:
S
gJl.'S

Universiteit
“dd) Leiden
Mb The Netherlands

1

)
3|
B 3
.
=
.

4

&

o

System-level design for efficient execution of CNNs at the
edge

Minakova, S.

Citation
Minakova, S. (2022, November 24). System-level design for efficient execution of

CNNs at the edge. Retrieved from https://hdl.handle.net/1887/3487044

Version: Not Applicable (or Unknown)
License: Licence agreement concerning inclusion of doctoral thesis
' in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3487044

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3487044

Chapter 1

Introduction

N recent years, the field of Deep Learning (DL) [33] has received great atten-

tion. This new and rapidly developing field has achieved state-of-the-art
results in solving problems in areas such as image processing, computer vi-
sion, speech recognition, machine translation, medical information processing,
robotics and control, bio-informatics, natural language processing, and many
others [4]. One of the most popular DL algorithms are Convolutional Neural
Networks (CNNs) [56]. Nowadays, CNNs are the front-runners of image pro-
cessing and computer vision tasks such as image segmentation, classification,
and object detection in both academia and industry [4]. The success of CNNs
is due to their ability to automatically, effectively, and adaptively extract and
process high- and low-level abstractions from multi-dimensional (2D and 3D)
data such as images or video. This capability is mostly associated with the
CNN:ss architecture, inspired by the biological processes in the visual cortex of
an animal [55].

A CNN consists of a set of interconnected elements, called neurons. The
connected neurons exchange data: each neuron accepts input data, provided
by other neurons or external sources, and generates data for other neurons.
To generate its output data, a neuron applies a mathematical operator such
as convolution, dot product, pooling, and others [59] to its input data. To
perform the operator, the neuron uses a set of parameters, also referred as
weights. The values of the weights are obtained via training: a computationally
intensive procedure, through which a CNN processes large volumes of data
and learns how to perform its respective task. The neurons performing the
same operator form hierarchically organized groups called layers. Typically, a
CNN has one input layer, one output layer, and one or more hidden layers.
The input layer receives the CNN input data (e.g. an image) and passes it to

2 Chapter 1. Introduction

the first hidden layer. The hidden layers transform the input data using the
respective operators, and pass the data from the input layer to the output layer.
Finally, the output layer produces the CNN output (e.g. an image classification
result). A simplified example of a CNN, performing image classification, is
shown in Figure 1.1. The CNN has one input layer, one output layer, and six
hidden layers. The number of layers in the CNN and the number of neurons
per layer are often referred as the CNN depth and width, respectively.

The state-of-the-art CNNs are characterized with large width (hundreds of
neurons per layer) and depth (hundreds to thousands of layers). They have
millions of parameters and perform billions of computations, requiring large
amount of hardware platform resources for their deployment and execution.
Therefore, CNNs are usually deployed on high-performance platforms: GPU
clusters and data centres. For applications, deployed on Edge platforms (mobile
phones, tablets, cameras, etc.), CNNs are typically provided as cloud services.
Execution of a CNN as a cloud service is shown in Figure 1.2 (on the left).
To use a CNN provided as a cloud service, an application deployed at the
Edge communicates with a server over the Internet. First, the application
sends a request to the cloud server. The request contains data collected at
the Edge, e.g., images from a CCTV camera. Then, a CNN deployed on a
high-performance platform in the cloud processes the data (e.g., performs
classification of the images) and sends the result back to the Edge platform.

It is important to note that the communication between the cloud server
and the Edge platform takes place over the Internet. Because of this, execution
of CNNs as cloud services suffers from low responsiveness and has privacy
issues. This is unacceptable for many CNN-based applications. For example,

CNN as a cloud service CNN at the Edge

Data center

""q.
-

embedded in

the Edge

T
Embedded platform

——— Communication
over the Internet

Depth

transformation

} v v
= 00 \ﬁ» () T
Width L | Bdge | |

Figure 1.1: CNN Figure 1.2: Execution of CNNs as cloud services and at the

Edge

1.1. Accuracy and platform-aware characteristics of a CNN 3

CNN-based navigation in self-driving cars [24] cannot tolerate variable and
large response delays occurring due to the communication between the car
and a server. These delays can lead to incorrect navigation of the car and,
subsequently, endanger the life of passengers. Another example is applications
in medicine [62] that use CNNs to analyse private data of patients. These
applications cannot send their data over the Internet because this could lead
to private data leakages and violation of patients” privacy rights. To address
these concerns, many modern CNN-based applications shift the execution of
CNN s to the Edge. Execution of a CNN at the Edge is shown in Figure 1.2 (on
the right). When executed at the Edge, CNNs are deployed close to the source
of data (e.g. camera or sensors) and to the rest of the CNN-based application
(e.g. camera software, which collects the application data). They do not require
communication over the Internet and ensure high application responsiveness
and security. In this thesis, we focus on deployment and execution of CNNs
at the Edge.

1.1 Accuracy and platform-aware characteristics of a
CNN

Execution of a CNN is characterized by accuracy and platform-aware charac-
teristics. The accuracy of a CNN (typically measured in %) is the fraction of
correct predictions generated by the CNN from the total number of predic-
tions generated by the CNN. It is the main quality metric of a CNN which
quantifies the CNN’s ability to perform its respective task, e.g., to classify
images correctly. The higher the CNN accuracy is, the better the CNN is at
performing its respective task.

The platform-aware characteristics characterize the execution of a CNN on a
target platform. The most common platform-aware characteristics of a CNN
are:

e throughput (typically measured in frames per second, fps), i.e., the amount
of data samples (e.g. images) processed per second;

¢ latency (typically measured in seconds, s), i.e., the time taken by a CNN
to process one input sample (e.g. one image);

* energy cost (typically measured in Joules), i.e., the total amount of energy,
required by a CNN to process one input sample;

* memory cost (typically measured in MegaBytes, MB), i.e., the total amount
of memory, required to deploy and execute a CNN.

4 Chapter 1. Introduction

1.2 Requirements posed on a CNN executed at the
Edge

While execution of CNNSs at the Edge is desirable and beneficial, it is also very
challenging due to numerous requirements posed on the CNNs by the CNN-
based applications and target edge platforms. These requirements concern
the characteristics of a CNN introduced in Section 1.1. With respect to these
characteristics, the most common requirements, posed on CNNs executed at
the Edge, are:

* high accuracy: the CNNs should be able to perform their tasks very well;

* high throughput: applications, such as CNN-based navigation in self-
driving cars [24], require CNNs to process their input data streams fast,
i.e., to have high throughput;

¢ low latency: many applications, such as navigation in drones [53], re-
quire CNNs to have low latency, i.e., as small as possible delay between
accepting an input and providing the respective output;

* low memory cost: typical edge platforms, used for CNN execution, have
limited amount of memory available. Thus, to be deployed and executed
on these platforms, CNNs should have low memory footprint;

* low energy cost: the energy budget of edge platforms, especially battery-
powered ones such as drones [58], is very limited. Thus, CNNs executed
on such platforms should have low energy consumption.

1.3 Current trends in the design of CNNs executed at
the Edge

State-of-the-art methodologies for designing CNNs executed at the Edge typi-
cally follow the design flow shown in Figure 1.3. The heart of the design flow
is the CNN optimization engine which performs automated search for optimal
CNN architecture and weights. To perform the search, the CNN optimization
engine uses techniques such as platform-aware Neural Architecture Search
(NAS) [9,25,34,38,46,92,105] and CNN compression [41,99,106]. As inputs, the
CNN optimization engine accepts: 1) A set of requirements posed on the CNN.
The typical requirements posed on a CNN executed at the Edge are introduced
in Section 1.2; 2) A search space which determines how the architecture of a

1.3. Current trends in the design of CNNs executed at the Edge 5

4' Requirements | I Baseline CNN | Data & task
I -
Ve CNN characteristics

=
= |
=
=
=5

estimation

oafo
]

==
z b
S g -
4] — accurac
a2 = CNN o Y —
% ? optimization oo A { Tralmm.g&]
S -5 engine ccuracy * validation
= = throughput
E .?. \ ‘_‘Platform-aware characteristic(s)}'— Platf
[o ; atform- aware
o - = = characteristics
2 85 == estimation
search . . -
Design points = & =3
space s =
=2 = e

,,"’ '
-7 1
Selection g)
-7 1
) - /

Measurements
on the platform
/

Optimal
design point

i

CNN implementation e L e CEE LR
¢ I'\ theano m CNTK CNN executable at the edge

PYTHRCH U D‘

Figure 1.3: Current trends in the design and inference of CNN-based applications executed
at the Edge

]

o ool

CNN inference

o dmlc
202 mxnet

CNN(s) IMPLEMENTATION
& INFERENCE

CNN can be constructed, i.e., which operators can be used by the CNN layers,
which connections exist among the neurons of the layers, how many neurons
and layers can a CNN have, etc. Also, it determines which CNN architectures
are valid. Often specified as a set of rules, the search space defines a very large
or even unbound set of valid CNNs that are able to solve the desired task;
3) (Optionally) A baseline CNN: a well-known, typically hand-crafted CNN,
proven to solve the required task with high accuracy. The baseline CNN de-
termines how the search is initialized, i.e., which CNNs are considered at the
first step of the search. If no baseline CNN is specified, the CNN optimization
engine initializes the search with CNNs randomly selected from the search
space.

After the search is initialized with the first sample set of CNNs, the CNN
optimization engine starts to explore the search space. The sample CNNs
are passed to the CNN characteristics estimation component, which estimates
the accuracy and platform-aware characteristics of the CNNs and returns the
estimations back to the CNN optimization engine. The estimation of the CNN
accuracy typically involves training and validation of the CNN. During the
training, the CNN processes large volumes of data and learns how to perform

6 Chapter 1. Introduction

its task. During the validation, the CNN is applied to new data, unseen during
the CNN training, and the CNN accuracy is computed [78]. The estimation
of the platform-aware characteristics of a CNN involves either direct mea-
surements on the target edge platform [105], or analytical formulas [34], or a
combination of measurements on the platform together with analytical formu-
las [105]. It is worth noting that most of the approaches used for estimation of
the platform-aware characteristics employ the combined estimation. There-
fore, these approaches enable for more efficient (in terms of time and labour)
estimation compared to only measurements on the platform, and more precise
estimation compared to only analytical formulas [54,60,103].

Based on the received estimations, the input requirements, and the em-
ployed search/optimization strategy, the CNN optimization engine tries to
improve the characteristics of the sample CNNs by altering the architecture
and (possibly) the amount of CNNSs. Typical alterations of a CNN architecture
include changing the size (width and depth) of the CNN, adding and remov-
ing connections between the CNN neurons, reducing the precision of the CNN
data and weights, and others [9,25,41,99,106]. The updated sample CNNs are
then forwarded again for characteristics estimation. Thus, the exploration of
the search space is a cycle, where every iteration involves sampling of CNNs
and estimation of the CNNs’ characteristics. The cycle continues until either a
certain number of iterations is performed or a special condition is met (e.g.,
characteristics of the CNNs no longer improve). The result of the exploration
is a set of CNNs, characterized with different architecture, weights, accuracy,
and platform-aware characteristics. Hereinafter, we refer to these CNNs as to
design points. The design points are passed to the selection component which
chooses a single optimal design point from these CNNs.

The optimal design point is implemented, i.e., represented as an executable
application and deployed on the target edge platform. The implementation
and deployment of a CNN on an edge platform is a complex task requiring in-
depth knowledge in the fields of Deep Learning (DL) and Embedded Systems
Design. Fortunately, this task can be greatly simplified through the use of DL
frameworks such as Keras [19], Pytorch [75], Tensorflow [1], TensorRT [72]
and others [74]. These frameworks provide a highly abstract user-friendly
API for implementation and deployment of CNNs at the Edge together with
a library of highly optimized operators performed by the CNN layers. The
deployed CNN is ready for its inference phase, at which the CNN performs its
respective task on the real-world data collected at the Edge.

1.4. Limitations of the state-of-the-art design flow for CNNs executed at the Edge 7

1.4 Limitations of the state-of-the-art design flow for
CNNs executed at the Edge

In this section, we highlight two limitations that exist in the design flow shown
in Figure 1.3. Also, we show the negative impact of these limitations on the
design of CNNs executed at the Edge.

1.4.1 Limitation 1

The first limitation concerns the search for design points performed by the
CNN optimization engine. As mentioned in Section 1.3, the CNN optimiza-
tion engine explores CNNs with different architectures and weights and tries
to find CNNs that are optimal in terms of the characteristics introduced in
Section 1.1. To estimate the characteristics of the CNNs, the CNN optimization
engine relies on the CNN characteristics estimation component. At this point,
the CNN characteristics estimation component and the CNN optimization
engine adopt Limitation 1: a CNN is assumed to be executed sequentially,
i.e., layer-by-layer. This sequential manner of CNN execution is widely ac-
cepted by the DL frameworks [1,19,72,74,75] and is often used to execute
CNNs. Nonetheless, layer-by-layer execution is not guaranteed to be optimal
with respect to every edge platform and every set of requirements posed on a
CNN. Recent works [22,44,45,48,50,101,110] show that there are alternative
(non-sequential) manners to execute a CNN at the Edge. Moreover, these
works show that a CNN may have better characteristics when executed in an
alternative manner than when executed layer-by-layer. However, alternative
manners of CNN execution are not explored by the CNN optimization en-
gine. Thus, due to Limitation 1, the existing methodologies for designing
CNNs, executed at the Edge, may miss optimal design points. We illus-
trate this in Figure 1.4 where we show three example CNNs, characterized
with accuracy and throughput, and associated with two manners of CNN

CNN1 CNN executed in the sequential manner,

95 . v . adopted by the DL frameworks (explored
CNN 2 by the CNN optimization engine)

accuracy (%)

CNN 3
;g . ' .v CNN executed in an alternative manner

v (unexplored by the CNN optimization
> engine)

0 45 6062 77 80
Throughput (fps)

Figure 1.4: CNNs associated with alternative manners of execution

8 Chapter 1. Introduction

execution: 1) the sequential manner, accepted by the DL frameworks and
assumed by the CNN optimization engine (shown as round points); 2) an
alternative (non-sequential) manner, optimal with respect to the target edge
platform and requirement of high throughput, posed on the CNNs (shown as
triangle points). The accuracy of the CNNs does not depend on the manner
the CNNSs are executed, and therefore the accuracy is the same for a round
point and a triangle point, associated with the same CNN. For example, the
accuracy of CNN 1 is 95% irrespective of the manner CNN 1 is executed. The
throughput of the CNNss is higher (i.e., better) when a CNN is executed in the
non-sequential manner, optimal with respect to the target edge platform and
requirements posed on the CNN - see the triangle points in Figure 1.4. Thus,
these CNNs have better characteristics (same accuracy and better throughput)
when they are executed in the non-sequential manner (triangle points), than
when they are executed in the sequential manner (round points). However,
due to Limitation 1 mentioned above, the triangle points are missed by the
CNN optimization engine.

1.4.2 Limitation 2

The second limitation concerns the selection of the final CNN from the set
of design points, performed by the selection component shown in Figure 1.3.
Limitation 2 is formulated as follows: currently, from the set of design points
provided by the CNN optimization engine, only one design point (CNN)
is selected to perform the required task in a CNN-based application. With
respect to the posed requirements, the selected CNN is characterized with
certain accuracy and platform-aware characteristics that remain unchanged
during the CNN-based application run-time. As a consequence, the needs of
CNN-based applications, affected by changes in the application environ-
ment during run-time, cannot be optimally served. To illustrate this we give
an example of a CNN-based road traffic monitoring application [53], which
needs vary at the application run-time. The example application is executed
on a drone. While flying, the drone takes images of the road and performs
CNN-based recognition on these images. If there is a car accident or a traffic
jam, the drone reports to the human operator. Depending on the situation on
the roads and the level of the drone battery, the example application poses
different requirements on the CNN. If the traffic is heavy, the application
requires the CNN to have high throughput and high accuracy to process its
input data, which typically means high energy consumption. During a traffic
jam, when the high throughput is not required, or in case the battery of the
drone is running low, the application would function optimally if the CNN

1.5. Research contributions 9

has reduced energy consumption at the cost of decreased throughput. If the
example CNN-based application uses only one CNN to perform road traffic
monitoring, it can either use a CNN with high throughput, high accuracy, and
high energy cost, needed for a heavy-traffic application scenario, or use a CNN
with reduced energy cost, as well as reduced accuracy and throughput. If the
application uses a CNN with high throughput, high accuracy, and high energy
cost, it optimally serves the application needs when the traffic is heavy, but
does not optimally serve the application needs during a traffic jam or when
the drone battery is low. Analogously, if the application uses a CNN with
reduced energy cost, as well as reduced accuracy and throughput, it optimally
serves the application needs during a traffic jam or when the drone battery is
low, but not when the traffic is heavy. Thus, if the application uses only one
CNN, the needs of the application cannot be optimally served during run-time
in a changing application environment.

1.5 Research contributions

In this thesis, we try to relax the two limitations, outlined in Section 1.4,
concerning the state-of-the-art CNN design flow shown in Figure 1.3. By
relaxing the limitations, we try to reduce the negative impact of the limitations
on the design of CNNs executed at the Edge. To this end, we extend the state-
of-the-art CNN design flow shown in Figure 1.3 and explained in Section 1.3.
The extended design flow is shown in Figure 1.5. The new components are
shown in dark green. The extended design flow is one of our important
research contributions. To realize the extended design flow, we propose
other important research contributions (RC), summarized in Section 1.5.1,
Section 1.5.2, Section 1.5.3, and Section 1.5.4, and denoted in Figure 1.5 as RC
1, RC 2, RC 3, and RC 4, respectively.

To relax Limitation 1, we extend the design flow with the system-level
optimization engine. The system-level optimization engine accepts as an input
the design points (CNNs), produced by the CNN optimization engine and
assumed to be executed sequentially (layer-by-layer). The system-level opti-
mization engine searches for alternative (non-sequential) manners to execute
the input CNNs, thereby trying to find optimal design points missed by the
CNN optimization engine. Along with the input CNNs, the system-level
optimization engine accepts requirements posed on the CNNs and an edge
platform model. The edge platform model which will be explained in details
in Section 3.4 provides simplified, yet accurate description of a target edge
platform to aid the search. As an output, the system-level optimization engine

10 Chapter 1. Introduction

Requirements | [Baseline CNN|
1 l == CNN characteristics

'
Augmented '? — %- % _ L/,?—/
= =

design points
BIPOTE =

z sample
2 % —* ? = estimation
4] accuracy =
a % CNN o —
= optimization raining
g = pengine °e Accuracy ‘ ‘[validation
= é throughput | ~
E ? g ‘__‘ Platform-aware characteristic(s) |
o . L
° =)
2 g
search Design points i' % =
space =
=2 =2 =
l CNN, executed in
sample . Platform- aware
= Platform (Y level accuracy N a specific manner I Char:cte?stics
o 1 imizati _] estimation
2 mode optlml.zatlon ov i.
N 8 oYy |
E RC1,RC2 throughput “ Platform-aware characteristic(s) |
S A J
=z
4
S
-
<]
>
=
=
=
<2}
=
w
=
w

4—[Extended selection] Rl /

v Ral Measurements
D
opime vy gl g | [Mk || S|
design = - optimization — application !
oints RC3,RC4 1

P = =) model '
g ! /
E . [Generation of code with system-level optimizations support] ’rl
z O % i
2 E T use o /'
12 >
i) CNN implementation |7~ 7T —/———— A)

1<
Sz N o Optimized CNN-based Czyt;:;f:fnece
[2 N Ii theano m CNTK application model executable g
z e slmp 3
z " - dmic
P

z YTORCH Same [l . s—é-.-

Figure 1.5: Extended CNN design flow

produces a set of augmented design points which contains the input CNNs as-
sociated with multiple alternative manners of execution. An example set of
augmented design points is shown in Figure 1.4 and explained in Section 1.4.
As shown in Figure 1.5, we place the system-level optimization engine after
the CNN optimization engine. We note that the system-level optimization en-
gine can also be placed within the CNN optimization engine. However, such
positioning leads to a problem: it requires modifications of existing platform-
aware NAS and CNN compression techniques and tools, used by the CNN
optimization engine. Thus, it violates the principle of software architecture

1.5. Research contributions 11

modularity [80] and greatly complicates the reuse of existing platform-aware
NAS and CNN compression techniques and tools. To avoid this problem,
we place the system-level optimization engine after the CNN optimization
engine. To realize the system-level optimization engine, in this thesis, we
propose and utilize two novel methodologies that explore alternative manners
of CNN execution: the methodology for high-throughput CNN inference,
summarized in Section 1.5.1 and the methodology for low-memory CNN
inference, summarized in Section 1.5.2. In Figure 1.5, the methodologies are
denoted as research contributions RC 1 and RC 2, respectively. It is worth
noting that, while the two proposed methodologies are important for finding
optimal design points, the capabilities of the system-level optimization engine
are not limited to these methodologies. To enrich the performed system-level
optimizations, the system-level optimization engine may integrate other com-
plimentary methodologies such as methodologies proposed in [101] and [93].

To relax Limitation 2, we extend the design flow with the extended selection
component and the post-selection optimization component. The extended selec-
tion component enables for selection of multiple pareto-optimal [18] design
points (CNNs) along with the selection of the single optimal design point,
offered by the (original) selection component. The post-selection optimization
component determines how to optimally use multiple design points to best
serve the needs of a CNN-based application. The post-selection optimization
component introduces run-time adaptivity into a CNN-based application af-
fected by changes in the application environment at run-time, and performs
joint CNNs memory optimization of multiple design points (CNNs) used by a
CNN-based application. As an output, the post-selection optimization com-
ponent produces the final CNN-based application model which embeds the
functionality of the CNNs used by the application as well as the system-level
optimizations introduced into the application. To realize the post-selection
optimization component, we propose and utilize two novel methodologies:
the methodology for run-time adaptive inference of CNN-based applications,
summarized in Section 1.5.3, and the methodology for joint memory opti-
mization of multiple CNNs, summarized in Section 1.5.4. In Figure 1.5, the
methodologies are denoted as research contributions RC 3 and RC 4, respec-
tively.

Finally, we extend the design flow with a component that performs gen-
eration of code with system-level optimizations support. The code generation
component accepts as an input the optimized CNN-based application model,
produced by the post-selection optimization component, and implements this
model. We introduce the code generation component because the optimized

12 Chapter 1. Introduction

CNN-based application model cannot be implemented using only the DL
frameworks that generate CNN-based application code in the state-of-the-art
design flow shown in Figure 1.3. More precisely, the existing DL frameworks
do not support the system-level optimizations (e.g., alternative manners of
CNN execution and run-time adaptivity) embedded into the optimized CNN-
based application model as explained above. Therefore, we extend the design
flow with the code generation component which uses: 1) the existing DL
frameworks to implement the CNNs functionality; 2) custom system-level
design tools to implement the system-level optimizations. As an output, the
code generation component provides an executable file with implementation
of the input CNN-based application model. Although the code generation
component is not presented as a separate research contribution in this thesis,
it is used for implementation of the CNN-based applications and evaluation
of the methodologies summarized in Section 1.5.1, Section 1.5.2, Section 1.5.3,
and Section 1.5.4.

1.5.1 RC1: Methodology for high-throughput CNN inference

In this section, we summarize our novel methodology for high-throughput
CNN inference at the Edge. The proposed methodology is based on our publi-
cation [67] and is explained in details in Chapter 3. The methodology exploits
two types of parallelism, data-level parallelism and task-level parallelism,
available in a CNN, to efficiently distribute (map) the computations within
the CNN to the computational resources of an edge platform. The CNN distri-
bution (mapping) is considered efficient if it ensures high CNN throughput.
To find an efficient CNN mapping, our proposed methodology uses a Ge-
netic Algorithm (GA) [85]. Exploitation of task-level (pipeline) parallelism
together with data-level parallelism is the main novel feature of our proposed
methodology. This feature distinguishes our methodology from the existing
DL frameworks, introduced in Section 1.3, that utilize only task-level (pipeline)
parallelism or only data-level parallelism, available in a CNN, to ensure high
CNN throughput. Thanks to the combined use of task- and data-level paral-
lelism, our proposed methodology takes full advantage of all computational
resources that are available on the edge platform, and ensures very high CNN
throughput. To evaluate our proposed methodology, we perform experiments
where we apply our methodology to real-world CNNs from the Open Neural
Network Exchange Format (ONNX) models zoo [7] and execute the CNNs
on the NVIDIA Jetson TX2 edge platform [71]. We compare the throughput
demonstrated by the CNNs mapped on the Jetson TX2 platform using: 1) our
proposed methodology; 2) the best-known and state-of-the-art TensorRT DL

1.5. Research contributions 13

framework [72] for the Jetson TX2 edge platform. The experimental results
shown that 1.36% to 42% higher throughput is achieved, when the CNNs are
mapped using our methodology. We note that our proposed methodology
considers edge platforms with computational resources composed of CPUs
and GPUs because such platforms are most often used to execute applica-
tions, requiring high CNN throughput [32,109]. However, extending our
proposed methodology to other types of edge platforms (e.g., FPGA-based
platforms [32]) is straightforward due to the modularity and generality of our
methodology.

1.5.2 RC2: Methodology for low-memory CNN inference

In this section, we summarize our novel methodology for low-memory CNN
inference at the Edge. The proposed methodology is based on our publica-
tion [65] and is explained in details in Chapter 4. To ensure low memory
cost of the CNN inference, the methodology splits the data, processed by
layers of a CNN, in parts and efficiently reuses the edge platform memory,
allocated to store the data parts. Processing data by parts is the key novel fea-
ture of our proposed methodology. It enables our methodology to reduce the
CNN-based application memory footprint without affecting the main CNN
quality metric, i.e., the CNN accuracy. This compares favourably with the
most common CNN memory reduction methodologies such as pruning and
quantization [41,99,106] that reduce the CNN inference memory footprint at
the cost of decreased CNN accuracy. However, data processing by parts may
cause CNN execution time overheads (e.g., CNN layers may require time to
switch among the data parts), leading to CNN throughput decrease. Thus, the
proposed methodology reduces the amount of memory occupied by a CNN
at the cost of reduced CNN throughput. The experimental results show that
taking real-world CNNs from the ONNX models zoo [7] and applying our
memory reduction methodology to these CNNs, the CNNs memory cost is
reduced by 2.8% to 38% when compared to the memory reduction achieved
by the state-of-the-art TensorRT DL framework [72].

1.5.3 RC3: Methodology for run-time adaptive inference of CNN-
based applications

In this section, we summarize our novel methodology for run-time adaptive
inference of CNN-based applications. The proposed methodology is based on
our publication [64] and is explained in details in Chapter 5. The methodol-
ogy enables to adapt a CNN-based application to changes in the application

14 Chapter 1. Introduction

environment during run-time. It is based on the concept of scenarios [15],
widely used in embedded systems design. According to this concept, an ap-
plication can have different internal operation modes, called scenarios, each
with its own typical characteristics or/and functionality. During run-time,
the application can switch among the scenarios, thereby adapting its charac-
teristics or functionality to changes in the application environment. In our
scenario-based run-time switching (SBRS) methodology, a scenario is a CNN
designed to conform to a specific set of requirements in terms of accuracy and
platform-aware characteristics. An application can have multiple scenarios
that conform to different application needs. During run-time, the application
can switch among the scenarios, thereby adapting its characteristics to its
needs. To enable for run-time adaptivity, our SBRS methodology represents a
CNN-based application as a novel SBRS model of computation (MoC) which
embeds the functionality of the application scenarios as well as mechanisms
for run-time adaptivity. Additionally, the methodology proposes an SBRS
transition protocol which ensures high application responsiveness during the
scenarios switching. The experimental results, where we apply our methodol-
ogy to three real-world applications from two different domains, show that
our SBRS methodology: 1) Adapts a CNN-based application to changes in the
environment, thereby ensuring optimal service to the needs of the application
at any given point in time; 2) Enables for fast switching between the applica-
tion scenarios due to our novel SBRS transition protocol; 3) Outperforms the
most relevant existing methodology called MSDNet [39].

1.5.4 RC4: Methodology for joint memory optimization of multi-
ple CNNs

In this section, we summarize our novel methodology for joint memory op-
timization of multiple CNNs. The proposed methodology is based on our
publication [66] and is explained in details in Chapter 6. As mentioned ear-
lier, to relax Limitation 2, our extended design flow allows a CNN-based
application to use multiple CNNs instead of one CNN to perform its func-
tionality. However, this may dramatically increase the application memory
cost, while as explained in Section 1.2, low memory cost is required for CNN-
based applications executed at the Edge. Thus, execution of a multi-CNN
application (an application using multiple CNNs) at the Edge may require
aggressive optimizations to reduce the application memory cost. Typically,
these optimizations are performed using methodologies such as pruning and
quantization [41,99,106]. These methodologies reduce the number or precision
of CNN parameters, thereby reducing the CNN memory cost. However, at

1.6. Thesis organization 15

high CNN memory reduction rates, these methodologies decrease the CNN
accuracy, while as mentioned above, high CNN accuracy is very important
for many CNN-based applications. To achieve high CNN memory reduc-
tion and avoid substantial decrease of CNN accuracy, the CNN pruning and
quantization methodologies can be combined with the CNN memory reuse
methodologies such as the methodologies in [47] and [76]. Orthogonal to the
pruning and quantization methodologies, the CNN memory reuse method-
ologies reuse the platform memory allocated to store intermediate CNN com-
putational results, produced by the CNN layers. Thus, these methodologies
further reduce the application memory cost without decreasing the CNN ac-
curacy. However, these methodologies account for the state-of-the-art CNN
design flow shown in Figure 1.3, and thus adopt Limitation 1 and Limitation
2, outlied in Section 1.4. Due to Limitation 1, these methodologies do not
account for non-sequential manners of CNN execution, and are often unfit
for CNNss executed in a non-sequential manner. Due to Limitation 2, these
methodologies can reuse platform memory within a CNN, but not among mul-
tiple CNNs, thereby missing opportunities for inter-CNN memory reuse. To
address these issues, we propose our methodology for joint memory optimiza-
tion of multiple CNNs. Unlike the existing memory reuse methodologies, our
proposed methodology reuses memory among multiple CNNSs, and is suitable
for CNNs executed in a non-sequential manner. To evaluate our proposed
methodology, we perform experiments where we apply our methodology to
six real-world state-of-the-art CNN-based applications. The experimental re-
sults show that our methodology enables for up to 6 times memory reduction,
compared to deployment of CNN-based applications with no memory reduc-
tion and 10% to 30% memory reduction, compared to other CNN memory
reuse methodologies. Additionally, the experimental results demonstrate that
our methodology can be efficiently combined with orthogonal methodologies
such as CNN pruning and quantization.

1.6 Thesis organization

Below, we give an outline of this thesis, summarizing the contents of the
following chapters. Chapter 2 presents the background, i.e., concepts neces-
sary to understand the contributions of this thesis. Chapter 3 to Chapter 6
contain the main contributions of this thesis. Each chapter is organized in a
self-containing manner, meaning that each chapter contains a more specific
introduction to the research problem and contribution, a related work, the pro-
posed solution methodology, an experimental evaluation, and a concluding

16 Chapter 1. Introduction

discussion.

Chapter 3 presents our novel methodology for high-throughput CNN
inference. This chapter is based on our publication [67].

Chapter 4 presents our novel methodology for low-memory CNN infer-
ence. This chapter is based on our publication [65].

Chapter 5 presents our novel methodology for run-time adaptive inference
of CNN-based applications. This chapter is based on our publication [64].

Chapter 6 presents our novel methodology for joint memory optimization
of multiple CNNs. This chapter is based on our publication [66].

Finally, Chapter 7 ends this thesis by providing a summary and concluding
remarks for the research work presented in this thesis.

