

Analysis of sarcoma and non-sarcoma clinical data with statistical methods and machine learning techniques

Kantidakis, G.

Citation

Kantidakis, G. (2022, November 23). *Analysis of sarcoma and non-sarcoma clinical data with statistical methods and machine learning techniques*. Retrieved from https://hdl.handle.net/1887/3486743

Version:	Publisher's Version
License:	Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden
Downloaded from:	https://hdl.handle.net/1887/3486743

Note: To cite this publication please use the final published version (if applicable).

Part I

Clinical trials in soft-tissue sarcomas

9

Efficacy thresholds for clinical trials with advanced or metastatic leiomyosarcoma patients: A European Organisation for Research and Treatment of Cancer Soft Tissue and Bone Sarcoma Group meta-analysis based on a literature review for soft-tissue sarcomas

This chapter is based on: G. Kantidakis, S. Litière, A. Neven, M. Vinches, I. Judson, P. Schöffski, E. Wardelmann, S. Stacchiotti, L. D'Ambrosio, S. Marréaud, W. T. A. van der Graaf, B. Kasper, M. Fiocco, and H. Gelderblom. Efficacy thresholds for clinical trials with advanced or metastatic leiomyosarcoma patients: A European Organisation for Research and Treatment of Cancer Soft Tissue and Bone Sarcoma Group meta-analysis based on a literature review for soft-tissue sarcoma. *European Journal of Cancer*, 154:253–268, 2021.

Abstract

Background: In 2002, the European Organisation for Research and Treatment of Cancer Soft Tissue and Bone Sarcoma Group reported well-established values for conducting phase II trials for soft-tissue sarcomas. An update is provided for leiomyosarcoma (LMS).

Materials and methods: Clinical trials with advanced or metastatic LMS were identified via literature review in PubMed (published 2003–2018, \geq 10 adult LMS patients). End-points were 3- and 6-month progression-free survival rates (PFSR-3m and PFSR-6m). When estimates could not be derived from publications, data requests were sent out. Treatments were classified as recommended (R-T) or non-recommended (NR-T) according to the ESMO 2018 guidelines. A random effects meta-analysis was used to pool trial-specific estimates for first-line (1L) or pre-treated (2L+) patients separately. The ESMO Magnitude of Clinical Benefit Scale was used to guide the treatment effect to target in future trials.

Results: From 47 studies identified, we obtained information on 7 1L and 16 2L+ trials for 1500 LMS patients. Overall, in 1L, PFSR-3m and PFSR-6m were 74% (95% confidence interval [CI] 64–82%) and 58% (95% CI 50–66%), respectively. For 2L+, PFSR-3m was 48% (95% CI 41–54%), and PFSR-6m was 28% (95% CI 22–34%). No difference was observed between R-T and NR-T for first or later lines. Under the alternative that the true benefit amounts to a hazard ratio of 0.65, a PFSR-6m \geq 70% can be considered to suggest drug activity in 1L. For 2L+, a PFSR-3m \geq 62% or PFSR-6m \geq 44% would suggest drug activity. Specific results are also provided for uterine LMS.

Conclusions: This work provides a new benchmark for designing phase II studies for advanced or metastatic

LMS.

2.1 Introduction

Non-gastrointestinal stromal tumour soft-tissue sarcomas (STS) constitute a very heterogeneous group of mesenchymal rare malignancies, accounting for 1% of all adult malignancies, with widely varying genetics, prognostic factors, and sensitivity to treatments [1]. The tumours metastasise predominantly to the lungs [1, 2]. Gastrointestinal stromal tumour (GIST) is generally considered separately because it is responsive to receptor tyrosine kinase inhibitors, most notably imatinib. The prognosis of patients with advanced or metastatic STS is poor, with a median overall survival (OS) of 12–17 months after first-line treatment and an estimated 2-year OS of 20–30% after treatment with standard cytotoxic chemotherapy drugs [3, 4]. In these patients, treatment is often palliative to delay progression and severe morbidity. Doxorubicin and ifosfamide are considered the most active drugs used either singly or in combination for first line with a response rate (RR) of 10–25% [5]. Dacarbazine and the combination of docetaxel and gemcitabine are also treatments with some recognised activity [6, 7]. Frequently used drugs, particularly for the second and further lines of treatment of LMS, are trabectedin, dacarbazine, pazopanib, and gemcitabine [8].

In total, more than 100 histologic subtypes have been recognised occurring in the trunk, extremity, and retroperitoneum [1]. The commonest histotypes are leiomyosarcoma (LMS; \sim 20%), liposarcoma (\sim 20%), undifferentiated pleiomorphic sarcoma (\sim 15%), and synovial sarcoma (\sim 6%), with the remaining histotypes being individually rarer [9].

LMS — one of the most common STS — has a wide anatomical distribution exhibiting complex genetic alterations. LMS occurs most frequently in the uterus and is the most prevalent form of gynaecologic sarcoma. It comprises \sim 20% of STS being rare but aggressive [10, 11]. First-line patients with locally advanced or metastatic LMS have poor prognosis (median OS \sim 17 months) and are usually treated with doxorubicin alone, or in combination with ifosfamide, or dacarbazine [7, 12]. Non-uterine and uterine LMS (uLMS) should be considered separately since different gene patterns are expressed and different clinical behaviour has been reported that might make uLMS more chemosensitive [13, 14]. Systemic treatment for advanced uterine LMS with doxorubicin or gemcitabine-based regimens results in median progression-free survival (PFS) of 6–8 months and median OS of <2 years [15].

As historical benchmarking, Van Glabbeke et al. published in 2002 a pooled analysis on behalf of the European Organisation for Research and Treatment of Cancer Soft Tissue and Bone Sarcoma Group (EORTC - STBSG) estimating progression-free rate for various groups of STS patients who participated in EORTC phase II trials [16]. In this work, thresholds for activity were provided separately for first-line and pre-treated patients dividing drugs into active and inactive: a rate at 6 months of 30–56% was suggested as a reference for first line (depending on histology), and for second line, a 3-month rate was \geq 40% for drug activity and \leq 20% for inactivity (for any STS subgroup).

The aforementioned thresholds have been widely used (more than 400 citations) to design new studies for all STS or for specific histology subgroups. As they were calculated almost two decades ago, it is of great importance to provide updates to reflect current treatment practices. Moreover, in the previous decade, STS studies were designed based on the one-size-fits-all principle mixing several histologic subtypes. However, more recently, there is a clear trend towards histology-specific tailored research [1, 13]. To elaborate on this, the 2002 thresholds should not only be updated but also be evaluated separately for the most prevalent STS subtypes to aid the design of histology-specific trials. This is more relevant with the increased survival trend from the standard of care (i.e. doxorubicin) and multiple other agents such as eribulin, pazopanib, and trabectedin; all associated with improvements in supportive and multidisciplinary care [17, 18].

An extensive literature search was performed to identify all phase II or subsequent clinical trials of advanced or

metastatic STS from 2003 to 2018, thus documenting the current landscape. Because of the heterogeneity among clinical trials (e.g. different treatments, subtypes, and phases), it was decided to focus first on LMS – the most commonly occurring STS subtype. Moreover, given the fact that PFS rates (PFSRs; counting death as an event) are nowadays a preferred and more frequently reported end-point than progression-free rates (censoring non-disease–related death), the primary end-point of interest in this work is PFSR at 3 and 6 months. The aim is to provide a new benchmark for designing phase II studies for advanced or metastatic LMS patients using PFS rates as the primary end-point.

2.2 Methods

2.2.1 Search strategy and selection criteria

This literature review and meta-analysis was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines [19]. The details are provided in the Appendix pp 3–5. In summary, MEDLINE was searched through PubMed for phases II, III, or IV clinical trials for advanced or metastatic STS published from 1 January 2003 to 31 December 2018. Three investigators (Georgios Kantidakis, Anouk Neven, and Marie Vinches) independently examined the database. Two search algorithms were combined using the terms 'sarcoma', 'clinical trial', 'advanced', 'metastatic', and 'human'.

Only articles published in English were included. Eligible study designs included randomised controlled or nonrandomised clinical trials as well as prospective real-life studies. The study domain included any systemic therapy in non-resectable advanced or metastatic STS for first or later lines of treatment. Case–control studies, case series, review papers, early phase trials (phase I, I-II), reports, pooled analyses, and substudies were excluded. Articles with paediatric population or with retrospective clinical data were considered ineligible, as well as those dedicated exclusively to GIST or bone sarcomas. A two-step procedure was performed by the three investigators. The first step included screening of titles and abstracts, the second step of full text. During the first step, the name of study, first author and year of publication were extracted. At the second step, study design, study phase, number of patients registered, line of treatment, subtypes included/excluded, primary end-points, drugs used in the trial, and more summary estimates filling in total 41 variables in our database. In case of discordance, discussion followed to find a compromise. It was decided to first focus on LMS, the most frequent STS subtype in the screened trials.

2.2.2 Data extraction

To perform the meta-analysis, a line per treatment arm database was designed. For each line, Georgios Kantidakis extracted the year of study activation, LMS subgroup (all or uterine only), number of evaluable LMS patients (those who meet the statistical plan criteria for inclusion in efficacy data sets) for PFSR at 3/6 months with 95% confidence intervals (95% CIs). Placebo arms, treatment arms with less than 10 LMS patients, studies activated before 2000, or those with mixed treatment lines were excluded. When information on the end-points could not be extracted from a publication, first authors and/or study sponsors were contacted.

2.2.3 Statistical methods

The main analysis focused on the activity of drugs or drug combination, distinguishing between recommended (R-T) / non-recommended treatment (NR-T) regimens for LMS patients, measured in terms of the overall PFSR at 3/6 months. The ESMO 2018 guidelines were used as a criterion to perform drug classification [7]. A random effects model was used for each drug (or drug combination) to estimate an overall PFSR. A necessary component for the calculation of study heterogeneity was the variance of PFS (not available in publications). Therefore, for each treatment arm, the number of cases (patients alive and progression-free) at 3 and 6 months was approximated

CHAPTER 2. EFFICACY THRESHOLDS - LEIOMYOSARCOMA

Figure 2.1: **Study selection**. For the uterine LMS meta-analysis, nine studies were included: six studies designed for uterine LMS and three designed for (all) LMS for which estimates for the uterine LMS subgroup were provided.

according to the number of evaluable LMS patients and a given PFS proportion (defined as cases/evaluable patients). Followingly, the estimated number of cases was used under a binomial distribution to calculate the variance and the 95% CIs for each drug/combination (see more details in Appendix pp 11–12) [20].

The inverse variance method, giving more weight to larger trials, was used to pool treatment-specific PFS estimates. These are reported on forest plots alongside the 95% CIs. To estimate the between-study variance, the DerSimonian-Laird's method was employed [21, 22]. An overall test on heterogeneity between studies was performed for each meta-analysis (value I^2 in figures) [23]. The association of drug groups (R-T/NR-T) with PFS was tested with a Z-statistic. The risk of publication bias was assessed with funnel plots and formal regression tests [24–26]. The Baujat plot was applied to detect sources of heterogeneity and potentially influential studies [27]. Meta-regressions were performed to test the effect of phase, study design, year of activation, and sample size on efficacy for all LMS, but not for uLMS (because of the small number of specific studies). First, the predictors were tested separately in univariate models and then any prognostic factors were added in multivariate models, including the drug groups, to investigate whether some part of the residual heterogeneity can be explained.

The ESMO Magnitude of Clinical Benefit Scale (MCBS) was used to guide the choice of treatment effect to target in future trials [28]. All reported P values are two sided. Analyses were performed using the packages metafor and meta in R (version 4.0.2) [29, 30].

2.3 Results

Study	Patients	Events	PFS 3m	95% CI	Weight		
regimen_recommended = No Tap 2017: Doxorubicin+Evofosfamide Pautier 2015: Doxorubicin+Trabectedin Seddon 2017: Docetaxel+Gemcitabine Bui-Nguyen 2015: Trabectebin 3h Gelderblom 2014: Brostallicin Random effects model Heterogeneity: I^2 = 90%, p < 0.01	115 108 58 18 29 328	87 97 44 10 8	0.76 0.90 0.76 0.56 0.28 0.69	[0.67; 0.83] [0.83; 0.94] [0.63; 0.85] [0.33; 0.76] [0.14; 0.46] [0.53; 0.82]	11.1% 10.1% 10.2% 8.3% 9.0% 48.6%	-•-	
regimen_recommended = Yes Tap 2017: Doxorubicin Seddon 2017: Doxorubicin Judson 2014: Doxorubicin+lfosfamide Judson 2014: Doxorubicin Bui-Nguyen 2015: Doxorubicin Gelderblom 2014: Doxorubicin Random effects model Heterogeneity: I^2 = 27%, p = 0.23	103 60 57 53 13 14 300	85 47 44 35 12 11	0.83 0.78 0.77 0.66 0.92 0.79 0.78	[0.74; 0.89] [0.66; 0.87] [0.65; 0.86] [0.52; 0.77] [0.61; 0.99] [0.51; 0.93] [0.65; 0.88]	10.7% 10.1% 10.1% 10.4% 3.7% 6.5% 51.4%		■
Random effects model Heterogeneity: l^2 = 79%, $p < 0.01$	628		0.74	[0.64; 0.82]	100.0%	0.2 0	2
Study	Patients	s Events	sPFS6m	95% C	Weight		
Study regimen_recommended = No Chawla 2014: Doxorubicin+Evofosfamide Tap 2017: Doxorubicin+Evofosfamide Pautier 2015: Doxorubicin+Trabectedin Seddon 2017: Docetaxel+Gemcitabine Bui-Nguyen 2015: Trabectebin 3h Gelderblom 2014: Brostallicin Random effects model Heterogeneity: $I^2 = 85\%$, $p < 0.01$	Patients = 28 115 108 58 29 356	B 11 5 72 3 86 3 30 3 40 6 6	s PFS 6m 8 0.64 2 0.63 8 0.81 5 0.60 8 0.44 6 0.21 0.59	95% C 0.45; 0.80 0.53; 0.71 0.73; 0.88 0.047; 0.72 0.24; 0.67 0.10; 0.39 0.47; 0.70	T.6% 10.6% 9.8% 9.5% 6.5% 6.7% 50.8%		 8
Study regimen_recommended = No Chawla 2014: Doxorubicin+Evofosfamide Tap 2017: Doxorubicin+Evofosfamide Pautier 2015: Doxorubicin+Trabectedin Seddon 2017: Docetaxel+Gemcitabine Bui-Nguyen 2015: Trabectebin 3h Gelderblom 2014: Brostallicin Random effects model Heterogeneity: $I^2 = 85\%$, $p < 0.01$ regimen_recommended = Yes Tap 2017: Doxorubicin Seddon 2014: Doxorubicin Judson 2014: Doxorubicin Judson 2014: Doxorubicin Bui-Nguyen 2015: Doxorubicin Bui-Nguyen 2015: Doxorubicin Gelderblom 2014: Doxorubicin Gelderblom 2014: Doxorubicin Random effects model Heterogeneity: $I^2 = 0\%$, $p = 0.50$	Patients 2 28 118 108 58 29 356 103 60 57 53 103 103 103 103 103 103 103 10	3 11 5 72 3 81 3 33 3 4 9 0 6 31 7 32 3 21 3 21 3 21 4 9	s PFS 6m 8 0.64 2 0.63 8 0.81 5 0.60 8 0.44 6 0.21 0.59 1 0.59 0 0.50 2 0.56 7 0.51 0 0.77 9 0.64 0.58	95% C [0.45; 0.80] [0.53; 0.71] [0.73; 0.88] [0.47; 0.72] [0.24; 0.67] [0.10; 0.39] [0.47; 0.70] [0.43; 0.68] [0.38; 0.62] [0.43; 0.68] [0.38; 0.64] [0.43; 0.92] [0.45; 0.69]	Weight 7.6% 10.6% 9.8% 9.5% 6.7% 50.8% 10.5% 9.7% 9.5% 4.5% 5.5% 49.2%		 _ •

Figure 2.2: Forest plots of PFS at 3 (upper panel) and 6 (low panel) months for first line (all) LMS patients. PFS proportion at 3 or 6 months was defined as the (approximate) proportion of patients alive and without progression at 3 or 6 months after the start of treatment. Treatments were classified as recommended or non-recommended according to ESMO 2018 guidelines [7]. Heterogeneity refers to the variability between the study-specific effect sizes that cannot be explained by a random variation.

2.3.1 Included clinical trials

The search strategy identified 745 publications; 159 potentially relevant articles for STS were selected after abstract and full-text screening. A noticeable amount of variation was observed (e.g. different treatments, subtypes, and end-points). For this work, the focus is on LMS, which appeared more than 100 times (as LMS, uLMS, soft-tissue LMS etc). Forty-seven studies were identified for the meta-analyses. Overall, twenty-three trials were included in the all LMS meta-analysis (excluding trials designed only for uLMS patients) [3, 5, 9, 18, 31–49], and nine trials were included in the uLMS-specific meta-analysis [37, 45, 49–55] (see study selection in Figure 2.1).

First author (year of publication)	Study period	Study type	Phase	Treatment line	Total patients registered	Drug or drug combination	Recommended	Evaluable LMS patients for PFS (%)	Analysed group
Long et al. (2005)	2002-2003	Non-randomised trial	2	1	18	D+M+D+C+S	No	18 (100.00%)	Uterine LMS
Hartmann et al. (2007)	2002-2006	Non-randomised trial	2	2+	36	Bendamustine	No	15 (41.67%)	All LMS
Reichardt et al. (2007)	2002-2004	Non-randomised trial	2	2+	39	Exatecan	No	16 (41.03%)	All LMS
Hensley et al. (2008)	2003-2006	Non-randomised trial	2	1	42	Docetaxel + Gemcitabine	No	42 (100.00%)	Uterine LMS
Hensley et al. (2008)	2003-2006	Non-randomised trial	2	2+	51	Docetaxel + Gemcitabine	Yes	48 (94.12%)	Uterine LMS
Hensley et al. (2009)	2006-2007	Non-randomised trial	2	2+	25	Sunitinib	No	23 (92.00%)	Uterine LMS
Sleijfer et al. (2009)	2005-2007	Non-randomised trial	2	2+	142	Pazopanib	Yes	41 (28.87%)	All LMS
Schöffski et al. (2011)	2007-2009	Non-randomised trial	2	2+	128	Eribulin	No	38 (29.69%)	All LMS
Chawla et al. (2011)	2004-2005	Non-randomised trial	2	2+	216	Ridaforolimus	No	57 (26.39%)	All LMS
van der Graaf et al. (2012)	2008-2010	Randomised trial	3	2+	372	Pazopanib	Yes	92 (24.73%)	All LMS
Pautier et al. (2012)	2006-2008	Randomised trial	2	2+	90	Docetaxel + gemcitabine	Yes	21 (23.33%)	Uterine LMS
						Docetaxel + gemcitabine	Yes	40 (44.44%)	All LMS
						Gemcitabine	Yes	21 (23.33%)	Uterine LMS
						Gemcitabine	Yes	43 (47.78%)	All LMS
Schuetze et al. (2012)	2008-2009	Non-randomised trial	2	2+	49	Cyclophosphamide + sirolimus	No	16 (32.66%)	All LMS
Cassier et al. (2013)	2010	Non-randomised trial	2	2+	47	Panobinostat	No	10 (21.28%)	All LMS
Santoro et al. (2013)	2006-2010	Non-randomised trial	2	2+	100	Sorafenib	No	30 (30.00%)	All LMS
Schöffski et al. (2013)	2008-2012	Non-randomised trial	2	2+	113	Cixutumumab	No	22 (19.47%)	All LMS
Chawla et al. (2014)	2009-2011	Non-randomised trial	2	1	91	Doxorubicin + evofosfamide	No	28 (30.77%)	All LMS
Duska et al. (2014)	2010-2014	Non-randomised trial	2	2+	26	Ixabepilone	No	23 (88.46%)	Uterine LMS
Gelderblom et al. (2014)	2006-2008	Randomised trial	2	1	118	Brostallicin	No	29 (24.58%)	All LMS
						Doxorubicin	Yes	14 (11.86%)	All LMS
Judson et al. (2014)	2003-2010	Randomised trial	3	1	455	Doxorubicin + ifosfamide	Yes	57 (12.53%)	All LMS
						Doxorubicin	Yes	53 (11.65%)	All LMS
Bui-Nguyen et al. (2015)	2011-2012	Randomised trial	2 3	1	133	Trabectedin 3h	No	18 (13.53%)	All LMS
						Doxorubicin	Yes	13 (9.77%)	All LMS
Eroglu et al. (2015)	2010-2013	Randomised trial	2	2+	71	Selumetinib	No	10 (14.08%)	All LMS
						Selumetinib + temsirolimus	No	11 (15.49%)	All LMS
Hensley et al. (2015)	2009-2013	Randomised trial	3	1	107	Bevacizumab + docetaxel + gemcitabine	No	53 (49.53%)	Uterine LMS
						Docetaxel + gemcitabine	No	54 (50.47%)	Uterine LMS
Pautier et al. (2015)	2010-2013	Non-randomised trial	2	1	109	Doxorubicin + trabectedin	No	47 (43.12%)	Uterine LMS
						Doxorubicin + trabectedin	No	108 (99.08%)	All LMS
Mir et al. (2016)	2013-2014	Randomised trial	2	2+	182	Regorafenib	No	28 (15.38%)	All LMS
Schöffski et al. (2016)	2011-2013	Randomised trial	3	2+	452	Eribulin	No	157 (34.73%)	All LMS
						Dacarbazine	Yes	152 (33.63%)	All LMS
Schuetze et al. (2016)	2007-2009	Non-randomised trial	2	2+	200	Dasatinib	No	47 (23.50%)	All LMS
Kawai et al. (2017)	2011-2012	Non-randomised trial	2	2+	52	Eribulin	No	19 (36.54%)	All LMS
Tap et al. (2017)	2011-2014	Randomised trial	3	1	640	Doxorubicin + evofosfamide	No	115 (17.97%)	All LMS
						Doxorubicin	Yes	103 (16.09%)	All LMS
Seddon et al. (2017)	2010-2014	Randomised trial	3	1	257	Docetaxel + gemcitabine	No	35 (13.62%)	Uterine LMS
						Docetaxel + gemcitabine	No	58 (22.57%)	All LMS
						Doxorubicin	Yes	36 (14.01%)	Uterine LMS
						Doxorubicin	Yes	60 (23.35%)	All LMS

Table 2.1: **Main characteristics and results of studies included in the LMS meta-analyses**. Treatments were classified as recommended (yes or no) according to ESMO 2018 guidelines [7]. Study period = period of first to last patient accrual. NA = not available. Evaluable are those patients who meet the study's statistical plan criteria for inclusion in efficacy data sets. D + M + D + C + S = dacarbazine, mitomycin, doxorubicin, and cisplatin with sargramostim. Trabectedin 3h = trabectedin 3-h infusion treatment schedule. The 24-h infusion treatment arm was excluded from the meta-analysis because of the limited number of LMS patients (n = 6). You can find the full online version of this table here.

2.3.2 Characteristics of the included trials

A total of 1500 patients were evaluable for the LMS analysis (range 10–157; Table 1) and 421 for the uLMS analysis (range 18–54; Table 2.1). The most common drug regimen in first line for LMS was doxorubicin, either monotherapy (five times) or in combination with evofosfamide, ifosfamide, or trabectedin. Eribulin was the most common drug in pre-treated population (three times). For uLMS patients, the most frequent therapeutic option for any line was docetaxel + gencitabine (five times).

2.3.3 Risk of bias

Contour-enhanced funnel plots did not portray any systematic asymmetry between studies for all LMS. Formal tests for publication bias for all LMS patients were non-significant (P > 0.05), indicating low risk of bias. On the contrary, a number of formal tests were significant for uLMS subanalysis (P < 0.05), indicating high risk of

2.3. RESULTS

Chudu .	Detiente	Fuente	DE 0.2m	05% CI	Mainht	
Study	rauents	Events	FF3 3m	95% CI	weight	
regimen_recommended = No						
Mir 2016: Regorafenib	28	16	0.57	[0.39; 0.74]	5.8%	
Schoffski 2016: Eribulin	157	56	0.36	[0.29; 0.43]	9.3%	
Eroglu 2015: Selumetinib+Tomairolimus	10	2	0.20	[0.05; 0.54]	2.3%	
Santoro 2013: Sorafenih	30	10	0.45	[0.20, 0.73]	5.4%	
Schöffski 2011: Fribulin	38	12	0.00	[0.19:0.48]	6.3%	
Hartmann 2007: Bendamustine	15	6	0.40	[0.19: 0.65]	4.1%	_
Reichardt 2007: Exatecan	16	9	0.56	[0.32; 0.78]	4.3%	
Schöffski 2013: Cixutumumab	22	6	0.27	[0.13; 0.49]	4.6%	
Schuetze 2016: Dasatinib	47	20	0.43	[0.29; 0.57]	7.2%	
Kawai 2017: Eribulin	19	9	0.47	[0.27; 0.69]	4.8%	
Schuetze 2012: Cyclophosphamide+Sirolimus	16	12	0.75	[0.49; 0.90]	3.7%	
Random effects model	409		0.45	[0.37; 0.53]	61.8%	
Heterogeneity: $T = 53\%$, $p = 0.02$						
regimen_recommended = Yes						
Schöffski 2016: Dacarbazine	152	59	0.39	[0.31; 0.47]	9.3%	
Pautier 2012: Docetaxel+Gemcitabine	40	25	0.62	[0.47; 0.76]	6.7%	
Pautier 2012: Gemcitabine	43	27	0.63	[0.48; 0.76]	6.8%	-
Sleijfer 2009: Pazopanib	41	18	0.44	[0.30; 0.59]	6.8%	
Van der Graat 2012: Pazopanib	92	53	0.58	[0.47; 0.67]	8.0%	
Heterogeneity: $I^2 = 74\% p < 0.01$	300		0.52	[0.42, 0.03]	30.270	
Random effects model	777		0.48	[0.41; 0.54]	100.0%	
Heterogeneity: $T = 63\%$, $p < 0.01$						02 04 06 08
Study	Patients	Events	PES 6m	95% CI	Weight	
Study	Patients	Events	PFS 6m	95% CI	Weight	·
Study regimen_recommended = No	Patients	Events	PFS 6m	95% CI	Weight	_
Study regimen_recommended = No Mir 2016: Regorafenib	Patients	Events 6	PFS 6m	95% CI [0.10; 0.40]	5.1%	
Study regimen_recommended = No Mir 2016: Regorafenib Schöffski 2016: Eribulin Eroglu 2015: Schumetinib	Patients 28 157	Events 6 27	0.21 0.17	95% CI [0.10; 0.40] [0.12; 0.24] [0.00: 0.45]	5.1%	
Study regimen_recommended = No Mir 2016: Regorafenib Schöffski 2016: Eribulin Eroglu 2015: Selumetinib Eroglu 2015: Selumetinib	Patients 28 157 10 11	Events 6 27 0 4	0.21 0.17 0.00 0.36	95% CI [0.10; 0.40] [0.12; 0.24] [0.00; 0.45] [0 14: 0.66]	5.1% 8.6% 0.9% 3.6%	
Study regimen_recommended = No Mir 2016: Regorafenib Schöffski 2016: Eribulin Eroglu 2015: Selumetinib Eroglu 2015: Selumetinib+Temsirolimus Santoro 2013: Sorafenib	Patients 28 157 10 11 30	Events 6 27 0 4 12	0.21 0.17 0.00 0.36 0.40	95% CI [0.10; 0.40] [0.12; 0.24] [0.00; 0.45] [0.14; 0.66] [0.24; 0.58]	5.1% 8.6% 0.9% 3.6% 6.2%	
Study regimen_recommended = No Mir 2016: Regorafenib Schöffski 2016: Eribulin Eroglu 2015: Selumetinib Eroglu 2015: Selumetinib+Temsirolimus Santoro 2013: Sorafenib Schöffski 2011: Eribulin	Patients 28 157 10 11 30 38	Events 6 27 0 4 12 10	PFS 6m 0.21 0.17 0.00 0.36 0.40 0.26	95% Cl [0.10; 0.40] [0.12; 0.24] [0.0; 0.45] [0.14; 0.68] [0.24; 0.58] [0.15; 0.42]	Weight 5.1% 8.6% 0.9% 3.6% 6.2% 6.3%	
Study regimen_recommended = No Mir 2016: Regorafenib Schöffski 2016: Eribulin Eroglu 2015: Selumetinib Eroglu 2015: Selumetinib+Temsirolimus Santoro 2013: Sorafenib Schöffski 2011: Eribulin Hartmann 2007: Bendamustine	Patients 28 157 10 11 30 38 15	Events 6 27 0 4 12 10 5	PFS 6m 0.21 0.17 0.00 0.36 0.40 0.26 0.33	95% Cl [0.10; 0.40] [0.12; 0.24] [0.0; 0.45] [0.14; 0.68] [0.24; 0.58] [0.15; 0.42] [0.15; 0.59]	Weight 5.1% 8.6% 0.9% 3.6% 6.2% 6.3% 4.2%	
Study regimen_recommended = No Mir 2016: Regorafenib Schöffski 2016: Eribulin Eroglu 2015: Selumetinib Eroglu 2015: Selumetinib+Temsirolimus Santoro 2013: Sorafenib Schöffski 2011: Eribulin Hartmann 2007: Bendamustine Reichardt 2007: Exatecan	Patients 28 157 10 11 30 38 15 16	Events 6 27 0 4 12 10 5 2	PFS 6m 0.21 0.17 0.00 0.36 0.40 0.26 0.33 0.12	95% Cl [0.10; 0.40] [0.12; 0.24] [0.0; 0.45] [0.24; 0.58] [0.15; 0.42] [0.15; 0.59] [0.03; 0.39]	Weight 5.1% 8.6% 0.9% 3.6% 6.2% 6.3% 4.2% 2.7%	
Study regimen_recommended = No Mir 2016: Regorafenib Schöffski 2016: Eribulin Eroglu 2015: Selumetinib Eroglu 2015: Selumetinib+Temsirolimus Santoro 2013: Sorafenib Schöffski 2011: Eribulin Hartmann 2007: Bendamustine Reichardt 2007: Exatecan Chawla 2011: Ridaforolimus	Patients 28 157 10 11 30 38 15 16 57	Events 6 27 0 4 12 10 5 2 2 12	PFS 6m 0.21 0.17 0.00 0.36 0.40 0.26 0.33 0.12 0.21	95% Cl [0.10; 0.40] [0.12; 0.24] [0.00; 0.45] [0.24; 0.58] [0.24; 0.58] [0.15; 0.42] [0.15; 0.59] [0.03; 0.39] [0.12; 0.34]	Weight 5.1% 8.6% 0.9% 3.6% 6.2% 6.3% 4.2% 2.7% 6.9%	
Study regimen_recommended = No Mir 2016: Regorafenib Schöffski 2016: Eribulin Eroglu 2015: Selumetinib Eroglu 2015: Selumetinib+Temsirolimus Santoro 2013: Sorafenib Schöffski 2011: Eribulin Hartmann 2007: Bendamustine Reichardt 2007: Exatecan Chawla 2011: Ridaforolimus Schuetze 2016: Dasatinib Kawai 2017: Eribulia	Patients 28 157 10 11 30 38 15 16 57 47 10	Events 6 27 0 4 12 10 5 2 12 12 6	PFS 6m 0.21 0.17 0.00 0.36 0.40 0.26 0.33 0.12 0.21 0.13 0.13	95% Cl [0.10; 0.40] [0.12; 0.24] [0.00; 0.45] [0.24; 0.58] [0.24; 0.58] [0.15; 0.42] [0.15; 0.59] [0.03; 0.39] [0.12; 0.34] [0.06; 0.26]	Weight 5.1% 8.6% 0.9% 6.2% 6.3% 4.2% 2.7% 6.9% 5.4%	
Study regimen_recommended = No Mir 2016: Regorafenib Schöffski 2016: Eribulin Eroglu 2015: Selumetinib Eroglu 2015: Selumetinib+Temsirolimus Santoro 2013: Sorafenib Schöffski 2011: Eribulin Hartman 2007: Bendamustine Reichardt 2007: Exatecan Chawla 2011: Ridaforolimus Schuetze 2016: Dasatinib Kawai 2017: Eribulin Cascior 2013: Panphingetat	Patients 28 157 10 11 30 38 15 16 57 47 19 10	Events 6 27 0 4 12 10 5 2 12 6 6 6	PFS 6m 0.21 0.17 0.00 0.36 0.40 0.26 0.33 0.12 0.21 0.13 0.32 0.20	95% Cl [0.10; 0.40] [0.12; 0.24] [0.00; 0.45] [0.24; 0.58] [0.15; 0.42] [0.15; 0.42] [0.15; 0.42] [0.15; 0.43] [0.12; 0.34] [0.06; 0.26] [0.15; 0.55]	Weight 5.1% 8.6% 0.9% 6.2% 6.3% 4.2% 2.7% 6.9% 5.4% 4.8% 2.6%	
Study regimen_recommended = No Mir 2016: Regorafenib Schöffski 2016: Eribulin Eroglu 2015: Selumetinib Eroglu 2015: Selumetinib+Temsirolimus Santoro 2013: Sorafenib Schöffski 2011: Eribulin Hartmann 2007: Bendamustine Reichardt 2007: Exatecan Chawla 2011: Ridaforolimus Schuetze 2016: Dasatinib Kawai 2017: Eribulin Cassier 2013: Panobinostat Schuetzo 2012: Cuclophosphamide+Sirolimus	Patients 28 157 10 11 30 38 15 16 57 47 19 10 16	Events 6 27 0 4 12 10 5 2 12 6 6 6 2 5	PFS 6m 0.21 0.17 0.00 0.36 0.40 0.26 0.33 0.12 0.21 0.13 0.32 0.20 0.21	95% Cl [0.10; 0.40] [0.12; 0.24] [0.00; 0.45] [0.24; 0.58] [0.24; 0.58] [0.15; 0.42] [0.15; 0.59] [0.03; 0.39] [0.12; 0.34] [0.06; 0.26] [0.15; 0.55] [0.05; 0.54]	5.1% 8.6% 0.9% 3.6% 6.3% 4.2% 2.7% 6.9% 5.4% 4.8% 2.6% 4.8%	
Study regimen_recommended = No Mir 2016: Regorafenib Schöffski 2016: Eribulin Eroglu 2015: Selumetinib Eroglu 2015: Selumetinib+Temsirolimus Santoro 2013: Sorafenib Schöffski 2011: Eribulin Hartmann 2007: Bendamustine Reichardt 2007: Exatecan Chawla 2011: Ridaforolimus Schuetze 2016: Dasatinib Kawai 2017: Eribulin Cassier 2013: Panobinostat Schuetze 2012: Cyclophosphamide+Sirolimus Random effects model	Patients 28 157 10 11 30 38 15 16 57 47 19 10 16 454	Events 6 27 0 4 12 10 5 2 12 6 6 6 2 5 5	PFS 6m 0.21 0.17 0.00 0.36 0.40 0.26 0.33 0.12 0.21 0.13 0.32 0.20 0.31 0.24	95% Cl [0.10; 0.40] [0.12; 0.24] [0.00; 0.45] [0.24; 0.58] [0.15; 0.42] [0.15; 0.42] [0.15; 0.59] [0.03; 0.39] [0.12; 0.34] [0.06; 0.26] [0.15; 0.55] [0.05; 0.54] [0.14; 0.57] [0.18; 0.31]	Weight 5.1% 8.6% 0.9% 3.6% 6.3% 4.2% 2.7% 6.9% 5.4% 4.8% 2.6% 4.3% 6.17%	
Study regimen_recommended = No Mir 2016: Regorafenib Schöffski 2016: Eribulin Eroglu 2015: Selumetinib Eroglu 2015: Selumetinib+Temsirolimus Santoro 2013: Sorafenib Schöffski 2011: Eribulin Hartmann 2007: Bendamustine Reichardt 2007: Exatecan Chawla 2011: Ridaforolimus Schuetze 2016: Dasatinib Kawai 2017: Eribulin Cassier 2013: Panobinostat Schuetze 2012: Cyclophosphamide+Sirolimus Random effects model Heterogenetty: $I^2 = 27\%$, $p = 0.17$	Patients 28 157 10 11 30 38 15 16 57 47 19 10 16 454	Events 6 27 0 4 12 10 5 2 12 6 6 6 2 5 5	PFS 6m 0.21 0.17 0.00 0.36 0.40 0.26 0.33 0.12 0.21 0.13 0.32 0.20 0.31 0.24	95% Cl [0.10; 0.40] [0.12; 0.24] [0.00; 0.45] [0.24; 0.58] [0.15; 0.42] [0.15; 0.59] [0.03; 0.39] [0.12; 0.34] [0.06; 0.26] [0.05; 0.54] [0.14; 0.57] [0.18; 0.31]	Weight 5.1% 8.6% 0.9% 6.2% 6.3% 4.2% 2.7% 6.9% 5.4% 4.8% 2.6% 4.3% 61.7%	
Study regimen_recommended = No Mir 2016: Regorafenib Schöffski 2016: Eribulin Eroglu 2015: Selumetinib Eroglu 2015: Selumetinib+Temsirolimus Santoro 2013: Sorafenib Schöffski 2011: Eribulin Hartmann 2007: Bendamustine Reichardt 2007: Exatecan Chawla 2011: Ridaforolimus Schuetze 2016: Dasatinib Kawai 2017: Eribulin Cassier 2013: Panobinostat Schuetze 2012: Cyclophosphamide+Sirolimus Random effects model Heterogeneity: $I^2 = 27\%$, $p = 0.17$	Patients 28 157 10 11 30 38 15 16 57 47 19 10 16 454	Events 6 27 0 4 12 10 5 2 12 6 6 6 2 5	PFS 6m 0.21 0.17 0.00 0.36 0.40 0.26 0.33 0.12 0.21 0.13 0.32 0.20 0.31 0.24	95% Cl [0.10; 0.40] [0.12; 0.24] [0.00; 0.45] [0.24; 0.58] [0.15; 0.42] [0.15; 0.59] [0.03; 0.39] [0.12; 0.34] [0.05; 0.54] [0.05; 0.54] [0.14; 0.57] [0.18; 0.31]	Weight 5.1% 8.6% 0.9% 3.6% 6.2% 6.3% 4.2% 2.7% 6.9% 5.4% 4.8% 2.6% 4.3% 61.7%	
Study regimen_recommended = No Mir 2016: Regorafenib Schöffski 2016: Eribulin Eroglu 2015: Selumetinib Eroglu 2015: Selumetinib+Temsirolimus Santoro 2013: Sorafenib Schöffski 2011: Eribulin Hartman 2007: Bendamustine Reichardt 2007: Exatecan Chawla 2011: Ridaforolimus Schuetze 2016: Dasatinib Kawai 2017: Eribulin Cassier 2013: Panobinostat Schuetze 2012: Cyclophosphamide+Sirolimus Random effects model Heterogeneity: $I^2 = 27\%$, $p = 0.17$	Patients 28 157 10 11 30 38 15 16 57 47 19 10 16 454	Events 6 27 0 4 12 10 5 2 12 6 6 6 2 5	PFS 6m 0.21 0.17 0.00 0.36 0.40 0.26 0.33 0.12 0.21 0.13 0.32 0.20 0.31 0.24	95% Cl [0.10; 0.40] [0.12; 0.24] [0.00; 0.45] [0.24; 0.58] [0.15; 0.42] [0.15; 0.59] [0.03; 0.39] [0.12; 0.34] [0.15; 0.55] [0.05; 0.54] [0.14; 0.57] [0.18; 0.31]	Weight 5.1% 8.6% 0.9% 3.6% 6.2% 6.3% 4.2% 2.7% 6.9% 5.4% 4.8% 2.6% 4.3% 61.7%	
Study regimen_recommended = No Mir 2016: Regorafenib Schöffski 2016: Eribulin Eroglu 2015: Selumetinib Eroglu 2015: Selumetinib+Temsirolimus Santoro 2013: Sorafenib Schöffski 2011: Eribulin Hartman 2007: Bendamustine Reichardt 2007: Exatecan Chawla 2011: Ridaforolimus Schuetze 2016: Dasatinib Kawai 2017: Eribulin Cassier 2013: Panobinostat Schuetze 2012: Cyclophosphamide+Sirolimus Random effects model Heterogeneity: $I^2 = 27\%$, $p = 0.17$ regimen_recommended = Yes Schöffski 2016: Dacatbazine Butier 2012: Opentavel. (Casmitching	Patients 28 157 10 11 30 38 15 16 57 47 19 10 16 454 152	Events 6 27 0 4 12 10 5 2 12 6 6 6 2 5 5	PFS 6m 0.21 0.17 0.00 0.36 0.40 0.26 0.33 0.12 0.21 0.13 0.22 0.20 0.31 0.24 0.18 0.48	95% Cl [0.10; 0.40] [0.12; 0.24] [0.00; 0.45] [0.24; 0.58] [0.15; 0.42] [0.15; 0.59] [0.03; 0.39] [0.12; 0.34] [0.15; 0.55] [0.05; 0.54] [0.14; 0.57] [0.18; 0.31]	Weight 5.1% 8.6% 0.9% 3.6% 6.2% 6.3% 4.2% 2.7% 6.9% 5.4% 4.8% 2.6% 61.7%	
Study regimen_recommended = No Mir 2016: Regorafenib Schöffski 2016: Eribulin Eroglu 2015: Selumetinib Eroglu 2015: Selumetinib+Temsirolimus Santoro 2013: Sorafenib Schöffski 2011: Eribulin Hartmann 2007: Exatecan Chawla 2011: Ridaforolimus Schuetze 2016: Dasatinib Kawai 2017: Eribulin Cassier 2013: Panobinostat Schuetze 2012: Cyclophosphamide+Sirolimus Random effects model Heterogeneity: $I^2 = 27\%$, $p = 0.17$ regimen_recommended = Yes Schöffski 2016: Dacarbazine Pautier 2012: Docetaxel+Gemcitabine Pautier 2012: Cused Schuetze 2012: Docetaxel+Gemcitabine Pautier 2012: Constantine	Patients 28 157 10 11 30 38 15 16 57 47 19 10 16 454 152 40 42 15 15 15 15 15 15 15 15 15 15 15 15 15	Events 6 27 0 4 12 10 5 2 12 6 6 6 2 5 5	PFS 6m 0.21 0.17 0.00 0.36 0.40 0.26 0.33 0.12 0.21 0.13 0.32 0.20 0.31 0.24 0.18 0.48 0.48 0.48	95% Cl [0.10; 0.40] [0.12; 0.24] [0.00; 0.45] [0.24; 0.58] [0.15; 0.59] [0.03; 0.39] [0.12; 0.34] [0.15; 0.55] [0.05; 0.54] [0.14; 0.57] [0.13; 0.25] [0.33; 0.63]	Weight 5.1% 8.6% 0.9% 3.6% 6.2% 6.3% 4.2% 2.7% 6.9% 5.4% 4.8% 2.6% 4.3% 61.7% 8.7% 7.0%	
Study regimen_recommended = No Mir 2016: Regorafenib Schöffski 2016: Eribulin Eroglu 2015: Selumetinib Eroglu 2015: Selumetinib+Temsirolimus Santoro 2013: Sorafenib Schöffski 2011: Eribulin Hartmann 2007: Exatecan Chawla 2011: Ridaforolimus Schuetze 2016: Dasatinib Kawai 2017: Eribulin Cassier 2013: Panobinostat Schuetze 2012: Cyclophosphamide+Sirolimus Random effects model Heterogeneity: $I^2 = 27\%$, $p = 0.17$ regimen_recommended = Yes Schöffski 2016: Dacarbazine Pautier 2012: Gemcitabine Sleijfer 2009: Pazopanib	Patients 28 157 10 11 30 38 15 16 57 47 19 10 16 454 152 40 43 41	Events 6 27 0 4 12 10 5 2 2 12 6 6 6 2 5 28 19 21 11 11 11 11 11 11 11 11 11	PFS 6m 0.21 0.17 0.00 0.36 0.40 0.26 0.33 0.12 0.21 0.13 0.32 0.20 0.31 0.24 0.18 0.48 0.49 0.32	95% Cl [0.10; 0.40] [0.12; 0.24] [0.00; 0.45] [0.24; 0.58] [0.15; 0.59] [0.3; 0.39] [0.12; 0.34] [0.16; 0.55] [0.05; 0.54] [0.13; 0.26] [0.13; 0.25] [0.33; 0.63] [0.34; 0.63] [0.14; 0.47]	Weight 5.1% 8.6% 0.9% 3.6% 6.2% 6.3% 4.2% 2.7% 6.9% 5.4% 4.8% 2.6% 4.3% 61.7% 8.7% 7.0% 7.0% 6.8%	
Study regimen_recommended = No Mir 2016: Regorafenib Schöffski 2016: Eribulin Eroglu 2015: Selumetinib Eroglu 2015: Selumetinib+Temsirolimus Santoro 2013: Sorafenib Schöffski 2011: Eribulin Hartmann 2007: Exatecan Chawla 2011: Ridaforolimus Schuetze 2016: Dasatinib Kawai 2017: Eribulin Cassier 2013: Panobinostat Schuetze 2012: Cyclophosphamide+Sirolimus Random effects model Heterogeneity: $I^2 = 27\%$, $p = 0.17$ regimen_recommended = Yes Schöffski 2016: Dacarbazine Pautier 2012: Gemcitabine Pautier 2012: Gemcitabine Sleijfer 2009: Pazopanib van der Graaf 2012: Pazopanib	Patients 28 157 10 11 30 38 15 16 57 47 19 10 16 454 152 40 43 41 92	Events 6 27 10 5 2 12 6 6 6 2 5 5 2 8 19 21 13 35	PFS 6m 0.21 0.17 0.00 0.36 0.40 0.26 0.33 0.12 0.21 0.13 0.32 0.20 0.31 0.24 0.18 0.48 0.49 0.32 0.38	95% Cl [0.10; 0.40] [0.12; 0.24] [0.00; 0.45] [0.14; 0.66] [0.24; 0.58] [0.15; 0.42] [0.15; 0.59] [0.12; 0.34] [0.16; 0.26] [0.05; 0.54] [0.14; 0.57] [0.18; 0.31] [0.13; 0.25] [0.33; 0.63] [0.34; 0.63] [0.19; 0.47] [0.29; 0.48]	Weight 5.1% 8.6% 0.9% 3.6% 6.2% 6.3% 4.2% 2.7% 6.9% 2.6% 4.8% 2.6% 4.3% 61.7% 8.7% 7.0% 7.2% 8.6% 8.6%	
Study regimen_recommended = No Mir 2016: Regorafenib Schöffski 2016: Eribulin Eroglu 2015: Selumetinib Eroglu 2015: Selumetinib+Temsirolimus Santoro 2013: Sorafenib Schöffski 2011: Eribulin Hartmann 2007: Bendamustine Reichardt 2007: Exatecan Chawla 2011: Ridaforolimus Schuetze 2016: Dasatinib Kawai 2017: Eribulin Cassier 2013: Panobinostat Schuetze 2012: Cyclophosphamide+Sirolimus Random effects model Heterogeneity: $I^2 = 27\%$, $p = 0.17$ regimen_recommended = Yes Schöffski 2016: Dacarbazine Pautier 2012: Docetaxel+Gemcitabine Pautier 2012: Gemcitabine Sleijfer 2009: Pazopanib van der Graaf 2012: Pazopanib Random effects model	Patients 28 157 10 11 30 38 15 16 57 47 19 10 16 454 152 40 43 41 92 368	Events 6 27 0 4 12 10 5 2 12 6 6 2 5 5 2 12 6 8 19 21 13 35	PFS 6m 0.21 0.17 0.00 0.36 0.40 0.26 0.33 0.12 0.21 0.13 0.32 0.20 0.31 0.24 0.18 0.48 0.49 0.32 0.38 0.35	95% Cl [0.10; 0.40] [0.12; 0.24] [0.00; 0.45] [0.24; 0.58] [0.15; 0.42] [0.15; 0.59] [0.12; 0.34] [0.16; 0.26] [0.15; 0.55] [0.05; 0.54] [0.14; 0.57] [0.18; 0.31] [0.13; 0.25] [0.33; 0.63] [0.29; 0.48] [0.26; 0.461]	Weight 5.1% 8.6% 0.9% 6.2% 6.3% 4.2% 2.7% 6.3% 4.2% 2.7% 6.3% 4.8% 2.6% 4.3% 61.7% 8.7% 7.0% 7.2% 6.8% 8.6% 8.8%	
Study regimen_recommended = No Mir 2016: Regorafenib Schöffski 2016: Eribulin Eroglu 2015: Selumetinib Eroglu 2015: Selumetinib+Temsirolimus Santoro 2013: Sorafenib Schöffski 2011: Eribulin Hartmann 2007: Bendamustine Reichardt 2007: Exatecan Chawla 2011: Ridaforolimus Schuetze 2016: Dasatinib Kawai 2017: Eribulin Cassier 2013: Panobinostat Schuetze 2012: Cyclophosphamide+Sirolimus Random effects model Heterogeneity: $I^2 = 27\%$, $p = 0.17$ regimen_recommended = Yes Schöffski 2016: Dacarbazine Pautier 2012: Gemcitabine Sleijfer 2009: Pazopanib van der Graaf 2012: Pazopanib Random effects model Heterogeneity: $I^2 = 83\%$, $p < 0.01$	Patients 28 157 10 11 30 38 15 16 57 47 19 10 16 454 152 40 43 41 92 368	Events 6 27 0 4 12 10 5 2 2 12 6 6 6 2 5 5 2 8 19 21 13 35	PFS 6m 0.21 0.17 0.00 0.36 0.40 0.26 0.33 0.12 0.21 0.13 0.32 0.20 0.31 0.24 0.18 0.48 0.49 0.32 0.38 0.35	95% Cl [0.10; 0.40] [0.12; 0.24] [0.00; 0.45] [0.24; 0.58] [0.15; 0.42] [0.15; 0.59] [0.03; 0.39] [0.12; 0.34] [0.15; 0.55] [0.05; 0.54] [0.14; 0.57] [0.18; 0.31] [0.13; 0.25] [0.33; 0.63] [0.34; 0.63] [0.34; 0.63] [0.29; 0.48] [0.26; 0.46]	Weight 5.1% 8.6% 0.9% 3.6% 6.2% 6.3% 4.2% 2.7% 6.9% 5.4% 4.8% 2.6% 4.3% 61.7% 8.7% 7.0% 7.2% 8.6% 38.3%	
Study regimen_recommended = No Mir 2016: Regorafenib Schöffski 2016: Eribulin Eroglu 2015: Selumetinib Eroglu 2015: Selumetinib+Temsirolimus Santoro 2013: Sorafenib Schöffski 2011: Eribulin Hartman 2007: Bendamustine Reichardt 2007: Exatecan Chawla 2011: Ridaforolimus Schuetze 2016: Dasatinib Kawai 2017: Eribulin Cassier 2013: Panobinostat Schuetze 2012: Cyclophosphamide+Sirolimus Radom effects model Heterogeneity: $I^2 = 27\%$, $p = 0.17$ regimen_recommended = Yes Schöffski 2016: Dacarbazine Pautier 2012: Docetaxel+Gemcitabine Pautier 2012: Gemcitabine Sleijfer 2009: Pazopanib van der Graaf 2012: Pazopanib Random effects model Heterogeneity: $I^2 = 83\%$, $p < 0.01$	Patients 28 157 10 11 30 38 15 16 57 47 19 10 16 454 152 40 43 41 92 368 822	Events 6 27 0 4 12 10 5 2 12 6 6 2 2 5 2 8 19 21 13 35	PFS 6m 0.21 0.17 0.00 0.36 0.40 0.26 0.33 0.12 0.21 0.13 0.32 0.20 0.31 0.24 0.18 0.48 0.49 0.32 0.38 0.35 0.28	95% Cl [0.10; 0.40] [0.12; 0.24] [0.00; 0.45] [0.14; 0.66] [0.15; 0.42] [0.15; 0.59] [0.03; 0.39] [0.12; 0.34] [0.05; 0.54] [0.15; 0.54] [0.14; 0.57] [0.13; 0.25] [0.33; 0.63] [0.34; 0.63] [0.34; 0.63] [0.34; 0.63] [0.26; 0.46] [0.22; 0.34]	Weight 5.1% 8.6% 0.9% 3.6% 6.2% 6.3% 4.2% 2.7% 6.9% 5.4% 4.8% 2.6% 4.3% 61.7% 8.7% 7.0% 7.2% 6.8% 8.6% 38.3%	

0.1 0.2 0.3 0.4 0.5 0.6

Figure 2.3: Forest plots of PFS at 3 (upper panel) and 6 (low panel) months for pre-treated (all) LMS patients.

publication bias there (see Appendix section 2.4 for further details).

2.3.4 All LMS meta-analyses

Starting with the all LMS meta-analyses, the pooled PFSR-3m for the first-line setting (Figure 2.2) were 78% (95% CI 65–88%) and 69% (95% CI 53–82%) for drugs classified as recommended/non-recommended, respectively. At 6 months, PFSR were 58% (95% CI 45–69%) and 59% (95% CI 47–70%), respectively. Differences between R-T and NR-T were not significant at 3 or 6 months (P value 0.32 and 0.90). Variability between the effect sizes that

could not be explained was very high as indicated by overall heterogeneity ($I^2 > 70\%$, P < 0.01). Univariate metaregressions showed that sample size >38 (median value) is a prognostic factor for PFS at 3 months. Nevertheless, multivariate meta-regression adding this variable did not explain much of the residual 3-month heterogeneity ($I^2 =$ 73%, P < 0.01). No significant factor was identified for PFSR-6m (see Appendix). For the pre-treated population (Figure 2.3), the pooled PFSR-3m were 52% (95% CI 42–63%) for R-T and 45% (95% CI 37–53%) for NR-T. PFSR-6m for R-T and NR-T were 35% (95% CI 26–46%) and 24% (95% CI 18–31%), respectively. Similarly, differences were not significant between the R-T/NR-T (P values 0.27 and 0.06). Remaining variability was high ($I^2 > 60\%$, P < 0.01). None of the tested variables was prognostic at 3 months. Year of activation was a prognostic factor for PFSR-6m. Multivariate adjustment with it explained a part of the residual heterogeneity at 6 months (I^2 = 39%, P = 0.06).

2.3.5 Uterine LMS meta-analyses

For first-line treatment of uLMS patients (Figure 2.4), the pooled PFSR-3m were 75% (95% CI 51–90%) and 70% (95% CI 60–78%) for R-T and NR-T, respectively. The PFSR-6m for R-T and NR-T were 39% (95% CI 18–65%) and 51% (95% CI 40–62%), respectively. Differences were not significant at 3 and 6 months (P values 0.66 and 0.41). Overall heterogeneity was moderate to high at 3 months ($I^2 = 48\%$; P = 0.07) and high at 6 months ($I^2 = 62\%$; P = 0.01). For pre-treated patients (Figure 2.5), the PFSR-3m for R-T and NR-T were 68% (95% CI 52–81%) and 23% (95% CI 10–44%), respectively. The PFSR-6m for R-T and NR-T were 50% (95% CI 40–60%) and 13% (95% CI 5–28%), respectively. Notably, there was a statistically significant difference between the classified drugs (P values < 0.01 at both 3 and 6 months). Overall variation between studies was high ($I^2 > 70\%$, P < 0.01).

Study	Patients	Events	PFS 3m	95% CI	Weight	
regimen_recommended = No Pautier 2015: Doxorubicin+Trabectedin Long 2005: D+M+D+C+S Hensley 2015: Bevacizumab+Docetaxel+Gemcitabine Hensley 2015: Docetaxel+Gemcitabine Seddon 2017: Docetaxel+Gemcitabine Random effects model Heterogeneity: / ² = 54%, p = 0.05	47 18 53 54 42 35 249	41 14 34 35 24 25	0.87 0.78 0.64 0.65 0.57 0.71 0.70	[0.74; 0.94] [0.54; 0.91] [0.51; 0.76] [0.51; 0.76] [0.42; 0.71] [0.55; 0.84] [0.60; 0.78]	11.9% 8.6% 17.6% 17.7% 16.5% 14.0% 86.3%	
regimen_recommended = Yes Seddon 2017: Doxorubicin Random effects model Heterogeneity: not applicable Random effects model	36 36 285	27	0.75 0.75 0.71	[0.59; 0.86] [0.51; 0.90]	13.7% 13.7% 100.0%	
Heterogeneity: $I^2 = 48\%$, $p = 0.07$						0.5 0.6 0.7 0.8 0.9

Study	Patients	Events	PFS 6m	95% CI	Weight				
regimen_recommended = No									
Pautier 2015: Doxorubicin+Trabectedin	47	34	0.72	[0.58; 0.83]	14.5%				
Long 2005: D+M+D+C+S	18	9	0.50	[0.28; 0.72]	10.5%				
Hensley 2015: Bevacizumab+Docetaxel+Gemcitabine	53	22	0.42	[0.29; 0.55]	16.1%				
Hensley 2015: Docetaxel+Gemcitabine	54	27	0.50	[0.37; 0.63]	16.3%				
Hensley 2008: Docetaxel+Gemcitabine	42	15	0.36	[0.23; 0.51]	14.6%				
Seddon 2017: Docetaxel+Gemcitabine	35	20	0.57	[0.41; 0.72]	14.0%		-		
Random effects model	249		0.51	[0.40; 0.62]	86.0%				
Heterogeneity: $I^2 = 65\%$, $p = 0.01$									
regimen_recommended = Yes									
Seddon 2017: Doxorubicin	36	14	0.39	[0.25; 0.55]	14.0%		_		
Random effects model	36		0.39	[0.18; 0.65]	14.0 % -				
Heterogeneity, not applicable									
Random effects model	285		0 49	10 39 0 591	100.0%		_		
Heterogeneity: $l^2 = 62\%$, $p = 0.01$	200		0.45	[0.03, 0.03]	100.070		1		
						03 04 05	5 0 6	07	08

Figure 2.4: Forest plots of PFS at 3 (upper panel) and 6 (low panel) months for first-line uterine LMS patients.

2.3.6 Sensitivity analyses

Baujat plots for all LMS identified 'Gelderblom 2014: Brostallicin' as potentially influential for first-line analyses (pooled PFSR at 3 and 6 months increased 4% and 3% if this treatment arm is excluded), and in the pre-treated population 'Schuetze 2012: Cyclophosphamide+Sirolimus' (rate decreases 1% if excluded) and 'Schöffski 2016: Dacarbazine' (rate increases 1% if excluded) at 3 and 6 months, respectively [38, 42, 46]. Removing these treatment arms reduced overall heterogeneity insignificantly. The results in the first-line setting were less robust to the potential outlier than those in the pre-treated setting. Sensitivity analyses specific to uLMS showed low robustness because of the small sample size (seven treatment arms in first line and five in pre-treated). Baujat plots and forest plots removing potential outliers are provided in the Appendix sections 2.3 for all LMS and 2.4 for uLMS.

Figure 2.5: Forest plots of PFS at 3 (upper panel) and 6 (low panel) months for pre-treated uterine LMS patients.

2.3.7 Benchmarking

To derive the new benchmark for the LMS cohorts, our proposal is to use the overall pooled PFSR estimated from our analysis as reference value for the null hypothesis (H_0) parameter P_0 . This choice is guided by the fact that there was no significant difference between R-T and NR-T for all LMS patients but can also be justified that future agents should do better than those currently available. As the ESMO-MCBS recommends a hazard ratio (HR) of at least 0.65 for PFS in advanced or metastatic setting (scale evaluation form 2b) [28], the reference value for the alternative hypothesis (H_1) parameter P_1 is estimated to detect an effect size of HR = 0.65. Table 2.2 summarises the P0 and P1 parameters. A PFSR-3m \geq 82% or a PFSR-6m \geq 70% (80% and 63% for uLMS) can be considered to suggest drug activity in first-line studies. For two or further lines, the recommended thresholds are 62% and 44% (66% and 57% for uLMS) at 3 and 6 months, respectively. It should be underlined that if the minimum required level of efficacy is P_1 , the design of the phase II trial focuses on demonstrating that this level is plausible, given the trial results and the efficacy is greater than P_0 . In other words, the new agent deserves further testing at the end of the phase II trial if the estimated CI does not contain P_0 . Following the ESMO-MCBS guidelines, the estimated CI should also encompass P_1 . An example is provided in Figure 2.6.

	3 months		6 months	
Treatment line and analysed group	Ref (P_0)	Min target (<i>P</i> ₁)	Ref (P_0)	Min target (<i>P</i> ₁)
First-line uterine LMS	71%	80%	49%	63%
First line all LMS	74%	82%	58%	70%
Pre-treated uterine LMS	53%	66%	42%	57%
Pre-treated all LMS	48%	62%	28%	44%

Table 2.2: Treatment effect (PFSR) for the null hypothesis (H_0) parameter P_0 and the alternative hypothesis (H_1) parameter P_1 of a study for LMS. LMS, leiomyosarcoma. Reference values for P_0 are the overall pooled PFSR at 3 and 6 months. Minimum values to target for P_1 are calculated using the recommended treatment effect for PFS by the ESMO Magnitude of Clinical Benefit Scale (MCBS) [28].

2.4 Discussion

In the present study, we provided updated thresholds for PFS rates to be used for the design of clinical trials in advanced/metastatic and inoperable LMS by a meta-analysis of available data from clinical trials published between 2003 and 2018. Reference values for H_0 and H_1 have been estimated using the ESMO-MCBS recommendations [28].

The historical benchmarking analysis by Van Glabbeke et al. (2002) provided pooled progression-free rates for various STS patients who participated in phase II trials [16]. Notably, these have been used to design a large number of new studies. The results and thresholds cannot be directly compared for several reasons: Our meta-analysis focused on defining thresholds for LMS patients using phase II and phase III trials. In addition, most of the phase II trials included in the 2002 publication were conducted before the classification of GIST as a separate entity, and GIST patients were consequently classified as LMS patients. The primary end-point shifted from progression-free rates to PFSR, counting any death as an event. Van Glabbeke et al. exploited individual patient data (IPD, N = 1534 overall) from the STBSG database, whereas we used summary estimates, which are less reliable than IPD. On the other hand, we were able to conduct a meta-analysis including over 1500 LMS patients.

We chose not to meta-analyse other common end-points in clinical trials, such as RR and OS. Here, rather low objective RRs were obtained for the majority of the drugs/drug combinations in our LMS database (several times 0%, frequently less than 15%), which is expected in this population as a decrease of tumour volume greater than 30% (needed to qualify a partial response according to RECIST 1.1 [56] is unlikely with the studied agents. Hence, RR is not the best end-point for simple screening phase II studies in LMS as a basis for further drug development. Furthermore, OS is usually not the primary end-point in phase II studies. On the contrary, PFS (and/or time to progression) is a valuable alternative end-point for the estimation of the biological antitumor activity of a new treatment and thus to justify further investigation in phase III trials. An extensive discussion is provided in the Van Glabbeke paper [16].

Thresholds were defined for all LMS and were shown to be robust by sensitivity analysis. A uLMS-specific subgroup meta-analysis was performed. The results should be interpreted with caution because of the potential publication bias indicated in this subanalysis and the small sample size (seven rows from five trials for first line and five rows from four trials for pre-treated population).

This analysis showed that R-T based on standard clinical practice guidelines do not necessarily exhibit a significant

Figure 2.6: Example regarding the thresholds estimated for the PFS rate at 6 months of pre-treated all LMS patients. The parameter of null hypothesis (P_0) was calculated at 28% and the parameter of the alternative hypothesis at 44%. Trial 1 does not qualify because the point estimate or the upper limit of the CI do not reach 44% (P_1). Trial 2 does not qualify because the lower limit of the CI does not surpass 28% (P_0). Trial 3 does qualify because the point estimate reaches P1 and the lower limit of the CI surpasses P_0 . Trial 4 does not qualify because the lower limit of the CI does not surpass P_0 and the point estimate or the upper limit of the CI do not reach P_1 . Trial 5 does qualify because the lower limit of the CI surpasses P_0 and the upper limit of the CI surpasses P_1 .

+ The confidence level of the confidence interval (CI) is to be defined based on the statistical parameters of the study design.

difference in PFSR at 3/6 months versus NR-T for advanced or metastatic LMS, apart from the pre-treated setting for uLMS [7]. This could be explained by the fact that the majority of the trials used as a basis for the clinical practice guidelines were designed for multiple STS subtypes and as a result are underpowered for specific subgroup analyses. They did therefore not lead to specific recommendations.

To the best of our knowledge, this is the first attempt at a meta-analysis of the outcome of patients with advanced or metastatic LMS for both first and further lines. Overall, 1500 patients were included in the analysis for all LMS and 421 patients for uLMS, which is a key strength of this work. A meta-regression was performed to investigate whether the phase of the trial, study design, year of activation, and sample size are prognostic for PFSR separately and if they can mitigate heterogeneity. Sample size was prognostic and could explain a small part of residual heterogeneity (variability between study outcomes not accounted for by the variables) for first line at 3 months and year of activation a larger part for pre-treated population at 6 months. For uLMS patients, meta-regression was not performed because of the limited number of therapeutic combinations. Future research should shed light to whether other factors could explain heterogeneity across studies.

A condition of any meta-analysis is the implied independence of effect sizes between drugs of the same trial [23, 57]. In our meta-analysis, a random effects model was used for each treatment regimen in the database and not for each trial. However, for randomised studies (10/23 trials for all LMS), there might be some dependence, as treatment arms were designed for the same patient population/centres. And finally, a source of bias is the use of progression-free rate instead of PFSR for 4/31 treatment regimens, as the required data could not be retrieved. This could lead to a small overestimation of the overall PFSR, as deaths are not taken into account at 3 and 6 months in these four regimens.

Last but not least, the ultimate aim of a clinical trial is to provide evidence of improved OS or improved quality of life. Nonetheless, two recent meta-analyses do not support strong surrogacy properties between PFS and OS in advanced STS randomised clinical trials [58, 59]. Consequently, PFS carries the risk of misleading conclusions because of erroneous extrapolation of the results. On the other hand, PFS remains an attractive end-point to identify benefit earlier than OS, and phase II trials are not intended to provide definite proof of the new treatment but rather a justification to further investigation. PFS (or PFSR-3m, PFSR-6m) can thus be used as primary end-points in phase II trials or as futility end-points in phase III trials, but OS should remain the primary end-point in phase III trials (whenever possible).

In conclusion, last decade research in STS shifted to a histology-specific approach. Because of the unmet medical need in standard of care alternatives, new studies tailoring therapy to specific histological subtypes should be based on modern thresholds for drug activity. Hereto, we suggest a new benchmark for designing phase II studies for all LMS or uLMS using the overall PFSR-3m and PFSR-6m as primary end-point. Future research is warranted using similar methodology to update thresholds of other common STS subgroups (e.g. liposarcomas).

Declarations

Role of the funding source

This work was supported by the European Organisation for Research and Treatment of Cancer – Soft Tissue and Bone Sarcoma Group (EORTC – STBSG). The funder of the study had no role in study design, data collection, data analysis, data interpretation, or writing of the report.

Acknowledgements

Georgios Kantidakis's work as a Fellow at EORTC Headquarters was supported by a grant from the EORTC Soft Tissue and Bone Sarcoma Group and the Leiden University Medical Center (LUMC) Department of Medical Oncology as well as from the EORTC Cancer Research Fund (ECRF). This publication was supported by a donation from the Kom Op Tegen Kanker from Belgium. The authors would like to express our gratitude to all primary investigators who shared 3- and 6-month PFS estimates of their clinical trials with leiomyosarcoma patients for undertaking this research project, namely, Dr Beatrice Seddon (one study), Prof Armando Santoro (one study), Dr William D. Tap (one study), Prof Scott M. Schuetze (two studies), Dr Akira Kawai (one study), and Dr Amit M. Oza (one study). The authors thank NRG Oncology Statistics and Data Management Center (NRG SDMC) for the provision of data from the NRG/GOG 087K, 087L, 131H, 231C clinical trials related to uterine Leiomyosarcoma. This article was prepared using data from Dataset GOG-0250 from the NCTN Data Archive of the National Cancer Institute's (NCI's) National Clinical Trials Network (NCTN). Data were originally collected from clinical trial NCT01012297 'A Randomised Phase III Evaluation of Docetaxel (NSC #628503) and Gemcitabine (NSC #613327) Plus G-CSF With Bevacizumab (NSC #704865) Versus Docetaxel (NSC #628503) and Gemcitabine (NSC #613327) Plus G-CSF With Placebo in the Treatment of Recurrent or Advanced Leiomyosarcoma of the Uterus'. All analyses and conclusions in this article are the sole responsibility of the authors and do not necessarily reflect the opinions or views of the clinical trial investigators, the NCTN, or the NCI.

Online supplementary materials

The Appendix of this Chapter is available online at https://github.com/GKantidakis/Thesis_supplementary_materials/blob/main/Chapter2/Appendix.docx.

References

- A. C. Gamboa, A. Gronchi, and K. Cardona. Soft-tissue sarcoma in adults: An update on the current state of histiotype-specific management in an era of personalized medicine. *CA: A Cancer Journal for Clinicians*, 70(3):200–229, 2020. ISSN 0007-9235. doi: 10.3322/caac.21605.
- [2] K. G. Billingsley, M. E. Burt, E. Jara, R. J. Ginsberg, J. M. Woodruff, D. H. Y. Leung, and M. F. Brennan. Pulmonary metastases from soft tissue sarcoma: Analysis of patterns of disease and postmetastasis survival.

Annals of Surgery, 229(5):602-612, 1999. ISSN 00034932. doi: 10.1097/00000658-199905000-00002. URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1420804/.

- [3] I. Judson, J. Verweij, H. Gelderblom, J. T. Hartmann, P. Schöffski, J. Y. Blay, J. M. Kerst, J. Sufliarsky, J. Whelan, P. Hohenberger, A. Krarup-Hansen, T. Alcindor, S. Marréaud, S. Litière, C. Hermans, C. Fisher, P. C. W. Hogendoorn, A. P. Dei Tos, and W. T. A. Van der Graaf. Doxorubicin alone versus intensified doxorubicin plus ifosfamide for first-line treatment of advanced or metastatic soft-tissue sarcoma: A randomised controlled phase 3 trial. *The Lancet Oncology*, 15(4):415–423, 2014. ISSN 14745488. doi: 10.1016/S1470-2045(14)70063-4.
- [4] C. W. Ryan, O. Merimsky, M. Agulnik, J. Y. Blay, S. M. Schuetze, B. A. Van Tine, R. L. Jones, A. D. Elias, E. Choy, T. Alcindor, V. L. Keedy, D. R. Reed, R. N. Taub, A. Italiano, X. G. Del Muro, I. R. Judson, J. Y. Buck, F. Lebel, J. J. Lewis, R. G. Maki, and P. Schöffski. PICASSO III: A phase III, placebo-controlled study of doxorubicin with or without palifosfamide in patients with metastatic soft tissue sarcoma. *Journal* of Clinical Oncology, 34(32):3898–3905, 2016. ISSN 15277755. doi: 10.1200/JCO.2016.67.6684.
- [5] S. P. Chawla, L. D. Cranmer, B. A. Van Tine, D. R. Reed, S. H. Okuno, J. E. Butrynski, D. R. Adkins, A. E. Hendifar, S. Kroll, and K. N. Ganjoo. Phase II study of the safety and antitumor activity of the hypoxia-activated prodrug TH-302 in combination with doxorubicin in patients with advanced soft tissue sarcoma. *Journal of Clinical Oncology*, 32(29):3299–3306, oct 2014. ISSN 15277755. doi: 10.1200/JCO.2013.54. 3660.
- [6] J. M. Buesa, H. T. Mouridsen, A. T. Van Oosterom, J. Verweij, T. Wagener, W. Steward, A. Poveda, P. M. Vestlev, D. Thomas, and R. Sylvester. High-dose DTIC in advanced soft-tissue sarcomas in the adult: A phase II study of the E.O.R.T.C. soft tissue and bone Sarcoma group. *Annals of Oncology*, 2(4):307–309, 1991. ISSN 09237534. doi: 10.1093/oxfordjournals.annonc.a057942. URL https://doi.org/10.1093/oxfordjournals.annonc.a057942.
- [7] P. G. Casali, N. Abecassis, H. T. Aro, S. Bauer, R. Biagini, S. Bielack, S. Bonvalot, I. Boukovinas, J. V. M. G. Bovee, T. Brodowicz, J. M. Broto, A. Buonadonna, E. De Álava, A. P. Dei Tos, X. G. Del Muro, P. Dileo, M. Eriksson, A. Fedenko, V. Ferraresi, A. Ferrari, S. Ferrari, A. M. Frezza, S. Gasperoni, H. Gelderblom, T. Gil, G. Grignani, A. Gronchi, R. L. Haas, B. Hassan, P. Hohenberger, R. Issels, H. Joensuu, R. L. Jones, I. Judson, P. Jutte, S. Kaal, B. Kasper, K. Kopeckova, D. A. Krákorová, A. Le Cesne, I. Lugowska, O. Merimsky, M. Montemurro, M. A. Pantaleo, R. Piana, P. Picci, S. Piperno-Neumann, A. L. Pousa, P. Reichardt, M. H. Robinson, P. Rutkowski, A. A. Safwat, P. Schöffski, S. Sleijfer, S. Stacchiotti, K. Sundby Hall, M. Unk, F. Van Coevorden, W. T. A. Van Der Graaf, J. Whelan, E. Wardelmann, O. Zaikova, and J. Y. Blay. Soft tissue and visceral sarcomas: ESMO-EURACAN Clinical Practice Guidelines for diagnosis, treatment and follow-up. *Annals of Oncology*, 29(Supplement_4):iv51—-iv67, 2018. ISSN 15698041. doi: 10.1093/annonc/mdy321.
- [8] X. García-del Muro, A. López-Pousa, J. Maurel, J. Martín, J. Martínez-Trufero, A. Casado, A. Gómez-España, J. Fra, J. Cruz, A. Poveda, A. Meana, C. Pericay, R. Cubedo, J. Rubió, A. De Juan, N. Laínez, J. A. Carrasco, R. De Andrés, and J. M. Buesa. Randomized phase II study comparing gemcitabine plus dacarbazine versus dacarbazine alone in patients with previously treated soft tissue sarcoma: A Spanish group for research on sarcomas study. *Journal of Clinical Oncology*, 29(18):2528–2533, jun 2011. ISSN 15277755. doi: 10.1200/JCO.2010.33.6107.
- [9] O. Mir, T. Brodowicz, A. Italiano, J. Wallet, J. Y. Blay, F. Bertucci, C. Chevreau, S. Piperno-Neumann, E. Bompas, S. Salas, C. Perrin, C. Delcambre, B. Liegl-Atzwanger, M. Toulmonde, S. Dumont, I. Ray-Coquard, S. Clisant, S. Taieb, C. Guillemet, M. Rios, O. Collard, L. Bozec, D. Cupissol, E. Saada-Bouzid, C. Lemaignan, W. Eisterer, N. Isambert, L. Chaigneau, A. L. Cesne, and N. Penel. Safety and efficacy of regorafenib in patients with advanced soft tissue sarcoma (REGOSARC): a randomised, double-blind, placebo-controlled, phase 2 trial. *The Lancet Oncology*, 17(12):1732–1742, dec 2016. ISSN 14745488. doi: 10.1016/S1470-2045(16)30507-1.

- [10] X. Guo, V. Y. Jo, A. M. Mills, S. X. Zhu, C. H. Lee, I. Espinosa, M. R. Nucci, S. Varma, E. Forgó, T. Hastie, S. Anderson, K. Ganjoo, A. H. Beck, R. B. West, C. D. Fletcher, and M. Van De Rijn. Clinically relevant molecular subtypes in leiomyosarcoma. *Clinical Cancer Research*, 21(15):3501–3511, 2015. ISSN 15573265. doi: 10.1158/1078-0432.CCR-14-3141.
- [11] D. Y. S. Kuo, P. Timmins, S. V. Blank, A. L. Fields, G. L. Goldberg, A. Murgo, P. Christos, S. Wadler, and C. D. Runowicz. Phase II trial of thalidomide for advanced and recurrent gynecologic sarcoma: A brief communication from the New York Phase II consortium. *Gynecologic Oncology*, 100(1):160–165, jan 2006. ISSN 00908258. doi: 10.1016/j.ygyno.2005.08.033.
- [12] N. Penel, A. Italiano, N. Isambert, E. Bompas, G. Bousquet, and F. Duffaud. Factors affecting the outcome of patients with metastatic leiomyosarcoma treated with doxorubicin-containing chemotherapy. *Annals of Oncology*, 21(6):1361–1365, 2009. ISSN 15698041. doi: 10.1093/annonc/mdp485.
- [13] N. T. Hoang, L. A. Acevedo, M. J. Mann, and B. Tolani. A review of soft-tissue sarcomas: Translation of biological advances into treatment measures. *Cancer Management and Research*, 10:1089–1114, 2018. ISSN 11791322. doi: 10.2147/CMAR.S159641.
- [14] A. W. Oosten, C. Seynaeve, P. I.M. Schmitz, M. A. Den Bakker, J. Verweij, and S. Sleijfer. Outcomes of first-line chemotherapy in patients with advanced or metastatic leiomyosarcoma of uterine and non-uterine origin. *Sarcoma*, 2009(348910), 2009. ISSN 1357714X. doi: 10.1155/2009/348910.
- [15] E. Ben-Ami, C. M. Barysauskas, S. Solomon, K. Tahlil, R. Malley, M. Hohos, K. Polson, M. Loucks, M. Severgnini, T. Patel, A. Cunningham, S. J. Rodig, F. S. Hodi, J. A. M., P. Merriam, A. J. Wagner, G. I. Shapiro, and S. George. Immunotherapy with single agent nivolumab for advanced leiomyosarcoma of the uterus: Results of a phase 2 study. *Cancer*, 123(17):3285–3290, sep 2017. ISSN 10970142. doi: 10.1002/cncr.30738.
- [16] M. Van Glabbeke, J. Verweij, I. Judson, and O. S. Nielsen. Progression-free rate as the principal end-point for phase II trials in soft-tissue sarcomas. *European Journal of Cancer*, 38(4):543–549, 2002. doi: 10.1016/ S0959-8049(01)00398-7.
- [17] V. Y. Jo and C. D. M. Fletcher. WHO classification of soft tissue tumours: An update based on the 2013 (4th) edition. *Pathology*, 46(2):95–104, 2014. ISSN 14653931. doi: 10.1097/PAT.00000000000050.
- [18] W. D. Tap, Z. Papai, B. A. Van Tine, S. Attia, K. N. Ganjoo, R. L. Jones, S. Schuetze, D. Reed, S. P. Chawla, R. F. Riedel, A. Krarup-Hansen, M. Toulmonde, I. Ray-Coquard, P. Hohenberger, G. Grignani, L. D. Cranmer, S. Okuno, M. Agulnik, W. Read, C. W. Ryan, T. Alcindor, X. F. G. del Muro, G. T. Budd, H. Tawbi, T. Pearce, S. Kroll, D. K. Reinke, and P. Schöffski. Doxorubicin plus evofosfamide versus doxorubicin alone in locally advanced, unresectable or metastatic soft-tissue sarcoma (TH CR-406/SARC021): an international, multicentre, open-label, randomised phase 3 trial. *The Lancet Oncology*, 18(8):1089–1103, aug 2017. ISSN 14745488. doi: 10.1016/S1470-2045(17)30381-9.
- [19] A. Liberati, D. G. Altman, J. Tetzlaff, C. Mulrow, P. C. Gøtzsche, J. P. A. Ioannidis, M. Clarke, P. J. Devereaux, J. Kleijnen, and D. Moher. The PRISMA statement for reporting systematic reviews and metaanalyses of studies that evaluate health care interventions: explanation and elaboration. *Journal of clinical epidemiology*, 62(10):e1—e34, 2009. ISSN 18785921. doi: 10.1016/j.jclinepi.2009.06.006.
- [20] W. Feller. On the Normal Approximation to the Binomial Distribution. *The Annals of Mathematical Statistics*, 16(4):319–329, 1945. ISSN 0003-4851. doi: 10.1214/aoms/1177731058. URL https://projecteuclid. org/euclid.aoms/1177731058.
- [21] R. Dersimonian and N. Laird. Meta-Analysis in Clinical Trials. Controlled clinical trials, 7(3):177–188, 1986.
- [22] R. Dersimonian and N. Laird. Meta-Analysis in Clinical Trials Revisited. Contemporary clinical trials, 45: 139–145, 2015. doi: 10.1016/j.cct.2015.09.002.Meta-Analysis.

- [23] M. Borenstein, L. V. Hedges, J. P. T. Higgins, and H. R. Rothstein. Introduction to Meta-Analysis. John Wiley & Sons, 2011. ISBN 1119964377. URL https://books.google.be/ books/about/Introduction{_}to{_}Meta{_}Analysis.html?id=JQg9jdrq26wC{&}source= kp{_}cover{&}redir{_}esc=y.
- [24] J. L. Peters, A. J. Sutton, D. R. Jones, K. R. Abrams, and L. Rushton. Contour-enhanced meta-analysis funnel plots help distinguish publication bias from other causes of asymmetry. *Journal of Clinical Epidemiology*, 61(10):991–996, oct 2008. ISSN 08954356. doi: 10.1016/j.jclinepi.2007.11.010.
- [25] M. Egger, G. D. Smith, M. Schneider, and C. Minder. Bias in meta-analysis detected by a simple, graphical test measures of funnel plot asymmetry. *BMJ*, 315(7109):629–634, 1997. doi: 10.1136/bmj.315.7109.629.
- [26] C. B. Begg and M. Mazumdar. Operating Characteristics of a Rank Correlation Test for Publication Bias. Biometrics, 50(4):1088-1101, 1994. doi: 10.2307/2533446. URL https://www.jstor.org/stable/ pdf/2533446.pdf.
- [27] B. Baujat, C. Mahé, J. P. Pignon, and C. Hill. A graphical method for exploring heterogeneity in metaanalyses: Application to a meta-analysis of 65 trials. *Statistics in Medicine*, 21(18):2641–2652, 2002. doi: 10.1002/sim.1221.
- [28] N. I. Cherny, U. Dafni, J. Bogaerts, N. J. Latino, G. Pentheroudakis, J. Y. Douillard, J. Tabernero, C. Zielinski, M. J. Piccart, and E. G. E. de Vries. ESMO-Magnitude of Clinical Benefit Scale version 1.1. *Annals of Oncology*, 28(10):2340–2366, 2017. doi: 10.1093/annonc/mdx310.
- [29] W. Viechtbauer. Conducting meta-analyses in R with the metafor. *Journal of Statistical Software*, 36(3): 1–48, 2010. ISSN 15487660.
- [30] G. Swarzer. meta: an R package for meta-analysis. R News, 7(3):40-45, 2007. ISSN 1609-3631. URL https://www.researchgate.net/publication/ 285729385{_}meta{_}R{_}Package{_}for{_}Meta-Analysis.
- [31] J. T. Hartmann, F. Mayer, J. Schleicher, M. Horger, J. Huober, I. Meisinger, J. Pintoffl, G. Käfer, L. Kanz, and V. Grünwald. Bendamustine hydrochloride in patients with refractory soft tissue sarcoma: A noncomparative multicenter phase 2 study of the German sarcoma group (AIO-001). *Cancer: Interdisciplinary International Journal of the American Cancer Society*, 110(4):861–866, 2007. ISSN 0008543X. doi: 10.1002/cncr.22846.
- [32] P. Reichardt, O. S. Nielsen, S. Bauer, J. T. Hartmann, P. Schöffski, T. B. Christensen, D. Pink, S. Daugaard, S. Marréaud, M. Van Glabbeke, and J. Y. Blay. Exatecan in pretreated adult patients with advanced soft tissue sarcoma: Results of a phase II Study of the EORTC Soft Tissue and Bone Sarcoma Group. *European Journal of Cancer*, 43(6):1017–1022, 2007. ISSN 09598049. doi: 10.1016/j.ejca.2007.01.014.
- [33] S. Sleijfer, I. Ray-Coquard, Z. Papai, A. Le Cesne, M. Scurr, P. Schöffski, F. Collin, L. Pandite, S. Marréaud, A. De Brauwer, M. Van Glabbeke, J. Verweij, and J. Y. Blay. Pazopanib, a multikinase angiogenesis inhibitor, in patients with relapsed or refractory advanced soft tissue sarcoma: A phase II study from the European organisation for research and treatment of cancer-soft tissue and bone sarcoma group (EORTC Study 620. *Journal of Clinical Oncology*, 27(19):3126–3132, 2009. ISSN 0732183X. doi: 10.1200/JCO.2008.21.3223.
- [34] P. Schöffski, I. L. Ray-Coquard, A. Cioffi, N. B. Bui, S. Bauer, J. T. Hartmann, A. Krarup-Hansen, V. Grünwald, R. Sciot, H. Dumez, J. Y. Blay, A. Le Cesne, J. Wanders, C. Hayward, S. Marréaud, M. Ouali, and P. Hohenberger. Activity of eribulin mesylate in patients with soft-tissue sarcoma: A phase 2 study in four independent histological subtypes. *The Lancet Oncology*, 12(11):1045–1052, 2011. ISSN 14702045. doi: 10.1016/S1470-2045(11)70230-3.
- [35] S. P. Chawla, A. P. Staddon, L. H. Baker, S. M. Schuetze, A. W. Tolcher, G. Z. D'Amato, J. Y. Blay, M. M. Mita, K. K. Sankhala, L. Berk, V. M. Rivera, T. Clackson, J. W. Loewy, F. G. Haluska, and G. D. Demetri. Phase II study of the mammalian target of rapamycin inhibitor ridaforolimus in patients with advanced bone

and soft tissue sarcomas. *Journal of Clinical Oncology*, 30(1):78–84, 2012. ISSN 15277755. doi: 10.1200/JCO.2011.35.6329.

- [36] W. T. A. Van Der Graaf, J. Y. Blay, S. P. Chawla, D. W. Kim, B. Bui-Nguyen, P. G. Casali, P. Schöffski, M. Aglietta, A. P. Staddon, Y. Beppu, A. Le Cesne, H. Gelderblom, I. R. Judson, N. Araki, M. Ouali, S. Marréaud, R. Hodge, M. R. Dewji, C. Coens, G. D. Demetri, C. D. Fletcher, A. P. Dei Tos, and P. Hohenberger. Pazopanib for metastatic soft-tissue sarcoma (PALETTE): A randomised, double-blind, placebo-controlled phase 3 trial. *The Lancet*, 379(9829):1879–1886, 2012. ISSN 1474547X. doi: 10.1016/S0140-6736(12)60651-5.
- [37] P. Pautier, A. Floquet, N. Penel, S. Piperno-Neumann, N. Isambert, A. Rey, E. Bompas, A. Cioffi, C. Delcambre, D. Cupissol, F. Collin, J. Y. Blay, M. Jimenez, and F. Duffaud. Randomized Multicenter and Stratified Phase II Study of Gemcitabine Alone Versus Gemcitabine and Docetaxel in Patients with Metastatic or Relapsed Leiomyosarcomas: A Federation Nationale des Centres de Lutte Contre le Cancer (FN-CLCC) French Sarcoma Group. *The Oncologist*, 17(9):1213–1220, sep 2012. ISSN 1083-7159. doi: 10.1634/theoncologist.2011-0467.
- [38] S. M. Schuetze, L. Zhao, R. Chugh, D. G. Thomas, D. R. Lucas, G. Metko, M. M. Zalupski, and L. H. Baker. Results of a phase II study of sirolimus and cyclophosphamide in patients with advanced sarcoma. *European Journal of Cancer*, 48(9):1347–1353, 2012. ISSN 09598049. doi: 10.1016/j.ejca.2012.03.022. URL http://dx.doi.org/10.1016/j.ejca.2012.03.022.
- [39] P. A. Cassier, A. Lefranc, E. Y Amela, C. Chevreau, B. N. Bui, A. Lecesne, I. Ray-Coquard, S. Chabaud, N. Penel, Y. Berge, J. Dômont, A. Italiano, F. Duffaud, A. C. Cadore, V. Polivka, and J. Y. Blay. A phase II trial of panobinostat in patients with advanced pretreated soft tissue sarcoma. A study from the French Sarcoma Group. *British Journal of Cancer*, 109(4):909–914, 2013. ISSN 00070920. doi: 10.1038/bjc.2013.442.
- [40] A. Santoro, A. Comandone, U. Basso, H. Soto Parra, R. De Sanctis, E. Stroppa, I. Marcon, L. Giordano, F. R. Lutman, A. Boglione, and A. Bertuzzi. Phase II prospective study with sorafenib in advanced soft tissue sarcomas after anthracycline-based therapy. *Annals of Oncology*, 24(4):1093–1098, 2013. ISSN 09237534. doi: 10.1093/annonc/mds607.
- [41] P. Schöffski, D. Adkins, J. Y. Blay, T. Gil, A. D. Elias, P. Rutkowski, G. K. Pennock, H. Youssoufian, H. Gelderblom, R. Willey, and D. O. Grebennik. An open-label, phase 2 study evaluating the efficacy and safety of the anti-IGF-1R antibody cixutumumab in patients with previously treated advanced or metastatic soft-tissue sarcoma or Ewing family of tumours. *European Journal of Cancer*, 49(15):3219–3228, 2013. ISSN 09598049. doi: 10.1016/j.ejca.2013.06.010.
- [42] H. Gelderblom, J. Y. Blay, B. M. Seddon, M. Leahy, I. Ray-Coquard, S. Sleijfer, J. M. Kerst, P. Rutkowski, S. Bauer, M. Ouali, S. Marréaud, R. J. H. M. Van Der Straaten, H. J. Guchelaar, S. D. Weitman, P. C. W. Hogendoorn, and P. Hohenberger. Brostallicin versus doxorubicin as first-line chemotherapy in patients with advanced or metastatic soft tissue sarcoma: An European Organisation for Research and Treatment of Cancer Soft Tissue and Bone Sarcoma Group randomised phase II and pharmacogeneti. *European Journal* of Cancer, 50(2):388–396, 2014. ISSN 09598049. doi: 10.1016/j.ejca.2013.10.002.
- [43] B. Bui-Nguyen, J. E. Butrynski, N. Penel, J. Y. Blay, N. Isambert, M. Milhem, J. M. Kerst, A. K. L. Reyners, S. Litière, S. Marréaud, F. Collin, and W. T. A. Van Der Graaf. A phase IIb multicentre study comparing the efficacy of trabectedin to doxorubicin in patients with advanced or metastatic untreated soft tissue sarcoma: The TRUSTS trial. *European Journal of Cancer*, 51(10):1312–1320, 2015. ISSN 18790852. doi: 10.1016/ j.ejca.2015.03.023.
- [44] Z. Eroglu, H. A. Tawbi, J. Hu, M. Guan, P. H. Frankel, N. H. Ruel, S. Wilczynski, S. Christensen, D. R. Gandara, and W. A. Chow. A randomised phase II trial of selumetinib vs selumetinib plus temsirolimus for soft-tissue sarcomas. *British Journal of Cancer*, 112(10):1644–1651, 2015. ISSN 15321827. doi: 10.1038/bjc.2015.126.

- [45] P. Pautier, A. Floquet, C. Chevreau, N. Penel, C. Guillemet, C. Delcambre, D. Cupissol, F. Selle, N. Isambert, S. Piperno-Neumann, A. Thyss, F. Bertucci, E. Bompas, J. Alexandre, O. Collard, S. Lavau-Denes, P. Soulié, M. Toulmonde, A. Le Cesne, B. Lacas, and F. Duffaud. Trabectedin in combination with doxorubicin for firstline treatment of advanced uterine or soft-tissue leiomyosarcoma (LMS-02): A non-randomised, multicentre, phase 2 trial. *The Lancet Oncology*, 16(4):457–464, 2015. ISSN 14745488. doi: 10.1016/S1470-2045(15) 70070-7.
- [46] P. Schöffski, S. Chawla, R. G. Maki, A. Italiano, H. Gelderblom, E. Choy, G. Grignani, V. Camargo, S. Bauer, S. Y. Rha, J. Y. Blay, P. Hohenberger, D. D'Adamo, M. Guo, B. Chmielowski, A. Le Cesne, G. D. Demetri, and S. R. Patel. Eribulin versus dacarbazine in previously treated patients with advanced liposarcoma or leiomyosarcoma: A randomised, open-label, multicentre, phase 3 trial. *The Lancet*, 387(10028):1629–1637, 2016. ISSN 1474547X. doi: 10.1016/S0140-6736(15)01283-0.
- [47] S. M. Schuetze, J. K. Wathen, D. R. Lucas, E. Choy, B. L. Samuels, A. P. Staddon, K. N. Ganjoo, M. Von Mehren, W. A. Chow, D. M. Loeb, H. A. Tawbi, D. A Rushing, S. R. Patel, D. G. Thomas, R. Chugh, D. K. Reinke, and L. H. Baker. SARC009: Phase 2 study of dasatinib in patients with previously treated, high-grade, advanced sarcoma. *Cancer*, 122(6):868–874, 2016. ISSN 10970142. doi: 10.1002/cncr.29858.
- [48] A. Kawai, N. Araki, Y. Naito, T. Ozaki, H. Sugiura, Y. Yazawa, H. Morioka, A. Matsumine, K. Saito, S. Asami, and K. Isu. Phase 2 study of eribulin in patients with previously treated advanced or metastatic soft tissue sarcoma. *Japanese Journal of Clinical Oncology*, 47(2):137–144, 2017. ISSN 14653621. doi: 10.1093/jjco/hyw175.
- [49] B. Seddon, S. J. Strauss, J. Whelan, M. Leahy, P. J. Woll, F. Cowie, C. Rothermundt, Z. Wood, C. Benson, N. Ali, M. Marples, G. J. Veal, D. Jamieson, K. Küver, R. Tirabosco, S. Forsyth, S. Nash, H. M. Dehbi, and S. Beare. Gemcitabine and docetaxel versus doxorubicin as first-line treatment in previously untreated advanced unresectable or metastatic soft-tissue sarcomas (GeDDiS): a randomised controlled phase 3 trial. *The Lancet Oncology*, 18(10):1397–1410, 2017. ISSN 14745488. doi: 10.1016/S1470-2045(17)30622-8.
- [50] H. J. Long III, J. A. Blessing, and J. Sorosky. Phase II trial of dacarbazine, mitomycin, doxorubicin, and cisplatin with sargramostim in uterine leiomyosarcoma: A gynecologic oncology group study. *Gynecologic Oncology*, 99(2):339–342, 2005. ISSN 00908258. doi: 10.1016/j.ygyno.2005.06.002.
- [51] M. L. Hensley, J. A. Blessing, R. Mannel, and P. G. Rose. Fixed-dose rate gemcitabine plus docetaxel as first-line therapy for metastatic uterine leiomyosarcoma: A Gynecologic Oncology Group phase II trial. *Gynecologic Oncology*, 109(3):329–334, 2008. ISSN 00908258. doi: 10.1016/j.ygyno.2008.03.010.
- [52] M. L. Hensley, M. W. Sill, D. R. Scribner, J. Brown, R. L. DeBernardo, E. M. Hartenbach, C. K. Mc-Court, J. R. Bosscher, and P. A. Gehrig. Sunitinib malate in the treatment of recurrent or persistent uterine leiomyosarcoma: A Gynecologic Oncology Group phase II study. *Gynecologic Oncology*, 115(3):460–465, 2009. ISSN 00908258. doi: 10.1016/j.ygyno.2009.09.011.
- [53] M. L. Hensley, J. A. Blessing, K. DeGeest, O. Abulafia, P. G. Rose, and H. D. Homesley. Fixed-dose rate gemcitabine plus docetaxel as second-line therapy for metastatic uterine leiomyosarcoma: A Gynecologic Oncology Group phase II study. *Gynecologic Oncology*, 109(3):323–328, jun 2008. ISSN 0090-8258. doi: 10.1016/J.YGYNO.2008.02.024. URL http://www.gynecologiconcology-online.net/ article/S0090825808001765/fulltext.
- [54] L. R. Duska, J. A. Blessing, J. Rotmensch, R. S. Mannel, P. Hanjani, P. G. Rose, and D. S. Dizon. A Phase II evaluation of ixabepilone (IND #59699, NSC #710428) in the treatment of recurrent or persistent leiomyosar-coma of the uterus: An NRG Oncology/Gynecologic Oncology Group Study. *Gynecologic Oncology*, 135 (1):44–48, 2014. ISSN 10956859. doi: 10.1016/j.ygyno.2014.07.101.
- [55] M. L. Hensley, A. Miller, D. M. O'Malley, R. S. Mannel, K. Behbakht, J. N. Bakkum-Gamez, and H. Michael. Randomized phase III trial of gemcitabine plus docetaxel plus bevacizumab or placebo as first-line treatment

for metastatic uterine leiomyosarcoma: An NRG oncology/ gynecologic oncology group study. *Journal of Clinical Oncology*, 33(10):1180–1185, 2015. ISSN 15277755. doi: 10.1200/JCO.2014.58.3781.

- [56] E. A. Eisenhauer, P. Therasse, J. Bogaerts, L. H. Schwartz, D. Sargent, R. Ford, J. Dancey, S. Arbuck, S. Gwyther, M. Mooney, L. Rubinstein, L. Shankar, L. Dodd, R. Kaplan, D. Lacombe, and J. Verweij. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). *European Journal of Cancer*, 45(2):228–247, 2009. ISSN 09598049. doi: 10.1016/j.ejca.2008.10.026. URL http: //dx.doi.org/10.1016/j.ejca.2008.10.026.
- [57] S. Nakagawa, D. W. A. Noble, A. M. Senior, and M. Lagisz. Meta-evaluation of meta-analysis: Ten appraisal questions for biologists. *BMC Biology*, 15(1):1–14, 2017. ISSN 17417007. doi: 10.1186/s12915-017-0357-7.
- [58] M. Savina, S. Litière, A. Italiano, T. Burzykowski, F. Bonnetain, S. Gourgou, V. Rondeau, J. Y. Blay, S. Cousin, F. Duffaud, H. Gelderblom, A. Gronchi, I. Judson, A. Le Cesne, P. Lorigan, J. Maurel, W. T. A. Van Der Graaf, J. Verweij, S. Mathoulin-Pélissier, and C. Bellera. Surrogate endpoints in advanced sarcoma trials: A meta-analysis. *Oncotarget*, 9(77):34617–34627, 2018. ISSN 19492553. doi: 10.18632/oncotarget.26166.
- [59] K. Tanaka, M. Kawano, T. Iwasaki, I. Itonaga, and H. Tsumura. Surrogacy of intermediate endpoints for overall survival in randomized controlled trials of first-line treatment for advanced soft tissue sarcoma in the pre- and post-pazopanib era: A meta-analytic evaluation. *BMC Cancer*, 19(1):1–9, 2019. ISSN 14712407. doi: 10.1186/s12885-019-5268-2.