tries to: 1) minimize the
application memory cost M; 2) maximize (minimize the negative) throughput
Tn of every CNN used by the application. To evaluate a chromosome in terms
of memory and throughput, Algorithm 9 uses function EvalMemory and
function EvalThroughput, explained in the Memory and throughput evaluation
section below.

In Line 8, Algorithm 9 performs the GA-based search, which delivers a set
of pareto-optimal solutions (chromosomes) called a pareto-front [83]. From
this pareto-front, in Lines 9 to 16, Algorithm 9 selects the best chromosome, i.e.,
a chromosome which ensures that the CNN-based application has minimum
memory footprint, while, if possible, meets the memory and throughput
constraints posed on the application. In Lines 9 to 12, Algorithm 9 defines
subset S of the pareto-front. All chromosomes in subset S enable the CNN-
based application to meet the memory and throughput constraints. If such a
subset exists (the condition in Line 13 is met), in Line 14, Algorithm 9 selects
the best chromosome from this subset. Otherwise, in Line 16, Algorithm 9
selects the best chromosome from the pareto-front.

In Line 17, Algorithm 9 uses the input application APPin and the best
chromosome Xbest selected in Lines 9 to 16, to generate the output application
APPout and a set of phases Φ performed by layers of application APPout. The
output application uses both data processing by parts and buffers reuse, and is
characterized with reduced memory cost and possibly decreased throughput
compared to the input application. The generation of application APPout

and set Φ from the input application APPin and the best chromosome Xbest

is performed using Algorithm 10, explained in the Derivation of a CNN-based
application with data processing by parts and buffers reuse section below. Finally,
in Line 18, Algorithm 9 returns application APPout and set Φ.

122 Chapter 6. Methodology for joint memory optimization of multiple CNNs

Derivation of a CNN-based application with data processing by parts and
buffers reuse

To generate an application, functionally equivalent to the input application
APPin but using the data processing by parts as specified in chromosome X
and buffers reuse as proposed in Section 6.5.1, Algorithm 9 uses the derivation
of a CNN-based application with data processing by parts and buffers reuse
- see Algorithm 10. In Line 1, Algorithm 10 defines an empty set Bmin of
buffers with minimum size and no reuse, and an empty set of phases Φ. In
Lines 2 to 7, Algorithm 10 visits every partition Pp in the input application
APPin. In Line 3, Algorithm 10 uses chromosome X and Equation 6.1 to
compute the number of phases Φ1

n performed by every layer ln
i in partition Pp.

If gene X.ln
i of chromosome X specifies that layer ln

i processes data by parts
(i.e., X.ln

i = 1), the number of phases Φn
i for this layer is determined using

Algorithm 3, explained in Section 4.5.1 in Chapter 4. Otherwise, the number
of phases Φn

i for layer ln
i is set to 1, which means that layer ln

i does not process
data by parts.

Φn
i (x) =

{
determine using Algorithm 3 if x = 1
1 otherwise

(6.1)

In Line 4 to 5, Algorithm 10 obtains a set of buffers Bmin
p for partition Pp,

Algorithm 10: Derivation of a CNN-based application with data
processing by parts and buffers reuse

Input: APPin=({CNN1, ..., CNNN}, Bnaive, P, J, {schedule1, ..., schedule|P|}), X
Result: APPreduced, Φ

1 Bmin ← ∅; Φ← ∅;
2 for Pp ∈ APPin do
3 Φp ← {(ln

i , Equation 6.1 (X.ln
i))}, ln

i ∈ Pp.L;
4 Gp(Ap, Cp)← CNN-to-CSDF (Pp, Φp) // Algorithm 4 in Section 4.5.2;
5 Bmin

p , schedule′p ← use SDF3 [91] to derive minimum-sized buffers and a
schedule that enables execution of partition Pp represented as CSDF
model Gp with these buffers;

6 Bmin ← Bmin ∪ Bmin
p ;

7 Φ← Φ ∪Φp;

8 APPparts ← ({CNN1, ..., CNNN}, Bmin, P, J, {schedule′1, ..., schedule′|P|});
9 Breduced ← Algorithm 8 (APPparts);

10 APPreduced = ({CNN1, ..., CNNN}, Breduced, P, J, {schedule′1, ..., schedule′|P|})
11 return (APPreduced, Φ);

6.5. Methodology 123

where every buffer Bk ∈ Bmin
p is allocated to an edge in partition Pp, and is

characterized with minimum size. Together with buffers Bmin
p , Algorithm 9 ob-

tains specific schedule schedule′p, which enables to correctly execute partition
Pp with buffers Bmin

p . To do so, Algorithm 10 converts every CNN partition
into a functionally equivalent CSDF model (Line 4) using the CNN-to-CSDF
conversion procedure - see Algorithm 4 in Section 4.5.2, and feeds the obtained
CSDF models to the SDF3 embedded systems design and analysis tool [91].
In Lines 6 and 7, Algorithm 10 accumulates the minimum sized buffers and
phases obtained in Lines 3 to 5 in sets Bmin and Φ, respectively. In Line 8,
Algorithm 10 generates application APPparts which processes data by parts
as specified in chromosome X without buffers reuse. In Lines 9 to 10, Algo-
rithm 10 introduces buffers reuse into application APPparts, thereby obtaining
application APPreduced. Finally, in Line 11, Algorithm 10 returns application
APPreduced together with phases Φ.

Memory and throughput evaluation

The memory and throughput of a GA solution, i.e., a chromosome, are evalu-
ated using function EvalMemory defined in Lines 19 to 22 of Algorithm 9 and
function EvalThroughput defined in Lines 23 to 24 of Algorithm 9. Both func-
tions accept as inputs the CNN-based application APPin and chromosome X.
From the application APPin and chromosome X, functions EvalMemory and
EvalThroughput generate application APPX as explained in the Derivation of
a CNN-based application with data processing by parts and buffers reuse section
above. Function EvalMemory computes the memory cost of application APPX

using Equation 2.5. Function EvalThroughput evaluates the throughput of
CNNn used by application APPX. The throughout of CNNn is estimated
using measurements on the platform or a third-party throughput evaluation
tool.

6.5.3 Final application derivation

In this section, we show how we perform the last step of our methodology,
where we derive the final CNN-based application with reduced memory cost
and possibly decreased throughput from the CNN-based application with data
processing by parts and buffers reuse obtained using Algorithm 9, explained
in Section 6.5.2. To derive the final CNN-based application, we use a DL
framework, such as TensorRT [72], and custom extensions. The DL framework
is used to implement and execute the CNNs and the CNN buffers within the
application. The custom extensions are used to enable alternative (different

124 Chapter 6. Methodology for joint memory optimization of multiple CNNs

from layer-by-layer) execution order within every CNN partition and among
CNN partitions. The alternative execution order is required for processing data
by parts and exploiting pipeline parallelism in the CNN-based application.

6.6 Experimental Results

In this section, we evaluate the efficiency of our methodology. The experiments
are performed in two steps. First, in Section 6.6.1, we compare our proposed
methodology to the existing memory reuse methodologies proposed in [76]
and [65]. Then, in Section 6.6.2, we further study the impact of our proposed
methodology on real-world applications and demonstrate how our method-
ology can be used jointly with orthogonal memory reduction methodologies
such as CNN quantization. The applications considered in our experiments be-
long to three categories: 1) applications utilizing one CNN which is executed
in a commonly adopted sequential fashion (layer-by-layer); 2) applications
utilizing one CNN and exploiting pipeline parallelism available among layers
of the CNN as explained in Section 2.4; 3) multi-CNN applications. By per-
forming the experiments on the applications from these common categories,
we study the efficiency of our methodology for a wide range of CNN-based
applications.

6.6.1 Comparison to existing memory reuse methodologies

In this section, we evaluate the efficiency of our methodology in comparison
with the existing memory reuse methodologies proposed in [76] and [65]. The
comparison between our methodology and the methodologies in [76] and [65]
in terms of memory reduction principles is summarized in Table 6.5.

To evaluate the efficiency of our methodology and study the impact of
the memory reuse principles and features summarized in Table 6.5 on CNN-
based applications, we apply our methodology and the methodologies in [76]
and [65] to six real-world CNN-based applications from the three common
categories, introduced in Section 6.6. The applications are listed in Column
1 in Table 6.6. To perform their functionality, the CNN-based applications
utilize the state-of-the-art CNNs listed in Column 2.

We measure and compare the applications memory cost, when it is: 1)
reduced using our methodology; 2) not reduced, i.e. every CNN edge has its
own CNN buffer allocated, similar to the example CNN-based application,
explained in Section 6.4; 3) reduced using the methodology in [76]; 4) reduced
using the methodology in [65].

6.6. Experimental Results 125

Table 6.5: Comparison of the memory reduction principles and features associated with the
memory reuse methodologies in [76], [65], and our proposed methodology

memory reuse principle or feature [65] [76] our method-
ology

buffers reuse, i.e. reuse of platform
memory, allocated to store output data
of different CNN layers

no yes yes

data processing by parts, i.e. reuse of
platform memory, allocated to store
partitions of input data of CNN layers

yes no yes

pipeline parallelism awareness no no yes
reuse of platform memory among
multiple CNNs

no no yes

memory-throughput trade-off yes,
unbalanced

no yes,
balanced

Taking into account that both the related work in [65] and our methodology
can decrease the throughput of CNNs, we also measure and compare the
throughput of every CNN utilized by the CNN-based applications. To measure
the applications memory cost and the CNNs throughput, we execute the
CNNs on the NVIDIA Jetson TX2 embedded platform [71]. Every CNN is
implemented using the Tensorrt DL framework [72], the best-known and state-
of-the-art for CNNs execution on the Jetson TX2, and is executed with batch
size = 1, typical for CNNs execution at the Edge and native floating-point 32
data precision.

The results of our experiments are given in Columns 3 to 11 of Table 6.6,
where Column 3 lists memory constraints (in MegaBytes) posed on the CNN-
based applications; Columns 4 to 7 show the applications memory cost;
Columns 8 to 11 show the throughput (in frames per second) of the CNNs
utilized by the applications.

As shown in Columns 4 to 7, when compared to the applications deployed
without memory reduction, our methodology demonstrates 2.3 to 5.9 times
memory reduction, with the minimum of (380/162) ≈ 2.3 times memory re-
duction achieved for application 5 and the maximum of (161.33/27.30) ≈ 5.9
times memory reduction achieved for application 2. Analogously, when com-
pared to the most relevant related work (the methodologies in [76] and [65]),
our methodology achieves 7% to 30% memory reduction with minimum and
maximum memory reduction achieved for application 5 and application 2,
respectively. As shown in Columns 4 to 7, for every CNN-based application
our methodology enables for more memory reduction than the methodolo-
gies in [76] and [65]. For example, the memory cost of application 1 can be

126 Chapter 6. Methodology for joint memory optimization of multiple CNNs
Table

6.6:Experim
entalR

esults

A
pplication

M
em

ory
(M

B)
Throughput(fps)

N
o

C
N

N
(s)

M
em

ory
constraint

(M
B)

no
reduc-
tion

[76]
[65]

ours
no

reduc-
tion

[76]
[65]

ours

C
N

N
-based

applications
w

ith
one

C
N

N
and

no
exploitation

oftask-level(pipeline)parallelism

1
M

obileN
etV

2
1.0

25
58.63

20.32
16.2

20.32
46

46
40

46
15

14.98
41

m
in

14.90
40.5

2
EfficientN

etB0
150

161.33
39.14

42.97
39.14

168.35
168.35

98
168.35

40
39.14

168.35
m

in
27.30

128.5
C

N
N

-based
applications,exploiting

pipeline
parallelism

,as
proposed

in
[67]

3
M

obileN
etV

2
1.0

30
61.69

20.32
17.38

30
49

46
43

49
15

15.92
43.65

m
in

15.92
43.65

4
EfficientN

etB0
150

163.65
39.14

44.18
45

170.3
168.35

98.8
170.3

50
45

170.3
m

in
31.34

124.24
M

ulti-C
N

N
applications

5

Inception
V

2

380
175

226

175
94

94
67

94
M

obilenetV
1

0.25
200

432
432

183
432

R
esN

etV
1

50
55

55
46

55
Inception

V
2

162
94

94
67

75
M

obilenetV
1

0.25
m

in
432

432
183

244
R

esN
et50

55
55

46
47

6

D
enseN

et121

625
291

184

161
52

52
37

52
M

obilenetV
1

1.0
500

59
59

50
59

R
esnetv1

50
55

55
46

55
D

enseN
et121

155
52

52
37

41
M

obilenetV
1

1.0
m

in
59

59
50

54
R

esnetv1
50

55
55

46
49

6.6. Experimental Results 127

reduced to 14.90 MB by our methodology and to 20.32 MB and 16.2 MB by the
methodologies in [76] and [65], respectively. The difference occurs because
our methodology combines the strength of both methodologies and extends
the memory reuse among multiple CNNs.

Columns 8, 10 and 11 show that the reduction of the applications memory
cost by the methodology in [65] and our methodology may decrease the
throughput of CNNs utilized by a CNN-based application. For example, as
shown in Row 4, the throughput of Mobilenet V2 CNN is: 1) decreased to
40 fps by the methodology in [65]; 2) may be decreased to 41 or 40.5 fps
by our methodology. However, our methodology: 1) does not decrease the
CNN throughput when the memory constraint is 25 MB; 2) decreases the
CNN throughput by 46 − 41 = 5 fps when the memory constraint is 15
MB; 3) decreases the CNN throughput by 46 − 40.5 = 5.5 fps when the
memory constraint is 0, whereas the methodology in [65] always decreases the
throughput of Mobilenet V2 CNN by 46− 40 = 6 fps. The difference occurs
because, unlike the methodology in [65], our methodology searches for an
optimal (balanced) memory-throughput trade-off (see Algorithm 9).

Columns 8 to 9 show that the methodology in [76] does not introduce
throughput decrease into the CNN-based applications exploiting no task-level
parallelism and multi-CNN applications. However, [76] can decrease the
throughput of CNNs in the CNN-based applications that exploit pipeline
parallelism. For example, it decreases the throughput of EfficientNet B0 CNN,
shown in Row 8. The throughput decrease occurs because the methodology
in [76] reuses CNN buffers which may be simultaneously accessed by different
partitions of a CNN-based application, and thus prevents exploitation of
pipeline parallelism in the CNN-based application. Unlike the methodology
in [76], our proposed methodology does not reuse such buffers and thus
enables for exploitation of pipeline parallelism.

Columns 4 to 7, Rows 10 to 13 show that for multi-CNN applications
our methodology enables more memory reduction than the methodology
in [76] and the methodology in [65]. For example, our methodology is able
to reduce the memory of multi-CNN application 6, shown in Rows 12 to
13 in Table 6.6 to 155 MB. This is ≈ 2 times more memory reduction than
offered by the methodology in [76] and ≈ 15% more memory reduction than
offered by the methodology in [65]. The difference occurs because: 1) our
methodology combines memory reuse principles offered by the methodologies
in [76] and [65]; 2) Unlike the methodologies in [76] and [65], our methodology
reuses memory among different CNNs as well as within the CNNs.

As demonstrated in this section, our methodology enables for up to 5.9

128 Chapter 6. Methodology for joint memory optimization of multiple CNNs

times memory reduction compared to deployment of CNN-based applications
without memory reduction and 7% to 30% memory reduction compared to
other memory reduction methodologies that reduce the CNN memory cost
without CNN accuracy decrease.

6.6.2 Joint use of quantization and our proposed methodology

In this section, we further study the impact of our proposed methodology on
real-world applications and demonstrate how our methodology can be used
jointly with orthogonal memory reduction methodologies such as CNN quanti-
zation. We apply the quantization methodology offered by the TensorFlow DL
framework [1] together with our proposed methodology to four CNN-based
applications, executed on the NVIDIA Jetson TX2 edge platform [71]. The
applications are summarized in Table 6.7 and explained in details in the Experi-
mental setup section below. To study the impact of joint use of our methodology
and the quantization methodology, we measure and compare the accuracy,
memory cost, and throughput of the CNNs used by the applications after the
applications’ memory cost is decreased using: 1) quantization and no memory
reuse; 2) our methodology combined with quantization. The measurements
are presented in the Experimental results section below. The comparison of
the measurements along with analysis and conclusions are presented in the
Analysis and conclusions section below.

Experimental setup

The applications that we use to study the effectiveness of our methodology
when used jointly with CNN quantization, are summarized in Table 6.7. Col-
umn 1 lists the applications’ names. Column 2 lists the CNNs used by the
applications. All the CNNs perform image classification on the ImageNet
dataset [21], composed of RGB images with 224 pixels height and width. The
baseline topology and weights of every CNN are taken from the applications

Table 6.7: Applications

application CNN(s) requirements
T (fps) M (MB)

Mobilenet-sequential Mobilenet V2 75 8
Resnet-sequential Resnet-50 75 26

Mobilenet-pipelined Mobilenet V2 80 30

multi-CNN Mobilenet V2 32 30Resnet-50 32

6.6. Experimental Results 129

Table 6.8: Quantization in the TensorFlow DL framework [1]

name No (baseline) Half Mixed Int
data precision fp32 fp16 fp16 int

parameters precision fp32 fp16 int int

library of the TensorFlow DL framework [1], which is well-known and widely
used for CNNs design and training. For execution at the Edge, the CNNs are
implemented using the Tensorrt DL framework [72], which is the best-known
DL framework for CNNs execution on the NVIDIA Jetson TX2 edge platform.
Columns 3 and 4 specify requirements, posed on the CNNs by the applications,
and passed as inputs to our proposed methodology. Column 3 specifies the
minimum throughput (in frames per second) which the CNNs are expected
to demonstrate during their inference on the NVIDIA Jetson TX2 platform.
Column 4 specifies the maximum amount of memory (in MegaBytes) which
the CNNs can occupy.

To every application listed in Table 6.7, we apply our methodology and the
quantization methodology offered by the TensorFlow DL framework [1]. The
quantization methodology in [1] offers several types of quantization, summa-
rized in Table 6.8. Each type of quantization suggests a specific target precision
used to store CNN parameters and weights. The available precision includes
32-bit floating-point (fp32) precision, 16-bit floating-point (fp16) precision and
a 8-bit integer (int) precision. For example, the half-quantization, shown in
Column 3 in Table 6.8, suggests that the CNN parameters and data are stored
in fp16 precision.

Experimental results

The experimental results for the four CNN-based applications, summarized in
Table 6.7, are shown in Figure 6.3. They are shown as bar plots that compare
the characteristics of the CNNs used by the applications when the applications’
memory cost is reduced using: 1) quantization with no memory reuse (the
light-grey bars); our methodology combined with quantization (the dark-grey
bars). Every plot shows a comparison for the CNNs with a certain type of
quantization offered by the TensorFlow DL framework (see Table 6.8 explained
in the Experimental setup section above), as well as for the baseline CNNs
with no quantization and the original 32-bit floating-point weights and data
precision.

The bar plots in Figure 6.3 are organized in a matrix. Every row corre-
sponds to a CNN-based application. Every column corresponds to a character-
istic of the CNNs used by the application: the CNN accuracy (the first column),

130 Chapter 6. Methodology for joint memory optimization of multiple CNNs

Accuracy (top-1, %)

Mobilenet-sequential

(a) (b) (c)

Mobilenet-pipelined

(g) (h) (i)

Resnet-sequential

(d) (e) (f)

Throughput (fps) Memory (MB)

(j) (k) (l)

Multi-CNN (Mobilenet V2 and Resnet-50)

Figure 6.3: Experimental results

6.6. Experimental Results 131

the CNN throughput (the second column)1, and the CNN memory cost (the
third column). For example, the bar plot in Figure 6.3(b), located in the first
row and second column, shows the throughput of the Mobilenet V2 CNN,
used by the Mobilenet-sequential application. Every bar is annotated with the
value of the respective characteristic. For example, Figure 6.3(b) shows that the
Mobilenet V2 CNN with half-quantization demonstrates 79 fps throughput
after the quantization and no memory reuse. The difference in height between
the light-grey bars and the dark-grey bars demonstrates the reduction (de-
crease) of the respective characteristics. For example, Figure 6.3(b) shows that
our methodology decreases the throughput of the Mobilenet V2 CNN with
half-quantization by 79− 71 = 8 fps.

Analysis and conclusions

In this section, we compare and analyse the experimental results, presented in
the the Experimental results section above.

First, we compare the CNNs accuracy. To do that, we analyse the plots
shown in the first column in Figure 6.3. We note that the accuracy of the CNNs
after quantization with no memory reuse matches the CNNs accuracy after
quantization combined with our methodology. In other words, our method-
ology does not reduce the CNNs accuracy. This is because our methodology
does not change the number and precision of CNN weights.

Second, we compare the throughput of the CNNs. To do that, we anal-
yse the plots shown in the second column in Figure 6.3. So, we see that our
methodology may decrease the CNNs throughput. For example, Figure 6.3(b)
shows that our methodology decreases the throughput of the Mobilenet V2
CNN with half-quantization by 79− 71 = 8 fps. As explained in Section 6.5,
the throughput decrease occurs due to the processing data by parts, utilized
by our methodology. However, the throughput decrease introduced by our
methodology is small and is compensated by the throughput increase, in-
troduced by the quantization. For example, Figure 6.3(b) shows that the
throughput of the Mobilenet V2 CNN with half-quantization combined with
our methodology is increased by 71− 46 = 25 fps, compared to the CNN with
no quantization and no memory reuse (the latter CNN is represented as the
light-grey ’baseline’ bar).

Finally, we compare the memory cost of the CNNs. To do that, we analyse
the plots shown in the third column in Figure 6.3. The plots show that our

1The CNN throughput is not shown for the CNNs with int- and mixed-quantization because
the Jetson TX2 platform does not support integer computations.

132 Chapter 6. Methodology for joint memory optimization of multiple CNNs

methodology enables to further reduce the memory cost of the quantized
CNNs. For example, Figure 6.3(c) shows that our methodology reduces 3.7
times the memory cost of Mobilenet V2 CNN with half-quantization. Analo-
gously, Figure 6.3(i) shows that our methodology reduces 2.1 times the memory
cost of Mobilenet V2 CNN with half-quantization and pipelined execution.
This means, that our methodology can be efficiently combined with the or-
thogonal quantization methodology to achieve high rates of CNN memory
reduction. The effectiveness of the methodologies joint use is explained by the
orthogonality of the methodologies. The quantization methodology changes
the precision of the CNN data and weights, thereby reducing the CNN mem-
ory cost, i.e., the amount of platform memory required to deploy and execute
the CNN. Our methodology, orthogonal to the quantization, efficiently reuses
the platform memory allocated for the CNN deployment, thereby further
reducing the CNN memory cost.

Based on the analysis presented above, we conclude that our methodology
can be efficiently combined with the orthogonal methodologies such as quantization.
The joint use of our methodology and quantization enables to achieve high rates
of CNN memory reduction. Moreover, when our methodology is combined with
quantization, the decrease of the CNN throughput, introduced by our methodology is
easily compensated by the CNN throughput increase, introduced by the quantization.

6.7 Conclusions

We propose a methodology for joint memory optimization of multiple CNNs.
Our proposed methodology significantly extends and combines two existing
memory reuse methodologies. In addition to the reuse of platform memory
offered by the existing methodologies, our methodology offers support of alter-
native (non-sequential) manners of CNN execution, reuse of memory among
different CNNs, and a memory-throughput trade-off balancing mechanism.
Thus, our methodology offers efficient memory reduction for CNN-based ap-
plications that use multiple CNNs or/and execute CNNs in a non-sequential
manner. The evaluation results show that our methodology: 1) enables for
up to 5.9 times memory reduction compared to deployment of CNN-based
applications with no memory reduction, and 7% to 30% memory reduction
compared to other memory reduction methodologies that reduce the CNN
memory cost without CNN accuracy decrease; 2) can be efficiently combined
with orthogonal memory reduction methodologies such as quantization to
achieve high rates of CNN memory reduction.

