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In research, speaker specificity is often investigated at the level of individual speech sounds. In 
casework, however, conclusions are drawn by evaluating multiple features (e.g., Gold & French, 
2011). Gold & Hughes (2015) compared several ways of combining different acoustic-phonetic 
features into one overall likelihood ratio (LR). They argued for the evaluation of correlations between 
speech features prior to combining evidence from various phonetic features. The current study 
considers segmental correlations prior to combining various Dutch speech sounds into a joint strength 
of evidence. It is expected that the combination of different speech sounds will support stronger 
conclusions by an LR system with higher validity. 

For the current study, spontaneous conversational telephone speech from adult male speakers 
was used. In the first phase of the study correlations between speech features from the same sounds 
and across all six speech sounds were computed. In the second phase, an overall LR was computed, 
taking the correlations into account.  

Method 

Landline telephone data (300-3400 Hz) were taken from Heeren (2020, [a:, e:]), Smorenburg & 
Heeren (2020, [s, x]), and Smorenburg & Heeren (2021, [m, n]). Per speech segment, two well-
performing acoustic-phonetic features from each segment were selected: F2 and F3 for the vowels, 
N2 and N3 for the nasals, and CoG and spectral standard deviation for the fricatives. The same set of 
60 speakers contributed 20 tokens per speech sound1.  

Correlations between features within a speech sound and across speech sounds were computed 
using distance correlations implemented in the R package Energy (https://cran.r-
project.org/web/packages/energy/) to assess non-linear relationships and Pearson’s r to assess a linear 
relationship. 

An overall LR was computed by developing separate MVKD LR systems (Aitken & Lucy, 
2004) for non-correlating features using the MATLAB implementation by Morrison (2007), and by 
then multiplying the resulting LRs per system. The 60 speakers were randomly divided into equally-
sized groups for development, reference, and test data, which was repeated 10 times per system (using 
fixed grouping per repetition). After score-to-LR conversion, ELUB limiting with 1 CMLR (Vergeer 
et al., 2016) was applied to each of the intermediate results, and also to the overall LRs after 
multiplication. Each system’s validity was evaluated by computing Cllr, Cllrmin and EER (Brümmer 
& Du Preez, 2006, in Van Leeuwen, 2008). 

Results 

Within speech sounds and within speech sound classes (vowels, nasals, fricatives), significant 
correlations between speech features (e.g. F2, F3) were found (r >= .33, p <= .016). The only 
significant correlations between speech sounds from different classes were found between N2 of nasal 
[m] and the vowel [a:]’s formants F2 (r = .42, p = .001) and F3 (r = .45, p = .002). Given this result, 
two LR systems were built: one for vowels+nasals and one for fricatives.  

The LR results are summarized in Table 1, presenting medians and interquartile ranges across 
10 repetitions per system. 

1 One speaker had only 17 [s] tokens. 
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[a:] + [e:] + [m] + [n] [s] + [x] combined 
LLRsame-speaker    1.15          [1.0, 1.3] 0.55      [0.44, 0.55] 1.45     [1.40, 1.45] 
LLRdifferent-speaker −1.25 [−1.25, −0.95] −0.50 [−0.61, −0.35] −1.10 [−1.25, −1.10] 
Cllr 0.53      [0.49,0.56] 0.84      [0.82, 0.86] 0.51     [0.47, 0.53] 
Cllrmin 0.28     [0.24, 0.36] 0.71      [0.66, 0.79] 0.22     [0.18, 0.27] 
EER (%) 9.11     [7.44, 9.52] 25.08  [23.31, 26.55] 6.28     [5.06, 7.70] 

Table 1. Results of the LR analysis, per system and for the combined result. 

Discussion 

Results show that an acoustic-phonetic system for Dutch may perform well using features from just 
six, carefully-selected segments. Without limiting, comparable results were obtained for combined 
features in English (formants, F0, articulation rate, Gold, 2014). Even though Dutch [s, x] may not 
appear to be a strong system on its own, when combined with [a:, e:, n, m] it is very helpful in 
increasing strength of evidence and validity. Accounting for the correlations between and within 
features allows us to avoid miscarriages of justice that would traditionally over-estimate strength of 
evidence. The results in this study show that accounting for correlations within and between just six 
phonetic parameters provides appropriate same-speaker and different-speaker strengths of evidence. 
We also have a respectable EER for the system and the overall Cllr is not too high. 
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