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Chapter 5

Methodology for run-time
adaptive inference of
CNN-based applications

Svetlana Minakova, Dolly Sapra, Todor Stefanov, Andy Pimentel. "Scenario Based
Run-time Switching for Adaptive CNN-based Applications at the Edge". In ACM
Transactions on Embedded Computing Systems (TECS), vol. 21, Iss. 2, Article 14, March 2022.

IN this chapter, we present our methodology for run-time adaptive inference
of CNN-based applications, which corresponds to the third research contri-

bution of this thesis summarized in Section 1.5.3. The proposed methodology
is a part of the post-selection optimization component, introduced in Sec-
tion 1.5, and is aimed at relaxation of Limitation 2, introduced in Section 1.4.2.
The reminder of this chapter is organized as follows. Section 5.1 introduces, in
more details, the problem addressed by our novel methodology. Section 5.2
summarizes the novel research contributions, presented in this chapter. An
overview of the related work is given in Section 5.3. Section 5.4 provides a
motivational example. Sections 5.5 to 5.9 present the proposed methodology
and its steps. Section 5.10 presents the experimental study performed by using
the proposed methodology. Section 5.11 ends the chapter with conclusions.

5.1 Problem statement

As mentioned in Section 1.4.2, a CNN-based application designed using the
state-of-the-art design flow shown in Figure 1.3 and explained in Section 1.3,
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uses a single CNN to perform its task. This CNN is characterized with certain
accuracy and platform-aware characteristics (see Section 1.1) corresponding to
requirements posed on the CNN by the application and target edge platform
(see Section 1.2). The CNN characteristics remain unchanged during the
application run-time. However, the needs of a CNN-based application, and
hence the requirements posed on the CNN, may change under the influence
of the application environment during the application run-time. For example,
a CNN-based road traffic monitoring application, executed on a drone [53],
can have different needs, dependent on the situation on the roads and the
level of the device’s battery. If the traffic is heavy, the application should
provide high throughput and high accuracy to process its input data, which
typically means high energy cost. However, during a traffic jam, when the high
throughput is not required, or in case the battery of the drone is running low,
the application would function optimally by prioritizing energy efficiency over
the high throughput. This example shows that CNN-based applications need a
mechanism that can adapt their characteristics to the changes in the application
environment (such as a change of the situation on the roads or a change of
the device’s battery level) at the application run-time. Moreover, such a
mechanism should provide a high level of responsiveness, e.g., if a drone
battery is running low, the CNN-based application, executed on the drone,
should switch to an energy-efficient mode as soon as possible. However, to the
best of our knowledge, neither existing Deep Learning (DL) methodologies [3,
16, 38, 41, 46, 77, 92, 99, 100, 105, 106] for resource-efficient CNN execution at
the Edge, nor existing embedded systems design methodologies [13, 68, 108]
for execution of run-time adaptive applications at the edge, provide such
a mechanism. Therefore, in this chapter, we propose a novel methodology,
which enables to adapt a CNN-based application to changes in the application
environment during run-time.

5.2 Contributions

In this chapter, we propose a novel methodology which provides run-time
adaptation of a CNN-based application, executed at the Edge, to changes in
the application environment. Our methodology, shortly referred as scenario-
based run-time switching (SBRS) methodology, is based on the concept of
scenarios [15], widely used in embedded systems design. According to this
concept, an application can have different internal operation modes, called sce-
narios, each with its own typical characteristics or/and functionality. During
run-time, the application can switch among the scenarios, thereby adapting its
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characteristics or functionality to changes in the application environment. In
our SBRS methodology a scenario is a CNN designed to conform to a specific
set of requirements in terms of accuracy and platform-aware characteristics.
During the application execution, the application environment can trigger the
application to switch between the scenarios, thereby adapting the application
characteristics to changes in the application environment. The SBRS methodol-
ogy, proposed in Section 5.5, is our main novel contribution. Other important
novel contributions within the methodology, are:

• A novel SBRS Model of Computation (MoC) (see Section 5.7). The
SBRS MoC captures the functionality of a CNN-based application with
multiple scenarios and allows for run-time switching between these
scenarios.

• An algorithm for automated derivation of the SBRS MoC from a set of
application scenarios (see Section 5.8);

• A transition protocol for efficient switching between the CNN-based
application scenarios (see Section 5.9).

5.3 Related Work

The platform-aware neural architecture search (NAS) methodologies, pro-
posed in [3,38,46,92,100,105] and reviewed in survey [16], allow for automated
generation of CNNs that solve the same problem, and are characterized with
different accuracy and platform-aware characteristic. However, these method-
ologies do not propose a mechanism for run-time switching between these
CNNs, while such mechanism is necessary to ensure that application needs
are best served at every moment in time. In contrast to the NAS methodologies
from [3, 16, 38, 46, 92, 100, 105], our methodology proposes such a mechanism,
and ensures that application needs are best served at every moment in time.

The methodologies presented in [12, 39, 61, 96, 102, 107] propose resource-
efficient runtime-adaptive CNN execution at the Edge. These methodologies
represent a CNN as a dynamic computational graph, where for every CNN
input sample only a subset of the graph nodes is utilized to compute the
corresponding CNN output. The subset of graph nodes is selected during
the application run-time by special control mechanisms (e.g., control nodes,
augmenting the CNN graph topology). The utilization of only a subset of
graph nodes at every CNN computational step can increase the CNN through-
put and accuracy, and typically reduces the CNN energy cost. However, the
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methodologies in [12, 39, 61, 96, 102, 107] cannot adapt a CNN to changes in
the application environment, like changes of the device’s battery level, which
affect the CNN needs during the run-time. The adaptation in these methodolo-
gies is driven either by the complexity of the CNN input data [12,39,61,96,102]
or by the number of floating-point operations (FLOPs), required to perform
the CNN functionality [39, 107], while the changes in the application envi-
ronment often cannot be captured in the CNN input data or estimated using
FLOPs. In contrast to these methodologies, our SBRS methodology adapts a
CNN-based application to the changes in the application environment, and
therefore, allows to best serve the application needs, affected by such changes.

A number of embedded systems design methodologies, proposed in [13,
68,108], allow for efficient execution of runtime-adaptive scenario-based appli-
cations at the Edge. These methodologies represent an application, executed
at the Edge, in a specific model of computation (MoC), able to capture the
functionality of a runtime-adaptive application associated with several scenar-
ios, and ensure efficient run-time switching between the application scenarios.
However, the methodologies in [13, 68, 108] cannot be (directly) applied to
CNN-based applications due to a significant semantic difference between the
MoCs, utilized in these methodologies and the CNN model [2], typically uti-
lized by CNN-based applications. First of all, the MoCs utilized in [13, 68, 108]
lack means for explicit definition of various CNN-specific features, such as
CNN parameters and hyperparameters, while, as we show in Section 5.7,
explicit definition of these features is required for the application analysis.
Secondly, the MoCs utilized in methodologies [13, 68, 108] are not accepted
as input by existing Deep Learning (DL) frameworks, such as Keras [19] or
TensorRT [72], widely used for efficient design, deployment and execution
of CNN-based applications at the Edge. In our methodology, we propose
a novel application model, inspired by the methodologies [13, 68, 108], to
represent a run-time adaptive CNN-based application and ensure efficient
switching between the CNN-based application scenarios. However, unlike the
methodologies [13, 68, 108], our methodology 1) explicitly defines and utilizes
CNN-specific features for efficient execution of CNN-based applications at
the Edge, and 2) allows for utilization of existing DL frameworks for design,
deployment, and execution of the CNN-based application at the Edge.

5.4 Motivational Example

In this section, we show the necessity of devising a new methodology for
execution of adaptive CNN-based applications at the Edge. To do so, we
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present a simple example of a CNN-based application where the requirements
change at run-time due to the changes in its environment. The application is
discussed in the context of the existing methodologies reviewed in Section 5.3,
and the scenario-based run-time switching (SBRS), our proposed methodology.

The example application performs CNN-based image recognition on a
battery powered unmanned aerial vehicle (UAV). The UAV battery capacity
defines a power budget, which is available for both the flight and the CNN-
based application execution. The distribution of the power budget between the
flight and the application is irregular, and depends on the weather conditions,
which can change during the run-time (the UAV flight). In a calm weather,
the UAV requires less power to fly and can thus spend more power on the
CNN-based application. Conversely, when the weather is windy, the UAV
requires a large amount of power to fly, and therefore has less power available
for the CNN-based application. The weather prediction at the application
design time is an impossible task. Nevertheless, the CNN-based application
should be designed such that it: 1) meets the power constraint, imposed on
the application by the UAV battery and affected by weather conditions; 2)
demonstrates high image recognition accuracy (the higher the better).

Figure 5.1 illustrates an example of how the execution of such CNN-based
application will transpire, when designed using the existing methodologies
and our SBRS. Subplots (a), (b), (c) juxtapose the power available for the appli-
cation execution (dashed line), against the power used by the application (solid
line) during the UAV flight, which lasts 2 hours. The power available for the
application execution is dependant on the UAV battery capacity and weather
conditions. In this example, we assume that the CNN-based application is
allowed to use up to 12 Watts of power in turbulent weather (0 to 0.1 hours
and 1.0 to 1.5 hours) and up to 32 Watts of power in calm weather (0.1 to 1.0
hours and 1.5 to 2.0 hours). However, the actual power used by the application
is ultimately determined by the application design methodology. Further, the
subplots (d), (e), (f) show the image recognition accuracy demonstrated by
the application. Subplots (g), (h), (i) show the current charge state (solid line)
and minimum charge level (dashed line) of the UAV battery. If the current
battery charge reaches the minimum allowed battery level, it may lead to an
emergency landing of the UAV.

As a first case, we discuss the multi-objective NAS methodologies [3, 38,
46, 92, 100, 105] for the execution of the example application, that are typically
designed and utilized without considering a run-time changing environment.
In these methodologies, a CNN is obtained via an automated multi-objective
search and characterized with constant accuracy and power consumption. To
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(a) (b) (c)

(d) (e) (f)

(g)

Emergency 

   landing
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Figure 5.1: Execution of a CNN-based application, affected by the application environment
and designed using different methodologies
guarantee that the application meets a power constraint, such a CNN has to
account for the worst-case scenario, i.e., when the weather is always windy
and therefore only 12 Watts are available for the application execution at
any moment. In our illustrative example, such a CNN is characterized with
11.2 Watts of power and 82% accuracy (see Figure 5.1(a) and Figure 5.1(d),
respectively). As shown in Figure 5.1(g), when the UAV reaches its destination
after 2 hours of flight, it still has ≈50% battery charge left. On the one hand, it
means that the application always meets the power constraint. On the other
hand, the application could have spent ≈40% remaining UAV battery charge
by utilizing a more accurate CNN, though demanding additional power . In
other words, the methodologies in [3, 38, 46, 92, 100, 105] can guarantee that the
application meets the given platform-aware constraint, but cannot guarantee efficient
use of available platform resources.

As a second case, when the application is designed using data-driven
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adaptive methodologies, such as [12, 39, 61, 96, 102], the CNN execution is
sensitive to the input data complexity. To process "easy" images, they may use
a lower resolution or fewer layers, whereas processing "hard" images requires
more computation. In this manner, an adaptive CNN-based application is
able to adapt its power consumption depending on the input data complexity,
while demonstrating similar accuracy for all the inputs. However, such a CNN
cannot adapt to the changing environmental conditions, which can not be
explicitly captured in the input images. The application power consumption
can change during the application run-time, based on the input images, al-
though these changes may conflict with the application’s requirements, driven
by the weather conditions. For example, in Figure 5.1(b), between 1.0 and 1.25
hours, the CNN consumes significant amount of power despite the necessity
to switch to the low power mode. This may lead to increased UAV power
consumption over the flight duration and, eventually, to the violation of the
application power constraint, causing an emergency landing as illustrated
in Figure 5.1(h). Thus, the methodologies in [12, 39, 61, 96, 102] are not suitable
for CNN-based applications executed at the Edge in changing environment, because
these can neither properly adapt the application to the environment variations, nor
guarantee that the application constantly meets platform-aware constraints.

Another case of adaptive CNN-based application methodologies, is where
the application can adaptively change the number of floating-point operations
(FLOPs) spent on the image recognition, such as those in [39, 107]. However,
as shown in numerous works [54, 103, 105] FLOPs is an inaccurate indicator
for real-world platform-aware characteristics such as power consumption or
throughput. These characteristics depend on many other factors, for instance,
the ability of the platform to perform parallel computations, time and energy
overheads caused by the data transfers, internal hardware limitations, etc.
Consequently, the number of FLOPs spent during the application run-time,
neither guarantee that the application meets power constraint nor estimate the
application efficiency in terms of real-world platform-aware characteristics.
In other words, even though, the methodologies in [39, 107] enable run-time CNN
adaptivity, these cannot be directly deployed for applications with real-world platform-
aware requirements and constraints.

To summarize, the existing works lack a methodology to design an adap-
tive CNN-based application, for real-world platform-aware requirements and
constraints, specifically affected by the environment variations at run-time.
The motivation behind our current proposal, SBRS, is to enable such run-time
adaptivity. To design an application using our SBRS, we perform multi-
objective NAS, similar to those in [3,38,46,92,100,105]. However, unlike these
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methodologies, we derive multiple CNNs for each scenario. For example,
the first scenario for our example application for windy weather, can have
an associated CNN with 11.2 Watts power consumption and 82% accuracy.
The second scenario, for calm weather, is represented by a CNN with 31.0
Watts power consumption and 89% accuracy. At run-time, the application
switches between these scenarios, based on the weather conditions. Addi-
tionally, our methodology explicitly defines the switching mechanism based
on triggers generated due to an environment change at run-time. The execu-
tion of the CNN-based application with SBRS is shown in Figure 5.1 (c), (f),
(i). Particularly, Figure 5.1(i) highlights that the application meets the given
power constraint, i.e. the UAV battery charge does not go below the minimum
level before 2 hours, and SBRS uses all available power to achieve higher
application accuracy in comparison with Figure 5.1(d). Thus, by switching
among the scenarios, SBRS guarantees that a CNN-based application, affected by
the environment, meets platform-aware constraints while efficiently exploiting the
available platform resources to improve its accuracy.

5.5 SBRS methodology

In this section, we present our novel scenario-based run-time switching (SBRS)
methodology, which allows for run-time adaptation of a CNN-based appli-
cation, executed at the Edge, to changes in the application environment. The
general structure of our methodology is given in Figure 5.2. Our methodology
accepts as an input a baseline CNN and one or more requirements sets, associ-
ated with the CNN-based application. A baseline CNN is an existing CNN
(e.g., AlexNet [4], ResNet [36], or another), proven to achieve good results at
solving a CNN-based application task (e.g., classification). The requirements
sets describe a scope of needs, associated with the devised application. Every
application requirements set r = (ra, rt, rm, re) specifies the application priority
for high accuracy (ra), high throughput (rt), low memory cost (rm), and low
energy cost (re), respectively. One application can have one or several sets of
requirements, characterising the application needs at different times of the
application execution. The requirements sets are defined by the application de-
signer at the application design time. As an output, our methodology provides
a CNN-based application with SBRS capabilities, able to adapt its character-
istics to the changes in the application environment during the application
run-time.

Our methodology consists of three main steps. In Step 1 (see Section 5.6),
for every set of application requirements r, accepted as an input by our method-
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Figure 5.2: SBRS methodology
ology, we derive an application scenario, i.e., a CNN which conforms to the
given set r of application requirements.

In Step 2, we use the scenarios generated by Step 1, and the algorithm
proposed in Section 5.8, to automatically derive a SBRS MoC of a CNN-based
application with scenarios. The SBRS MoC, proposed in Section 5.7, captures
the scenarios associated with the CNN-based application, and allows for run-
time switching among these scenarios. Moreover, the SBRS MoC features
efficient reuse of the components (layers and edges) among and within appli-
cation scenarios, thereby ensuring efficient utilization of the platform memory
by the CNN-based application with SBRS.

Finally, in Step 3, we use the SBRS MoC derived at Step 2 to design a final
implementation of the CNN-based application with SBRS. The final implemen-
tation of the CNN-based application performs the application functionality
with run-time adaptive switching among the application scenarios, illustrated
in Section 5.4, and following the switching protocol presented in Section 5.9.

5.6 Automated scenarios derivation

In this section, we discuss the automated derivation of application scenarios,
i.e., CNNs characterized with different accuracy and platform-aware charac-
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(a) CNN1, r1 = (1.0, 0, 0, 0)

(b) CNN2, r2 = (0.2, 0.4, 0, 0.4)

Figure 5.3: Application scenarios
teristics. An example set of S = 2 scenarios, derived using our methodology,
is shown in Figure 5.3. As mentioned in Section 5.5, every intended sce-
nario CNNi, i ∈ [1, S] is first depicted by a user-defined set of requirements
ri = (ra, rt, rm, re), where ra, rt, rm, re refer to the importance of high CNN ac-
curacy, high CNN throughput, low CNN memory footprint and low CNN
energy cost, respectively. Together, these variables constitute the influence
factor of each requirement in the scenario by assigning a weight value to the
requirements such that ra + rt + rm + re = 1.0. For example, in scenario CNN1

shown in Figure 5.3(a) only high accuracy is pivotal, i.e. ra = 1.0, the require-
ments set is r1 = (1.0, 0, 0, 0). For scenario CNN2 shown in Figure 5.3(b), the
throughput and energy are critical factors while accuracy is still moderately
significant, and the requirements set is defined as r2 = (0.2, 0.4, 0, 0.4).

To derive a set of scenarios, depicted by their respective sets of require-
ments, we use a part of the extended CNN design flow shown in Figure 1.5
and explained in Section 1.5. First, the sets of requirements are passed to the
CNN optimization engine, introduced in Section 1.3. The CNN optimization
engine performs automated search for optimal CNN architecture and weights
using techniques such as platform-aware NAS [9, 25, 34, 38, 46, 92, 105] and
CNN compression [41, 99, 106]. The search results into a set of CNNs, char-
acterized with different architecture, weights, accuracy, and platform-aware
characteristics. The platform-aware characteristics of the CNNs may be fur-
ther improved by the use of the system-level optimization engine, introduced in
Section 1.5. Recall, that the system-level optimization engine explores and
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exploits alternative manners of CNN execution to improve the CNNs char-
acteristics, and produces as an output a set of augmented design points, i.e.,
CNNs, annotated with a specific manner of execution. Finally, the extended
selection component, introduced in Section 1.5, selects scenarios from the
(augmented) design points, produced using the CNN optimization engine
and (possibly) the system-level optimization engine. The selection of every
scenario is based on existing multi-objective ranking algorithms [29], able to
score a CNN, based on the CNN accuracy and platform-aware characteristics,
and a set of requirements, posed on a CNN.

To estimate the accuracy and platform-aware characteristics, the CNN
optimization engine and the system-level optimization engine use the CNN
characteristics estimation component, briefly introduced in Section 1.3. In our
methodology, the CNN characteristics estimation component provides means
to evaluate the CNN accuracy, throughput, memory cost, and energy cost.

To evaluate the accuracy of a CNN, we use means of existing DL frame-
works, such as Keras [19], Pytorch [75], Tensorlow [1], TensorRT [72] and
others [74]. These frameworks offer a wide range of a state-of-the-art tech-
niques for evaluating CNN accuracy. Mainly, we use the widely known
cross-validation technique [78]. In this technique, a CNN efficiency metric
is measured by application of a CNN to a special set of data, called valida-
tion dataset [78]. The CNN accuracy is computed as the number of correctly
processed input frames to the total number of the CNN input frames. It is im-
portant to note that even though we refer to estimation of a CNN as accuracy,
it is possible to use alternative estimation metrics suitable to the application,
and offered by the DL frameworks. For instance, F-1 score, precision, recall,
PR-AUC (Area under curve for precision recall) [89] are some of the metrics
that can be used for CNNs estimation as well.

To estimate the platform-aware characteristics of a CNN, we use analytical
formulas as well as measurements on the platform. The memory cost of a
CNN is estimated analytically, using Equation 2.5 explained in Section 2.2.
To estimate the CNN throughput and energy cost that are notoriously hard to
evaluate analytically [54, 60, 103, 105], we use direct measurements on the
platform.

5.7 SBRS application model

In this section, we propose our SBRS MoC, which models a CNN-based appli-
cation with scenarios. The SBRS MoC captures multiple scenarios associated
with a CNN-based application, and allows for run-time switching among
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Figure 5.4: SBRS MoC
these scenarios. Every scenario in the SBRS MoC is a CNN. Figure 5.4 shows
an example of the SBRS MoC, which models a CNN-based application as-
sociated with scenarios CNN1 and CNN2 shown Figure 5.3 and explained in
Section 5.6. In this section, we use the example in Figure 5.4 to explain the
SBRS MoC in detail. Formally, the SBRS MoC is defined as a scenarios super-
graph, augmented with a control node c and a set of control edges Ec. The
scenarios supergraph (see Section 5.7.1), captures all components (layers and
edges) in every scenario of a CNN-based application. Therefore, it captures
the functionality of every scenario, used by the application. To represent the
functionality of a specific scenario, the SBRS MoC uses a sub-graph of the
scenarios supergraph. The execution of a specific scenario (i.e., the use of a
specific sub-graph of the scenarios supergraph) as well as run-time adaptive
switching among the scenarios is determined by the control node c of the SBRS
MoC (see Section 5.7.2). Finally, control edges Ec (see Section 5.7.3) specify the
communication between the control node c and the scenarios supergraph. The
details of the SBRS MoC deployment and inference at the Edge are provided
in Section 5.7.4.

5.7.1 Scenarios supergraph

The scenarios supergraph of an SBRS MoC is a graph SBRS(L, E) with a set
of layers L which captures the functionality of every layer in every scenario
of a CNN-based application, and a set of edges E which captures every data
dependency in every scenario of the CNN-based application. Every layer
ls
i of every scenario CNNs is captured by the functionally equivalent layer

ln ∈ L of the scenarios supergraph, and every edge es
ij of every scenario
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CNNs is captured by the functionally equivalent edge enk ∈ E of the scenarios
supergraph. Table 5.1 shows how layers and edges of scenarios CNN1 and
CNN2, shown in Figure 5.3 are captured in the scenarios supergraph of the
SBRS MoC shown in Figure 5.4. For example, Column 9 in Table 5.1 shows that
edge e1

12 of scenario CNN1 and edge e2
12 of scenario CNN2 are captured by edge

e12 of the scenarios supergraph. We note that edge e12 is used by scenario CNN1

and scenario CNN2, i.e., edge e1
12 is reused among the application scenarios.

The reuse of components (layers and edges) of the scenarios supergraph
is shown in Row 7 in Table 5.1. The reuse is introduced in the SBRS MoC
because it allows for reduction of the CNN-based application memory cost
and efficient utilization of the target edge platform memory by the CNN-based
application. For example capturing of edge e1

12 of scenario CNN1 and edge
e2

12 of scenario CNN2 by edge e12 of the SBRS MoC enables to reuse target
edge platform memory allocated to data tensors e1

12.data and e2
12.data, thereby

reducing the application memory cost. Analogously, reuse of weights among
and within application scenarios, enables to reuse the edge platform memory
allocated to store these weights, thereby reducing the application memory
cost. The reuse of a scenarios supergraph component can be full or partial.
When a component is fully reused, all attributes of the component are reused.
For example, layer l1 of the scenarios supergraph shown in Column 3 is fully
reused between scenarios CNN1 and CNN2, because all attributes of layer
l1 are reused between the scenarios1. When a component is partially reused,
only some of its attributes are reused. For example, layer l4 of the scenarios
supergraph shown in Column 6 is partially reused between scenarios CNN1

and CNN2 because only attributes op4, s4, kw4, kh4, and O4 of layer l4 are
reused among the scenarios.

The attributes that are not reused between the scenarios, are specified via
run-time adaptive control parameters, introduced into the scenarios super-
graph by the SBRS MoC to support partial components reuse. For example, as
shown in Row 4 and Row 6, Column 6 in Table 5.1, attributes par4 and I4 of
supergraph layer l4 are specified by control parameters p2 and p3, respectively.
During the application run-time, control parameter p2 takes values from the
set {{W1

3 , B1
3}, {W2

4 , B2
4}} and control parameter p3 takes values from the set

{{e24}, {e34}}. When p2 = {W1
3 , B1

3} and p3 = {e24}, supergraph layer l4 is
functionally equivalent to layer l1

3 of scenario CNN1. When p2 = {W2
4 , B2

4}
and p3 = {e34}, supergraph layer l4 is functionally equivalent to layer l2

4 of
scenario CNN2.

The capturing of scenarios’ components (layers and edges) in the scenarios

1Attributes of a layer are defined in Table 2.1 in Section 2.1
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supergraph (example of capturing is shown in Table 5.1 explained above) is
determined at the application design time, and is stored in the control node c
of the SBRS MoC during the application run-time.

5.7.2 Control node

The control node c of the SBRS MoC communicates with the application
environment, and determines the execution of scenarios in the application
supergraph as well as the switching between these scenarios.

Execution of scenario CNNs(Ls, Es), s ∈ [1, S] captured by the SBRS MoC
is defined as an execution sequence ϕs. The execution sequence is com-
posed of computational steps, performed in a specific order, determined
by the CNN topology and manner of execution as explained in Section 2.2.
Every computational step ϕs

i ∈ ϕs, i ∈ [1, |Ls|] involves execution of sce-
narios supergraph layer ln, capturing layer ls

i of scenario CNNs. If layer
ln is associated with control parameters, step ϕs

i specifies values for these
parameters such that layer ln becomes functionally equivalent to layer ls

i .
For example, the execution sequence of scenario CNN1 is specified as ϕ1 =
{(l1, ∅), (l2, {(p1, {e24})}), (l4, {(p2, {W1

3 , B1
3}), (p3, {e24})}), (l5, ∅), (l6, ∅)}. At

step ϕ1
1 = (l1, ∅) of sequence ϕ1 layer l1 of the scenarios supergraph, captur-

ing layer l1
1 of scenario CNN1, is executed. The ∅ in step ϕ1

1 specifies that
there are no control parameter values set during the execution of ϕ1

1; at step
ϕ1

2 = (l2, {(p1, {e24})} layer l2 of the scenarios supergraph is executed with
control parameter p1={e24}, etc.

The switching between the application scenarios is triggered by the ap-
plication environment, communicating with the control node c. During the
application run-time, control node c can receive a scenario switch request
(SSR) from the application environment. Upon receiving the SSR, control node
c changes old scenario CNNo, executed by the node, to a new scenario CNNn,
more suitable for the application needs according to SSR. The switching
from scenario CNNo to scenario CNNn is performed under the SBRS transition
protocol, which will be explained in Section 5.9.

5.7.3 Control edges

The set of control edges Ec specifies control dependencies between the control
node c and the supergraph layers L. Every control edge ecn ∈ Ec transfers
control data, such as the aforementioned control parameters needed for the
layer execution, from control node c to supergraph layer ln.
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5.7.4 Deployment and inference

When a CNN-based application represented as the SBRS MoC is deployed on
an edge platform, all the MoC SBRS scenarios supergraph components (layers
and edges) as well as all associated parameters (weights and biases) are placed
in the platform memory. During the application run-time, the control node c
of the SBRS MoC uses part of these components and parameters to execute one
of the application scenarios, captured by the SBRS MoC. The current scenario,
also referred as an old scenario, is executed until the control node c receives
a scenario switching request (SSR) from the application environment. Upon
receiving the SSR, the control node c switches to a new scenario, more suitable
for the application needs according to SSR. After the switching is finished, the
scenarios supergraph continues to execute the new scenario, until a new SSR
is received. If a new SSR is received during an ongoing scenarios switching, it
is ignored.

5.8 SBRS MoC automated derivation

In this section, we propose an algorithm - see Algorithm 5 that automatically
derives the SBRS MoC, explained in Section 5.7, from a set of S application
scenarios {CNNs}, s ∈ [1, S], provided by the automated scenarios derivation
component explained in Section 5.6. Algorithm 5 accepts as inputs: 1) the set
of scenarios {CNNs}, s ∈ [1, S], where every scenario is a CNN, annotated
with a specific manner of execution; 2) a set of adaptive layer attributes A.

The set A controls the amount of components reuse exploited by the SBRS
MoC by explicitly specifying which attributes of the SBRS MoC layers are
run-time adaptive. The more layers’ attributes are specified in the set A, the
more components reuse is exploited by the SBRS MoC. For example, A = ∅
specifies that the layers of the SBRS MoC have no runtime-adaptive attributes,
i.e., only fully equivalent layers (and their input/output edges) are reused
among the scenarios. If A = {par}, in addition to reuse of fully equivalent
layers, the SBRS MoC reuses layers that have different parameters (weights
and biases) but matching operator, hyperparameters, and sets of input/output
edges.

As an output, Algorithm 5 provides an SBRS MoC, which captures ap-
plication scenarios {CNNs}, s ∈ [1, S], and exploits the components reuse
specified by set A. Figure 5.4 provides an example of the SBRS MoC, derived
using Algorithm 5 for scenarios {CNN1, CNN2} shown in Figure 5.3, and set
A = {par, I, O} of adaptive layer attributes.
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Algorithm 5: SBRS MoC automated derivation
Input: {CNNs}, s ∈ [1, S]; A
Result: SBRS(L, E, c, Ec)

1 L← ∅; E← ∅; Π← ∅; Lcapt ← ∅; Ecapt ← ∅ ;
2 for CNNs(Ls, Es), s ∈ [1, S] do
3 for ls

i ∈ Ls do
4 find ln ∈ L : eq(ls

i , ln, A)//Equation 5.1 ∧∄(ln, lq
j ) ∈ Lcapt : lq

j and ls
i are executed in

parallel;
5 if ln does not exist then
6 n = |L|;
7 ln ← new layer (types

i , ops
i , −,−,−,−, Θs

i , khs
i , kws

i , ss
i , pads

i , pars
i );

8 L← L + ln;

9 Lcapt ← Lcapt + (ln, ls
i );

10 for es
ij ∈ Es do

11 find lk ∈ L : (lk , ls
i ) ∈ Lcapt and ln ∈ L : (ln, ls

j ) ∈ Lcapt;
12 if ∄ekn ∈ E : eq(ekn, es

ij, A) //Equation 5.2 then
13 ekn ← new edge (lk , ln);
14 E← E + ekn;

15 Ecapt ← Ecapt + (ekn, es
ij);

16 for ln ∈ L do
17 if ∃ls

i ̸= lq
j : (ln, ls

i ) ∈ Lcapt ∧ (ln, lq
j ) ∈ Lcapt then

18 for attr ∈ ln do
19 for ls

i ∈ Ls : eq(ls
i , ln, A), s ∈ [1, S] do

20 sattr = attrs
i ∈ ls

i : attrs
i .name = attr.name;

21 if sattr.value ̸= attr.value ∧ attr.value /∈ Π then
22 attr = new control parameter p;
23 Π← Π + p;

24 for CNNs(Ls, Es), s ∈ [1, S] do
25 ϕs = ∅;
26 for i ∈ [1, |Ls|] do
27 find ln ∈ L : (ln, ls

i ) ∈ Lcapt;
28 P← ∅;
29 for attr ∈ ln : attr.value = pq ∈ Π do
30 sattr = attrs

i ∈ ls
i : attrs

i .name = attr.name;
31 if attr.name = I ∨ attr.name = O then
32 value← ∅;
33 for es

ij ∈ sattr.value do
34 e = enk ∈ E : (enk , es

ij) ∈ Ecapt;
35 value← value + e;

36 else
37 value = sattr.value;

38 P← P + (pq, value);

39 ϕs ← ϕs + (ln, P);

40 c← new control node ({ϕ1, ϕ2, ..., ϕS}, Lcapt, Ecapt);
41 Ec ← ∅;
42 for ln ∈ L do
43 ecn ← new control edge (c, ln);
44 Ec ← Ec + ecn;

45 return SBRS(L, E, c, Ec)
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In Lines 1 to 23, Algorithm 5 generates the scenarios supergraph of the
SBRS MoC. In Line 1, it defines an empty set of scenarios supergraph layers
L, an empty set of scenarios supergraph edges E, an empty set of control
parameters Π, an empty set of captured layers Lcapt, and an empty set of
captured edges Ecapt. The latter two sets represent capturing of scenarios’
components (layers and edges, respectively) in the scenarios supergraph.

In Lines 3 to 9, Algorithm 5 adds layers to the supergraph layers set L. For
every layer ls

i of every scenario CNNs, Algorithm 5 first checks if set L contains
a layer ln that can be reused to capture layer ls

i . The check is performed in Line
4 and consists of two parts. First, Algorithm 5 checks functional equivalence
of layer ln and layer ls

i . This check is performed using Equation 5.1, which
compares attributes of layers ls

i and ln that are not run-time adaptive (i.e., they
are not specified in the set of adaptive attributes A). Then, Algorithm 5 ensures
than layer ln does not capture layer lq

j , executed in parallel with layer ls
i . This

check is performed using annotation of CNNs which specifies a manner of
execution of CNNs. If condition in Line 4 is met, layer ln is used to capture
the functionality of layer ls

i (Line 9 in Algorithm 5). Otherwise, a new layer ln,
capturing the functionality of layer ls

i , is added to the scenarios supergraph
(Lines 5 to 9 in Algorithm 5). To define a new layer, Algorithm 5 specifies a
value for each attribute given in Table 2.1 and explained in Section 2.1. The
values are listed in the order in which they appear in Table 2.1. If Algorithm 5
specifies a value as symbol "−", it means that the respective attribute takes the
default value.

eq(ls
i , ln, A) =

{
true if attrn = attrs

i , ∀attr /∈ A
f alse otherwise

(5.1)

In Lines 10 to 15, Algorithm 5 adds edges to the supergraph edges set E
such that 1) every edge es

ij of every scenario CNNs is captured in a supergraph
edge ekn, and 2) functionally equivalent edges are reused among the scenarios.
To check the functional equivalence of a supergraph edge ekn and edge es

ij of
scenario CNNs, Algorithm 5 uses Equation 5.2.

eq(es
ij, enk, A) =

{
true if eq(ls

i , ln, A) ∧ eq(ls
j , lk, A)

f alse otherwise
(5.2)

In Lines 16 to 23, Algorithm 5 introduces control parameters into the
partially reused layers of the scenarios supergraph to capture those attributes
that cannot be reused among the scenarios. For example, to capture attribute I4
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of scenarios supergraph layer l4, shown in Figure 5.4, Algorithm 5 introduces
control parameter p3 into layer l4 (as explained in Section 5.7).

In Lines 24 to 44, Algorithm 5 augments the scenarios supergraph, derived
in Lines 2 to 23, with a control node c and a set of control edges Ec. In Lines 24
to 39, it generates execution sequence ϕs for every scenario CNNs, captured
by the scenarios supergraph. Every computational step ϕs

i , i ∈ [1, |Ls|] of the
sequence ϕs is derived in Lines 26 to 38. In Line 27, Algorithm 5 determines
layer ln of scenarios supergraph, capturing functionality of layer ls

i of scenario
CNNs. In Lines 28 to 38, Algorithm 5 derives set P of parameter-value pairs
that specifies the values for every control parameter pq associated with layer
ln. In Lines 29 to 38, Algorithm 5 visits every attribute attr of layer l, specified
as control parameter pq, and determines the value taken by the parameter
pq (and, therefore, by attribute attr) at the execution step ϕs

i . In Line 30,
Algorithm 5 finds attribute sattr of layer ls

i , corresponding to the attribute
attr of layer ln. For example, if attribute attr ∈ ln is a set of parameters par
of layer ln, Algorithm 5 finds attribute sattr ∈ ls

i , which is a set parameters
pars

i of layer ls
i . If attribute attr, specified by the control parameter pq, is

a list of input or output edges of layer l (the condition in Line 31 is met),
the value for parameter pq is specified in Lines 32 to 35 of Algorithm 5, as
a subset of supergraph edges, functionally equivalent to the corresponding
subset of edges in scenario CNNs. Otherwise, the value of parameter pq is
specified in Line 37 of Algorithm 5 as the value of attribute sattr of layer
ls
i . In Line 40, Algorithm 5 creates a new control node c, which stores the

execution sequence ϕs of every scenario as well as sets Lcapt and Ecapt that
specify capturing of the components (layers and edges) of every scenario by
the scenario supergraph. In Lines 41 to 44, Algorithm 5 creates a set of control
edges Ec, such that for every scenarios supergraph layer ln, set Ec contains
a control edge ecn, representing control dependency between layer ln and
the control node c. Finally, in Line 45, Algorithm 5 returns the SBRS MoC,
capturing the functionality of every scenario CNNs, s ∈ [1, S], associated with
the CNN-based application.

5.9 Transition protocol

In this section, we present our novel transition protocol, called SBRS-TP, that
ensures efficient switching between scenarios of a CNN-based application,
represented using the SBRS MoC. As explained in Section 5.7, the control node
c of the SBRS MoC can perform switching from an old application scenario
CNNo to a new application scenario CNNn, upon receiving a scenario switch
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(a) naive

(b) SBRS-TP

Figure 5.5: Switching from scenario CNN1 to scenario CNN2

request (SSR) from the application environment. In the SBRS MoC, where
the execution of scenarios CNNo and CNNn is represented using execution
sequences ϕo and ϕn, respectively, switching between scenarios CNNo and
CNNn means switching between the sequences ϕo and ϕn. We evaluate the
efficiency of such switching by the response delay ∆, defined as the time
between a SSR arrival during the execution of the current scenario CNNo,
and the production of the first output data by the new scenario CNNn. The
larger the delay ∆ is, the less responsive the application is during a scenarios
transition, thus the less efficient the switching is.

The most intuitive way of switching between scenarios CNNo and CNNn,
hereinafter referred to as naive switching, is to start the execution of the new
scenario CNNn after all computational steps of the old scenario CNNo are
executed. An example of the naive switching is shown in Figure 5.5(a), where
the CNN-based application represented by the SBRS MoC from Figure 5.4
switches from scenario CNN1 to scenario CNN2 upon receiving a SSR at the
first execution step of scenario CNN1. The layers of scenario CNN1 and sce-
nario CNN2 are executed in a sequential manner, explained at the end of
Section 2.2. The upper axis in Figure 5.5(a) shows steps ϕi, i ∈ [1, 11], per-
formed by the control node c during the scenarios switching. For example,
Figure 5.5(a) shows that at step ϕ1 (upon SSR arrival), control node c sched-
ules step ϕ1

1 of scenario CNN1 for execution. The lower axis in Figure 5.5(a)
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indicates the start and end time of every step ϕi performed by the control
node c. Every rectangle, annotated with layer ln in Figure 5.5(a), shows the
time needed to execute layer ln. The response delay ∆ of the naive switching,
shown in Figure 5.5(a), is computed as 18− 0.5 = 17.5, where 0.5 is the time of
SSR arrival and 18 is the time when scenario CNN2 produces its first output,
i.e., finishes its last step ϕ2

6.

We note that this response delay can be reduced. Figure 5.5(b) shows an
example of an alternative switching mechanism, referred to as the SBRS-TP
transition protocol. Unlike in the naive switching, in SBRS-TP, every step
ϕ2

i , i ∈ [1, 6] of the new scenario CNN2 is executed as soon as possible. For
example, step ϕ2

1 of the new scenario CNN2 is executed at step ϕ2, where ϕ2 is
the earliest step after the SSR arrival, at which step ϕ2

1 can be executed. Step
ϕ2

1 cannot be executed earlier, i.e., at step ϕ1, due to the components reuse.
As explained in Section 5.7, layer l1 and the platform resources allocated for
execution of this layer are reused between scenarios CNN1 and CNN2, and
thus cannot be used by scenarios CNN1 and CNN2 simultaneously. At step
ϕ1, layer l1 is used by scenario CNN1, executing step ϕ1

1, and therefore, cannot
be used for execution of step ϕ2

1 of scenario CNN2. However, step ϕ2
1 of the

new scenario CNN2 can be executed at step ϕ2, in parallel with step ϕ1
2 of the

old scenario CNN1, because no components reuse occurs between these steps:
step ϕ1

2 uses layer l2 for its execution, while step ϕ2
1 uses layer l1 (where l1 ̸= l2)

for its execution. Analogously, step ϕ2
2 of the new scenario CNN2 is executed

at step ϕ3, where ϕ3 is the earliest step after the SSR arrival, at which step ϕ2
2

can be executed. As explained in Section 5.7, according to the execution order
adopted by scenario CNN2, step ϕ2

2 should be executed after step ϕ2
1. Thus, in

the example shown in Figure 5.5(b), step ϕ2
2 should start after step ϕ2, at which

step ϕ2
1 is executed. Moreover, step ϕ2

2 of the new scenario CNN2 cannot be
executed at step ϕ2, because at step ϕ2 reused layer l2, required for execution
of step ϕ2

2, is occupied by step ϕ1
2 of scenario CNN1. However, step ϕ2

2 can be
executed at step ϕ3, when layer l2 that is required for execution of step ϕ2

2 is
not occupied by scenario CNN1, and step ϕ2

1 is already executed. The response
delay ∆ of the switching mechanism shown in Figure 5.5(b) is 13− 0.5 = 12.5,
and is much smaller than the response delay ∆ = 17.5 of the naive switching
shown in Figure 5.5(a). Thus, the switching mechanism shown in Figure 5.5(b)
is more efficient compared to the naive switching.

Our methodology performs efficient switching between scenarios of a
CNN-based application using the SBRS-TP transition protocol, as illustrated
in Figure 5.5(b). The SBRS-TP is carried out in two phases: the analysis
phase, and the scheduling phase. The analysis phase is performed during
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Algorithm 6: SBRS-TP analysis phase
Input: ϕo, ϕn

Result: Xo→n

1 Xo→n ← ∅; x = 0;
2 for i ∈ [1, |Ln|] do
3 (lk, Pn)← ϕn

i ;
4 for ϕo

j ∈ ϕo do
5 (lz, Po)← ϕo

j ;
6 if k = z then
7 if j ≥ x then
8 x = j;

9 Xo→n ← Xo→n + x;
10 x = x + 1;
11 return Xo→n

the application design time, for every pair (CNNo, CNNn), with o ̸= n, of the
CNN-based application scenarios. During this phase, for every step ϕn

i of
the new scenario CNNn, SBRS-TP derives a minimum delay in steps xo→n

1→i
between step ϕn

i and the first step ϕo
1 of the old scenario CNNo. The delay xo→n

1→i
is computed with respect to the data dependencies within scenarios CNNo and
CNNn, and the components reuse between these scenarios, as discussed above.
An example of delay xo→n

1→i is delay x1→2
1→3 = 3 of step ϕ2

3, shown in Figure 5.5(b).
Delay x1→2

1→3 = 3 specifies that step ϕ2
3 of the new scenario CNN2 cannot start

earlier than 3 steps after the first step ϕ1
1 of the old scenario CNN1 has started,

i.e., earlier than step ϕ4.

The analysis phase of the SBRS-TP is presented in Algorithm 6. Algorithm 6
accepts as inputs execution sequences ϕo and ϕn, representing the old scenario
CNNo and the new scenario CNNn, respectively. As an output, Algorithm 6
provides a set Xo→n, where every element xo→n

1→i ∈ Xo→n, with i ∈ [1, |Ln|], is
the minimum delay in steps between step ϕn

i of the new scenario CNNn and
the first step ϕo

1 of the old scenario CNNo. An example of set Xo→n generated
by Algorithm 6 for the scenario switching, shown in Figure 5.5(b), is the set
X1→2 = {1, 2, 3, 4, 5, 6}. In Line 1, Algorithm 6 defines an empty set Xo→n

and a variable x, equal to 0. Variable x is a temporary variable used to store
delay xo→n

1→i of every execution step ϕn
i in Lines 2 to 10 of Algorithm 6. In

Lines 2 to 10, Algorithm 6 visits every step ϕn
i of the new scenario CNNn and

computes delay xo→n
1→i associated with this step. In Lines 4 to 8, Algorithm 6

increases delay xo→n
1→i , stored in variable x, with respect to the components

reuse, as discussed above. It visits every step ϕo
j of the old scenario CNNo,

and if step ϕo
j and step ϕn

i share a reused layer (the condition in Line 6 is
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Algorithm 7: SBRS-TP scheduling phase
Input: ϕo, ϕn, Xo→n

1 q = 1; i = 1; j = stepo
SSR;

2 wait until step ϕo
j is finished; j = j + 1; q = q + 1;

3 while j ≤ |Lo| do
4 start ϕo

j ; j = j + 1;
5 if q ≥ xo→n

1→i − stepo
SSR + 2 then

6 start ϕn
i ; i = ((i + 1) mod |Ln|);

7 wait until started scenarios’ steps are finished; q = q + 1;
8 while i ≤ |Ln| do
9 start ϕn

i ;
10 wait until ϕn

i finishes; i = i + 1; q = q + 1;

met), it delays the execution of step ϕn
i until step ϕo

j is finished. In Line 9,
Algorithm 6 adds the delay of step ϕn

i , stored in variable x, to the set Xo→n.
In Line 10, Algorithm 6 increases the delay by one step, thereby defining an
initial delay for the next step ϕn

i+1 of the new scenario CNNn. Finally, in Line
11, Algorithm 6 returns the set Xo→n. The set Xo→n derived using Algorithm 6
for every pair of scenarios (CNNo, CNNn) is stored in the control node c of the
scenarios supergraph, and used by the scheduling phase of the SBRS-TP at
the application run-time.

The scheduling phase of the SBRS-TP is performed by the control node c
during the application run-time, upon arrival of an SSR. During this phase,
control node c performs switching from the old scenario CNNo to the new
scenario CNNn, such that the steps of the new scenario CNNn are executed as
soon as possible with respect to the data dependencies within scenario CNNn

and the components reuse between scenarios CNNo and CNNn (as discussed
above). The scheduling phase of the SBRS-TP is given in Algorithm 7. It
accepts as inputs execution sequences ϕo and ϕn of the old scenario CNNo

and the new scenario CNNn, respectively, and the set Xo→n derived by Al-
gorithm 6 for scenarios CNNo and CNNn at the SBRS-TP analysis phase. In
Line 1, Algorithm 7 defines variables i, j, and q, representing indexes of the
current step ϕn

i of the new scenario CNNn, current step ϕo
j in the old scenario

CNNo, and current step ϕq performed by the control node c, respectively. Upon
SSR arrival, i = 1, q = 1, and j = stepo

SSR where stepo
SSR ≥ 1 is the step in

the old scenario CNNo at which the SSR arrived. For the example shown in
Figure 5.5(b), stepo

SSR = 1 because SSR arrives at step ϕ1
1 of the old scenario

CNN1. In Line 2, Algorithm 7 performs the first step ϕ1 of the scenarios switch-
ing. During this step, Algorithm 7 waits until step ϕo

j , during which the SSR
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arrived, finishes. In Lines 3 to 7, Algorithm 7 schedules the remaining steps of
the old scenario CNNo, until scenario CNNo is finished (the condition in Line 3
is false) and, if possible, schedules steps of the new scenario CNNn in parallel
with the steps of the old scenario CNNo. Step ϕn

i of the new scenario CNNn

can start in parallel with step ϕo
j of the old scenario CNNo if the minimum

distance xo→n
1→i between steps ϕo

1 and ϕn
i is observed (the condition in Line 5

is met). In Line 7, Algorithm 7 waits until the steps of scenarios CNNo and
CNNn, started in Lines 4 to 6, finish. In Lines 8 to 10, Algorithm 7 schedules the
remaining steps of scenario CNNn, until scenario CNNn produces an output
data (the condition in Line 8 is false). After Algorithm 7 finishes, scenario
CNNn becomes the current scenario and will be executed for every input given
to the CNN-based application until the next SSR.

5.10 Experimental Study

To evaluate our novel SBRS methodology, we perform an experiment, where
we apply our methodology to real-world CNN-based applications with sce-
narios. We conduct our experiment in four steps. The first three steps perform
in-depth per-step analysis of our methodology and demonstrate the merits
of our methodology through three real-world CNN-based applications from
different domains. The fourth step compares our methodology to the most
relevant existing work.

In Step 1 (Section 5.10.1), we derive scenarios for three real-world CNN-
based applications with scenarios. We illustrate the diversity among the
selected scenarios and compare the use of multiple scenarios (CNNs), enabled
by our methodology, to use of a single CNN, adopted by the state-of-the-art
design flow, introduced in Section 1.3 and shown in Figure 1.3. By performing
this experiment, we evaluate the effectiveness of run-time adaptivity, offered
by our methodology.

In Step 2 (Section 5.10.2), we use Algorithm 5, proposed in Section 5.7.1, to
automatically generate SBRS MoCs for the CNN-based applications, derived at
Step 1. For every application, we generate two SBRS MoCs with different sets
of adaptive layer attributes A: A = {I, O, par} and A = {I, O}, respectively.
We measure and compare the memory cost of every CNN-based application,
when the application is represented as 1) the SBRS MoCs with A = {I, O, par};
2) an SBRS MoC with A = {I, O}; 3) a set of scenarios, where every scenario
is represented as a CNN model, explained in Section 2.1. By performing this
experiment, we evaluate the efficiency of the memory reuse, exploited by the
SBRS MoC, proposed in Section 5.7.
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In Step 3 (Section 5.10.3), we measure and compare the responsiveness
of the CNN-based applications, represented as SBRS MoCs, derived in Step
2, during the scenarios switching, when switching is performed: 1) under
our SBRS-TP transition protocol; 2) using the naive switching mechanism.
By performing this experiment, we evaluate the efficiency of the SBRS-TP
transition protocol, proposed in Section 5.9.

Finally, in Step 4 (Section 5.10.4), we compare our SBRS methodology with
the most relevant existing work. As explained in Section 5.3 and demonstrated
in Section 5.4, none of the currently existing works can design an adaptive
CNN-based application, which considers platform-aware requirements and
constraints that are specifically affected by the environment changes at run-
time. Within this context, none of the existing works is completely comparable
to our methodology. Nonetheless, we perform a partial comparison between
our methodology and the most relevant existing work. Among the exist-
ing works, reviewed in Section 5.3 and Section 5.4, the MSDNet adaptive
CNN work [39] is the most relevant to our methodology. Similarly to our
methodology and unlike other reviewed existing work, the methodology
in [39] associates a CNN-based application with multiple alternative CNNs
that are characterized with different trade-offs between accuracy and resources
utilization, and can be used to process application inputs of any complexity.
Additionally, both the work in [39] and our methodology provide means to
reduce the memory cost of a CNN-based application by reusing the memory
among the alternative CNNs. In this sense, the methodology in [39] and
our SBRS methodology can be compared via 1) run-time adaptive trade-offs
between application accuracy and resources utilization; 2) memory efficiency.
In Section 5.10.4, we perform such comparison, using the image recognition
CIFAR-10 dataset [51].

To perform the measurements, required for Step 1 to Step 4, we implement
the executable CNN-based applications, using the TensorRT Deep Learning
framework and operators library [72], providing state-of-the-art performance
of deep learning inference on the NVIDIA Jetson TX2 embedded device [71],
and custom C++ code. The TensorRT library is used to implement the func-
tionality of CNN layers and edges. The custom C++ code implements the
run-time adaptive functionality of the applications.

5.10.1 Automated scenarios derivation

In this section, we derive scenarios for three CNN-based applications from two
different domains, namely Human Activity Recognition (HAR) and image clas-
sification. We used the PAMAP2 [79] dataset for HAR and the Pascal VOC [27]
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Table 5.2: CNN-based applications

App task baseline dataset app. requirements
CNN sets

Pascal Image ResNet Pascal r1 = (1.0, 0.0, 0.0, 0.0)
VOC recongition [36] VOC [27] r2 = (0.7, 0.0, 0.3, 0.0)

r3 = (0.6, 0.1, 0.0, 0.3)
r4 = (0.5, 0.5, 0.0, 0.0)
r5 = (0.1, 0.1, 0.4, 0.4)

PAMAP2 Human PAMAP PAMAP2 r1 = (1.0, 0.0, 0.0, 0.0)
activity (CNN-2) [79] r2 = (0.2, 0.4, 0.0, 0.4)

monitoring [69] r3 = (0.5, 0.0, 0.0, 0.5)
r4 = (0.5, 0.5, 0.0, 0.0)

CIFAR-10 Image ResNet CIFAR-10 r1 = (1.0, 0.0, 0.0, 0.0)
recognition [36] [51] r2 = (0.25, 0.25, 0.25, 0.25)

r3 = (0.5, 0.25, 0.0, 0.25)
r4 = (0.5, 0.0, 0.0, 0.5)

and CIFAR-10 [51] datasets for image classification. PAMAP2 has data from
body-worn sensors and predicts the activity performed by the wearer, while
Pascal VOC and CIFAR-10 are multi-label image classification datasets with
20 classes and 10 classes, respectively. The sensor data in PAMAP2 is down-
sampled to 30 Hz and a sliding window approach with a window size of 3s
(100 samples) and a step size of 660ms (22 samples) is used to segment the
sequences.

The main features and requirements for each CNN-based application are
listed in Table 5.2. Column 1 lists the applications names, corresponding to
the names of the datasets, the applications are using. Hereinafter, we refer to
the applications by their names; Column 2 shows the task performed by the
applications; Column 3 lists the baseline CNN that was deployed to perform
the application tasks; Column 4 lists the real-world datasets, which were used
to train and validate the applications’ baseline CNNs; Column 5 shows sets
of application requirements ri, i ∈ [1, S], where every set ri characterizes a
scenario, associated with the CNN-based application, S is the total number of
CNN-based application scenarios. The applications use extremely different
baseline CNNs (from the deep and complex ResNet based topology [36] to
the small and shallow PAMAP topology) and diverse datasets (from the large
Pascal VOC [27] dataset to the small PAMAP2 [79] and CIFAR-10 [51] datasets).
The ResNet based baseline topologies for VOC and CIFAR-10 application are
custom Resnets, both of which are smaller than the popular ResNet-18. This
leads to diversity in scenarios and SBRS MoCs, derived for these applications
and, thereby providing a sufficient basis for evaluation of the effectiveness of
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Table 5.3: Algorithm parameters for platform-aware NAS [82]

Parameter VOC PAMAP2 CIFAR10
Mutation change rate ϱm 0.10 0.12 0.12
Mutation probability Pm 0.3 0.3 0.3
Initial Crossover probability Pr(0) 0.3 0.4 0.3
Population size Np 60 50 100
No of iterations Ng 30 60 120
Population replacement rate Ω 0.02 0.03 0.02
Training Parameters τparams
Training size per iteration 1 epoch 1/5 epoch 1/8 epoch
Optimizer Adam Adam Adam
Learning rate 1e−3 1e−4 1e−3

Batch size 10 50 64

our methodology.
To derive the scenarios for each application, described in Table 5.2, we used

the multi-objective platform-aware NAS methodology proposed in [82] and
the scenarios selection based on the ranking dominance concept introduced
in [52]. In addition to the baseline CNN and the dataset, specified in Table 5.2,
the platform-aware NAS methodology in [82] accepts as input a set of NAS
hyper-parameters. The NAS hyper-parameters used in our experiments are
summarized in Table 5.3. For the explanation of the NAS hyper-parameters,
we respectfully refer the reader to work [82].

The methodology in [82] performs automated search for optimal CNNs,
which arrives at a set of CNNs pareto-optimal in terms of accuracy, memory,
throughput and energy characteristic. Every CNN in the set is executed in a
sequential manner, explained in Section 2.2. The pareto-fronts obtained for
Pascal VOC, PAMAP2 and CIFAR-10 applications listed in Table 5.2, are shown
in Figure 5.6(a), Figure 5.6(b) and Figure 5.6(c), respectively. The pareto-fronts
are shown in three-dimensional (accuracy, throughput and energy cost) space
to allow for a comprehensible visualization, while the actual design points
exist in four-dimensional (accuracy, throughput, energy cost, and memory
cost) space.

The scenarios selected from the pareto-fronts shown in Figure 5.6 for the
three multi-scenario applications given in Table 5.2, are presented in Table 5.4,
where Column 1 shows the CNN-based applications; Column 2 shows the
requirements sets, depicting scenarios, associated with every application; Col-
umn 3 shows the scenarios, derived for the requirements sets given in Column
2; Columns 4 to 7 show the accuracy and platform-aware characteristics of
every scenario given in Column 3. For the PAMAP2 and CIFAR-10 applica-
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(a) Pascal VOC pareto front (b) PAMAP2 Pareto front

(c) CIFAR-10 Pareto front

Figure 5.6: Pareto-fronts based on 3 evaluation parameters, namely, accuracy (F1-score for
Pascal VOC), throughput and energy

Table 5.4: Scenarios derived from pareto-fronts shown in Figure 5.6 for three applications
shown in Table 5.2

App. app. scenario Accuracy Throughput Memory Energy
req. set (PR-AUC or %) (fps) (MB) (J)

Pascal r1 CNN1 77.78 15.41 292.61 0.384
VOC r2 CNN2 76.28 21.78 210.69 0.281

r3 CNN3 77.69 20.26 242.72 0.291
r4 CNN4 73.99 59.27 155.48 0.101
r5 CNN5 72.85 75.07 130.21 0.078

PAMAP2 r1 CNN1 94.17 510.20 10.02 0.0083
r2 CNN2 91.34 1333.33 4.30 0.0033
r3 CNN3 92.56 970.87 4.86 0.0037
r4 CNN4 92.93 1052.63 4.11 0.0039

CIFAR-10 r1 CNN1 94.86 231.80 52.87 0.0242
r2 CNN2 92.84 754.15 13.07 0.0055
r3 CNN3 93.46 538.79 18.30 0.0081
r4 CNN4 94.46 403.71 28.07 0.0121
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tions, the accuracy is estimated using the cross-validation technique [78] and
measured in percent. For Pascal-VOC, accuracy was estimated as the PR-AUC
(Area under precision-recall curve) [89]. Columns 5 to 7 show the scenario
throughput (in frames per second), memory (in MegaBytes) and Energy (in
Joules), respectively.

Columns in 4 to 7 in Table 5.4 clearly demonstrate that scenarios (CNNs)
obtained for different application requirements have vastly different charac-
teristics. If Pascal VOC, PAMAP2, and CIFAR-10 CNN-based applications
would use only one of the selected scenarios, as proposed in the state-of-the-art
design flow, shown in Figure 1.3 and explained in Section 1.3, the applications’
needs would not be optimally served.

For example, let us assume that the Pascal VOC application, shown in
Row 2 in Table 5.2 and associated with scenarios CNN1, CNN2, CNN3, and
CNN4, shown in Row 2 in Table 5.4: 1) only uses scenario CNN1 when
is designed using the state-of-the-art design flow; 2) adaptively switches
between scenarios CNN1, CNN2, CNN3 and CNN4, when designed using
our proposed methodology. Under requirements set r4, specifying that high
CNN throughput is as important as high CNN accuracy, the application
would use CNN1 when is designed using the state-of-the-art design flow,
and CNN4 when is designed using our proposed methodology. Compared to
CNN1, CNN4 demonstrates 3.8 times higher throughput and only 4% lower
accuracy. Thus, the Pascal VOC application would better serve the application
needs, specified in the requirements set r4.

The example above shows that our methodology ensures more efficient
serving of CNN-based applications affected by the environment at run-time
when compared to the the state-of-the-art design flow shown in Figure 1.3 and
explained in Section 1.3.

5.10.2 SBRS MoC memory reuse efficiency

In this experiment, we measure and compare the memory cost of every CNN-
based application, presented in Table 5.2 in Section 5.10.1, when the application
is represented as: 1) an SBRS MoC with a set of adaptive layer attributes
A = {I, O, par}; 2) an SBRS MoC with a set of adaptive layer attributes
A = {I, O}; 3) a set of scenarios, where every scenario is represented as a
CNN and no memory is reused within or among the CNNs. The results of
this experiment are given in Table 5.5.

In Table 5.5, Column 1 lists the CNN-based applications with scenarios, ex-
plained in Section 5.10.1. Column 2 shows the sets of adaptive layer attributes
A, used by Algorithm 5 to generate the SBRS MoCs for the CNN-based appli-
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Table 5.5: SBRS MoC memory reuse efficiency evaluation

Application A Memory use (MB) memory reduction (%)
MSBRS Mnaive

Pascal VOC {I, O, par} 230 1032 78
{I, O} 547 47

PAMAP 2 {I, O, par} 22.43 23.28 3.64
{I, O} 23.21 0.31

CIFAR-10 {I, O, par} 83.3 112.31 25.9
{I, O} 107.17 4.57

cations. Column 3 shows the memory use MSBRS (in MB) of the CNN-based
applications, represented as the SBRS MoCs. As shown in Columns 2 and 3
of Table 5.5, the more attributes are specified in the set A, the more memory
is reused by the application, and the application memory cost is less. For ex-
ample, as shown in Rows 3-4, Columns 2-3 in Table 5.5, Pascal VOC uses 230
MB of platform memory, when generated with A = {I, O, par} and 547 MB of
platform memory, when generated with A = {I, O}. Column 4 in Table 5.5
shows the memory use Mnaive (in MB) of the CNN-based applications, when
every application is represented as a set of scenarios and no memory reuse is
exploited by the application. Column 5 in Table 5.5 shows the memory reduc-
tion (in %), enabled by the memory reuse, exploited by our proposed SBRS
MoC. The memory reduction is computed as (Mnaive−MSBRS)/Mnaive ∗ 100%,
where MSBRS and Mnaive are listed in Columns 3 and 4, respectively. As shown
in Column 5, the memory reuse, exploited by the SBRS MoC, varies for dif-
ferent applications: Pascal VOC (Row 3 to Row 4) demonstrates high (47%
- 78%) memory reduction; PAMAP2 (Row 5 to Row 6) demonstrates low
(0.31% - 3.64%) memory reduction; CIFAR-10 (Row 7 to Row 8) demonstrates
(4.57% - 25.9%) memory reduction, which is higher, compared to PAMAP2 but
lower than Pascal VOC. The difference occurs due to the different amounts
of components reuse exploited by the Pascal VOC, PAMAP2 , and CIFAR-10
applications . Pascal VOC has 5 scenarios, where every scenario is a deep
CNN with a larger number of similar layers. In other words, Pascal VOC
is characterised by a large amount of repetitive CNN components, reused
by the SBRS MoC (see Section 5.7.1), which leads to a significant memory
reduction. PAMAP2 has 4 scenarios, compared to 5 scenarios of Pascal VOC,
and every scenario in PAMAP2 has less layers and edges than the scenarios of
Pascal VOC. Thus, in PAMAP2, the SBRS MoC can reuse only a small number
of components, which leads to a small memory reduction. CIFAR-10 has 4
scenarios, and every scenario in CIFAR-10 has less layers and edges than the
scenarios of Pascal VOC, but more layers and edges than the scenarios of
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PAMAP2. Thus, in CIFAR-10, the SBRS MoC can reuse less components than
in Pascal VOC, but more components than in PAMAP2.

5.10.3 SBRS-TP efficiency

In this experiment, for every CNN-based application, explained in Section 5.10.1,
and represented as two functionally equivalent SBRS MoCs with sets of adap-
tive attributes A = {I, O} and A = {I, O, par}, respectively, we measure and
compare the application responsiveness during the scenarios switching, when
the switching is performed using: 1) the naive switching mechanism; 2) the
SBRS-TP transition protocol. The results of this experiment for Pascal VOC,
PAMAP2 and CIFAR-10 are shown as bar charts in Figure 5.7, subplots (a), (b),
and (c), respectively. Every pair (o, n), shown along the horizontal axis in the
subplots denotes switching between a pair (CNNo, CNNn), o ̸= n of the appli-
cation scenarios, performed upon arrival of a Scenarios Switch Request (SSR)
at the first step of the old scenario (stepo

SSR=1). For example, pair (2, 1) shown
in Figure 5.7(b), denotes switching between scenarios CNN2 and CNN1 of
PAMAP2, performed at the fist step of scenario CNN2. Every such switching
is associated with 3 bars, showing the switching delay ∆ (in milliseconds),
when switching is performed: 1) using the naive switching mechanism 2;
2) using the SBRS-TP for an SBRS MoC with A = {I, O, par}; 3) using the
SBRS-TP for an SBRS MoC with A = {I, O}. The higher the corresponding
bar is (i.e., the larger response delay ∆ is), the less efficient the switching is.
For example, switching (2, 1), shown in Figure 5.7(b), is associated with 1)
a bar of height 0.8; 2) a bar of height 0.7; 3) a bar of height 0.4. The bar of
height 0.8, showing delay ∆ of the naive switching, is the highest among the
bars. Thus, the switching between scenarios CNN2 and CNN1 of PAMAP2
is the least efficient, when performed using the naive switching mechanism.
The difference in height of bars, corresponding to one switching, shows the
relative efficiency of different switching methods expressed via these bars. For
example, the switching (2, 1), shown in Figure 5.7(b), is 0.8 - 0.4 = 0.4 ms less
efficient when performed using naive switching (bar of height 0.8) than when
performed using SBRS-TP for an SBRS with A = {I, O} (bar of height 0.4).

As shown in Figure 5.7: 1) the switching delay ∆ is typically lower when
the switching is performed using the SBRS-TP, compared to the switching per-
formed using the naive switching mechanism. Thus, the SBRS-TP is, in general,
more efficient than the naive switching mechanism; 2) When the switching

2One bar is sufficient to show the delay of the naive switching for SBRS MoCs with
A = {I, O} and A = {I, O, par}, respectively, because, as explained in Section 5.9, the naive
switching is not affected by the application components reuse, determined by the set A
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Figure 5.7: SBRS-TP efficiency evaluation

is performed under the SBRS-TP, the switching delay ∆ is typically lower for
an SBRS MoC with A = {I, O} than for a functionally equivalent SBRS MoC
with A = {I, O, par}. The difference occurs because among these SBRS MoCs,
the one with A = {I, O, par} typically reuses more CNN components than the
one with A = {I, O} (see Section 5.7). As explained in Section 5.9, reuse of the
application components can cause an increase in switching delays, when the
switching is performed under the SBRS-TP. Thus, the switching performed
under the SBRS-TP is more efficient when performed in an SBRS MoC with
A = {I, O} than in a functionally equivalent SBRS MoC with A = {I, O, par}.
Analogously, the relative efficiency of the SBRS-TP compared to the naive
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switching is lower for Pascal VOC than for PAMAP2 or CIFAR-10 because, as
explained in Section 5.10.2, Pascal VOC exploits more components reuse than
PAMAP2 or CIFAR-10.

5.10.4 Comparative study

In this section, we compare our SBRS methodology to the most relevant related
work called the MSDNet adaptive CNN methodology [39]. As explained in
Section 5.10, the MSDNet methodology and our SBRS methodology can be
compared via: 1) the run-time adaptive trade-offs between the application
accuracy and resources utilization; 2) the memory efficiency.

In this section, we perform such a comparison for an example CNN-based
application. The example application performs classification on the CIFAR-
10 dataset, and is affected by the application environment at run-time. The
comparison is performed in three steps. In Step 1, we construct the MSDNet
CNN and the SBRS MoC for the example application. In Step 2, we compare
the accuracy-throughput trade-off offered by the MSDNet methodology and
our SBRS methodology, using the applications obtained at Step 1. Finally, in
Step 3, we compare the memory efficiency of the MSDNet methodology and
our SBRS methodology, using the applications obtained at Step 1.

The MSDNet CNN is constructed according to the design and training pa-
rameters specified for the CIFAR-10 dataset in the original MSDNet work [39].
It has six exits, characterized with different accuracy and throughput. During
the application run-time, the MSDNet CNN can yield data from different
exits, thereby offering various trade-offs between the application accuracy
and throughput. We evaluate these trade-offs by executing the MSDNet CNN
with an anytime prediction setting [39]. This setting allows the MSDNet CNN
to switch among its subgraphs (exits), thereby adapting the MSDNet CNN to
changes in the application environment. We note that in the original work [39]
the switching among the MSDNet CNN exits is driven by a resource budget
given in FLOPs, not by a throughput requirement. However, conceptually, it
is possible to extend the MSDNet CNN with a throughput-driven adaptive
mechanism. In this experiment, we emulate execution of the MSDNet CNN
with such a mechanism in order to enable direct comparison of the MSDNet
CNN with our SBRS MoC.

The SBRS MoC is obtained by using our methodology, presented in Sec-
tion 5.5. As input, our methodology accepts a ResNet-18 [36] baseline CNN
and three sets of application requirements. In the first set r1 = {0.1, 0.9, 0, 0},
the application prioritizes high throughput over high accuracy. In the second
set r2 = {0.5, 0.5, 0, 0}, high throughput and high accuracy are equally impor-
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Figure 5.8: Comparison between SBRS MoC and MSDNet CNN [39], performing classifica-
tion on the CIFAR-10 dataset with throughput-driven adaptive mechanism

tant for the application. In the third set r3 = {0.9, 0.1, 0, 0}, the application
prioritizes high accuracy over high throughput. The obtained SBRS MoC has
three scenarios corresponding to the three sets of requirements r1, r2, and
r3. During the application run-time the SBRS MoC can switch among its sce-
narios, thereby offering various trade-offs between the application accuracy
and throughput, and adapting the application to changes in the application
environment at run-time.

The comparison, in terms of accuracy and throughput characteristics of the
aforementioned MSDNet CNN and the SBRS MoC, is visualized in Figure 5.8.
The horizontal axis shows the throughput (in fps). The vertical axis shows
the accuracy (in %). The two step-wise curves in Figure 5.8 represent the
relationships between the accuracy and the throughput, exhibited by the
MSDNet CNN and SBRS MoC. Each flat segment of the step-wise curves
represents a scenario in the SBRS MoC or an exit in MSDNet CNN. For
example, the flat segment of the MSDNet curve, characterized with throughput
between 231 and 392 fps and accuracy of 0.918%, represents exit 2 of the
MSDNet CNN. Each cross marker or triangle marker represents a switching
point between SBRS MoC scenarios or MSDNet CNN exits, respectively. As
explained above, run-time switching among the scenarios or exits occurs when
the application is affected by changes in its environment at run time. Figure 5.8
illustrates such changes in the application environment as the two vertical
dashed lines, representing demands of minimum throughput, imposed on the
application by the environment at run time. For example, at the start of the
application execution, the environment demands that the application must
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have throughput of no less than 200 fps with as high as possible accuracy. In
this case, the MSDNet CNN yields data from exit 3, demonstrating 0.931%
accuracy, and the SBRS MoC executes in scenario 3, demonstrating 0.949%
accuracy. Later, the application environment changes and demands that the
application must have throughput of no less than 394 fps. Thus, the MSDNet
CNN starts to yield data from exit 1, demonstrating 0.902% accuracy, and the
SBRS MoC switches to scenario 2, demonstrating 0.946% accuracy.

As shown in Figure 5.8, our SBRS MoC exhibits higher accuracy than the
MSDNet CNN for any throughput requirement, except when the application
has to exhibit throughput lower or equal to 61 fps. In the latter case, the
accuracy of our SBRS MoC is comparable (0.05% lower) to the accuracy of the
MSDNet CNN. We believe that the difference in accuracy between our SBRS
MoC and the the MSDNet CNN occurs because the scenarios in the SBRS MoC
are optimized for both high accuracy and high throughput, whereas the exits
of MSDNet are only optimized for high CNN accuracy. Optimization for the
platform-aware requirements performed during the SBRS MoC design enables
for more efficient utilization of the platform resources, and therefore for more
efficient execution of the application when high throughput is required.

Finally, we compare the memory efficiency between our SBRS method-
ology and the MSDNet methodology. To do so, we compare the memory
cost of the MSDNet CNN and the SBRS MoC, designed to perform classifi-
cation on the CIFAR-10 dataset. The memory cost of our final application
equals 77.68 MB when the application is designed with adaptive parameters
A = {I, O, PAR}, and 97.6 MB when the application is designed with adaptive
parameters A = {I, O}. The memory cost of the MSDNet CNN, designed for
the CIFAR-10 dataset, is equal to 103.76 MB. Thus, for the CIFAR-10 dataset,
the memory efficiency of our methodology is higher than the one of MSDNet.
The difference occurs because unlike the MSDNet methodology, our method-
ology reuses memory allocated to store intermediate computational results
within every CNN as well as among different CNNs. It is fair to note that,
since our methodology does not enable for reuse of CNN parameters, it may
prove less efficient than MSDNet for applications that use CNNs characterized
with large sizes of weights. However, such applications are not typical for
execution at the Edge.

5.11 Conclusion

We have proposed a novel methodology, which provides run-time adaptation
for CNN-based applications executed at the Edge to changes in the application
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environment. We evaluated our proposed methodology by designing three
real-world run-time adaptive applications in the domains of Human Activity
Recognition (HAR) and image classification, and executing these applications
on the NVIDIA Jetson TX2 edge device. The experimental results show that for
real-world applications our methodology: 1) Enables to adapt a CNN-based
application to changes in the application environment during run-time and
therefore ensures that the application needs are served at every moment in
time; 2) Achieves a high (up to 78%) degree of platform memory reuse for
CNN-based applications that execute CNNs with large amounts of similar
components; 3) Enables for efficient switching between the application scenar-
ios, using the novel SBRS-TP transition protocol proposed in our methodology.
Additionally, we compared our methodology to the run-time adaptive MS-
DNet CNN methodology, which is the most relevant to our methodology
among the related work. The comparison is performed by CNNs designed
for the CIFAR-10 dataset and executed on the Jetson TX2 edge device. The
comparison illustrates that the application designed using our methodology
outperforms the MSDNet CNN when executed under tight platform-aware
requirements, and demonstrates comparable accuracy against the MSDNet
CNN when the platform-aware requirements are relaxed. The difference can
be attributed to the fact that unlike the MSDNet CNN, our methodology op-
timizes the application in terms of both high accuracy and platform-aware
characteristics.


