
System-level design for efficient execution of CNNs at the
edge
Minakova, S.

Citation
Minakova, S. (2022, November 24). System-level design for efficient execution of
CNNs at the edge. Retrieved from https://hdl.handle.net/1887/3487044

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis
in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3487044

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3487044

Chapter 3

Methodology for
high-throughput CNN inference

Svetlana Minakova, Erqian Tang, Todor Stefanov. "Combining Task- and Data-level
Parallelism for High-Throughput CNN Inference on Embedded CPUs-GPUs MPSoCs".
In Proceedings of the International Conference on Embedded Computer Systems: Architectures,
Modeling and Simulation (SAMOS), pp. 18-35, Pythagoreio, Samos Island, Greece, July
05-09, 2020.

IN this chapter, we present our methodology for high-throughput CNN
inference at the Edge, which corresponds to the first research contribution

of this thesis summarized in Section 1.5.1. The proposed methodology is a
part of the system-level optimization engine, introduced in Section 1.5 and is
aimed at relaxation of Limitation 1, introduced in Section 1.4.1. The reminder
of this chapter is organized as follows. Section 3.1 introduces, in more details,
the problem addressed by our novel methodology. Section 3.2 summarizes the
novel research contributions, presented in this chapter. An overview of the
related work is given in Section 3.3. Section 3.4 presents the platform model,
used in this Chapter to represent a target edge platform, where the high-
throughput CNN inference is executed. Section 3.5 presents our proposed
methodology. Section 3.6 presents the experimental study performed by using
the proposed methodology. Section 3.7 ends the chapter with conclusions.

34 Chapter 3. Methodology for high-throughput CNN inference

3.1 Problem statement

As mentioned in Chapter 1 (see Section 1.2), many CNN-based applications re-
quire CNNs to process their input data streams fast, i.e., to have high through-
put. These applications are often executed on edge platforms based on CPUs-
GPUs multi-processor systems-on-chip (MPSoCs) [63]. Due to their specific
design, CPUs-GPUs MPSoCs offer energy-efficient and high-performance so-
lutions, which makes them very suitable for running high-throughput CNN
inference at the Edge [14]. However, achieving high-throughput execution
of the computationally-intensive CNN inference phase on embedded CPUs-
GPUs MPSoCs is a complex task.

On the one hand, it requires effective utilization of parallelism, available
in a CNN. When the CNN inference is executed on an embedded CPUs-
GPUs MPSoC, the CNN computational workload is distributed among the
heterogeneous MPSoC processors: embedded CPUs and GPUs. Due to their
specific structure, the CPUs are more suitable for handling task-level paral-
lelism, compared to GPUs, whereas GPUs are more suitable for handling
data-level parallelism, compared to CPUs [88]. Thus, for efficient execution
of the CNN inference on an embedded MPSoC, the task-level parallelism
should be handled by the CPUs, available in an embedded MPSoC, i.e., dif-
ferent CNN layers should, if possible, be executed on different CPUs, and
the overall CNN computational workload should be balanced among the
CPUs [6]. Additionally, the data-level parallelism, available within CNN lay-
ers, should be handled by embedded GPUs, i.e., the embedded CPUs should
offload data-parallel computations within the CNN layers onto the embedded
GPUs, thereby accelerating the computations within CNN layers for further
improvement of the CNN inference throughput, already achieved by efficient
task-level parallelism exploitation. Thus, efficient execution of the CNN infer-
ence on an embedded CPUs-GPUs MPSoC involves efficient exploitation of
both task-level parallelism and data-level parallelism, available in the CNN.

On the other hand, effective utilization of task- and data-level parallelism
requires proper communication and synchronization between tasks, executed
on different processors of an embedded MPSoC. In this respect, attempting to
utilize an unnecessary large amount of CNN parallelism on limited embedded
MPSoC resources, results in unnecessary communication and synchronization
overheads, that reduce the CNN inference throughput. Thus, to achieve high
CNN inference throughput, the CNN inference, executed on an embedded
MPSoC, should utilize the right amount of parallelism, which matches the
computational capacity of the MPSoC.

Based on the discussion above, we argue, that efficient execution of the

3.2. Contributions 35

CNN inference on a CPUs-GPUs embedded MPSoC requires:

1. efficient handling of the task-level parallelism, available in a CNN, by
CPUs;

2. CPU workload balancing;

3. efficient handling of the data-level parallelism, available in a CNN, by
GPUs;

4. efficient exploitation of task- and data-level parallelism, which matches
the computational capacity of an embedded MPSoC.

However, the existing Deep Learning (DL) frameworks [1, 42, 43, 49, 72, 74,
75,90,94,101], that enable execution of the CNN inference on embedded CPUs-
GPUs MPSoCs, only partially satisfy requirements 1) to 4), mentioned above.
These frameworks can be divided into two main groups. The first group
includes frameworks [101] and [94], that exploit only task-level parallelism,
available in a CNN, and efficiently utilize only embedded CPUs. Thus, these
frameworks satisfy requirements 1) and 2), mentioned above, and do not
satisfy requirement 3). The second group includes frameworks [1, 42, 43, 49,
72, 74, 75, 90], that exploit only data-level parallelism, available in a CNN,
and efficiently utilize only embedded GPUs. Thus, these frameworks satisfy
requirement 3), mentioned above, but do not satisfy requirements 1) and 2).
Moreover, all frameworks [1, 42, 43, 49, 72, 74, 75, 90, 94, 101] directly utilize the
CNN computational model to execute the CNN inference on embedded CPUs-
GPUs MPSoCs. The large amount of parallelism, available in a CNN model,
typically does not match the limited computational capacity of embedded
CPUs-GPUs MPSoC. Thus, frameworks [1, 42, 43, 49, 72, 74, 75, 90, 94, 101] do
not satisfy requirement 4), mentioned above.

Therefore, in this chapter, we propose a novel methodology for efficient
execution of the CNN inference on embedded CPUs-GPUs MPSoCs.

3.2 Contributions

In this chapter, we propose a novel methodology for execution of the CNN
inference on embedded CPUs-GPUs MPSoCs (Section 3.5). Our methodology
exploits task-level (pipeline) and data-level parallelism, available in a CNN
and explained in Section 2.4, to efficiently distribute (map) the computations
within the CNN to the computational resources of an edge platform. Thus, our
methodology takes full advantage of all CPU and GPU resources, available

36 Chapter 3. Methodology for high-throughput CNN inference

in an MPSoC, and ensures high-throughput CNN inference execution on the
MPSoC. Exploitation of task-level (pipeline) parallelism together with data-
level parallelism for high-throughput CNN inference at the edge is our main
novel contribution. Other important novel contributions are:

1. the automated conversion of a CNN model into a functionally equivalent
SDF model (Section 3.5.1). Unlike the CNN model, presented in Sec-
tion 2.1 and typically used to represent CNNs, the SDF model, presented
in Section 2.5, can explicitly specify task- and data-level parallelism,
available in a CNN. Moreover, unlike the CNN model, the SDF model
has the tasks communication and synchronization mechanisms, suitable
for efficient mapping and execution of a CNN on an embedded MPSoC.
Thus, a conversion of a CNN model into a SDF model enables for effi-
cient mapping and execution of a CNN on an embedded CPUs-GPUs
MPSoC.

2. the automated conversion of a CNN model into a functionally equivalent
platform-aware executable CSDF model (see Section 2.5 for the CSDF
model definition), which efficiently utilizes CPUs-GPUs embedded MP-
SoC computational resources (Section 3.5.3);

3. taking state-of-the-art CNNs from the ONNX models zoo [7] and map-
ping them on a Nvidia Jetson MPSoC [71], we achieve a 1.36% to
42% higher throughput, when the CNN inference is executed with our
methodology, compared to the throughput of the CNN inference, exe-
cuted by the best-known and state-of-the-art Tensorrt DL framework [72]
for Nvidia Jetson MPSoCs (Section 3.6).

3.3 Related work

The well-known Deep Learning (DL) frameworks, such as TensorFlow [1],
Pytorch [75] and others [74] and some of the Deep Learning frameworks for
embedded devices such as [42, 43, 49, 50, 72, 90] efficiently exploit data-level
parallelism, available in a CNN, for efficient utilization of embedded GPUs.
However, these frameworks do not exploit task-level parallelism, available in
a CNN. They execute the CNN inference layer-by-layer, i.e., at every compu-
tational step only one CNN layer is executed. Such layer-by-layer execution
of CNN layers is performed either on a single CPU, which utilizes GPU de-
vices for acceleration, or on all available embedded CPUs. Thus, at every
computational step, either some of the embedded CPUs are not utilized, or

3.4. Edge platform model 37

embedded GPUs are not utilized. Therefore, these frameworks cannot take
full advantage of all CPU and GPU resources and cannot achieve high CNN
inference throughput, typically required for the CNN inference, executed on
embedded MPSoCs [23, 24, 87]. Unlike these frameworks, our methodology
exploits together both task-level parallelism and data-level parallelism, avail-
able in the CNN. In our methodology, the CNN layers are distributed on
embedded CPUs, such that the CNN workload is balanced among the CPUs,
and at every computational step several CNN layers are executed in parallel
(pipeline) fashion. At the same time, some of the computations within CNN
layers are performed on efficiently-shared embedded GPU devices. Thus, in
our methodology, at every computational step all available CPU and GPU re-
sources are efficiently utilized. Therefore, our methodology allows to achieve
higher CNN inference throughput, compared to the frameworks, presented
in [1, 42, 43, 49, 72, 74, 75, 90].

The frameworks, presented in [101] and [94], exploit task-level parallelism,
available among CNN layers, for efficient execution of the CNN inference on
an embedded MPSoC. In these frameworks, CNN layers are distributed on the
embedded CPUs and executed in parallel (pipeline) fashion, which provides
higher CNN throughput than sequential (layer-by-layer) execution of CNN
layers. However, these frameworks do not utilize embedded GPUs, available
in an MPSoC. As a consequence, these frameworks cannot increase further the
CNN inference throughput. In contrast, in our methodology, the throughput,
achieved by efficient task-level parallelism exploitation, is further increased by
exploitation of data-level parallelism, i.e., by exploitation of embedded GPU
devices to accelerate the computations within CNN layers. In our method-
ology, some computations within CNN layers are offloaded onto embedded
GPUs and performed in parallel. Parallel execution of computations within
CNN layers allows to reduce the execution time of individual CNN layers
and to increase the CNN inference throughput. Therefore, our methodology
ensures higher CNN inference throughput, compared to frameworks [101]
and [94].

3.4 Edge platform model

In this Chapter, we represent an edge platform as a platform model. The plat-
form model provides a simplified, yet accurate description of computational
resources, available on the platform. As mentioned above, in this Chapter
we concentrate on edge platforms based on embedded CPUs-GPUs MPSoCs,
which computational resources are composed of CPUs and embedded GPUs.

38 Chapter 3. Methodology for high-throughput CNN inference

Formally, we define a platform model as a set plat f orm = {cpu, gpu}, where
cpu = {cpu1, cpu2, ..., cpun} is a set of CPU cores, available on the platform
and used for CNN inference; gpu = {gpu1, gpu2, ..., gpum} is a set of all GPU
devices, available in the platform, and typically m ≤ n. For example, we model
the Jetson TX2 edge platform shown in Figure 2.4 and explained in Section 2.3,
as platform model Jetson = {cpu, gpu}, where cpu = {cpu1, cpu2, ..., cpu5} is
a set of 5 out of 6 CPU cores, available on the platform and used for CNN
inference. The sixth core available on the platform is not included in the model
because it is allocated to other parts of a CNN-based application and is not
used for CNN inference; gpu = {gpu1} is a set of GPUs, available on the
platform and used for CNN inference.

3.5 Methodology

In this section, we present our methodology for high-throughput CNN infer-
ence at the Edge. Our methodology, shown in Figure 3.1, consists of three
main steps. In Step 1 (Section 3.5.1), we convert a CNN, represented as a
CNN model (see Section 2.1 for the CNN model definition) into a functionally
equivalent SDF model (see Section 2.5 for the SDF model definition). Un-
like the CNN model, the SDF model explicitly specifies task- and data-level
parallelism, available in a CNN, as well as it explicitly specifies the tasks com-
munication and synchronization mechanisms, suitable for efficient mapping
and execution of a CNN on an embedded MPSoC. Thus, a conversion of a
CNN model into a SDF model enables for efficient mapping and execution of
a CNN on an embedded CPUs-GPUs MPSoC.

In Step 2 (Section 3.5.2), we find an efficient mapping of the SDF model,
obtained in Step 1, on an embedded CPUs-GPUs MPSoC represented as the
edge platform model, proposed in Section 3.4. The mapping describes the

Figure 3.1: Methodology for high-throughput CNN inference

3.5. Methodology 39

Figure 3.2: CNN (input) model Figure 3.3: SDF (analysis) model

40 Chapter 3. Methodology for high-throughput CNN inference

Figure 3.4: CSDF (executable CNN inference) model

distribution of the CNN inference computational workload on an embedded
MPSoC. The mapping is considered efficient when it ensures high-throughput
CNN inference. To find such a mapping, we propose to utilize a simple Genetic
Algorithm (GA), which basic concepts and standard parameters are presented
in Section 2.6.

Finally, in Step 3 (Section 3.5.3), we use the mapping, obtained in Step 2,
to convert a CNN model into a final platform-aware executable application
model. The final application model is represented as a Cyclo-Static Dataflow
(CSDF) model (see Section 2.5 for the CSDF model definition). The CSDF
model, obtained in Step 3, describes the CNN inference as an application, effi-
ciently distributed over embedded MPSoC processors and exploiting the right
amount of task- and data-level parallelism, which matches the computational
capacity of an embedded MPSoC.

To illustrate the Steps performed by our methodology, we use an example,
where we apply our methodology to 1) the CNN model shown in Figure 3.2; 2)
the Jetson platform model introduced in Section 3.4; 3) a set of GA parameters

3.5. Methodology 41

where the initial population size = 1000, number of epochs = 500, mutation
probability = 5%. The SDF model and the CSDF model, automatically obtained
in Step 1 and Step 3 of our methodology from the aforementioned inputs 1), 2)
and 3), are shown in Figure 3.3 and Figure 3.4, respectively.

3.5.1 CNN-to-SDF conversion

In this section, we show how we automatically convert a CNN model, intro-
duced in Section 2.1, into a functionally equivalent SDF model, introduced in
Section 2.5. The conversion procedure is given in Algorithm 1. An example of
the CNN-to-SDF conversion, performed by Algorithm 1, is given in Section 3.5,
where the CNN model, shown in Figure 3.2, is automatically converted into
the SDF model, shown in Figure 3.3.

Algorithm 1 accepts as an input a CNN model CNN(L, E) and generates
as an output a functionally equivalent SDF model G(A, C). In Line 1, it creates
an empty SDF model. In Lines 2 to 6, Algorithm 1 converts every CNN layer li
into a functionally equivalent actor ai. According to the definition of the SDF
model, given in Section 2.5, the sequence Fi, executed by actor ai, has a single
phase. At its single phase, actor ai executes operator opi of layer li, thereby
reproducing the functionality of layer li. In Lines 7 to 12, Algorithm 1 converts
every CNN edge eij into FIFO channel cij. In Lines 9 to 11, Algorithm 1 defines
the production sequence Uij and the consumption sequence Vij of channel
cij. Both sequences have a single element, computed as the number of data

Algorithm 1: CNN-to-SDF conversion
Input: CNN(L, E)
Result: G(A, C)

1 A, C ← ∅; G(A, C)← SDF model (A, C);
2 for li ∈ L do
3 Fi = ∅;
4 Fi ← Fi + opi;
5 ai ← actor (Fi);
6 A← A + ai;
7 for eij ∈ E do
8 cij ← FIFO channel (ai, aj);
9 Uij ← ∅; Vij ← ∅;

10 Uij ← Uij + |eij.data|;
11 Vij ← Vij + |eij.data|;
12 C ← C + cij;

13 return G(A, C)

42 Chapter 3. Methodology for high-throughput CNN inference

elements |eij.data|, exchanged through edge eij of the CNN model.
Unlike the CNN model CNN(L, E), accepted as an input by Algorithm 1,

the functionally equivalent SDF model G(A, C), generated by Algorithm 1,
explicitly specifies both task-level and data-level parallelism, which could
be exploited during the CNN inference phase, as well as this SDF explicitly
specifies the communication and synchronization mechanism between the
actors/tasks, needed to execute the CNN inference properly. The task-level
parallelism, available among CNN layers, is explicitly specified in the SDF
model topology, where every actor ai ∈ A is a task, performing the functional-
ity of CNN layer li ∈ L, and the total number of tasks, needed to perform the
CNN model functionality, is equal to the number of actors in the SDF model.
The communication and synchronization between the tasks, are explicitly
specified by the SDF FIFO channels, where every channel cij ∈ C specifies,
that actor ai ∈ A communicates with actor aj ∈ A through a FIFO buffer,
and the production-consumption rates of the channels cij ∈ C determine the
frequency and the order of the actors firings - for more details see [57]. The
data-level parallelism is explicitly specified in the channels production rates.
For example, production rate U36 = [112640] of FIFO channel c36, shown in
Figure 3.3, explicitly specifies that, when actor a3 fires, it produces 112640 data
tokens, and each token can be obtained in parallel by executing 112640 parallel
ReLU operations within each firing of a3.

The SDF explicit specification of the tasks, that can be potentially per-
formed during the CNN inference, and the SDF explicit specification of the
communication and synchronization between the tasks, allow to perform a
search for efficient mappings of the CNN onto an embedded CPUs-GPUs
MPSoC.

3.5.2 GA-based mapping

In this section, we show how we obtain an efficient mapping of a SDF model
G(A, C), generated by Algorithm 1, onto an embedded CPUs-GPUs MPSoC
Jetson = {{cpu1, cpu2, ..., cpu5}, {gpu1}} introduced in Section 3.4. In our
methodology, the CNN inference tasks, explicitly specified as SDF actors, are
executed on embedded CPU cores, that are able to efficiently handle the task-
level parallelism. To efficiently utilize the data-level parallelism, available
within the tasks, some of the CPU cores offload computations on the embedded
GPUs. Since the number of embedded GPU devices is limited, it may occur,
that the efficient exploitation of task-level parallelism, by embedded CPUs, is
disrupted due to CPUs competition for the limited embedded GPU devices.
To avoid such disruption, for every embedded GPU gpuj ∈ gpu, we allocate a

3.5. Methodology 43

Table 3.1: Mapping example

cpu1/gpu1 cpu2 cpu3 cpu4 cpu5
a1, a2, a3, a4,
a5, a6, a7

a8, a9,
a10, a13

a11, a12 a14, a15, a16, a17, a18,
a21, a22, a23

a19, a20

Figure 3.5: Mapping chromosome example

single CPU core cpui ∈ cpu, which offloads computations on gpuj.
Based on the discussion above, we define a mapping of SDF model G(A, C)

onto Jetson, as a partition of actors set A into n subsets, where n = |cpu| is
the number of CPU cores, available in the MPSoC. We denote such map-
ping as n A = {n A1, n A2, ..., n An}, where each n Ai ∈ n A is a subset of ac-
tors, mapped on cpui, such that ∩n

i=1
n Ai = ∅, and ∪n

i=1
n Ai = A. The first

m = |gpu| number of CPU cores in mapping n A offload computations on the
corresponding embedded GPUs, i.e., the computations within every actor
ak ∈ n Aj, j ∈ [1, m] are performed on gpuj, and the computations within every
actor ak ∈ n Ai, i ∈ [m + 1, n] are performed on cpui. An example of mapping
5 A = {5 A1, 5A2, 5A3, 5A4, 5A5} of the SDF model G(A, C), shown in Figure 3.3
on the Jetson CPUs-GPUs MPSoC, is given in Table 3.1. Every Column in
Table 3.1 corresponds to a subset 5Ai, i ∈ [1, 5]. For example, Column 1 in
Table 3.1 corresponds to subset 5A1 = {a1, a2, a3, a4, a5, a6, a7}. The actors
within subset 5A1 are mapped on cpu1, which offloads computations on gpu1.
Column 2 in Table 3.1 describes subset 5A2 = {a8, a9, a10, a13}. Every actor
ai ∈ 5 A2 is mapped on cpu2. Since the example Jetson MPSoC does not have
gpu2, all computations within actors in 5A2 are performed only on cpu2.

We consider that a mapping is efficient, if it ensures that the workload is
balanced [6] among all embedded CPU cores, including those, that offload
computations on embedded GPUs. We note, that obtaining such an efficient
mapping of an SDF graph onto a CPUs-GPUs MPSoC is a complex Design
Space Exploration (DSE) problem. In our methodology, to solve this problem,
we propose to use a simple Genetic Algorithm (GA) with a standard two-
parent crossover and a single-gene mutation, as introduced in Section 2.6.
To utilize such a GA for searching of an efficient mapping n A, we represent
mapping n A, as a mapping chromosome: a string of length |A|, where every
gene is a CPU core cpui ∈ cpu. An example of the chromosome, corresponding
to mapping 5A, shown in Table 3.1, is given in Figure 3.5.

44 Chapter 3. Methodology for high-throughput CNN inference

In our methodology, we search for a mapping, in which the workload is
balanced among all CPU cores, available in the MPSoC, i.e., the difference in
execution time between every pair of CPU cores (cpui ∈ cpu, cpuj ∈ cpu), i ̸=
j, is minimized. Thus, we define a specific fitness-function f itness to be
minimized during the GA-based search as:

f itness = ∑
∀(cpui ,cpuj)∈cpu2

|τcpui − τcpuj | (3.1)

where τcpui and τcpuj are the total execution time of cpui and cpuj, respec-
tively. For every cpui ∈ cpu, τcpui is computed as:

τcpui = τt
cpui

+ τcom
cpui

(3.2)

where τt
cpui

is the time, required by cpui to execute all tasks, mapped on
cpui; τcom

cpui
is the time, required for communication of cpui with other embed-

ded processors. The time τt
cpui

is computed as:

τt
cpui

= ∑
ak∈n Ai

τ(fk(1),cpui) (3.3)

where n Ai is the set of all actors, mapped on cpui; fk(1) is the function,
performed by actor ak ∈ n Ai at every firing; τ(fk(1),cpui) is the time, taken by
cpui to execute fk(1), measured on the MPSoC. The time τcom

cpui
is computed as:

τcom
cpui

= ∑
ak∈n Ai

(τw ∗ ∑
ckj∈C

ukj(1) + τr ∗ ∑
cqk∈C

vqk(1)) (3.4)

where n Ai is the set of all actors, mapped on cpui; ckj ∈ C is an output
channel of actor ak ∈ n Ai, to where, at each firing, actor ak produces ukj(1)
tokens; cqk ∈ C is an input channel of actor ak, from where, at each firing, actor
ak consumes vqk(1) tokens; τr and τw specify the time, needed by a CPU core,
to read and write one data token, respectively. τr and τw are measured on the
MPSoC.

3.5.3 CNN-to-CSDF model conversion

In this section, we show how we automatically convert a CNN model, in-
troduced in Section 2.1, into a final executable platform-aware application,
represented as a CSDF model, introduced in Section 2.5. The conversion
procedure is given in Algorithm 2.

3.5. Methodology 45

Algorithm 2: CNN-to-CSDF conversion
Input: CNN(L, E), n A
Result: G(A, C)

1 A, C ← ∅; G(A, C)← CSDF model (A, C);
2 Eout = ∅;
3 for n Ai ∈ n A do
4 Fi = ∅; p = 1;
5 Q = ∅; visited = ∅;
6 for lk : ak ∈ n Ai ∧ lk /∈ visited do
7 Lp

i , Ep
i ← ∅;

8 Q = Q + lk;
9 while Q ̸= ∅ do

10 lj = Q.pop();
11 Lp

i = Lp
i + lj;

12 visited = visited + lj;
13 if ∃ejs ∈ E : as /∈ n Ai then
14 for ejs ∈ E do
15 Eout = Eout + ejs;

16 break;
17 else
18 for ejs ∈ E, ls /∈ visited do
19 Q = Q + ls;
20 Ep

i = Ep
i + ejs;

21 Subnetp
i = new Subnet (Lp

i , Ep
i);

22 Fi = Fi + Subnetp
i ;

23 p = p + 1;
24 ai ← actor (Fi);
25 A = A + ai;
26 for eij ∈ Eout do
27 ak ∈ A : li ∈ Lg

k ; ar ∈ A : lj ∈ Lz
r ;

28 ckr ← FIFO channel (ak, ar);

29 ukr(p) =
{
|eij.data|, if p = g
0, otherwise

30 vkr(p) =
{
|eij.data|, if p = z
0, otherwise

31 return G(A, C)

Algorithm 2 accepts as inputs a CNN model CNN(L, E) and an efficient
mapping n A, obtained in Section 3.5.2, and generates a CSDF model G(A, C),
which performs the functionality of the CNN model CNN(L, E), efficiently
mapped on an embedded MPSoC, as specified by mapping n A. An example of
the CSDF model G(A, C), generated by Algorithm 2, using as inputs the CNN

46 Chapter 3. Methodology for high-throughput CNN inference

model CNN(L, E), shown in Figure 3.2, and mapping 5A, shown in Table 3.1
and explained in Section 3.5.2, is given in Figure 3.4.

In Line 1, Algorithm 2 creates an empty CSDF model. In Lines 3-25, Algo-
rithm 2 generates the set of actors A, such that every actor ai ∈ A represents
the functionality of all CNN layers, mapped on CPU core cpui, as specified in
mapping n A, where for ∀lk ∈ L, executed on cpui, ∃ak ∈ n Ai. At every phase
p ∈ [1, Pi] actor ai executes function Subnetp

i , implemented by means of an
existing DL framework. Every Subnetp

i performs layer-by-layer execution of
layers Lp

i ⊆ L, mapped on cpui, and connected via edges Ep
i . For example,

actor a3, shown in Figure 3.4, represents the functionality of all CNN layers,
mapped on cpu3. It executes F3 = {Subnet1

3}, where Subnet1
3 performs layer-

by-layer execution of layers L1
3 = {l11, l12}, connected via edges E1

3 = {e1112},
on cpu3.

Every edge ejs ∈ E between layers lj and ls, sequentially executed on
the same CPU core, is implemented by means of an existing DL framework,
e.g. as device memory, shared by layers lj and ls [72]. If layers lj and ls,
connected via edge ejs ∈ E, are executed on different CPU cores, the task-level
parallelism is exploited between these layers, and edge ejs is converted into a
FIFO channel, which explicitly specifies and implements the communication
and synchronization between actors, executing layers lj and ls. For example,
edge e811, shown in Figure 3.2, connects layer l8, executed by actor a2 on
cpu2, and layer l11, executed by actor a3 on cpu3. Thus, edge e811 is converted
into a FIFO channel c23, shown in Figure 3.4, where c23 explicitly specifies
and implements the communication and synchronization between actor a2,
executing layer l8 and actor a3, executing layer l11.

Between some actors, cyclic dependencies occur, that may lead to dead-
locks in the CSDF model. To avoid the deadlocks, Algorithm 2 specifies the
execution of every actor ai in one or more phases, such that at every phase
p ∈ [1, Pi], actor ai has no cyclic dependencies. For the example, shown in
Figure 3.4, a cyclic dependency occurs between actors a2 and a3. If actor a2
would execute layers l8 and l13 in one phase, according to the semantics of
the CSDF model [10], it would expect 187200 data tokens to be present in
channel c12 and 22500 data tokens to be present in channel c32, before it can
fire. However, data in channel c32, should be produced by actor a3, which,
before it can fire, expects actor a2 to produce 187200 data tokens in channel
c23. Thus, such execution would lead to a deadlock in the CNN inference.
To avoid the deadlock, Algorithm 2 specifies the execution of actor a2 in 2
phases. At phase p = 1, actor a2 executes only layer l8. It consumes data only
from channel c12, and produces data to channel c23, such that actor a3 can fire.

3.6. Experimental results 47

At phase p = 2, actor a2 consumes data only from channel c32, and executes
layers l9, l10 and l13. Thus, at every phase p = [1, 2], actor a2 has no cyclic
dependencies, and no deadlock occurs in the CSDF model execution.

In Lines 5-23, Algorithm 2 performs a mapping-aware Breadth-First Search
(BFS) [26] over the CNN model graph and determines functions Subnetp

i , p ∈
[1, Pi], executed by actor ai. In Line 7, for every not-visited layer lk, mapped
on cpui, Algorithm 2 creates an empty set of layers Lp

i and an empty set of
edges Ep

i . In Line 8, it adds layer lk to the BFS queue [26] Q, and starts BFS.
In Lines 10-12, Algorithm 2 extracts layer lj from Q and adds lj to Lp

i . In
Line 13, Algorithm 2 checks, if layer lj, mapped on cpui, has at least one child
layer ls, which is not mapped on cpui. If the condition in Line 13 is met, to
avoid the deadlocks, which can occur in a CSDF model, as discussed above,
Algorithm 2 stops adding layers to Lp

i and goes to Lines 14-15, where it adds
every output edge of layer lj to the list of outer edges Eout, utilized in Lines
26-30 of Algorithm 2 for CSDF channels generation. If every child layer ls of
layer lj is mapped on cpui (condition in Line 13 of Algorithm 2 is not met), in
Lines 18-20, Algorithm 2 adds every connection ejs to the set Ep

i , and every
layer ls to Q and continues BFS.

In Line 21, Algorithm 2 creates function Subnetp
i , which performs layer-by-

layer execution of layers Lp
i , connected via edges Ep

i . In Line 22, Algorithm 2
adds function Subnetp

i to execution sequence Fi of actor ai. When all layers,
mapped on cpui, are visited, Algorithm 2 adds actor ai, which executes Fi, to
the CSDF model actors set (see Lines 24-25).

In Lines 26-30, Algorithm 2 converts every outer edge eij ∈ Eout into
a CSDF channel ckr, specifying and implementing the communication and
synchronization between actor ak ∈ A executing layer li, and actor ar ∈ A
executing layer lj . For example, for edge e78, shown in Figure 3.2, Algorithm 2
creates FIFO channel c12, shown in Figure 3.4, where actor a1 executes layer l7,
and actor a2 executes layer l8.

3.6 Experimental results

In this section, we present our results from an experiment, where real-world
CNNs from the ONNX models zoo [7] are mapped and executed on the
NVIDIA Jetson TX2 embedded CPUs-GPUs MPSoC [71]. We compare the
CNN inference throughput, which we measure, when the CNN is mapped on
the NVIDIA Jetson TX2 by: 1) the popular ARM CL framework [8], which on
the NVIDIA Jetson MPSoC can exploit only task-level parallelism, available
in the CNN; 2) the best-known and state-of-the-art for the NVIDIA Jetson

48 Chapter 3. Methodology for high-throughput CNN inference

Table 3.2: Experimental results, average over 100 runs

CNN Throughput (fps) Thr. increase, compared
to TensorRT (%)ARM CL TensorRT Our

bvlc alexnet 8.7 104 140 35
VGG 19 1.84 15 21.3 42

bvlc googlenet 3.9 118 154 31
tiny yolo v2 3.2 131 133 1.36
inception v1 4.25 122 166 36

resnet18 8.7 137 143 4.37
densenet121 3 62 69 12
Emotion FER 21.2 325 416 28

TX2 MPSoC, TensorRT DL framework [72], which exploits only data-level
parallelism, available in the CNN; 3) our methodology, explained in Section 3.5,
which exploits both task- and data-level parallelism and uses the ARM CL
framework to implement CNN layers on embedded CPUs together with the
TensorRT framework to implement CNN layers on embedded GPUs. For
every CNN in the experimental results: 1) The throughput is measured on
the platform as an average value over 100 CNN inference executions; 2)
the original (float32) data precision is utilized, such that the baseline CNN
accuracy is preserved; 3) The dataset parameters, such as size and precision
of input data samples as well as the batch size are obtained from the ONNX
model representation; 4) The GA, utilized for efficient mapping search (see
Section 3.5.2) is executed with initial population size = 1000, number of epochs
= 500, mutation probability = 5%. If for 50 epochs no improvements are
achieved by the GA, the GA stops.

The experimental results are given in Table 3.2. Column 1 lists the CNNs.
Columns 2-4 show the CNN inference throughput in frames per second (fps)
for ARM CL, TensorRT, and our methodology, respectively. Columns 2 and 4
in Table 3.2 show that the throughput achieved by the ARM CL framework
is much lower than the throughput, achieved by our methodology. This dif-
ference occurs because our methodology exploits both task- and data-level
parallelism, available in the CNN, whereas the ARM CL framework, executing
the CNN inference on the NVIDIA Jetson MPSoC, does not offload compu-
tations on the embedded GPU, available in the MPSoC. Therefore, ARM CL
does not efficiently exploit the data-level parallelism, available in the CNN.
Columns 3 and 4 in Table 3.2 show that our methodology achieves higher infer-
ence throughput than the TensorRT framework. This difference occurs because
our methodology exploits both task- and data-level parallelism, whereas Ten-
sorRT executes the CNN inference layer-by-layer and exploits only data-level
parallelism, available in the CNN. Column 5 shows the throughput increase

3.7. Conclusion 49

achieved by our methodology in comparison with the TensorRT framework,
which achieves highest throughput for every CNN among the TensorRT and
ARM CL frameworks. The numbers in Column 5 indicate that our method-
ology enables to achieve 1.36% to 42% throughput increase compared to the
TensorRT framework.

3.7 Conclusion

We propose a novel methodology which exploits both task- and data-level
parallelism, available in a CNN, and takes full advantage of all CPU and
GPU resources, available in a MPSoC, to achieve high-throughput CNN in-
ference execution. We evaluated our proposed methodology by mapping a
set of real-world CNNs on the NVIDIA Jetson TX2 embedded CPUs-GPUs
MPSoC. The evaluation results show that taking real-world CNNs from the
ONNX models zoo and mapping them on the Jetson MPSoC, a 1.36% to 42%
higher throughput is achieved when the CNN inference is executed with our
methodology compared to the throughput of the CNN inference, executed by
the best-known and state-of-the-art TensorRT DL framework for the Jetson
MPSoC.

50 Chapter 3. Methodology for high-throughput CNN inference

