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1
General introduction

1.1 Research in context

This thesis springs from an interdisciplinary collaboration between the European Organisation
for Research and Treatment of Cancer (EORTC), the Mathematical Institute of Leiden Univer-
sity, and the Leiden University Medical Center (LUMC) Department of Medical Oncology to
perform statistical analyses for the European Organisation for Research and Treatment of Can-
cer - Soft Tissue and Bone Sarcoma Group (EORTC - STBSG) and, in addition, to investigate
the potential of survival prediction models with machine learning compared with traditional
statistical benchmarks for sarcoma and non-sarcoma clinical data. Methodology developed
during this PhD project is applied to data of the STBSG database, the PERsonalised SARcoma
Care (PERSARC) Study Group, and to liver transplantation data of the Scientific Registry of
Transplant Recipients (SRTR).

1.1.1 Part I: Clinical trials in soft-tissue sarcomas

This part provides modern efficacy thresholds to design new phase II clinical trials for com-
mon histotypes of locally advanced or metastatic soft-tissue sarcoma (STS) patients. Research
is timely as well-established values were reported in 2002 by the EORTC - STBSG [1], and
thus an update is necessary. A further goal here is to identify high-risk patient populations by
investigating the prognostic significance of bone metastasis in STS.

Soft-tissue sarcomas background

STS are very heterogeneous rare malignancies developed in cells of the connective or soft sup-
porting tissues of the body such as muscles, nerves, blood vessels, fatty and fibrous tissues [2].
They account for about 1% of all adult tumours and commonly affect arms, legs or trunk. Over
the years, more than 100 histologic subtypes have been recognised with widely varying pre-
sentation, sensitivity to treatment, and long-term outcomes [3]. Prognosis of advanced STS is
poor with median progression-free survival (PFS) of about 6 months, i.e., for first-line systemic
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therapy with doxorubicin plus ifosfamide, and a median overall survival (OS) just above one
year [4].

The most common site of metastasis is the lungs [3–5]. Depending on the histology, STS
metastasise sometimes to lymph nodes, bones, liver, and brain [6]. Other organs may also
be affected depending on the sarcoma entity. Skeletal metastasis is part of the natural his-
tory affecting prognosis and quality of life of patients with advanced/metastatic disease as a
pathological fracture may occur in 20–30% of them together with other skeletal-related events
(hypercalcaemia, spinal cord compression, and need for surgery or palliative radiotherapy for
refractory pain) [7].

The mainstay of disease management for inoperable locally advanced or metastatic popula-
tion is systemic treatment, which is often palliative to delay progression and severe morbidity
[3, 5]. Gastrointestinal stromal tumours (GIST) are generally considered separately because
of their responsiveness to receptor tyrosine kinase inhibitors, predominantly imatinib [8]. The
selection of treatment is based on clinical performance, age, histology, disease biology, patient
preferences, and availability of novel treatments and studies [5, 9]. For first-line treatment of
(non-GIST) STS, doxorubicin alone or in combination with ifosfamide is considered the most
active drug (combination) for many years [4]. Beyond first-line, commonly used drugs depend-
ing on the histologic subtype are gemcitabine with/without docetaxel, trabectedin, pazopanib,
and dacarbazine with/without gemcitabine which have been associated with a progression-free
survival (PFS) benefit in doxorubicin-treated patients [10]. Eribulin is the only drug to have
shown a survival benefit although curiously no benefit in PFS.

The most common histotypes are leiomyosarcoma (∼ 20%), liposarcoma (∼ 20%), undifferen-
tiated pleomorphic sarcoma (∼ 15%), and synovial sarcoma (∼ 6%), with the remaining histo-
types being individually rarer [11]. In the previous decades, STS studies were designed based
on a one-size-fits-all principle mixing several histologic subtypes. Since 2002, well-established
criteria have been widely used to design new phase II studies for all STS (> 420 citations) [1].
We refer to them with detail in the following section. Nevertheless, more recently, there is a
clear trend towards histology-specific tailored research as there is a need to better diversify the
eligibility criteria of clinical trials [3, 5]. Two meta-analyses projects are conducted to provide
an update to reflect current treatment practices, and to evaluate these thresholds separately for
the most prevalent STS subtypes to aid the design of histology-specific trials.

Historical benchmarking for STS clinical trials

In 2002, Van Glabbeke and colleagues published in the European Journal of Cancer (EJC) a
pooled analysis on behalf of the EORTC - STBSG, estimating progression-free rates for var-
ious groups of STS patients who participated in phase II trials [1]. The clinical trials database of
EORTCwas used to estimate reference values for conducting new phase II trials with progression-
free rate as the primary endpoint. Drugs were separated as active or inactive (pooling in distinct
groups drugs which had demonstrated activity/inactivity) and activity thresholds were calcu-
lated separately for first-line and pre-treated patients.
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Three groups of patients were defined:

(a) Patients treated with a first-line active drug or combination (used for the activity threshold
in first-line patients - namely P1).

(b) Patients with drugs that did not demonstrate substantial anti-tumor activity at the tested
dose and schedule (used for non-activity threshold in pre-treated patients - namely P0).

(c) Patients treated with an active drug after failure of an anthracycline-containing regimen
(used to provide P1 in pre-treated patients).

Table 1.1 shows the historical benchmarks for first-line and pre-treated advanced or metastatic
STS patients. The authors suggested for the first-line treatment a rate of 38-56% at 6 months as
a reference value (depending on the histology), and for second-line or further a 3-month rate ≥
40% for drug activity and ≤ 20% for inactivity (for any STS subgroup). It is important to note
that most of the phase II trials were conducted before the classification of GIST as a separate
entity.

Line of treatment Treatment regimen Number of patients Histology specific 3-month rate 6-month rate

First-line Active 1154 Yes 57-77 % 38-56 %

Pre-treated Inactive 234 No 21 % 8 %
Pre-treated Active 146 No 39 % 14 %

Table 1.1: Progression-free rates for first line or pre-treated advanced / metastatic STS patients based on the paper
by Van Glabbeke et al. in 2002 [1].

Meta-analysis of proportions

Meta-analysis is a statistical method that combines results of multiple scientific studies all ad-
dressing the same research question. The basic situation in meta-analysis is dealing with k

studies in which a parameter of interest is estimated. In this thesis, two meta-analyses concern-
ing drugs / drug combinations are performed from clinical trials with advanced or metastatic
STS patients identified via a literature review in PubMed. Our goal is to update the historical
benchmarks by Van Glabbeke et al. (2002) [1] for leiomyosarcoma, liposarcoma, and synovial
sarcoma patients. A random effects model is introduced for each drug / drug combination to
estimate the overall effect estimate (i.e., PFS proportion) per line of treatment (first line vs pre-
treated) for the aforementioned STS subtypes. This approach is commonly referred to as the
”DerSimonian and Laird method” in medical research [12, 13].

A random effects model allows the included studies (drug / drug combinations per treatment
line) to have true effect sizes normally distributed. Such amodel takes bothwithin- and between-
studies variance (defined as τ 2) into account. Parameter τ 2 is calculated using the method of
moments (DerSimonian and Laird method) [14]. The overall effect size (i.e., the summary pro-
portion) is estimated as a weighted average of the observed effect sizes for each drug (individual
study). The weighting for each study is the inverse of its total variance (sum of the within- and
the between-study variance). A larger study is given more weight so its effect size has greater
impact on the overall effect. Using the logit (log-odds) transformation [15], the effect size for a
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study i is written as yi = ln
(

pi
1−pi

)
, with sampling variance vi = 1

nipi
+ 1

ni(1−pi)
, and the inverse

variance weight wi =
1

vi+τ2
, where p and n are the proportion and sample size, respectively.

Then, the weighted mean proportion and sampling variance can be computed as:

ymean =

∑k
i=1 wiyi∑k
i=1 wi

, (1.1)

and
vmean =

1∑k
i=1 wi

, (1.2)

where k is the total number of studies (here drugs or drug combinations per treatment line).

The overall heterogeneity between studies is provided by the I2 statistic (variability between
the study-specific effect sizes which cannot be explained by random variation) [14]. Note that,
equivalently, a PFS rate is the PFS proportion*100.

Outline: research objectives of part I

The historical benchmarkingwork byVanGlabbeke et al. [1] on behalf on the EORTC - STBSG
estimated progression-free rates for various groups of STS patients who participated in phase II
trials of the EORTC. These thresholds have been used extensively (currently > 420 citations) to
design new studies for all STS or for specific histology subgroups but remain unchanged since
2002. Therefore, it is not difficult to see the first gap that this thesis aims to cover. To elaborate
on this, the 2002 thresholds should not only be updated but also be evaluated separately for
the most prevalent STS subtypes to reflect modern clinical practice, as future agents should
perform better than currently available standards of care, and there is a need to better diversify
the eligibility criteria of clinical trials. We performed an extensive in-house literature search
to identify all phase II or subsequent clinical trials of advanced or metastatic STS (2003 to
2018), thus documenting the current landscape. Because of the substantial heterogeneity among
clinical trials, it was decided to focus first on leiomyosarcoma (LMS) - the most commonly
occurring STS subtype in our literature review. The primary endpoint of interest is progression-
free survival rate (PFSR), which is nowadays a preferred and more frequently reported endpoint
than progression-free rates (censoring non-disease-related death). Hereto, in Chapter 2 [16],
a meta-analysis is performed to provide a new benchmark for designing phase II studies of
advanced or metastatic LMS patients using PFSR.

Historically, the majority of the STS trials have been designed with a one-size-fits-all principle
mixing several histologic subtypes [3, 5]. However, our recent study [16] is in accordance with
a trend towards histology-specific tailored research. In Chapter 3, a second meta-analysis is
performed for advanced or metastatic liposarcoma or synovial sarcoma - the second and third
most common subtypes in our literature review - to propose new efficacy thresholds for the
design of future histology-specific phase II trials with these entities.

As a further step in our work, we felt it would be of interest to identify high-risk patient popu-
lations in STS clinical trials examining patient characteristics from EORTC - STBSG clinical
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trials. Our group has recently conducted some research in this direction [17, 18]. Lindner et
al. confirmed and identified prognostic factors for first-line chemotherapy patients with lung
metastases from 15 EORTC - STBSG trials [17]. Younger et al. analysed outcomes of elderly
patients (age ≥ 65) with a pooled analysis of 12 EORTC - STBSG trials. They found that
elderly patients with metastatic STS treated with first-line chemotherapy were largely under-
represented in these trials [18]. Skeletal metastasis is part of the natural history affecting the
prognosis and quality of life of patients with advanced/metastatic STS as a pathological frac-
ture may occur in 20–30% of them together with other skeletal-related events [7]. Hence, as
an extension in Chapter 4 [19], we investigate whether, and if so, to what extent, bone metas-
tases at presentation affect the outcome (regarding OS and PFS) of patients with advanced or
metastatic disease, performing a pooled analysis of 5 trials from the EORTC - STBSG database.
If presence of bone metastases at study entry is an important risk factor per line of treatment
(first vs second or further), then stratification should be considered in randomised trials. An
additional goal is to identify which metastatic organ site (among liver, lymph node, lung, soft-
tissue, or other) has the largest impact for patient’s OS/PFS combined with skeletal metastasis
at diagnosis in this database (per treatment line).

1.1.2 Part II: Statistical models versus machine learning to predict sur-
vival for sarcoma and non-sarcoma clinical data

This part focuses on the comparison of statistical models (SM) with machine learning (ML)
techniques. Nowadays, there is a growing interest by the medical community in applying ML
to predict clinical outcomes [20]. In this part of the thesis, new developments regarding ML for
time-to-event data proposed by the author are discussed. A comparison with traditional bench-
marks for real-life clinical data (small/medium or large sample sizes, low- or high-dimensional
settings) is performed.

Survival analysis

Survival analysis (also referred to as time-to-event analysis) is used to estimate the lifespan of
a particular population under study [21, 22]. Survival analysis is one of the primary statistical
methods for analysing medical data concerning time until the occurrence of an event of interest
(such as death, disease-progression, heart attack, organ failure etc.) occurs. These kind of data
are often right-censored; they can be seen as a specific type of missing data in which time to
the event of interest may be unobserved, either due to subjects being lost to follow-up, or due
to time limitations such as study termination (called administrative censoring). The presence
of censored observations makes the analysis of these data challenging requiring modifications
to the traditional approaches aiming at using all available information (including also censored
observation). In this thesis, survival analysis is performed for different endpoints such as overall
survival (time to death from any cause since the date of surgery) and overall graft-survival (time
between liver transplantation and graft failure or death).
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The most popular statistical benchmark for right-censored data is the Cox proportional hazards
model (traditional benchmark) [23], which is typically employed to estimate the effect of risk
factors on the outcome of interest. This model assumes that each covariate has a multiplicative
constant over time effect on the hazard function. Data with sample size n consist of independent
observations from the triplet (T,D,X) i.e., (t1, d1, x1), · · · , (tn, dn, xn). For the ith individual,
ti is the survival time, di the censoring indicator (di = 1 if the event occurred and di = 0 if
the observation is right-censored) and xi is the vector of predictors (x1, · · · , xp). The hazard
function of the Cox model with time-fixed covariates is specified as:

h(t|X) = h0(t) exp(XTβ), (1.3)

where h(t|X) is the hazard at time t given predictor values X, h0(t) is an arbitrary baseline
hazard, and β = (β1, · · · , βp) is a parameter vector. The baseline hazard h0 is the hazard
if all predictors are equal to zero. Formula (1.3) shows that the hazard function depends on
chosen predictors (x1, · · · , xp) expressed through the size of the coefficients (β1, · · · , βp). For
example, suppose that we are interested inmodelling the effect size of an experimental treatment
A versus the standard of care for OS in STS patients adjusted for the impact of other variables
(x2, · · · , xp). Then, a hazard ratio of 0.70 versus the standard of care means that treatment
A has a protective effect (30% reduction in the risk of death), given that the other covariates
remain constant.

Survival analysis with competing risks

A competing risk (CR) is an event whose occurrence precludes the occurrence of an event of
interest (for instance death may preclude the occurrence of disease relapse) [24, 25]. Typically
in clinical applications for survival data, if several types of events occur, a model describing
progression for each of the CRs is needed [26, 27]. CRs are unlikely to be independent as the
biology suggests at least some dependence between them (a competing event can alter the prob-
ability of occurrence of the event of interest). In several chronic diseases attributable to aging
and frailty such as cancer, chronic heart failure, or dementia, study populations are susceptible
to CRs [28].

The most popular non-parametric approach (does not make any assumptions about the sample
characteristics) to estimate survival is the Kaplan-Meier (KM) [29]. However, in the pres-
ence of CRs, the KMmethodology overestimates the probability of failure which might lead to
over-treatment of patients [24, 30]. Different SM have been developed to model the effect of
covariates on cumulative incidence (absolute risk) of an event in the presence of CRs such as
the cause-specific hazard regression model a competing risks analogue of a Cox proportional
hazards model [23], and the Fine-Gray sub-distribution hazards regression model [31]. The for-
mer is a natural extension of the standard proportional hazards Cox model for the CRs setting
where a Cox model is applied for each competing event. The latter models the covariate effects
directly on the cumulative incidence function (a proper summary statistic for CRs) over time
reporting on the sub-distribution hazard ratio [30].
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Survival prediction and performance measures

Prediction is the cornerstone of clinical practice. It is inherent in every diagnosis about the
course of an illness. At the same time, every therapeutic medication stimulates prediction re-
garding a response to treatment (prognosis; a forecast of themedical outcome) [32]. The number
of studies that focus on prediction models is rapidly expanding in the medical field. Survival
prediction aims to predict the future survival risk of patients based on a set of predictive fea-
tures (also called prognostic factors, risk factors, or covariates; e.g., gender, age, treatment
group etc.). Hence, survival prediction is conducted using prognostic models.

The performance of prediction models can be assessed in different ways. The most popular
measure of model performance in a survival context is the concordance index (also called the
C-index) [33], which computes the proportion of pairs of observations for which the survival
times and model predictions’ (risk of the outcome e.g., death) order are concordant taking into
account censoring. Patients who experience the event of interest should have higher risk than
patients who do not experience the event. It takes values typically in the range 0.5 - 1with higher
values denoting higher ability of the model to discriminate between patients with different risk;
0.5 indicating no discrimination (similar to flipping a coin). In real-world data, a C-index above
0.60 indicates a clinically acceptable model, above 0.70 shows a good model, and above 0.80
an excellent model in terms of discrimination.

The C-index provides a rank statistic between the observations that is not time-dependent. Fol-
lowing van Houwelingen and le Cessie [34] a time-dependent prediction error is defined as

Brier(y, Ŝ(t0|x)) = (y − Ŝ(t0|x))2, (1.4)

where Ŝ(t0|x) is the model-based probabilistic prediction for the survival of an individual be-
yond t0 given the predictor x, and y = 1{t > t0} is the actual observation ignoring censoring.
To assess the performance of a prediction rule in actual data, censored observations before time
t0 must be considered. To calculate Brier Score when censored observations are present, Graf
proposed the use of inverse probability of censoring weighting [35]. An estimate of the average
prediction error of the prediction model Ŝ(t|x) at time t = t0 is as follows

ErrScore(Ŝ, t0) =
1

n

∑
i

1{di = 1 ∨ ti > t0}
Score(1{ti > t0}, Ŝ(t0|xi))

Ĉ(min(ti−, t0)|xi)
, (1.5)

where 1

Ĉ(min(ti−,t0)|xi)
is the probability of censoring weighting (IPCW) and Score is the Brier

Score for the prediction model. The Brier Score is a more complete performance measure
than C-index as it takes into account both model discrimination and calibration (how well the
predicted survival probabilities match the expected). It ranges typically from 0 to 0.25 with a
lower value meaning a smaller prediction error.

The Brier score is calculated at different time-points. An overall measure of prediction error is
the Integrated Brier Score (IBS) which can be used to summarise the prediction error over the
whole range up to the time horizon

∫ thor
0

ErrScore(Ŝ, t0)dt0 [36]. IBS provides the cumulative
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prediction error up to thor at all available times (t∗ = 1, 2, · · · , thor years) and takes values in
the same range as the Brier score.

An essential measure of model performance is calibration which refers to the agreement be-
tween observed outcomes and predictions (absolute predictive accuracy) [37]. In particular,
one way that is used in this thesis to assess model calibration is as follows: the predicted sur-
vival probabilities are estimated, and the clinical data are split intom = 4 equally sized groups
based on the quantiles of the predicted probabilities. Quantiles were chosen over for instance
deciles to avoid any computational issues. Then, the observed survival probabilities are calcu-
lated using KM methodology [29]. Miscalibration for each group is defined in terms of mean
squared error (MSE) of the difference between the observed and the predicted survival proba-
bilities:

MSE(t0) =

∑4
m=1

[
S
(m)
KM(t0)− Ŝ(m)(t0)

]2
4

, (1.6)

at t0 years.

Reporting discrimination and calibration is always important for a prediction model [37]. In
the presence of CRs, these measures have to be modified to address competing events [38–40].

Machine learning in medicine

ML - a subfield of artificial intelligence (a wide-ranging branch of computer science concerned
with building smart machines capable of performing tasks that typically require human intelli-
gence) - is the study of computer algorithms that can automatically learn from data in order to
make predictions rather than being explicitly programmed with rules to do so [20, 41, 42]. It
arises at the intersection of computer science with mathematics, statistics, and other disciplines
including medicine. The long-term promise of ML in medicine is that the care of each patient
will be informed by the wisdom contained in the decisions made by nearly all clinicians, and the
outcomes of potentially millions of patients [42]. Every diagnosis, management decision, or
therapy could be personalised not only based on all known information about a patient, but also
incorporating lessons learnt from the medical community. Still, these days, little in healthcare
is driven by ML despite the early claims (even half a century ago) that computers will augment
and, in some cases, largely replace the intellectual functions of physicians [43].

From last decade, there is a growing interest in applying ML for prediction by medical re-
searchers and clinicians sparked by the improvements in computer processing power, the stor-
age of large amount of patient data in electronic databases, and the development of new al-
gorithms [20]. Successful applications of ML in medicine include for instance automated in-
terpretation of the electrocardiogram for a cardiologist (diagnosis selection from a limited list
of options), or automated detection of a lung nodule from a chest x-ray for a radiologist [41].
These are labelled tasks where the computer is approximating what a trained physician can do
with high accuracy. ML has also been used to find naturally occurring unlabeled patterns or
groupings within the data. One successful example from the field of genomics is the identifi-
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cation of an eosinophilic subtype of asthma [44], which led to the discovery of a novel target
therapy called lebrikizumab to tackle it [45]. An excellent overview of current and future po-
tential applications of ML in the field of oncology can be found in Ref. [46]. The authors focus
on the role of ML for risk assessment, lesion detection and grading, imaging, staging, prognosis
and therapy response of cancer patients.

Machine learning for survival analysis

Amongst ML techniques, artificial neural networks have been a common choice of methodol-
ogy in healthcare. Over the years, neural networks and other ML techniques have been devel-
oped and adapted to survival data. Wang et al. in 2019 provide a comprehensive overview of
conventional and modern approaches for right-censored time-to-event data [47]. The authors
describe several ML techniques and suggest that neural networks are well-suited to predict sur-
vival and estimate disease risk.

A common approach in the literature is the partial logistic artificial neural network (PLANN)
of Biganzoli et al. (1998) [48]. For the purpose of implementation, time is specified in discrete
non-overlapping time intervals which are added as an input feature in a longitudinally trans-
formed feed-forward network with logistic activation, and entropy error function. The output
layer estimates smoothed discrete hazards for each time interval. PLANN was extended by
Lisboa et al. (2003) under a Bayesian regularisation framework which performs automatic rel-
evance determination (PLANN-ARD) to select the most relevant prognostic factors [49]. In
this work, we propose ”PLANN extended” which provides new specifications to the original
PLANN by Biganzoli in terms of architecture (i.e., time interval inputs, hyperparameters, acti-
vation functions). Next to survival neural networks (SNNs), another well-knownML technique
for clinical prediction of survival data is random survival forests (RSF, Ishwaran et al. 2008)
[50]. RSF adapt Breiman’s random forest method [51] by using a collection of survival trees.
Note that survival trees and forests are popular non-parametric (no assumptions are made about
the characteristics of the sample) alternatives to the Cox model for time-to-event analysis.

ML approaches have also been employed for CRs, but the literature is limited. The PLAN-
NCR approach was developed by Biganzoli et al. in 2006 for the joint modelling of discrete
cause-specific hazards [52]. The time (in discrete time intervals) is used as an input feature
in a longitudinally transformed network with multinomial error function and logistic - softmax
activation functions for the hidden and the output layer (multiple output nodes), respectively.
Later, Lisboa et al. (2009) implemented PLANNCR under a Bayesian regularisation frame-
work (PLANNCR-ARD) [53]. Here, we develop ”PLANNCR extended” which provides new
specifications to the original PLANNCR by Biganzoli in terms of architecture (i.e., hyperpa-
rameters, activation functions). Ishwaran et al. extended RSF for CRs (RSFCR) in 2014 to
estimate the cumulative incidence function of competing events [54].
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The split sample approach

To develop and evaluate a ML prediction model, the ”split sample” approach is typically em-
ployed [55]. The original dataset is split randomly into two complementary parts: training data
(2/3), and testing data (1/3). The training data are used for model development and the testing
data for the evaluation of the final model’s performance. This division of the data is required
to limit overfitting (an analysis excessively tailored to a particular set of data) which can affect
the model’s ability to predict on new data reliably (model generalizability). An illustration of
the procedure is provided in figure 1.1.

Figure 1.1: General strategy for model development and evaluation of a ML prediction model.

ML algorithms have a set of parameters (called the ”hyper-parameters”) whose values control
the learning process. The prefix ”hyper” suggests that these are top level parameters which
control the resulting model parameters derived via training with data. Different model training
algorithms require different hyper-parameters. To tune the MLmodel (to find the best model or
hyper-parameters for a given task), one common practice is to perform a 5-fold cross validation
on the training data. Training data are divided into 5 folds. Each time 4 folds are used to train
a model, and the remaining fold is used to validate (evaluate) its performance on the training
data. This procedure is repeated with all combinations of folds used as training or validation
data. In this thesis, tuning of hyper-parameters is done using grid search (a tuning technique
that attempts to compute the optimum values of hyper-parameters using an exhaustive search
on specific parameter values).
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The partial logistic artificial neural network

Artificial neural networks were inspired from the human brain activity and more specifically
from the neurons that transmit information between different areas of the brain. They have a
layered structure based on a collection of units called nodes (or neurons) for each layer. The
input layer fetches the signals and passes them to the next layer which is called “hidden” after
the application of a non-linear transformation (activation) function. There might be a stack of
hidden layers next to each other that connect with the previous layer and transmit signals to-
wards the output layer. Connections between the artificial neurons of different layers are called
edges. Artificial neurons and edges have a weight which adjusts through training increasing or
decreasing the strength of each connection’s signal. To train the network, a target is defined
in the output layer which is the observed outcome for each individual. The simplest form of a
feed forward ANN has the input layer, a single hidden layer and the output layer.

PLANN [48] is a SNN with a single output node (unit) which estimates discrete hazards as
conditional probabilities of failure. It can be used for flexible modelling of survival data, as
it relaxes the proportional hazards assumption in intervals. To implement this approach, sur-
vival times are discretized into a set of l = 1, · · · , L non-overlapping intervals Al = (τl−1, τl],
with mid-points αl (time variable), 0 = τ0 < τ1 < · · · < τl a set of pre-defined time points
(usually years) and li the last observation interval for subject i. Data have to be transformed
into a longitudinal format where the time variable is added as part of the input features next to
the prognostic factors. On the training data each subject is repeated for the number of inter-
vals being observed, whereas on the test data for all time intervals. By adding hidden layers,
PLANN naturally models time-dependent interactions and non-linearities between the prog-
nostic features. Activation function of both hidden and output layers is the logistic (sigmoid)
function:

f(θ) =
1

1 + e−θ
. (1.7)

The output node is one large target vector with 0 if the event did not occur and 1 if the event of
interest occurred in a specific time interval (due to the necessary data transformation). PLANN
provides the discrete conditional probability of failure P(T ∈ Al | T > τl−1) for each patient
at each time interval. Hence, the hazard hl = P (τl−1 < T ≤ τl|T > τl−1) is estimated first in
each interval, and then, the survival probabilities are given as S(t) =

∏
l:tl≤t(1− hl).

Random survival forests

RSFs are an ensemble tree method for survival analysis of right-censored data [50] adapted
from random forests [51]. The main idea of random forests is to get a series of decision trees
- which can capture complex interactions but are notorious for their high variance - and obtain
a collection averaging their characteristics. In this way weak learners (the individual trees) are
turned into strong learners (the ensemble) [55]. Randomness is introduced in two ways for
RSFs: bootstrapping (sampling with replacement) a number of patients at each tree B times
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and selecting a subset of variables for growing each node. During growing each survival tree,
a recursive application of binary splitting is performed per region (called node) on a specific
predictor in such a way that survival difference between daughter nodes is maximised and dif-
ference within them is minimised. Splitting is terminated when a certain criterion is reached
(these nodes are called terminal).

The fundamental principle behind each survival tree is the conservation of events. This principle
asserts that the sum of estimated cumulative hazard estimate over time is equal to the total
number of deaths, therefore the total number of deaths is conserved within each terminal node
H. RSFs can handle both data with large sample size and vast number of predictors. Moreover,
they can reach remarkable stability combining the results of many trees.

Machine learning versus statistical models for survival prediction: An open discussion

Nowadays, there is an open debate regarding the added value of ML versus SM within clin-
ical and healthcare practice [56, 57]. For survival data, the most commonly applied SM for
prediction is the Cox proportional hazards regression model [23]. This model allows a straight-
forward interpretation (via hazard ratios), but it is at the same time restricted to the proportional
hazards assumption (the ratio of the hazards for any two individuals is constant over time), and
requires a manual pre-specification of interaction terms. On the contrary, ML techniques are
assumption-free and data adaptive which means that they can naturally incorporate interactions
between the predictive features. However, ML models are prone to overfitting of the training
data and they lack extensive assessment of predictive accuracy (i.e., absence of calibration)
[58, 59]. Needless to say, overfitting might also occur with a traditional regression model if it
is too complex (estimation of too many parameters) thus limiting generalisability (the ability of
the model to make good predictions) outside training data.

The choice of the appropriate methodology should be motivated by the available real-life data
and their complexity. SM usually perform well if the sample size is low/moderate, if there is a
small number of variables (low-dimensional setting) with a low signal to noise ratio, or when
predictors are associated with the outcome in a linear or additive way. On the other hand, ML
techniques may be a better choice if the sample size is large/huge, if there is a large number
of variables (high-dimensional setting) with a high signal to noise ratio, or when nonlinearity
and nonadditivity are expected to be strong [60]. In this thesis, ML techniques are compared
with SM for right-censored data in terms of prediction to address different real-life situations
(small/medium or large clinical datasets, low- or high-dimensional settings).

Outline: research objectives of part II

There is a growing interest by the medical community in applying ML to predict clinical out-
comes [20]. In a recent comprehensive survey, Wang et al. (2019) [47] discuss conventional
and modern methods for survival analysis with right-censored data. The authors conclude that
SNNs are well-suited to predicting survival and estimating disease risk, and are able to provide
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personalised treatment recommendations. Even so, despite their non-negligible use inmedicine,
a comprehensive review on SNNs using prognostic factors is missing. InChapter 5, we fill this
gap with a structured overview of SNNs with prognostic factors for clinical prediction, which
can be used as a guideline for future research. Our objective is to provide a broad understanding
of the literature (1st January 1990 - 31st August 2021). We discuss how SNNs are employed in
the medical field for prediction and detail how researchers have tried to adapt a classification
method to right-censored survival data. We also provide a critical appraisal of model aspects
to be designed and reported more carefully in future studies. We identify key characteristics
of prediction models (i.e., number of patients/predictors, evaluation measures, calibration), and
compare neural networks’ predictive performance to the Cox proportional hazards model [23].
We conclude with recommendations about the correct application of SNNs in context of clinical
prediction models, and discuss limitations and potential directions of future research.

There is an open discussion about the value of ML versus SM within clinical and healthcare
practice. ML techniques might be an attractive choice for modelling complex data. InChapter
6 [61], ML techniques (RSF [50], and two methodological extensions of PLANN [48]) devel-
oped in this thesis are tested to large retrospective data of 62294 patients from the United States
provided by the Scientific Registry for Transplant Recipients. A total of 97 predictors are se-
lected to predict survival since transplantation on clinical/statistical grounds. A comparison is
performed between three different Cox models [23] and the ML techniques. Clinical endpoint
is overall graft-survival defined as the time between transplantation and the date of graft-failure
or death. Well-established predictive measures are employed from the survival field. The main
aims of this project can be outlined as: (i) investigate the potential role of ML as competitor to
traditional methods when complexity of the data is high (large sample size, high dimensional
setting), (ii) identify the strongest potential risk factors for each method, (iii) evaluate the pre-
dictions and goodness of fit (calibration) of each method, and (iv) discuss the clinical relevance
of the findings (potential for medical applications).

In the previous study, our group provided new methodological extensions of PLANN [61].
”PLANN extended” was developed and validated for complex liver transplantation data with a
large sample size and within a high-dimensional setting. However, it is common to have a small
number of patients recruited in clinical trials and a limited set of predictive features, for instance
in sarcoma trials. Even so, there is an expectation by clinicians that ML models may perform
better than SM. Hence, in Chapter 7 [62], the focus is on ML techniques versus SM for non-
complex clinical data (small/medium sample size, low-dimensional) to investigate a different
real-life setting. A Monte-Carlo simulation study is performed to compare PLANN original or
extended [48, 61] with Cox models [23] for right-censored survival data in terms of prediction
(discrimination and calibration). More specifically, real-life clinical data is mimicked to sim-
ulate synthetic data (5 predictors, 250 or 1000 observations) and to address different scenarios
(20, 40, 61, or 80% censoring) which are representative of the real disease (bone sarcoma).
The dataset originates from a randomised phase III European Osteosarcoma Intergroup study
(MRC BO06/EORTC 80931) that investigated the effect of dose-intense chemotherapy in pa-
tients with localised extremity osteosarcoma [63]. The endpoint of interest is OS defined as the
time to death from any cause since the date of surgery. As part of our objectives, we investi-
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gate the robustness of PLANN original [48] and PLANN extended [61] in scenarios with less
observations or less information available (due to the presence of censoring), and we explain
the practical relevance of the findings (SM versus ML).

In health research, several chronic diseases are susceptible to CRs. Initially, SM were devel-
oped to estimate the cumulative incidence of an event of interest in the presence of CRs. As
recently there is a growing interest in applyingML for clinical prediction, these techniques have
also been extended to CRs but the literature is limited. In Chapter 8, two SM (cause-specific
Cox [23], Fine-Gray [31]) and three ML techniques (PLANNCR original [52], a new model
called ”PLANNCR extended”, and RSFCR [54]) are employed for CRs. Our goal is to de-
velop and validate prognostic clinical prediction models. A dataset with 3826 retrospectively
collected patients from the PERSARC Study Group with extremity soft-tissue sarcoma (eSTS)
and nine predictors is used to systematically assess the predictive performance (discrimination
and calibration) of all methods in a simple clinical setting. The endpoint of interest is the time in
years between surgery and disease progression (event of interest) or death (competing event).
This work examines the potential role of ML in contrast to conventional regression methods
for CRs in non-complex eSTS data (small/medium sample size, low dimensional setting), and
compares the methods with regards to practical utility for prediction.

In Chapter 9, our findings are summarized and put into a broader perspective. We end the
thesis with some suggestions for future research.
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