
System-level design for efficient execution of CNNs at the
edge
Minakova, S.

Citation
Minakova, S. (2022, November 24). System-level design for efficient execution of
CNNs at the edge. Retrieved from https://hdl.handle.net/1887/3487044

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis
in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3487044

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3487044

Chapter 2

Background

IN this chapter, we present an overview of concepts essential to understand
the contributions of this thesis. In Section 2.1, we present the CNN model

used to represent a CNN in this thesis. In Section 2.2, we describe the CNN
deployment and inference at the Edge, briefly introduced in Section 1.3 because
in this thesis, we study and propose novel methodologies for efficient CNN
deployment and inference at the Edge. In Section 2.3, we introduce a typical
edge platform used to execute CNNs inference. Namely, we introduce the
well-known and state-of-the-art NVIDIA Jetson TX2 platform [71], used to
perform experiments in this thesis. In Section 2.4, we explain the task- and
data-level parallelism available in a CNN. We exploit the aforementioned
types of parallelism to ensure efficient inference of CNNs at the Edge. In
Section 2.5, we briefly describe the Cyclo-Static Data Flow (CSDF) [10] and
the Synchronous Data Flow (SDF) [57] models of computation, widely used
in the Embedded Systems community to represent applications executed
at the Edge. Unlike the CNN model, introduced in Section 2.1, the SDF
model and the CSDF model explicitly specify the parallelism, available within
an application (or a part of an application such as a CNN), and enable for
modelling of various manners of application execution. In this thesis, we use
the CSDF model and the SDF model to represent an augmented design point
(i.e., a CNN, executed in a specific manner) briefly introduced in Section 1.5.
Finally, in Section 2.6, we describe the basic concepts of a Genetic Algorithm
(GA): a well-known heuristic approach, widely used for finding optimal
solutions for complex Design Space Exploration (DSE) problems. Some of the
methodologies, presented in this thesis, are based on a GA.

18 Chapter 2. Background

2.1 CNN model

A Convolutional Neural Network (CNN) is commonly represented as a di-
rected acyclic computational graph CNN(L, E) with a set of nodes L, also
called layers, and a set of edges E. An example of a CNN model with a set of
layers L = {l1, l2, l3, l4, l5} and a set of edges E = {e12, e23, e34, e45} is shown in
Figure 2.1.

Figure 2.1: CNN model

The CNN model specifies transformations over the CNN input data (e.g.
an image), that result into the CNN output data (e.g. an image classification
result). The transformations are specified by the set of layers L. Edges in the
set E specify data dependencies between the layers and determine the flow
of data in a CNN. The detailed explanation and formal definition of a layer
li ∈ L and an edge eij ∈ E of the CNN model are given in Section 2.1.1 and
Section 2.1.2, respectively.

2.1.1 Layer in the CNN model

Every layer li in the CNN model represents part of the CNN functionality.
It accepts as an input some data, produced by other layers, transforms this
data using a mathematical operator, and provides output data. Formally, we
define layer li as a set of attributes, summarized in Table 2.1. Column 1 lists
the attributes; Column 2 provides a description of each attribute; Column 3
lists limitations, posed on the attribute by the CNN model; Column 4 shows
the default value of an attribute, i.e., the value assigned to the attribute which
is not defined explicitly. We note that some of the attributes (e.g., attributes Ii
and Oi shown in Rows 4 to 5 in Table 2.1) only take the default value. Below,
we explain the attributes of layer li, summarized in Table 2.1, using as an
example layer l2 shown in Figure 2.1.

Attributes typei and opi (Rows 2 to 3 in Table 2.1) specify the type and
performed operator of layer li, respectively [4]. These attributes determine
the main difference between the layers of a CNN. The most common types of

2.1. CNN model 19

Table 2.1: Attributes of layer li

attribute description limitations default value

typei
layer supported by the for known opi
type CNN model (see Table 2.2) see Table 2.2

opi operator restricted by -typei (see Table 2.2)
Ii input edges Ii ⊆ E : ∀eji ∈ E, eji ∈ Ii

Oi output edges Oi ⊆ E : ∀eij ∈ E : eij ∈ Oi
Xi input data see Equation 2.1
Yi output data see Equation 2.2

Θi
sliding has smaller or equal window of size

window size compared to Xi khix kwi

khi

0 < khi ≤ Xi.h; Xi.h if typei ∈{data,FC},
kernel typically khi = kwi; else 1
height khi = Xi.h if

typei ∈{data,FC}

kwi

0 < kwi ≤ Xi.w; Xi.w if typei ∈{data,FC},
kernel typically kwi = khi; else 1
width kwi = Xi.w if

typei ∈{data,FC}
si = 1 if opi /∈

si stride {conv, max pool, 1
average pool}

padi padding an array of four [0,0,0,0]integer numbers

pari
(trainable) a set of parameters, ∅parameters specific for CNN layer [4]

Table 2.2: Most common CNN layer types and operators

layer type operators
convolutional conv
pooling (global) max pool, (global) average pool
activation ReLU, thn, sigmoid
data input, output
fully connected (FC) GEMM, MatMUL, dot
loss softmax
normalization BatchNormalization, LRN
arithmetic add
transformation concat

20 Chapter 2. Background

layers and operators performed by layers of these types are shown in Table 2.2.
For example, layer l2 shown in Figure 2.1 has type2 = convolutional and
performs operator op2 = conv. Operator op2 performed by layer l2 is explicitly
specified in Figure 2.1, thus the type of layer l2 is determined using Table 2.2.

Attributes Ii and Oi (Rows 4 to 5 in Table 2.1) specify the input and output
edges of layer li, respectively. For example, layer l2 shown in Figure 2.1 has
input edges I2 = {e12} and output edges O2 = {e23}.

Attributes Xi and Yi (Rows 6 to 7 in Table 2.1) specify the input and output
data of layer li, respectively. These attributes always take the default value,
computed using Equation 2.1 and Equation 2.2.

Xi =

{
eji.data : eji ∈ Ii if |Ii| = 1
{eji.data}, ∀eji ∈ Ii otherwise

(2.1)

Yi =

{
eij.data : eij ∈ Oi if |Oi| > 0
∅ otherwise

(2.2)

The value of attribute Xi is computed using Equation 2.1, where eji.data is
the data accepted by layer li and associated with input edge eji ∈ Ii of layer
li; |Ii| is the total number of input edges of layer li. Typically, layer li has
one input edge, i.e., |Ii| = 1. In this case, input data Xi of layer li is the data
eji.data, associated with the only input edge eji of layer li. For example, layer l2
shown in Figure 2.1 has one input edge e12, and has input data X2 = e12.data.
However, some layers may accept as an input data coming from multiple
input edges (e.g., layers performing operator concat [4]) or accept no input
data (e.g., layers performing the operator input [4]). Layers that accept no
input data have |Ii| = 0 and Xi = ∅.

Analogously, the value of attribute Yi is computed using Equation 2.2,
where eij.data is the data produced by layer li and associated with output edge
eij ∈ Oi of layer li; |Oi| is the total number of output edges of layer li. Typically,
layer li has at least one output edge and produces data Yi ̸= ∅, broadcasted
to every output edge of layer li. For example, layer l2 shown in Figure 2.1
produces output data Y2 = e23.data onto its output edge e23. However, some
layers (e.g., layers performing the operator output [4]) do not produce data.
These layers have |Oi| = 0 and Yi = ∅.

Attributes Θi, khi, kwi, si, and padi (Rows 8 to 12 in Table 2.1) are the
hyper-parameters of layer li [4]. These attributes, obtained during the CNN
design, specify how the layer processes its input data. To process its input data
Xi, layer li moves along Xi with sliding window Θi and stride si, applying
operator opi to the area of Xi, covered by Θi. The sliding window Θi has

2.1. CNN model 21

Figure 2.2: Processing of input data X2 by layer l2

smaller or equal size, compared to Xi. The height and width of window Θi are
typically equal to the kernel height khi and kernel width kwi of layer li, while
the number of channels of Θi is typically equal to the number of channels of
Xi [4]. The areas, covered by Θi, can overlap. Figure 2.2 shows an example,
where layer l2 shown in Figure 2.1 processes its input data by four parts,
covered by sliding window Θ2 of size 3 x 3 x 3 pixels, and stride s2 = 1 pixel.

Before processing its input data, layer li may crop or extend its input data
Xi to data X′i with padding [4]. Typically, this is done to ensure that the input
data of layer li can be covered by sliding window Θi of layer li integer number
of times [4]. We specify the padding of layer li as attribute padi (Row 12 in
Table 2.1). padi is an array of four integer numbers. Elements of padi, referred
as padi[0], padi[1], padi[2], and padi[3], respectively, specify the crop/extension
of the height and width of data Xi as given in Equation 2.3 and Equation 2.4,
respectively.

X′i .w = padi[0] + Xi.w + padi[2] (2.3)

X′i .h = padi[1] + Xi.h + padi[3] (2.4)

By default, layer li has padi = [0, 0, 0, 0], which means that layer li does
not crop or extend its input data Xi before processing. Figure 2.3 shows an
example where layer l2 crops (see Figure 2.3 (a)) and extends (see Figure 2.3
(b)) its input data Xi with padding pad2 = [0,0,-1,-1] and pad2 = [1,1,1,1],
respectively.

Beside the hyper-parameters, layer li has (trainable) parameters such as
weights and biases [4], specified as attribute pari (Row 13 in Table 2.1). As
mentioned in Chapter 1, these parameters of layer li are obtained during the

22 Chapter 2. Background

(a) crop (b) extension

Figure 2.3: Padding

CNN training and are used by operator opi of layer li. For example, layer l2
has parameters par2 composed of weights W2 and biases B2, used to perform
op2 = conv.

2.1.2 Edge in the CNN model

Every edge eij ∈ E in the CNN model specifies a data dependency between
layers li and lj of a CNN, such that the data produced by layer li is accepted as
an input by layer lj. Formally, we define edge eij as a tuple (li, lj, data), where
data is the data produced by layer li, accepted by layer lj, and associated with
edge eij. The data associated with edge eij is stored in a multidimensional array
called tensor [4]. In this thesis, every data tensor has the shape [batch, h, w, ch],
where batch, h, w, ch are the batch size [4], the height, the width, and the
number of channels of the tensor, respectively. An example of edge e12 =
(l1, l2, data) is shown in Figure 2.1. Edge e12 represents the data dependency
between layers l1 and l2, where layer l2 accepts as an input the data produced
by layer l1. Edge e12 is annotated with shape [1,4,4,3]. This means that the
data tensor, exchanged between layers l1 and l2, and associated with edge e12
has batch size = 1, height and width = 4, and number of channels = 3.

2.2 CNN deployment and inference at the Edge

The CNN inference is a process of applying the CNN to real-world data
(e.g., images) and obtaining the CNN output (e.g., results of the input images
classification). Nowadays, the CNN inference can be performed on a wide
variety of hardware platforms. In this thesis, we concentrate on the CNN
inference performed on edge (mobile and embedded) platforms, presented in
Section 2.3.

2.2. CNN deployment and inference at the Edge 23

Before the CNN inference can start, the CNN is deployed on a target plat-
form, i.e., some memory of the platform is allocated to the CNN. The total
amount of memory (in bytes), allocated to a CNN is computed as:

m = mpar + mbu f (2.5)

where mpar is the memory, required to store the CNN parameters (weights
and biases) and computed using Equation 2.6; mbu f is the memory, required
to store the CNN intermediate computational results and computed using
Equation 2.7.

mpar = ∑
i∈[1,|L|]

|pari| ∗ par_size (2.6)

In Equation 2.6, |pari| is the total number of parameters, associated with
layer li ∈ L of the CNN; par_size is the size of one parameter in bytes;

mbu f = ∑
Bk∈B

Bk.size (2.7)

In Equation 2.7, B is a set of buffers, i.e., the memory segments, allocated
to store the intermediate computational results of a CNN [76]. Every buffer
Bk ∈ B has one or several CNN edges eij allocated to it. Buffer Bk stores data
eij.data, exchanged between CNN layers li and lj during the CNN inference
and is characterized with size (in bytes) computed as:

Bk.size = maxeij∈Bk .edges{|eij.data| ∗ token_size} (2.8)

In Equation 2.8, eij ∈ Bk.edges is an edge, storing data in buffer Bk; |eij.data|
is the total number of data elements (tokens), exchanged through edge eij;
token_size is the size of one token in bytes.

A CNN deployed on an edge platform can start its inference phase when
the CNN can utilize the memory and the computational resources available
on the platform to perform the CNN functionality, i.e., to execute all the
layers in the CNN. Every layer can be executed on processors, such as CPUs,
GPUs and/or FPGAs [17], available in the platform. If a platform has parallel
processors (accelerators), such as GPUs or FPGAs, computations within the
layer can be represented as one or multiple kernels [17] and offloaded on these
accelerators by the CPUs. Otherwise, these computations are performed on the
CPUs. If the computations within a CNN layer are offloaded on an accelerator
with local memory, e.g., a GPU, the CNN layer input data and parameters,
required to perform the computations, are copied from the main memory into

24 Chapter 2. Background

the local memory of the accelerator and the results of the computation are
copied back to the main memory.

The layers of a CNN are executed in a specific order, determined by the data
dependencies within the CNN and the manner the CNN is executed. Typically,
the CNN layers are executed in a sequential manner, where the CNN execution
is represented as |L| computational steps and at every i-th computational step,
CNN layer li ∈ L is executed. However, as it will be explained in Section 2.4,
a CNN can also be executed in alternative (non-sequential) manners, that involve
exploitation of task-level (pipeline) parallelism, where the layers of the CNN
are executed in parallel (pipelined) fashion. In this thesis, we consider both
sequential and non-sequential manners of CNN execution. To represent a
CNN, executed in a specific manner, we use the CSDF and SDF models of
computation, presented in Section 2.5.

2.3 Edge platform used for CNN inference

Modern edge platforms used to execute the CNN inference are complex sys-
tems that host a large number of specific hardware components: processors,
memory, power supply elements, sensors and others [32, 109]. Figure 2.4
shows a simplified structure of the NVIDIA Jetson TX2 edge platform [71]:
one of the best-known edge platforms used to execute CNNs.

To perform computations within a CNN, an edge platform may host
multiple heterogeneous processors such as central processing units (CPUs),
graphics processing units (GPUs), field-programmable gate arrays (FPGAs),
and/or Tensor Processing Units (TPUs) [32, 109]. For example, the Jetson
TX2 platform shown in Figure 2.4 hosts a double-core Denver 2 CPU and a

Figure 2.4: Jetson TX2 edge platform

2.4. Task- and data-level parallelism available in a CNN 25

quad-core ARM Cortex A57 CPU as well as an integrated Pascal GPU with
a total of 256 CUDA cores. When the inference of a CNN is executed on the
Jetson TX2 platform, computations within the CNN are typically performed
on the GPU.

The memory infrastructure of an edge platform is used to store the CNN
data and parameters, required for proper CNN inference. It typically consists
of a main memory, accessible by all processes available on the platform, and
a set of local memories, only accessible by specific processor(s). For example,
the memory infrastructure of the Jetson TX2 platform shown in Figure 2.4
consists of the 8 GB LDDR4 DRAM, accessible by all the processors, available
on the platform, as well as the host_memory and device_memory, i.e., the local
memories, accessible only by the CPUs and the GPU, respectively.

The power supply elements of an edge platform provide power to all
components available on the platform. Some edge platforms carry batteries
that provide an autonomous limited power supply to the edge device. The
Jetson TX2 platform, however, does not have a battery and requires an external
power supply.

Finally, other components, available on the platform, e.g., video encoders
and decoders, are used to collect data and facilitate parts of a CNN-based
application other than the CNN itself.

2.4 Task- and data-level parallelism available in a CNN

As a computational model the CNN model is characterized with large amount
of available parallelism. This parallelism can be exploited to speed-up the
CNN inference and to efficiently utilize computational resources of an edge
platform, where the CNN is executed.

The most widely exploited type of parallelism available within CNNs is
the data-level parallelism, illustrated in Figure 2.5. This type of parallelism
involves the same computation, e.g., Convolution, performed by a CNN layer
over the CNN layer input data partitions. Efficient utilization of data-level
parallelism allows to speed-up the inference of a CNN by accelerating the
execution of individual CNN layers. This type of parallelism is exploited by
the majority of existing Deep Learning (DL) frameworks, such as Keras [19],
Pytorch [75], Tensorlow [1], TensorRT [72] and others [74]. The data-level
parallelism, available within layer li of a CNN can be explicitly expressed by
decomposition of the layer input data tensor Xi into a set of K sub-tensors
{Xi1, Xi2, ..., XiK}, where: 1) all sub-tensors Xik, k ∈ [1, K] can be processed in
parallel by operator opi. When layer li applies operator opi to Xik, it produces

26 Chapter 2. Background

Figure 2.5: data-level parallelism

sub-tensor Yik of output data Yi; 2) elements (pixels) within every Xik can be
processed in parallel. Figure 2.5 illustrates the data-level parallelism, available
within convolutional layer l2, shown in Figure 2.1 and explained in Section 2.1.
In Figure 2.5, input data tensor X2 of layer l2 is decomposed into K = 4
overlapping sub-tensors X2k, k ∈ [1, 4] that can be processed in parallel. When
layer l2 processes sub-tensor X2k with operator op2 = conv, it produces sub-
tensor Y2k of output data Y2, such that Y2 = ∪4

k=1Y2k. Every sub-tensor X2k
shown in Figure 2.5 is subsequently decomposed into a set of pixels, where
every pixel can be processed in parallel.

Another type of parallelism available in a CNN is known as task-level
parallelism or pipeline parallelism [67, 101] among the CNN layers. This type
of parallelism is related to the streaming nature of a CNN-based application,
where the application accepts different input frames (images) from an input
data stream. When a CNN is executed on a platform with multiple processors,
the frames from the input data stream can be processed in a pipelined fashion
by different layers of the CNN deployed on different processors.

2.4. Task- and data-level parallelism available in a CNN 27

Figure 2.6: task-level (pipeline) parallelism

Figure 2.6 shows an example where the CNN shown in Figure 2.1 and
explained in Section 2.1 is executed in a pipelined fashion on a platform with
two processors: a CPU and a GPU. The layers of the CNN, representing
computations within the CNN, are distributed over the platform processors:
layers l1 and l2 are executed on the GPU, while layers l3, l4, and l5 are executed
on the CPU. The distributed layers form two CNN sub-graphs also referred
as partitions [67, 101], annotated as Subnet1 and Subnet2. Partition Subnet1
accepts frames from the application input data stream, processes these frames
as specified by layers l1 and l2 and stores the results into a buffer associated
with edge e23. Partition Subnet2 accepts the frames processed by partition
Subnet1 from edge e23, further processes these, frames and produces the output
data of the example CNN. Partitions Subnet1 and Subnet2 are executed on
different processors in the platform and do not compete for the platform
computational resources. Thus, when applied to different data (i.e., different
frames), the partitions can be executed in parallel. In Figure 2.6, partitions
Subnet1 and Subnet2 process frames frame 2 and frame 1 in parallel. This leads
to overlapping execution of layers belonging to different partitions and enables
for faster inference of the CNN, compared to conventional layer-by-layer
(sequential) execution. However, pipelined CNN execution involves memory
overheads. As shown in Figure 2.6, edge e23 of the example CNN is duplicated
between the partitions Subnet1 and Subnet2 (see edges e(1)23 and e(2)23 and the
corresponding buffers). Such duplication, called the double-buffering [37], is
necessary for execution of the CNN as a pipeline. It prevents competition for
memory (buffers) between the partitions when accessing data associated with
edge e23. If the double buffering is not enabled the CNN partitions compete

28 Chapter 2. Background

for access to edge e23, thereby creating stalls in the pipeline and reducing the
CNN throughput.

It is worth noting that the parallelism available in a CNN is not explic-
itly specified in the CNN model, introduced in Section 2.1. The number of
parallel tasks, executed to perform the CNN model functionality, and the
exact communication and synchronization mechanisms between these tasks
are internally determined by the utilized DL framework, and can vary for
different frameworks. For example, the well-known DL frameworks [1, 75]
represent the functionality of every CNN layer li as multiple tasks, where
the total number of tasks depends on the number of CPUs available on the
target edge platform. The frameworks [94, 101] represent the functionality
of the same layer li as one task or part of a task. Therefore, the task-level
parallelism is not explicitly specified in the CNN model. Analogously, the
data-level parallelism is not explicitly defined in the CNN model because the
number of input/output data sub-tensors K, the number of elements within
sub-tensors Xik and Yik, and other decomposition parameters are determined
by every design framework individually, can vary for different frameworks,
and even within one framework. For example, the TensorRT framework [72]
is capable of representing the conv operator as: 1) the GEMM operator, so for
every Convolutional layer K = 1; 2) a direct convolution where K >= 1 is
computed from the attributes of a layer, performing the conv operator.

2.5 CSDF and SDF models of computation

The CSDF model [10] is a well-known dataflow model of computation, widely
used for model-based design in the embedded systems community. An ap-
plication modelled as a CSDF is a directed graph G(A, C) with set of nodes
A, also called actors, communicating with each other through a set of com-
munication FIFO channels C. Figure 2.7 shows an example of a CSDF model
G(A, C), where A = {a1, a2, a3, a4, a5} and C = {c12, c22, c23, c34, c45}.

Every actor ai ∈ A in the CSDF model represents a certain functionality
of the application, modelled as a CSDF graph, and performs an execution
sequence Fi = [fi(1), fi(2), · · ·, fi(Pi)] of length Pi, where p ∈ [1, Pi] is called a
phase of actor ai. At every phase actor ai executes function fi(((p− 1)modPi) +
1). An example of CSDF actor a2 is shown in Figure 2.7. Actor a2 performs
execution sequence F2 = [conv, conv], shortly written as [2 ∗ conv], meaning
actor a2 has P2 = 2 phases and performs function f2(p) = conv at each of its
phases p ∈ [1, 2].

Every FIFO communication channel cij ∈ C represents a data dependency

2.5. CSDF and SDF models of computation 29

Figure 2.7: CSDF model of computation

and transfers data in tokens between its source actor ai and its sink actor aj.
Every cij ∈ C has production sequence Uij and consumption sequence Vij.
Production sequence Uij : [uij(1), uij(2),..., uij(Pi)] of length Pi specifies the
production of data tokens into channel cij by its source actor ai. Analogously,
consumption sequence Vij : [vij(1), vij(2),..., vij(Pj)] of length Pj specifies the
consumption of data tokens from channel cij by its sink actor aj. An example
of communication channel c22 is shown in Figure 2.7. For communication
channel c22, actor a2 is a source and a sink actor. The production sequence
U22 : [24, 0], formally written as U22 : [1 ∗ 24, 1 ∗ 0] specifies, that at phase
p = 1 actor a2 produces 24 tokens to channel c22, and at phase p = 2 actor
a2 produces 0 tokens to channel c22. Analogously, the consumption sequence
V22 : [1 ∗ 0, 1 ∗ 24], specifies that during phase p = 1 actor a2 consumes 0
tokens from channel c22, and at phase p = 2 actor a2 consumes 24 tokens from
channel c22.

A special case of the CSDF model, where every actor has only one phase, is
called Synchronous Data Flow (SDF) model [57]. An example of a SDF model
is shown in Figure 2.8.

At every firing, actor ai ∈ A of the SDF model consumes vki(1) data tokens,
executes function fi(1) and produces uij(1) data tokens. For example, actor
a2 shown in Figure 2.8, at every firing consumes 48 data tokens from channel
c12, executes function f2(1) = conv and produces 8 data tokens to channel c23.
For simplicity, we omit the number of phases while annotating the execution

Figure 2.8: SDF model of computation

30 Chapter 2. Background

sequence, the production sequence, and the consumption sequence of the SDF
model. For example, the consumption sequence of actor a2 shown in Figure 2.8
is annotated simply as [48] instead of [1 ∗ 48].

2.6 Genetic Algorithm (GA)

Genetic Algorithm (GA) [83] is a well-known heuristic approach, widely used
for finding optimal solutions for complex Design Space Exploration (DSE)
problems. In a GA, a population of candidate solutions to an optimization
problem is evolved toward better solutions. A GA has two important problem-
specific attributes: a chromosome and a fitness function.

A chromosome is a genetic representation of the solution. Typically, a chro-
mosome is defined as a set of parameters (genes), joined into a string. An
example of a chromosome is shown in Figure 2.9 This chromosome shows
a distribution (mapping) of the computations within the layers of the CNN
shown in Figure 2.1 and explained in Section 2.1 onto the computational re-
sources of the Jetson TX 2 edge platform shown in Figure 2.4 and explained
in Section 2.3. The chromosome shown in Figure 2.9 is a string of 5 genes,
where every i-th gene, i ∈ [1, 5], specifies a processor of the Jetson TX 2 plat-
form which performs computations within layer li of the CNN. For example,
the chromosome specifies that computations within layer l1 of the CNN are
performed on the GPU of the Jetson TX 2 platform.

A fitness function is a special function, which evaluates the quality of GA
solutions, represented as chromosomes, and guides the GA-based search fro
(pareto) optimal solutions. During the search, the fitness function should be
minimized or maximized. For example, a fitness function can estimate the
throughput of inference of the CNN, shown in Figure 2.1 and executed on
the Jetson TX2 platform as specified in the chromosome shown in Figure 2.9.

Figure 2.9: Chromosome Figure 2.10: Single-gene mutation

Figure 2.11: Simple two-parent recombination (cross-over)

2.6. Genetic Algorithm (GA) 31

If this fitness function is maximized during a GA-based search, it will guide
the search towards finding chromosomes that ensure high CNN inference
throughput.

Once the chromosome and the fitness function are defined, a GA can
proceed to perform evolution, i.e., search for optimal solutions. The evolution
is an iterative process. It starts from a population of randomly generated
chromosomes. At each iteration, the fitness of every chromosome in the
population is evaluated using the fitness function. Then, the chromosomes
with the best score are selected from the population and are subjected to two
genetic operators, called recombination (cross-over) and mutation. During the
re-combination two selected chromosomes exchange parts (typically, halves)
to produce a new chromosome. During the mutation, one or multiple genes
of the chromosome randomly change their values. In this thesis, we use a
standard two-parent crossover and a single-gene mutation as proposed in [83]
and illustrated in Figure 2.11 and Figure 2.10, respectively. The new population
of candidate chromosomes, generated using the recombination and mutation,
is used in the next iteration of the GA-based search. The GA-based search
terminates when either a maximum number of iterations or a termination
condition (e.g., satisfactory fitness level) has been reached.

Beside the two problem-specific attributes, mentioned above, a GA also
has a number of parameters such as the maximum number of GA iterations,
the number of individuals in the initial population, the probability of mutation
in the chromosomes and others [83]. These parameters are typically user-
defined.

32 Chapter 2. Background

