
System-level design for efficient execution of CNNs at the
edge
Minakova, S.

Citation
Minakova, S. (2022, November 24). System-level design for efficient execution of
CNNs at the edge. Retrieved from https://hdl.handle.net/1887/3487044

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis
in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3487044

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3487044

Chapter 4

Methodology for low-memory
CNN inference

Svetlana Minakova and Todor Stefanov. "Buffer Sizes Reduction for Memory-efficient
CNN Inference on Mobile and Embedded Devices". In Proceedings of 23rd Euromicro
Conference on Digital System Design (DSD’20), pp. 133-140, Portoroz, Slovenia, August
26-28, 2020.

In this chapter, we present our methodology for low-memory CNN infer-
ence at the Edge, which corresponds to the second research contribution of
this thesis summarized in Section 1.5.2. The proposed methodology is a part of
the system-level optimization engine, introduced in Section 1.5, and is aimed
at relaxation of Limitation 1, introduced in Section 1.4.1. The reminder of this
chapter is organized as follows. Section 4.1 introduces, in more details, the
problem addressed by our novel methodology. Section 4.2 gives a summary of
the contributions, presented in the chapter. An overview of the related work is
given in Section 4.3. Section 4.4 provides a motivational example. Section 4.5
presents the proposed methodology. Section 4.6 presents the experimental
study performed by using the proposed methodology. Finally, Section 4.7
ends the chapter with conclusions.

4.1 Problem statement

As mentioned in Chapter 1 in Section 1.2, in order to be deployed and executed
on an edge platform, a CNN is required to have low memory footprint. This is
because modern edge platforms have limited memory resources. For example,

52 Chapter 4. Methodology for low-memory CNN inference

the basic version of the Raspberry Pi 4 [30] embedded platform has 1 GB of
memory. For comparison, deployment and inference of the state-of-the-art
VGG-19 CNN [4], requires about 700 MB of memory. If deployed on the
Raspberry Pi 4, VGG-19 CNN would occupy almost all memory available on
the platform and leave insufficient memory space for the operating system
running on the platform, libraries required to execute the CNN inference,
storage of the CNN input and output data, etc.

To enable inference of a state-of-the-art CNN such as VGG-19 on an edge
platform such as Raspberry Pi 4, the CNN memory footprint should be re-
duced. To this aim, the CNN memory reduction methodologies [5, 11, 17, 31,
73, 76, 98] have been proposed. The most common of these methodologies,
namely pruning and quantization [11, 17, 31, 98], reduce the memory footprint
of a CNN by reducing the number or size of CNN parameters (weights and
biases). However, at high memory reduction rates, these methodologies may
decrease the CNN accuracy, while, as mentioned in Section 1.2, high accuracy
is very important for most CNN-based applications. Moreover, for many
state-of-the-art CNNs [4], the intermediate computational results, exchanged
between CNN layers and stored in the platform memory during the CNN
inference, take even more space than the CNN parameters. For example,
for the MobileNet V2 [81] and DenseNet [40] CNNs, the intermediate com-
putational results comprise up to 63% and 80% of the total CNN memory
requirement, respectively1. For these CNNs, the memory reduction achieved
only by methodologies such as pruning and quantization (i.e., only by reduc-
ing the amount of memory needed to store CNN parameters) may not be
sufficient to fit the CNN into the memory of the target edge platform. In other
words, CNN inference at the edge requires a methodology, which reduces the
amount of memory required to store the intermediate computational results of
a CNN, that is complimentary to the pruning and quantization methodologies.
In this chapter, we propose such a methodology.

4.2 Contributions

We propose a novel methodology, which reduces the amount of memory re-
quired to store intermediate computational results of a CNN, thereby reducing
the CNN memory footprint. Our proposed methodology is based on the
ability of CNN operators to process data by parts, illustrated in Figure 2.2 and
explained in Section 2.1. In our methodology, the execution of every CNN
layer is performed in several phases, such that: 1) at each phase, the layer

1The percentage is given for the CNNs deployed and executed with no memory reduction

4.2. Contributions 53

processes only a part of its input data; 2) phases are executed in a specific
order; 3) the platform memory, allocated to store intermediate computational
results of a CNN is reused between the data parts. As the data processing
by parts may cause CNN execution time overheads (e.g. CNN layers may
require time to switch among the data parts), our methodology may reduce
the CNN throughput. However, unlike the most common pruning and quan-
tization methodologies [11, 17, 31, 98], our methodology does not change the
number and precision of CNN parameters and therefore does not decrease
the CNN accuracy. Thus, our methodology is orthogonal to the pruning and
quantization methodologies, and can be combined with these methodologies
for further CNN memory footprint reduction. Our proposed methodology,
presented in Section 4.5, is our main novel contribution. Other important
novel contributions are:

1. the phases derivation algorithm (see Section 4.5.1). This algorithm au-
tomatically derives the number of phases, performed by every CNN
layer. The number of phases is computed such that at each phase, every
layer of a CNN processes a minimum part of the layer input data and
produces a minimum part of the layer output data. Thus, the phases
derivation algorithm ensures that every layer requires minimum amount
of memory to store its intermediate computational results at every phase;

2. the CNN-to-CSDF conversion algorithm (see Section 4.5.2). This algo-
rithm automatically converts a CNN, represented as the CNN model
(see Section 2.1) into a functionally equivalent CSDF model (see Sec-
tion 2.5). Unlike the CNN model, the CSDF model has means for explicit
specification of the CNN inference with phases. Thus, the CNN-to-
CSDF conversion algorithm enables for CNN inference with phases,
underlying our proposed methodology;

3. 2.8% to 38% CNN memory reduction, compared to the most relevant
buffers reuse methodology, exploited by the well-known and widely
used TensorRT [72] DL framework for CNN deployment and inference
at the Edge (see Section 4.6).

Scope of work: in this chapter, we assume that every input CNN is exe-
cuted with the smallest possible batch size (i.e., batch = 1) typical for CNN
execution at the Edge. This restriction comes from the fact that data batching
(i.e., using batch > 1) [35] is the opposite to the data processing by parts, used
by our proposed methodology. The data processing by parts involves splitting
of the intermediate CNN computational results into parts, which enables for

54 Chapter 4. Methodology for low-memory CNN inference

reduction of the CNN memory footprint at the cost of possible CNN through-
put decrease. The data batching, on the other hand, involves aggregating
the intermediate CNN computational results in the platform memory, which
leads to increase of the CNN throughput at the cost of CNN memory footprint
increase.

4.3 Related Work

The most common CNN memory reduction methodologies, namely pruning
and quantization, reviewed in surveys [11, 17, 31, 98], reduce the memory cost
of a CNN by reducing the number or size of CNN parameters (weights and
biases) [4]. However, at high memory reduction rates these methodologies
decrease the CNN accuracy, whereas high accuracy is very important for many
CNN-based applications [4]. In contrast, our memory reduction methodology
does not change the CNN model parameters and therefore does not decrease
the CNN accuracy. Moreover, our methodology reduces the platform memory
occupied by the CNN intermediate computational results, while the pruning
and quantization methodologies reduce the platform memory occupied by the
CNN parameters (weights and biases). Therefore our methodology is orthog-
onal to the pruning and quantization methodologies, and can be combined
with these methodologies for further CNN memory footprint reduction.

The Knowledge Distillation (KD) methodologies try to shift knowledge
from an initial CNN into another CNN, with smaller size but with the same
accuracy. However, KD methodologies involve training from scratch and do
not guarantee that the accuracy of the initial CNN can be preserved. Moreover,
KD methodologies can only be applied to CNNs designed to perform clas-
sification [17], while many CNNs are designed to perform other tasks, such
as object detection or segmentation [4]. In contrast, our memory reduction
methodology is a general systematic methodology, which always guarantees
preservation of the CNN accuracy, and is not limited to CNNs designed to
perform classification tasks.

The CNN layers fusion methodologies, such as the methodologies [5, 73]
and the methodologies adopted by DL frameworks, such as TensorRT [72]
or PyTorch [75], enable to reduce the CNN memory cost by transforming the
network into a simpler form but preserving the same overall behavior. Being
a part of the CNN model definition, the CNN layer fusion methodologies
are orthogonal to our proposed methodology and can be combined with our
methodology for further CNN memory optimizations. In our experimental
study (Section 4.6), we implicitly use the CNN layers fusion by implementing

4.4. Motivational Example 55

the CNNs inference with the TensorRT DL framework [72], which has built-in
CNN layers fusion.

The buffers reuse methodologies, such as the methodology proposed in [76]
and the methodology, employed by the TensorRT framework for efficient CNN
inference at the edge [72], reduce the CNN memory footprint by sharing mem-
ory between CNN layers, executed at different computational steps. However,
these methodologies do not reuse memory within CNN layers. As a result,
these methodologies are not very efficient for: 1) CNNs with residual connec-
tions, such as ResNets [36] and DenseNets [40], because in these CNNs the
data associated with different layers has to be stored for many computational
steps; 2) CNNs that process high-resolution input data, because in these CNNs
one layer can occupy significant amount of platform memory to store its in-
put and output data. In contrast, our methodology reuses memory within
layers of a CNN, which makes our methodology more efficient at reducing
the memory of CNNs that have residual connections or/and process high-
resolution data. We note that the CNN buffers reuse methodologies are the
only methodologies among the related work that can be directly compared to
other proposed methodology. Other related works, discussed above, are either
orthogonal to our proposed methodology (e.g., pruning and quantization
methodologies [11, 17, 31, 98]) or cannot be directly compared to our proposed
methodology (e.g., the KD methodologies [17]). Therefore, in our experimen-
tal results (see Section 4.6), we compare our methodology only to the buffers
reuse methodologies. More precisely, we compare our methodology to the
buffers reuse methodology, exploited by the TensorRT [72] DL framework.

4.4 Motivational Example

Layers of a CNN do not process their input data at once. As shown in Figure 2.2
and explained in Section 2.1, to process its input data, a layer of a CNN moves
along the input data with a sliding window, applying an operator to the parts
of the input data. In this section, we show how this feature can be used to
reduce the memory cost of a CNN. We define the processing of an input data
part by a layer as a phase. If a layer has one phase, it processes its input data as
one part. If a layer has two phases, it processes its input data in two parts, etc.

In Table 4.1, we give four examples (Ex1, Ex2, Ex3, Ex4) of inference of the
CNN, shown in Figure 4.1 and represented as the CNN model, introduced
in Section 2.1. In each of these examples the CNN inference is executed on
the Jetson TX2 platform introduced in Section 2.3 and shown in Figure 2.4.
Every layer of the CNN is executed in one or multiple phases. For every

56 Chapter 4. Methodology for low-memory CNN inference

Table
4.1:Execution

ofC
N

N
inference

w
ith

phases

Ex.
Layer

phases
Phases

execution
order

Buffer
sizes

(Bytes)
Thr.
(fps)

l1
l2

l3
l4

l5
B

1
B

2
B

4
B

5
Total

Ex1
X

1k
=

∅
,

Y
[1,32,32,1]
1kΦ

1 =1

X
[1,32,32,1]
2k

,

Y
[1,16,16,4]
2kΦ

2 =1

X
[1,16,16,4]
3k

,

Y
[1,4,4,3]
3k
Φ

3 =1

X
[1,4,4,3]
4k

,

Y
[1,1,1,2]
4k
Φ

4 =1

X
[1,1,1,2]
5k

,
Y

5k
=

∅
Φ

5 =1

l11 ,l21 ,l31 ,l41 ,l51
1024

1024
48

2
2098

334

Ex2
X

1k
=

∅
,

Y
[1,24,32,1]
1kΦ

1 =2

X
[1,24,32,1]
2k

,

Y
[1,8,16,4]
2kΦ

2 =2

X
[1,16,16,4]
3k

,

Y
[1,4,4,3]
3k
Φ

3 =1

X
[1,4,4,3]
4k

,

Y
[1,1,1,2]
4k
Φ

4 =1

X
[1,1,1,2]
5k

,
Y

5k
=

∅
Φ

5 =1

l11 ,l21 ,l12 ,l22 ,l31 ,
l41 ,l51

768
1024

48
2

1842
333

Ex3
X

1k
=

∅
,

Y
[1,1,32,1]
1k
Φ

1 =32

X
[1,17,32,1]
2k

,

Y
[1,1,16,4]
2k
Φ

2 =16

X
[1,16,16,4]
3k

,

Y
[1,4,4,3]
3k
Φ

3 =1

X
[1,4,4,3]
4k

,

Y
[1,1,1,2]
4k
Φ

4 =1

X
[1,1,1,2]
5k

,
Y

5k
=

∅
Φ

5 =1

l1(1−
17) ,l21 ,

[l1(18−
32) ,l2(2−

16)],
l31 ,l41 ,l51

544
1024

48
2

1618
310

Ex4
X

1k
=

∅
,

Y
[1,1,32,1]
1k
Φ

1 =32

X
[1,17,32,1]
2k

,

Y
[1,1,16,4]
2k
Φ

2 =16

X
[1,6,16,4]
31

,

X
[1,5,16,4]
32

,

X
[1,5,16,4]
33

,

X
[1,6,16,4]
34

,

Y
[1,1,4,3]
3k
Φ

3 =4

X
[1,4,4,3]
4k

,

Y
[1,1,1,2]
4k
Φ

4 =1

X
[1,1,1,2]
5k

,
Y

5k
=

∅
Φ

5 =1

l1(1−
17) ,l21 ,

[l1(18−
22) ,l2(2−

6)],
l31 ,

[l1(23−
25) ,l2(7−

9)],
l32 ,

[l1(26−
28) ,l2(10−

12)],
l33 ,

[l1(29−
32) ,

l2(13−
16)],l34 ,

l41 ,l51

544
384

48
2

978
308

4.4. Motivational Example 57

Figure 4.1: Example CNN
layer li, i ∈ [1, 5], Columns 2 to 6 in Table 4.1 list: 1) the number of phases
Φi; 2) part Xik of the input data Xi, processed by layer li at its k-th phase,
k ∈ [1, Φi]; 3) part Yik of the output data Yi, produced by layer li at its k-th
phase, k ∈ [1, Φi]. The data parts are annotated with the shape, introduced
for CNN data tensors in Section 2.1. Recall that in this thesis, every data
tensor is represented as a 4-dimensional tensor of shape [batch, h, w, ch], where
batch, h, w, ch are the tensor batch size, the height, the width, and the number
of channels, respectively. All phases are executed in a specific order, given
in Column 7, where lik denotes the execution of the k-th phase of layer li.
The execution order ensures functional equivalence of all examples, given
in Table 4.1, and allows to reduce the CNN buffer sizes as explained below.
Columns 8 to 12 in Table 4.1 show the sizes of the CNN buffers, introduced in
Section 2.2, i.e., segments of platform memory, allocated to store intermediate
computational results, produced by the CNN layers. Every CNN edge eij
is allocated its own buffer Bk. The size of each buffer is computed using
Equation 2.8 explained in Section 2.2 with the assumption that one element in
any CNN data tensor requires 1 byte of memory for its storage. Column 13 in
Table 4.1 shows the CNN throughput in frames per second (fps). As shown in
Column 13, the CNN inference throughput differs for examples Ex1, Ex2, Ex3,
Ex4. This is because data processing by parts may cause CNN execution time
overheads (e.g. CNN layers may require time to switch among the data parts),
leading to CNN throughput decrease. The more phases are performed by a
CNN (i.e., the more data parts are accepted and produced by the CNN layers),
the larger the throughput overhead is. For example, the throughput of Ex4,
where the CNN layers processes data in 32, 16, 4, 1 and 1 phases respectively, is
26 fps smaller than the throughput of Ex1, where every CNN layer processes
data in one phase.

Example Ex1, given in Row 3 of Table 4.1, describes the CNN inference
typically performed by state-of-the-art DL frameworks, such as TensorFlow,
Keras, Caffe2, and other [74]. In Ex1, every layer has one phase. The CNN
inference is performed in 5 computational steps. At every i-th computational
step, i ∈ [1, 5], the single phase of layer li is executed. During its single

58 Chapter 4. Methodology for low-memory CNN inference

(a) Ex1 (b) Ex2 (c) Ex3, Ex4

Figure 4.2: Input data processing by layer l2
phase, layer li processes its whole input data. Figure 4.2(a) shows how layer l2
processes its input data in Ex1. Layer l2 processes its whole input data X2 as
a single data part X21 = X2. Data X21 is provided to layer l2 by layer l1 and
stored in buffer B1. To store data X[1,32,32,1]

21 buffer B1 occupies 1 * 32 * 32 *1 =
1024 bytes of memory.

Example Ex2, given in Row 4 of Table 4.1, shows how processing data by
parts, combined with specific execution order of the phases, allows to reduce
the CNN buffer sizes at the cost of decreasing the CNN throughput. In Ex2,
CNN layer l2 processes its input data X2 in two overlapping parts, X21 and X22,
as shown in Figure 4.2(b). Data parts X21 and X22 are provided to layer l2 by
layer l1 and stored in buffer B1 during the CNN inference. The CNN inference
is performed in 7 computational steps. At step 1, phase l11 is executed and
data Y11 = X21 is produced in B1. At step 2, phase l21 is executed and data
X21 is processed by layer l2. After being processed, data X21 is not needed
anymore and is removed from B1. At step 3, phase l12 is executed and data
Y12 = X22 is produced in B1. At step 4, phase l22 is executed and data X22 is
processed by layer l2. Steps 1 to 4 in Ex2 are functionally equivalent to steps 1
to 2 in Ex1. However, in Ex2 at every computational step, buffer B1 has to store
only a part of the input data (X[1,24,32,1]

21 for steps 1 to 2 and X[1,24,32,1]
22 for steps

3 to 4, respectively). Therefore, in Ex2, B1 occupies 1* 24 * 32 * 1= 786 bytes of
memory, instead of 1024 bytes, as in Ex1. Compared to Ex1, Ex2 reduces the
total buffer sizes by 12% at the cost of only 0.3% throughput decrease due to
the increased number of CNN computational steps in Ex2, compared to Ex1.

Example Ex3, given in Row 5 of Table 4.1, demonstrates one more way of
executing layers l1 and l2 with phases, shown in Figure 4.2(c). In Ex3, layer
l1 has 32 phases and layer l2 has 16 phases. The CNN inference is performed
in 51 computational step. During the first 17 steps, phases l11, l12, ..., l117,
shortly written as l1(1−17), are executed. At every phase, layer l1 produces

4.4. Motivational Example 59

Figure 4.3: Input data processing by layer l3, Ex4

data Y[1,1,32,1]
1k ⊂ X21 in buffer B1, until sufficient data X[1,17,32,1]

21 is accumulated.

Then, at step 18, phase l21 is executed. To execute phase l22, data X[1,17,32,1]
22

should be accumulated in B1. However, some of this data is already in B1. As
explained in Section 2.1, data between subsequent execution steps of layer
l2 is overlapping. If the overlapping part is stored in buffer B1, only new
(non-overlapping) data should be produced in B1 to enable the execution of
phase l22. This new data can be produced by execution of one phase of layer l1.
Thus, phases 18-32 of layer l1 and phases 2-16 of layer l2 are executed in order
[l1(18−32), l2(2−16)], meaning, that a phase of layer l1 is followed by a phase
of layer l2, e.g., phase l118 is followed by phase l22, and this pattern repeats,
until all phases of layers l1 and l2 are executed. The maximum amount of data,
stored between layers l1 and l2 per computational step corresponds to data
part X[1,17,32,1]

2k , accumulated in B1. Thus, in Ex3, buffer B1 occupies 1 * 17 * 32 *
1 = 544 bytes of memory. Compared to Ex1, Ex3 reduces the total buffer sizes
by 23% at the cost of 7% throughput decrease.

Example Ex4, given in Row 6 of Table 4.1, demonstrates how several
Convolutional layers in one CNN can be executed with phases, and how data
padding is processed with phases. In Ex4, the CNN inference is executed in
54 computational steps. Layers l1 and l2 have 32 and 16 phases, respectively,
as in Ex3. Additionally, layer l3 has 4 phases, i.e., processes its input data in
four parts. As explained in Section 2.1, layer l3 has padding pad3, which crops
its input data. With data processing by parts, the data crop is also performed
by parts, as shown in Figure 4.3. At phases l31 and l34, layer l3 accepts data
X[1,6,16,4]

3k and crops it to data X′[1,5,14,4]
3k . At phases l32 and l33, it accepts data

60 Chapter 4. Methodology for low-memory CNN inference

X[1,5,16,4]
3k and crops it to data X′[1,5,14,4]

3k . The maximum amount of data to be

stored in B2 is X[1,6,16,4]
3k . Thus, buffer B2 occupies 1 * 6 * 16 * 4 = 384 bytes of

memory. Compared to Ex1, Ex4 reduces the total buffer sizes by 53% at the
cost of 12.7% throughput decrease. As can be seen from Column 12 of Table 4.1,
Ex4 is the most memory-efficient example among all presented examples.

The examples, provided in this section, demonstrate that there are many
possible ways to execute the CNN inference with phases. Obtaining the most
memory-efficient way is not trivial even for our small example CNN, shown in
Figure 4.1, let alone for real-world state-of-the-art CNNs that are much larger
and much more complex. Therefore, a systematic and automated methodology
for finding the CNN inference execution with phases, which ensures minimum
buffer sizes, is required. In the next section, we propose such a methodology.

4.5 Methodology

In this section, we present our three-step methodology for low-memory CNN
inference at the Edge. Our methodology is shown in Figure 4.4. In Step 1
(Section 4.5.1), we automatically derive the number of phases for every CNN
layer. The number of phases is computed such that at each phase, every
CNN layer processes a minimum part of the layer input data and produces
a minimum part of the layer output data. Thus, we ensure that every layer
requires minimum amount of memory to store its input and output data at
every phase. In Step 2 (Section 4.5.2), we model the CNN inference with
phases, obtained at Step 1. We note that the CNN model, introduced in
Section 2.1 and widely used to represent CNNs, does not have means for
explicit specification of the CNN execution with phases, while the CSDF model,
introduced in Section 2.5, has such means. Moreover, unlike the CNN model,
the CSDF model is accepted as an input by many existing embedded systems

Figure 4.4: Methodology for low-memory CNN inference

4.5. Methodology 61

design tools for automated performance/memory analysis, transformations
and optimizations. Therefore, to enable for CNN execution with phases and
utilization of existing embedded design tools, e.g., SDF3 [91], for the CNN
analysis, in Step 2, we automatically convert a CNN model into a functionally
equivalent CSDF model. In Step 3, we use the SDF3 tool to analyse the CNN
and obtain a set of buffers B, used to store the intermediate computational
results of the CNN, represented as the CSDF model at Step 2. Every buffer
Bk ∈ B is characterized with minimum size. Together with buffers B, the SDF3
tool obtains specific execution order of phases, which enables to correctly
execute the CNN inference with buffers B. Thus, in our 3-step methodology,
we use processing data by parts to ensure the CNN inference with minimum
buffer sizes.

4.5.1 Phases derivation

In this section, we present our automated phases derivation algorithm -
see Algorithm 3. Algorithm 3 accepts as an input a CNN, represented as
the CNN model, explained in Section 2.1. As an output, Algorithm 3 pro-
vides a set of phases Φ = {Φ1, Φ2, ..., Φ|L|}, where Φi ∈ Φ is the number
of phases, performed by layer li of the input CNN. For example, for the
CNN shown in Figure 4.1, Algorithm 3 automatically derives a set of phases
Φ = {32, 16, 4, 1, 1}, which specifies that layers l1, l2, l3, l4, and l5 of the CNN
process data in 32, 16, 4, 1, and 1 phases, respectively.

In Line 1, Algorithm 3 defines the set of phases Φ as an empty set. In Lines
2 to 8, Algorithm 3 computes the number of phases Φi for every layer li of the
input CNN. Φi is computed such that at each phase, layer li accepts a part of
the input data and produces the corresponding part of the output data. Each

Algorithm 3: Phases derivation
Input: CNN(L, E)
Result: Set of phases Φ

1 Φ← ∅;
2 for li ∈ L do
3 if size of Θi = size of Xi then
4 hout

min = Yi.h;
5 else
6 hout

min = 1;

7 Yik ← part of Yi of shape [Yi.batch, hout
min, Yi.w, Yi.c];

8 Φi ← Yi.h/Yik.h;
9 Φ← Φ + Φi;

10 return Φ

62 Chapter 4. Methodology for low-memory CNN inference

part of input and output data of layer li is characterized with minimum height,
determined by the attributes of layer li, shown in Table 2.1 and explained in
Section 2.1. An example of such layer execution is shown in Figure 4.2(c),
explained in Section 4.4, where layer l2 performs Φ2 = 16 phases. At each
phase k ∈ [1, 16] layer l2 accepts an input data part X2k with minimum height
of 17 pixels, and produces an output data part Y2k with height of 1 pixel.

In Lines 3 to 6, Algorithm 3 computes the minimum height hout
min of output

data part Yik, produced by layer li at each phase. hout
min is 1 pixel for every layer

li, except of layers that process their input data at once (i.e., layers for which
condition in Line 3 is met). In Line 7, Algorithm 3 defines output data part Yik,
produced by layer li at each phase. Yik has the shape [Yi.batch, hout

min, Yi.w, Yi.c],
where Yi.batch, Yi.w, and Yi.c are the batch size, the width and the number of
channels of output data Yi, produced by layer li, and hout

min is the minimum
output data height, computed in Lines 3 to 6. In Line 8, Algorithm 3 computes
the number of phases Φi performed by layer li as the number of output data
parts with minimum height, produced by layer li. In Line 9, Algorithm 3 adds
Φi to the set Φ. Finally, in Line 10, Algorithm 3 returns the set of phases Φ.

4.5.2 CNN-to-CSDF model conversion

The automated conversion of a CNN into a functionally equivalent CSDF
model, utilized in our memory reduction methodology, is given in Algo-
rithm 4. Algorithm 4 accepts as inputs a CNN, represented as the CNN model,
explained in Section 2.1 and a set of phases Φ, automatically generated for the
CNN by Algorithm 3 presented in Section 4.5.1. In Lines 1-16, explained in
the CSDF model topology generation subsection below, Algorithm 4 generates
the topology of the CSDF model G(A, C). In Lines 17-36, explained in the Pro-
duction/consumption sequences derivation subsection below, Algorithm 4 derives
the production/consumption sequences for every channel in G(A, C). Finally,
in Line 37, Algorithm 4 returns G(A, C), which is functionally equivalent to

Figure 4.5: CSDF model, derived from the CNN model shown in Figure 4.1

4.5. Methodology 63

the input CNN(L, E) model. Figure 4.5 shows the CSDF model G(A, C), au-
tomatically derived by Algorithm 4 from the CNN model CNN(L, E) shown
in Figure 4.1 and phases Φ = {32, 16, 4, 1, 1}, derived for this CNN model
by Algorithm 3. The examples, provided in this section for Algorithm 4, are
referring to this CNN-to-CSDF conversion.

Algorithm 4: CNN-to-CSDF conversion
Input: CNN(L, E), Φ = {Φ1, Φ2, ..., Φ|L|}
Result: G(A, C)

1 A, C ← ∅; G(A, C)← CSDF model (A, C) ;
2 foreach li ∈ L do
3 Fi ← ∅;
4 ai ← actor (Fi);
5 A← A + ai ;
6 {Θi , opi , si} ← attributes of li (see Table 2.1);
7 Pi = Φi ;
8 for p ∈ [1, Pi] do
9 fi(p) = opi ;

10 Fi = Fi + fi(p);
11 if si < Θi .h then
12 cii ← channel(ai , ai);
13 C ← C + cii ;

14 foreach eij ∈ E do
15 cij ← channel(ai , aj);
16 C ← C + cij;

17 foreach cij ∈ C do
18 {Xi , Yi , khi , si , padi} ← attributes of li (see Table 2.1);
19 {Xj, Yj, khj, sj, padj} ← attributes of lj (see Table 2.1);
20 if i = j then
21 for p ∈ [1, Pi] do

22 uij(p) =
{

0 i f p = Pi
Xi .batch ∗ (Θi .h− si) ∗ Xi .w ∗ Xi .ch otherwise

23 vij(p) =
{

0 i f p = 1
Xi .batch ∗ (Θi .h− si) ∗ Xi .w ∗ Xi .ch otherwise

24 else
25 for p ∈ [1, Pi] do
26 uij(p) = Yi .batch ∗ 1 ∗Yi .w ∗Yi .ch;

27 vij(1) = Xj.batch ∗ (khj − padj[1]) ∗ Xj.w ∗ Xj.ch;

28 hpadj =

{
padj[1] + padj[3] i f Pj = 1
padj[3] otherwise ;

29 if ∄cjj ∨ Pj = 1 then
30 for p ∈ [2, Pj − 1] do
31 vij(p) = Xj.batch ∗ khj ∗ Xj.w ∗ Xj.ch;

32 vij(Pj) = Xj.batch ∗ (khj − hpadj) ∗ Xj.w ∗ Xj.ch;

33 else
34 for p ∈ [2, Pj − 1] do
35 vij(p) = Xj.batch ∗ sj ∗ Xj.w ∗ Xj.ch;

36 vij(Pj) = Xj.batch ∗ (sj − hpadj) ∗ Xj.w ∗ Xj.ch;

37 return G(A, C)

64 Chapter 4. Methodology for low-memory CNN inference

CSDF model topology generation

The CSDF model topology generation is performed in Lines 1-16 of Algo-
rithm 4. In Line 1, Algorithm 4 generates a new CSDF model G(A, C) with
an empty set of actors A and an empty set of communication channels C. In
Lines 2-10 Algorithm 4 converts every layer li of the CNN model CNN(L, E)
into a functionally equivalent CSDF actor ai ∈ A. Every actor ai ∈ A performs
execution sequence Fi = { fi(p)}, p ∈ [1, Pi], where every function fi(p) ∈ Fi is
specified as fi(p) = opi (Lines 9-10 of Algorithm 4). On each phase p ∈ [1, Pi],
actor ai applies operator opi performed by layer li to the part of input data Xip
of the layer li and produces a part of output data Yip. Thus, actor ai reproduces
data processing by parts, performed by the layer li and explained in Section 4.4.
The number of phases Φi of actor ai representing layer li is specified in the
input set of phases Φ. For example, actor a3 performs execution sequence F3 =
[P3 ∗ op3] = [4 ∗ conv], where op3 = conv is the operator, performed by layer l3,
4 is the number of phases Φ3, specified for layer l3 in the input set of phases Φ.

In Lines 11-13 Algorithm 4 models overlapping data reuse, explained in
Ex3 in Section 4.4. In Line 11, Algorithm 4 checks, if the data overlapping
occurs in layer li ∈ L. If data overlapping occurs in layer li, in Lines 12-13
Algorithm 4 models data overlapping for corresponding actor ai. Since the
CSDF model does not allow internal state specification in actors, the data
overlapping/reuse is modeled as self-loop FIFO channels cii, that store and
reuse the overlapping data between subsequent firings of actor ai. For example,
the data overlapping occurs in layer l3 (s3 = 3 < Θ3.h = 5). Therefore,
in Lines 12-13, Algorithm 4 creates self-loop channel c33, which stores the
overlapping/reuse data for actor a3.

Finally, in Lines 14-16, Algorithm 4 converts every input CNN model edge
eij ∈ E, representing a data dependency between layers li ∈ L and lj ∈ L, into
communication FIFO channel cij ∈ C, representing data dependency between
actors ai ∈ A and aj ∈ A.

Production/consumption sequences derivation

The production sequence Uij = {uij(p)}, p ∈ [1, Pi] and the consumption
sequence Vij = {vij(p)}, p ∈ [1, Pj] are derived for every channel cij ∈ C
of CSDF graph G(A, C) in Lines 24 to 36 of Algorithm 4. For every data
reuse channel cij ∈ C, i = j, storing the overlapping/reuse data between
subsequent firings of actor ai, the elements of the production/consumption
sequences are computed in Lines 21 to 23 of Algorithm 4. Since at the last
phase Pi of actor ai there is no need to produce data to be reused, the last

4.5. Methodology 65

element of the production sequence uij(Pi) is set to 0 in Line 22 of Algorithm 4.
Since at the first phase actor ai has not yet produced data in the data reuse
channel cij, the first element of the consumption sequence vij(1) is set to
0 in Line 23 of Algorithm 4. For all other phases of actor ai the elements
of the production/consumption sequences are computed as the number of
tokens in a tensor of shape [Xi.batch, (Θi − si), Xi.w, Xi.ch], reused between
the subsequent firings of actor ai. For example, data reuse channel c33 has
production sequence U33 : [3 ∗ 128, 1 ∗ 0] and consumption sequence V33 :
[1 ∗ 0, 3 ∗ 128].

For CSDF channels cij, that are not data reuse channels, i.e. i ̸= j, the
elements of the production/consumption sequences are computed in Lines
25 to 36 of Algorithm 4. The elements of the production sequence Uij are
computed as the number of elements in the output data part Yip, produced
by actor ai at phase p. For example, actor a3 at its every phase p ∈ [1, 4]
produces data Y[1,1,4,3]

3p , p ∈ [1, 4], to channel c34. Therefore, the elements of
production rate of channel c34 are computed in Lines 25 to 26 of Algorithm 4
as u34(p) = 1 ∗ 1 ∗ 4 ∗ 3 = 12.

Every element of the consumption sequences vij(p), p ∈ [1, Pj] is computed
in Lines 27 to 36 of Algorithm 4 as the number of elements in data tensor,
consumed by actor aj from non-overlapping channel cij on the actors phase
p ∈ [1, Pj] in order to produce data Yjp. The first element of the consumption
sequences vij(1) is computed in Line 27 of Algorithm 4. If no padding occurs
at the first phase of actor aj (pad[1] = 0 in Line 27 of Algorithm 4), actor aj
consumes from cij data Xjp with shape [Xj.batch, Xj.ch, khj, Xj.w]. If actor aj
crops data at the first phase (padj[1] < 0 in Line 27 of Algorithm 4), actor aj
consumes from cij data Xjp and data to be cropped. If actor aj extends data at
the first phase (pad[1] > 0 in Line 27 of Algorithm 4), actor aj consumes from
cij part of data Xjp, which is not provided by padding.

The computation of consumption sequence elements vij(p), p ∈ [2, Pj] is
divided in two different cases, determined by the presence of data overlapping
in the channel sink actor aj, corresponding to layer lj. If data overlapping is not
presented in actor aj (Lines 29-32 of Algorithm 4), actor aj consumes all input
data from its non-overlapping input channel cij. If data overlapping/reuse
is presented in actor aj (Lines 34-36 of Algorithm 4), actor aj consumes from
channel cij only non-overlapping data. The overlapping/reuse data is con-
sumed by actor aj from its self-loop channel cjj. In total, actor aj consumes data
Xjp at phases p ∈ [2, Pj − 1] (Lines 30-31, 34-35 of Algorithm 4), and all the
remaining data at phase p = Pj (Lines 32, 36 of Algorithm 4). Consumption of
all the remaining data from CSDF channels allows to empty the FIFO buffers

66 Chapter 4. Methodology for low-memory CNN inference

and ensure the CSDF model consistency [10].
For example, communication channel c23 has consumption sequence V23 :

[1 ∗ 384, 2 ∗ 192, 1 ∗ 256]. The first element of the consumption sequence is
computed in Line 27 of Algorithm 4 as v23(1) = (5− (−1)) ∗ 16 ∗ 4 = 384,
where 5 ∗ 16 ∗ 4 = 320 elements are elements of input data tensor X31 of
shape [1, 5, 16, 4], used by actor a3 to produce data Y31, and 1 ∗ 16 ∗ 4 = 64
elements are cropped by actor a3 according to the padding pad3. As data
overlapping/reuse is presented for a3 (∃c33), v23(p), p ∈ [2, 4] are computed
in Lines 34-36 of Algorithm 4. At phases p ∈ [2, 3] actor a3 consumes non-
overlapping data 3 ∗ 16 ∗ 4 = 192 from channel c23, i.e., v23(p) = 192, p ∈ [2, 3].
At the last phase actor a3 consumes the remaining data (3− (−1)) ∗ 16 ∗ 4 =
256 from channel c23, i.e. v23(4) = 256.

4.6 Experimental Results

In this section, we evaluate our memory reduction methodology in terms
of achieved memory footprint reduction as well as we show the cost of this
memory footprint reduction in terms of decreased CNN inference throughput.
To this end, we take real-world CNNs from the ONNX models Zoo [7] and
obtain their memory footprint and inference throughput, when the memory
footprint of the CNNs is reduced using: 1) the most relevant CNN buffers
reuse methodology, briefly introduced in Section 4.3, and employed by the
TensorRT framework for efficient CNN execution at the Edge [72]; 2) our
memory reduction methodology, presented in Section 4.5. The results of the
experiment are given in Table 4.2.

We perform our experiment in two steps. In Step 1, for every CNN from
the ONNX models Zoo, we derive: 1) a TensorRT C++ executable applica-
tion, which represents the CNN inference with the TensorRT buffers reuse

Table 4.2: Evaluation of our memory reduction methodology

CNN
Memory Memory Throughput Throughput

footprint (MB) reduction (fps) reduction
TensorRT ours (%) TensorRT ours (%)

resnet18 51.6 49 5 137 121 12
googlenet 38.7 31 19.8 118 103 13

tiny yolo v2 77.3 64.3 16.8 131 105 20
inception v1 38.3 31 19 122 106 13

VGG 19 594 577 2.8 15 14.7 2
densenet121 43 40 7.5 62 49 21
squeezenet 10.4 6.4 38 342 262 23

4.6. Experimental Results 67

methodology. This application is automatically generated by the TensorRT DL
framework from the input CNN description in .onnx format; 2) a C++ CNN
inference with phases application, which implements the CNN inference with
phases, derived from the same input CNN by our methodology presented in
Section 4.5. To implement this application, we use the TensorRT DL frame-
work as well as a custom code generation component, which offers support of
the CNN inference with phases (CSDF) model, unsupported by the TensorRT
DL framework. The TensorRT DL framework is used to define CNN operators,
while our custom code is used to define the CSDF model.

In Step 2, we execute the applications, obtained in Step 1. We measure and
compare the memory footprint as well as the throughput of the CNNs, when
the memory footprint of the CNNs is reduced using: 1) the TensorRT buffers
reuse methodology; 2) our memory reduction methodology. Columns 2 and 3
in Table 4.2 show the memory footprint (in MegaBytes) of every CNN, i.e., the
total amount of memory required to store the CNN parameters (weights and
biases) together with the CNN intermediate computational results. Column
4 in Table 4.2 shows the memory reduction (in %), achieved by our method-
ology in comparison with the TensorRT DL framework. It shows that our
methodology achieves 2.8% to 38% memory reduction, compared to the Ten-
sorRT buffers reuse methodology. The difference in memory reduction can
be explained using the CNN characteristics shown in Table 4.3. First of all, as
explained in Section 4.5, our methodology only reduces the amount of memory
required to store the intermediate computational results of a CNN. There-
fore, our methodology is most efficient for CNNs for which the intermediate
computational results (stored in the CNN buffers as explained in Section 2.2)
constitute the largest part of the total CNN memory requirement. Columns 2
to 4 in Table 4.3 show the amount of memory (in MegaBytes) required to store
intermediate computational results (see Columns 2 and 3) and parameters
(see Column 4) of the CNNs from the ONNX models Zoo. For example, the
Table 4.3: CNN characteristics affecting CNN memory reduction and throughput decrease

CNN Buffer sizes (MB) parameters Total phases
TensorRT ours (MB) TensorRT ours

resnet18 4.8 2.2 46.8 68 1962
googlenet 10.7 3 28 143 2630

tiny yolo v2 14.2 0.8 63.5 33 3796
inception v1 10.3 3 28 143 2494

VGG 19 19.3 2.3 574.7 46 2354
densenet121 10.9 7.9 32.1 428 8935
squeezenet 5.1 1.4 5 66 1870

68 Chapter 4. Methodology for low-memory CNN inference

squeezenet CNN (see Row 9 in Table 4.3) requires 1.4 to 5.1 MegaBytes of
memory to store its intermediate computational results and and 5 MegaBytes
of memory to store its parameters. Analogously, the VGG 19 CNN (see Row 7
in Table 4.3) requires 2.3 to 19.3 MegaBytes of memory to store its intermediate
computational results and 574.5 MegaBytes of memory to store its parameters.
In other words, the squeezenet CNN requires similar amount of memory to
store its intermediate computational results and its parameters, while the
VGG 19 CNN requires much more memory to store its parameters than to
store its intermediate computational results. Consequently, our methodology
achieves a significant, 38%, memory reduction for the squeezenet CNN and
small, 2.8%, memory reduction for the VGG 19 CNN (see Row 7 and Row
9, Column 4 in Table 4.2). Secondly, as explained in Section 4.3, unlike the
TensorRT buffers reuse methodology, our methodology reuses data within
CNN layers. As shown in Section 4.4, the more phases are performed by layers
of a CNN, the more memory is reused within the CNN layers and the more
memory reduction can our methodology achieve. Thus, the number of phases
performed by the CNN layers affects the memory reduction, achieved by our
methodology. The number of phases performed by the CNN layers, when
the CNNs are executed with the TensoRT buffers reduction methodology and
with our methodology, is shown in Columns 5 and 6 in Table 4.3, respectively.
When a CNN is executed with the TensoRT buffers reduction methodology,
every layer of the CNN performs one phase. Therefore, the total number
of phases performed by the layers of a CNN corresponds to the number of
layers in the CNN. When a CNN is executed with our methodology, the total
number of phases performed by the CNN layers is computed as ∑Φi∈Φ Φi,
where Φ is a set of phases, derived for the CNN using Algorithm 3 introduced
in Section 4.5.1. For example, Row 5, Columns 5 and 6 in Table 4.3 shows
that the tiny yolo v2 CNN performs 33 phases when is executed with the Ten-
soRT buffers reduction methodology and 3796 phases when executed with our
methodology. We believe that the high, 16.8%, memory reduction, achieved by
our methodology for the tiny yolo v2 CNN (see Column 4, Row 5 in Table 4.2)
is due to the large amount of memory reuse within the CNN layers that our
methodology introduced into the tiny yolo v2 CNN by increasing the total
number of CNN phases 3796/33 ≈ 115 times.

Columns 5 and 6 in Table 4.2 show the throughput (in frames per second),
demonstrated by the CNNs executed with the TensorRT buffers reuse method-
ology and our methodology, respectively. Column 7 shows the throughput
decrease (in %), introduced into the CNNs inference by our methodology. It
shows that our methodology decreases the CNN throughput by 2% to 23%,

4.7. Conclusion 69

depending on the CNN. As mentioned in Section 4.4, the throughput decrease,
possibly introduced in a CNN by our proposed methodology, depends on
the amount of phases performed by the CNN layers. The more phases are
performed by the CNN layers, the larger is the possible throughput decrease.
For example, our methodology introduces more throughput decrease into
the tiny yolo v2 CNN than into the resnet18 CNN (see Row 3 and Row 5 in
Table 4.2), because it introduces more phases in the tiny yolo v2 CNN than in
the resnet18 CNN (see Row 3 and Row 5, Column 6 in Table 4.3). However,
being a relative value, the amount of throughput decrease also depends on
the overall CNN throughput. For example, the throughput reduction is larger
for the squeezenet CNN than for the VGG 19 CNN (see Row 7 and Row 9 in
Table 4.2), because the squeezenet CNN has much higher throughput than
the VGG 19 CNN, and thus is more sensitive to the throughput decrease,
introduced by our methodology.

4.7 Conclusion

We propose a novel CNN memory footprint reduction methodology. Our
proposed methodology is based on the ability of CNN operators to process
data by parts. By splitting input and output data of CNN layers into parts, and
efficiently reusing the platform memory among these parts, our methodology
allows to reduce the CNN memory footprint at the cost of decreasing the CNN
throughput. The key feature of our methodology is the exploitation of CNNs
ability to process data by parts for the CNN memory footprint reduction. The
evaluation results show that, compared to the memory reduction, achieved by
the most relevant CNN buffers reuse methodology, employed by the TensorRT
DL framework for efficient CNN execution at the Edge, our memory reduction
methodology allows to reduce the CNN memory footprint by 2.8% to 38% at
the cost of 2% to 23% decrease of the CNN throughput.

70 Chapter 4. Methodology for low-memory CNN inference

