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Abstract

Background. The importance of the hippocampus and amygdala for disrupted emotional
memory formation in depression is well-recognized, but it remains unclear whether functional
abnormalities are state-dependent and whether they are affected by the persistence of depres-
sive symptoms.
Methods. Thirty-nine patients with major depressive disorder and 28 healthy controls were
included from the longitudinal functional magnetic resonance imaging (fMRI) sub-study of
the Netherlands Study of Depression and Anxiety. Participants performed an emotional
word-encoding and -recognition task during fMRI at baseline and 2-year follow-up measure-
ment. At baseline, all patients were in a depressed state. We investigated state-dependency by
relating changes in brain activation over time to changes in symptom severity. Furthermore,
the effect of time spent with depressive symptoms in the 2-year interval was investigated.
Results. Symptom change was linearly associated with higher activation over time of the left
anterior hippocampus extending to the amygdala during positive and negative word-encod-
ing. Especially during positive word encoding, this effect was driven by symptomatic improve-
ment. There was no effect of time spent with depression in the 2-year interval on change in
brain activation. Results were independent of medication- and psychotherapy-use.
Conclusion. Using a longitudinal within-subjects design, we showed that hippocampal–
amygdalar activation during emotional memory formation is related to depressive symptom
severity but not persistence (i.e. time spent with depression or ‘load’), suggesting functional
activation patterns in depression are not subject to functional ‘scarring’ although this hypoth-
esis awaits future replication.

Introduction

Major depressive disorder (MDD) is a prevalent psychiatric disorder associated with high
morbidity and mortality, frequently characterized by a chronic or recurrent course (Kessler
et al., 2005). Biased emotional memory has been proposed as a key factor for the development
and maintenance of MDD (Leppänen, 2006; Disner et al., 2011; Ai et al., 2015; Everaert et al.,
2015) and may even underlie the vulnerability for depressive psychopathology (Chan et al.,
2007). Cross-sectional studies suggested that emotional memory biases are state-independent
phenomena: better memory for negative information and worse memory for positive informa-
tion have been reported during both the acute depressive state and during remission [reviewed
elsewhere (Bradley and Mathews, 1988; Elliott et al., 2010)], mirroring functional brain abnor-
malities observed in areas critical for memory formation of emotional material, i.e. the amyg-
dala and hippocampus (Ramel et al., 2007; Arnold et al., 2011; van Tol et al., 2012). Previously,
we however observed hyperactivation of the anterior hippocampus/amygdala during encoding
of negative information in acutely depressed patients but not in remitted patients in a cross-
sectional comparison (van Tol et al., 2012), suggesting state-dependency instead. However,
cross-sectional studies do not allow strong inferences on state-dependency. Importantly, iden-
tifying state-dependent neurocognitive markers of MDD may constitute a first step in under-
standing mechanisms of recovery v.maintenance of depression (Mayberg, 1997; Maalouf et al.,
2012; Dohm et al., 2017).

While longitudinal neuropsychological studies have found that memory biases resolve upon
recovery after treatment (Calev et al., 1986; Peselow et al., 1991) (though not consistently in
Sternberg and Jarvik, 1976), functional neuroimaging studies reported mostly changes in
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activation of the amygdala and hippocampus following symptom-
atic improvement during affective processing (i.e. not in the con-
text of memory processing) or rest. Findings have been
inconclusive with reports of decreased (Sheline et al., 2001; Fu
et al., 2004; Redlich et al., 2017), increased (Goldapple et al.,
2004; Neumeister et al., 2006; Victor et al., 2010; Ritchey et al.,
2011), or unchanged (Fu et al., 2015; Opmeer et al., 2015) activa-
tion following successful short-term pharmacological treatment
(Sheline et al., 2001; Fu et al., 2004; Victor et al., 2010; Fu
et al., 2015), electroconvulsive therapy (Redlich et al., 2017), cog-
nitive behavioral treatment (Fu et al., 2008; Goldapple et al., 2004;
Ritchey et al., 2011), or naturalistic remission (Opmeer et al.,
2015). Heterogeneity in findings may be partly explained by
methodological factors such as small sample size, type of stimuli,
effects of the (pharmacological) treatment itself on blood flow, or
clinical variation in terms of comorbidity or interval between pre-
and post-measurement. Nevertheless, the effects of symptomatic
improvement on the neural underpinnings of emotional memory
processing have not been studied to date.

Because duration of depression has been associated with more
severe structural abnormalities, especially in the hippocampus
(MacQueen et al., 2003; Frodl et al., 2008; Schmaal et al., 2015), per-
sistence of depressive symptoms may be an important additional
factor that influences activation of brain areas important for encod-
ing of emotional information. Such ‘persistence’ effects may be
related to glucocorticoid-dependent toxic effects of stress (Fossati
et al., 2004) and may result in explicit memory deficits (Sapolsky,
2000). On a functional level, medial prefrontal involvement during
the processing of autobiographical memory was found to be
blunted in remitted MDD patients but not in individuals at high
risk for developingMDD(Young et al., 2015), suggesting thatmem-
ory deficits may be a consequence of having experienced a depres-
sive episode. However, to our knowledge, it has not yet been
investigated whether persistence of symptomsmaymodulate longi-
tudinal functional brain changes related to memory formation.

In the present longitudinal imaging study, we aimed to inves-
tigate whether changes in activation of the amygdala and hippo-
campus during emotional memory encoding are dependent on
changes in depressive state and time spent with depressive symp-
toms. Healthy and depressed participants underwent functional
magnetic resonance imaging (fMRI) twice in the context of the
naturalistic and observational Netherlands Study of Depression
and Anxiety (NESDA) study, with approximately 2 years in
between. In this interval, no specific treatment was delivered as
part of the study protocol. Given the naturalistic design of our
study, participants could receive treatment as usual, which was
reconstructed retrospectively based on self-reports at the 2-year
follow-up interview. We hypothesized that changes in activation
in the hippocampus/amygdala are (1) associated with a change
in depressive state, especially during negative word encoding
and (2) affected by time spent with depressive symptoms between
measurements. Furthermore, we aimed to explore whether activa-
tion in regions other than amygdala and hippocampus related to
longitudinal treatment responses was associated with severity and
time spent with depressive symptoms.

Methods and materials

Participants

Participants were recruited from the ongoing neuroimaging sub-
study of the NESDA (Penninx et al., 2008) and underwent fMRI

scanning at the University Medical Center Groningen (UMCG),
Academic Medical Center (AMC) of the University of
Amsterdam, and the Leiden University Medical Center
(LUMC). NESDA has been designed as a longitudinal observa-
tional cohort study with measurements at baseline, 1-, 2-, 4-,
6-, and 9-year follow-up, with MRI measurements performed in
a subsample at baseline, 2- and 9-year follow-up (9-year
follow-up measurement was completed during the preparation
of this manuscript). At baseline, patients with MDD (n = 70),
MDD and one or more anxiety disorders [i.e. social anxiety dis-
order (SAD), panic disorder (PD), and/or generalized anxiety dis-
order (GAD); N = 92], patients with only anxiety disorders (i.e.
SAD, PD, and/or GAD; n = 71), and healthy control participants
(HC; n = 68) were included. The ethical review board of each par-
ticipating center approved the study and all participants gave writ-
ten informed consent.

Exclusion criteria for all participants in the NESDA neuroima-
ging study at baseline (n = 301) were: age under 18 or over 57
years; current alcohol or substance abuse; presence or history of
a neurological or somatic disorder with possible effects on the
central nervous system; general 3T MRI contraindications; hyper-
tension. Use of selective serotonin reuptake inhibitors (SSRIs) or
infrequent use of benzodiazepines [oxazepam (max 20 mg) or
diazepam, maximum of three times a week and not within 48 h
before scanning] was allowed. Patients using any other psycho-
pharmacological agent were excluded. Exclusion criteria for the
second measurement at 2-year follow-up (S2; N = 199) were iden-
tical, with the exception of the age criterion. Also, from a cohort
perspective, we were less strict in excluding patients based on the
type of medication used at S2 (see Table 1 and online
Supplementary Table S1 for details). In line with the observational
nature of the NESDA study, no specific treatment was delivered in
between measurements, but was monitored retrospectively.
Participants were free to consult their general practitioner, psych-
iatrist or psychologist for the help they wished to receive.
Results of the baseline measurement (S1) and their associations
with subsequent course related to emotional memory processing
have been published elsewhere (van Tol et al., 2012; Ai et al.,
2015).

Complete behavioral data and good quality fMRI data at both
S1 and S2 were available for 64 MDD patients and 39 HC. At S1,
all patients fulfilled the criteria for a diagnosis of MDD with a
half-year recency based on the Composite International
Diagnostic Interview (CIDI life time – version 2). An additional
diagnosis of SAD, PD, and/or GAD at either S1 or S2 was allowed
(see Table 1 for details). Following Opmeer et al. (2015), we
included only patients who were in a depressive state at S1 defined
as a Montgomery–Åsberg Depression Rating Scale (MADRS)
score >10 (Zimmerman et al., 2004). One participant had a
huge increase in MADRS score at S2 and was classified as an out-
lier (change score >3SD from group mean) and subsequently
excluded from the analyses. The final patient sample included
39 individuals. In total, 11 HC were excluded from further
analysis based on the presence of possible depressive symptom-
atology at S2 (i.e. MADRS-score >10; n = 1), too high level of
education to be matched to the patient group (n = 1), or unreli-
able task performance (n = 9; online Supplementary Fig. S1).
This resulted in the inclusion of 28 HC without any current
or life-time DSM-IV diagnosis and no indication of depressive
symptomatology at both S1 and S2 (see online Supplementary
Fig. S1 for a flow diagram reflecting data selection).
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Table 1. Demographics characteristics

HC
High-improved

MDD
Low-improved

MDD F t χ2
Likelihood

ratio p

N 28 19 20 – – – –

Diagnosis over time (remitted/non-remitted) N – 17/2 9/10 – – – – –

State change over time (improved/stable/worsen) N – 19/0/0 14/2/4 – – – – –

Site S1 (AMC/LUMC/UMCG) N 15/9/4 8/8/3 8/8/4 – – – 1.51 0.89

Site S2 (AMC/LUMC/UMCG) N 13/11/4 7/9/3 8/8/4 – – – 0.70 0.95

Sex (male/female) N 10/18 7/12 9/11 – – 0.47 – 0.79

Age M
(S.D.)

39.82 (9.68) 37.32 (9.59) 39.55 (11.26) 0.38 – – – 0.68

Years of education M
(S.D.)

14.46 (2.77) 12.37 (2.17) 13.60 (3.78) 2.83 – – – 0.07

Months interval M
(S.D.)

21.85 (1.38) 22.63 (1.30) 22.20 (1.61) 1.66 – – – 0.20

MADRS_S1 M
(S.D.)

0.93 (1.44) 19.11 (5.17) 21.55 (7.33) 127.5 – – – <0.001*a

MADRS_S2 M
(S.D.)

0.50 (1.00) 4.16 (2.83) 17.90 (6.37) 126.0 – – – <0.001*b

Relative MADRS_S2 > S1 M
(S.D.)

−0.81 (0.36) −0.78 (0.15) −0.14 (0.29) – −8.61 – – <0.001*b

BAI_S1 M
(S.D.)

2.07 (2.70) 12.32 (7.33) 15.15 (9.76) 24.83 – – – <0.001*a

BAI_S2 M
(S.D.)

2.14 (2.03) 7.58 (5.61) 14.10 (8.50) 26.08 – – – <0.001*b

Relative BAI_S2 > S1 M
(S.D.)

0.02 (0.99) −0.45 (0.38) 0.45 (1.92) – −1.89 – – 0.07

Depressive duration between S1 and S2 (%) M
(S.D.)

– 0.42 (0.40) 0.58 (0.40) – −1.22 – – 0.23

Months with depressive symptom before S1 M
(S.D.)

– 16.42 (14.69) 22.85 (16.28) – −1.29 – – 0.20

Comorbidity_S1 (MDD/MDD+)

Comorbid SAD N – 6/13 9/11 – – 0.74 – 0.51

Comorbid PD N – 6/13 6/14 – – 0.01 – 0.92

Comorbid GAD N – 7/12 10/10 – – 67 – 0.52

Comorbidity at follow-up

Comorbid SAD (yes/no) N – 2/17 6/14 – – – 2.36 0.13

Comorbid PD (yes/no) N – 2/17 6/14 – – – 2.36 0.13

Comorbid GAD (yes/no) N – 0/19 8/12 – – – 12.66 <0.01*
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Age of depressive onset M
(S.D.)

– 26.89 (11.27) 21.74 (9.76) – 1.51 – – 0.14

# of episodes prior to SI M
(S.D.)

– 1.36 (0.67) 1.64 (0.67) – −0.95 – – 0.35

Psychotherapy-use_S1 M
(S.D.)

– 4/15 6/14 – – – 0.41 0.71

Psychotherapy-use_S2 M
(S.D.)

– 9/10 6/14 – – 1.24 – 0.33

Psychotherapy-use between S1 and S2 (both used/stopped
after S1/started after S1/both not used)

M
(S.D.)

– 10/5/0/4 12/2/2/4 – – – 4.26 0.24

SSRI-use_S1 (yes/no) N – 7/12 7/13 – – 0.01 – 0.91

SSRI-use_S2 (yes/no) N – 7/12 3/17 – – – 2.49 0.16

SSRI-use between S1 and S2 (both used/stopped after S1/
started after S1/both not used)

N – 5/2/2/10 2/5/1/12 – – – 3.15 0.37

Benzodiazepine-use_S2 (yes/no) N – 4c/15 3c,d/17 – – – 0.24 0.62

HC, healthy control; S-R, symptom-remitted MDD patients; S-S, symptomatic-symptomatic MDD patients; SAD, social anxiety disorder; PD, panic disorder; GAD, generalized anxiety disorder.
aHC differed from both patient groups, while the two patient groups did not differ.
bAll groups differed from each other.
cInfrequent use.
dTwo patients used benzodiazepine frequently.
*Significant at p < 0.05.
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Task paradigm

All participants performed the event-related, subject-paced, emo-
tional word encoding and recognition task during both fMRI
scanning sessions (S1 and S2) (van Tol et al., 2012). During the
encoding phase, 20 blocks containing 160 stimuli (positive/neu-
tral/negative words and baseline trials; 40 each) were pseudo-
randomly presented. Participants were instructed to evaluate
whether the word was positive, negative, or neutral in valence
by pressing the right, left, and middle button, respectively.
During baseline trials, participants were asked to press the corre-
sponding button to indicate the direction of the arrow. After a
retention interval of 10 min (during which the structural T1
scan was acquired), the retrieval phase started and consisted of
120 encoding target words, 120 distracter words, and 40 baseline
words that were presented in 20 pseudo-randomized blocks.
Participants were instructed to indicate whether they had seen,
had not seen, or probably had seen the word. Emotional words
in the valence categories were matched based on length, frequency
in the Dutch language, and complexity. The same words list was
used in both measurements, although the order was changed at
the 2-year follow-up measurement. The emotional word encoding
task was preceded by an executive planning task (van Tol et al.,
2011) and followed by an emotional face viewing task
(Demenescu et al., 2011; Opmeer et al., 2015) and a resting
state acquisition (Veer et al., 2010). Based on the hypotheses for-
mulated in our cross-sectional study (van Tol et al., 2012), we
only investigated the encoding session.

fMRI data acquisition

Neuroimaging data were collected with 3T Philips MR-scanners
located in Amsterdam, Leiden, and Groningen using standard
EPI techniques, though with minor differences in acquisition
parameters. A detailed description of acquisition specifications
can be found in the online Supplementary material.

Data analysis

Independent variables
Firstly, to test for the correlation between symptom change and
brain activation change over time, a relative symptom change
score representing the difference in depression severity between
S1 and S2 while taking into account baseline severity was calcu-
lated for each patient [i.e. (MADRS S2–MADRS S1)/MADRS
S1]. Furthermore, to be able to compare changes over time in
behavior and brain activation following symptomatic change
with changes in HC, who were also scanned twice, and to explore,
e.g. whether change in the high improved patients represented
normalization (i.e. approached activation of HC at S2) or whether
change in low improved patients represented further deviations
from normal, we divided the patients in two groups based on the
median of relative symptom change scores (median =−0.46): a
group of high improved (MDD-HI; n = 20, online Supplementary
Fig. S1) and a group of low improved patients (MDD-LI; n = 19).

Secondly, to test for the correlation between brain activation
change and percentage of time spent with depression (i.e. persist-
ence), presence of depressive symptoms per month for the dur-
ation of the interval between S1 and S2 was assessed with the
life chart interview (Lyketsos et al., 1994) at S2. Participants
had to rate the severity of depressive symptoms per month and
only symptoms with small to severe burden were taken as an

indication of the presence of symptoms. Percentage of months
experiencing depressive symptoms relative to the overall
follow-up period was calculated per patient as the time spent
with depression (Ai et al., 2015).

Clinical variables and behavioral data
Effects of symptom change and time spent with depressive symp-
toms on demographic, psychometric assessment, and memory
performance were analyzed in IBM SPSS software (SPSS v.22.0,
IBM). We employed analyses of covariance (ANCOVA), χ2 tests
and t tests where appropriate for demographic and psychometric
data with a significance level of p < 0.05, two-tailed.

For the behavioral data, performance difference scores (S2− S1)
for both reaction times (RT) and accuracy for successfully encoded
words (Tulving, 1985) were calculated. We assessed the continuous
association between relative symptom change scores and depressive
duration, and RT and accuracy difference scores over time in
patients. Age and years of education were included as covariates.
A sensitivity analysis was performed within patients who showed
symptomatic improvement (thus, patients who were equally or
more depressed at S2 than at S1 were excluded; n = 6).

Additionally, to investigate whether patients (MDD-HI/LI)
performed differently over time as compared to HC, we set up
a group (3; HC, HI, LI) × valence (3; positive, negative, neutral) ×
time (2; S1, S2) repeated-measures ANCOVA, with age and years
of education as covariates. Effects were considered significant at p
< 0.05. Where appropriate, Bonferroni correction for multiple
comparisons was applied.

Imaging data preprocessing
For the fMRI data, preprocessing and task modeling was per-
formed with Statistical Parametric Mapping software (SPM8,
Wellcome Trust Center for Neuroimaging, http://www.fil.ion.ucl.
ac.uk/spm) implemented in Matlab 7.8 (The Math Works Inc.,
Natick, MA, USA). A detailed description of the preprocessing
steps and first-level modeling can be found in the online
Supplementary material.

Effects of change of depressive state
To test for the association between symptom change and change
of brain activation during positive and negative encoding over the
2-year interval, scan moments, S2− S1 contrast maps were
entered as dependent variables in a full-factorial model, with
valence [successfully encoded positive words>successfully
encoded neutral words (S2− S1), successfully encoded negative
words>successfully encoded neutral words (S2− S1)] as interact-
ing factor with valence. Contrast maps were built for the success-
ful encoding of positive words (v. successful encoding of neutral
words) and negative words separately. To control for the possible
confounding effects of variations within and between participants
in scanning site (which coincided with minor variations in
sequence and coil; see online Supplementary material), four
dummy variables for site (i.e. both times scanned in AMC; chan-
ged from AMC to LUMC; changed from LUMC to AMC; both
times scanned in UMCG; both times scanned in LUMC) were
defined as covariates of no interest. In addition, age and years
of education at S1 were added as covariates.

We repeated our analysis with the following possible con-
founding factors added separately to the model: percentage of
time spent with depression, relative changes in anxiety severity
assessed by Beck Anxiety Inventory [(BAI-scores S2− S1)/
BAI-scores S1] (Beck et al., 1988), SSRI-use, and participation
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in psychotherapy. SSRI-use at/between S1 and S2 was added to
the model by means of three dummy variables (used at both S1
and S2, started after S1, stopped after S1, both not used).
Psychotherapy-use between S1 and S2 was coded as a dummy
variable and added as a covariate to test for the effect of psycho-
therapy. Use of SSRI and psychotherapy between S1 and S2 are
summarized in online Supplementary Table S1.

A sensitivity analysis was planned to test whether associations
would hold in the analysis including only patients with symptom-
atic improvement (n = 33).

Effects of the persistence of depressive symptoms
We built a full factorial model with valence as factor (2; successfully
encodedpositivewords>successfully encodedneutralwords and suc-
cessfully encoded negative words>successfully encoded neutral
words) and time spent with depressive symptoms as an interacting
covariate with valence. Site (four dummy variables), age, and years
of education were added as covariates. We tested for the effects of
time spent with depressive symptoms during encoding of positive
words and negative words separately. In a subsequent step, relative
symptom change of depressive and anxiety symptom severity and
treatment at S1 and S2 (medication- and psychotherapy use; yes/
no) were added separately as covariates to statistically control for
their possible confounding effects.

A sensitivity analysis was planned within patients with symp-
tomatic improvement.

Statistical thresholding
Based on previous studies (see Introduction), we a priori defined the
bilateral hippocampus and amygdala as our regions-of-interest
(ROI) and built one composite mask encompassing these regions.
The regions were defined according to the automated anatomical
labels of the Wake Forest University (WFU, Winston Salem,
North Carolina) Pick Atlas toolbox. Small volume correction for
multiple comparisons was applied within the ROI. F-tests in the
main and follow-up analyses were explored separately for positive
and negative words at p < 0.001 uncorrected. Post hoc t tests were
regarded significant at a threshold of p < 0.05 family wise error
(FWE) corrected at voxel-level (with an initial threshold of p <
0.001 uncorrected). We also examined the effects in other brain
regions than ROIs, which had to meet p < 0.05, FWE whole-brain
corrected to be considered significant.

Results

Demographic characteristics

Demographics and clinical characteristics of all patients and HCs
are summarized in Table 1 and online Supplementary material.
Clinical characteristics of high-improved and low-improved
patient groups that were included in explorative post hoc analyses
are listed in online Supplementary Table and results. Thirty-three
patients showed symptomatic improvement (S2 < S1), two
remained stable (S2 = S1), and four showed more severe symp-
toms at S2 (S2 > S1).

Behavioral results

No correlations were found between relative depressive symptom
change and changes in performance on thememory of positive, neu-
tral, or negative words over time (i.e. RTs and accuracy) ( p > 0.05).
Sensitivity analyses within symptomatically improved patients only

(n = 33) did not change this result. Group × time repeated-measures
analysis of variance indicated no changes in the performance and
response times in HC nor a difference between HC and HI or LI
( ps > 0.05).

There was no association between time spent with depressive
symptoms and changes in behavioral performance ( p > 0.05).

fMRI results

Correlations with change of depressive state
Relative symptom change was negatively correlated with activa-
tion change in the bilateral hippocampal/amygdala during both
positive and negative word encoding (Table 2; Fig. 1). However,
only the effect in the left hippocampus survived multiple com-
parison correction and indicated that larger symptomatic
improvement coincided with a larger increase in left anterior hip-
pocampal activation during encoding of emotional information.

Adding time spent with depressive symptoms in the interval
between S1 and S2 as covariate did not change the results [Z =
3.85, pFWE = .019 for successfully encoded positive words>suc-
cessfully encoded neutral words (pos); Z = 3.95, pFWE = .014 for
successfully encoded negative words>successfully encoded neutral
words (neg)]. Also, results were not affected by including change
in anxiety severity as a covariate to the model (pos: Z = 3.82,
pFWE = .021; neg: Z = 3.77, pFWE = .025) or by adding SSRI-use
at S1 and S2 as covariates (pos: Z = 3.68, pFWE = 0.034; neg: Z =
3.49, pFWE = 0.06). Results bordered statistical significance after
adding psychotherapy as a covariate (pos: Z = 3.59, pFWE = 0.05;
neg: Z = 3.54, pFWE = 0.05).

When repeating the analysis in the symptomatically improved
patients only, the negative correlation between symptom change
and brain activation change in the hippocampus was observed
subthreshold [MNI coordinates:(x = −18, y =−13, z =−11), Z =
3.51, pFWE = .09] during positive encoding, and was not signifi-
cant during negative encoding ( pFWE = 0.50).

Furthermore, post hoc group comparison (detailed in the
online Supplementary methods and results) showed that activa-
tion estimates in our main cluster did not change in HC over
time, and plots suggested a trend of normalization during positive
but not negative word encoding in the high-improved group
(online Supplementary Fig. 3A and 3B).

Correlations with time spent with depressive symptoms and
course
No correlation between the percentage of time with depressive
symptoms and changes in brain activation was observed across
all MDD patients during successful encoding on positive and
negative words. Adding change in depressive and anxiety symp-
toms or medication/therapy use to the model did not change
this observation.

Discussion

In this longitudinal study, we examined changes in emotion-
related brain activation over time associated with symptomatic
improvement and time spent with depressive symptoms in
depressed patients. Symptomatic improvement was associated
with increased responses in the anterior hippocampus/amygdala
during encoding of emotional stimuli over time. Follow-up
explorations indicated that increased activation of the hippocam-
pal/amygdala responsiveness occurred in the direction of normal-
ization, especially for the encoding of positive words. The effect
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was unrelated to changes in anxiety severity, and use of SSRIs,
although it became smaller after adding use of psychotherapy as
a covariate. No relation was observed between depression duration
(i.e. time spent with depressive symptoms) in the 2-year follow-up
nor were changes in hippocampal and amygdalar activation
observed. These results suggest that hippocampal activation dur-
ing emotional memory formation changes with symptomatic
improvement, but is not subject to functional ‘scarring’ as a
result of enduring symptom manifestation. Our results indicate
that symptomatic improvement is at least partially
associated with normalization of limbic responsiveness to positive
material.

Based on previous reports on memory bias-related brain acti-
vation abnormalities in depression (Ramel et al., 2007; Hamilton
and Gotlib, 2008; Van Wingen et al., 2010; Arnold et al., 2011;
van Tol et al., 2012) and our previous cross-sectional observations
(van Tol et al., 2012), we hypothesized state-dependency of acti-
vation of the amygdala and hippocampus specific for negative
valence information, and thus changes of activation as a function
of symptomatic recovery. In line with this hypothesis, hippocam-
pal reactivity during negative encoding correlated with symptom-
atic change. Moreover, state-dependency was observed during
positive encoding. Although similar linear relations with symp-
tomatic improvement were observed for both positive and nega-
tive encoding, changes during positive word encoding showed
to be a more specific indicator of symptomatic improvement.
This was indicated by the stability of effects when excluding the
patients that worsened in terms of symptom severity and by the
fact that the post hoc plotting of effects indicated an increase of
activation in the improved patients only. This increase followed
a pattern of normalization (i.e. approaching activation in the
HC). During negative encoding, associations were no longer sig-
nificant when studied in the symptomatic improved patients
only. This suggests that state-dependent changes during positive
encoding may be a preferred marker of symptomatic improve-
ment. Notwithstanding, although longitudinal studies did not
study emotional encoding for both positive and negative informa-
tion so far, our study supports findings of altered reactivity to
positive information (Fu et al., 2007; Victor et al., 2010; Wise
et al., 2014), and suggests normalized reactivity to positive-related
effects.

The hippocampus has been proposed as a target for both anti-
depressant treatment and cognitive behavioral therapy (CBT)
(Goldapple et al., 2004). Treatment studies have confirmed the
importance of the hippocampus by consistently reporting nor-
malization of hippocampal activation following pharmacological
treatment (Fu et al., 2004; Anand et al., 2007; Arnone et al.,
2012b) and CBT (Goldapple et al., 2004; Ritchey et al., 2011).
In the current study, we studied the neural characteristics related
to naturalistic changes in a depressive state, which was not attrib-
utable to treatment with antidepressant medication. However,
most of our sample received at least one type of psychological
care. Therefore, we cannot fully rule out of the effect of psycho-
therapy and indeed our effects were slightly attenuated when
treatment with psychotherapy was added to the model.
Together, our observations suggest that increased hippocampal
responsiveness to emotional material may not only reflect treat-
ment effects of or symptomatic improvement following anti-
depressants or psychological treatment (Fu et al., 2007; Victor
et al., 2010; Wise et al., 2014) but also naturalistic improvement.

No other regions were found to change as a function of symp-
tomatic improvement. Although changes in regions such as the
ventromedial prefrontal cortex (Ritchey et al., 2011), anterior cin-
gulate cortex (Fu et al., 2008), frontal pole (Usami et al., 2014),
and the extrastriate cortex (Fu et al., 2007) have been reported
by previous longitudinal treatment studies. They have been
reported in the context of emotional processing, but not in the
context of memory formation or using verbal stimuli.
Additionally, other studies have reported that prefrontal altera-
tions might be a trait marker rather than a state marker of vulner-
ability to depression (Elliott et al., 2012; Tomioka et al., 2015),
which was not the focus of our study.

The second aim of this study was to investigate whether time
spent with depressive symptoms was associated with greater func-
tional brain alterations during emotional memory encoding. We
found that depression duration was not correlated with changes
of activation in the hippocampus, which indicates that the neuro-
toxic or scarring hypothesis might not be relevant to functional
changes over time. Previous cross-sectional and longitudinal stud-
ies suggested that hippocampal volume is negatively related to the
duration of illness in MDD, represented by the history of psychi-
atric hospitalization (Zaremba et al., 2018), number of episodes

Table 2. Correlation between state-change scores and brain activation changes across patients

MNI coordinate

Regions ka kb Side BA x y z T Z pFWE_SVC

Successfully encoded positive words>
Successfully encoded neutral words: negative
correlation

Hippocampus/amygdala 35 13 L 20 −27 −16 −11 3.83 3.63 0.040*

Hippocampus/amygdala 33 9 R 34 27 −4 −11 3.46 3.31 0.107

Successfully encoded negative words>
Successfully encoded neutral words: negative
correlation

Hippocampus/amygdala 50 22 L – −24 −13 −11 3.76 3.57 0.049*

Hippocampus/amygdala 59 20 R – 15 −7 −17 3.40 3.26 0.122

aCluster size in whole-brain analysis.
bCluster size after small volume correction.
*Significant at p < 0.05 FWE corrected, voxel-level after small volume correction (SVC).
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(MacQueen et al., 2003; Treadway et al., 2015), and duration of
untreated illness (Sheline et al., 1999), though not consistently
(Bremner et al., 2000; McKinnon et al., 2009). At the same
time, volumetric changes in the hippocampus have been linked
to symptomatic improvement following treatment (Arnone
et al., 2012a), suggesting state-dependency of hippocampal vol-
ume. In the present study, though patients differed in course tra-
jectory of depression, changes of brain activation were not related
to the depressive course, indicating that functional longitudinal
changes observed in the hippocampus are load-independent.
However, the variety in selected clinical variables of current and
previous studies might explain some heterogeneity in reported
results. Together, our results indicate that functional responsive-
ness of limbic brain regions may be more related to a depressive
state, without exacerbation of abnormalities as a function of
unfavorable course of the depression.

Some limitations of our study should be noted. First, although
clear strengths of our study are its longitudinal naturalistic design
and that we could control for activation changes over the same
interval in a healthy sample, the associations we found between
changes of brain activation and symptom change over time are
correlational in nature and do not imply causation of remission
in depression. This effect was not found in a formal group ×
time × valence interaction. However, testing this was not the
aim of our paper because we focused on changes over time within
depressed patients. Second, we investigated symptom severity
change of depression rather than symptom remission. Although
most of our high-improved patients were recovered at the time
of the follow-up measurement, our conclusions cannot be gener-
alized to changes associated with stable remission. Third,
although adding SSRI-use and psychotherapy use as covariates
to the model did not change the observed relations, this does

Fig. 1. Brain activation during emotional word encoding. (a) Negative association between symptom change and hippocampal activation change during positive
word encoding (peak MNI coordinate: x =−27, y =−16, z =−11); (b) negative association between symptom change and hippocampal activation change during
negative word encoding (peak MNI coordinate: x =−24, y =−13, z =−11).
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not fully rule out specific medication/treatment effects. Fourth,
caution should be taken in interpreting our result as a true mem-
ory effect (i.e. hits–misses), because the number of error trials was
too low to investigate this. More sensitive measures on behavioral
changes in primary emotional and memory processing are neces-
sary in future studies. Fifth, although the site effect was controlled
by adding it as a covariate, it might still have a confounding effect
on our results. Quality assurance analysis and exploration by
excluding patients that switched scanners between measurements
(online Supplementary results) revealed similar results. These
indicate that our observed effects, especially those observed dur-
ing positive encoding, were not primarily driven by site-specific
changes in signal over time. Next, the retrospective life chart
method used to measure the persistence of depressive symptoms
might have been subject to patients’ mood state, though the reli-
ability and validity have been estimated to be relatively high
(Warshaw, et al., 2001). Furthermore, although comorbidity of
SAD and PD was similar in low- and high-improved MDD
groups, GAD was more frequent in low-improved MDD patients,
which may have affected our results. Finally, it is possible that the
encoding processing was more explicit at S2 than at S1, because
people at S2 could have remembered that a recognition phase fol-
lowed the encoding phase. However, implicit and explicit memory
processing have been suggested to be subject to the same encod-
ing factors and rely on similar perceptual processes and represen-
tations (Turk-Browne et al., 2006), which is corroborated by the
lack of differences over time in the HC group in our study.

Conclusion

By characterizing longitudinal changes of activation in the anter-
ior hippocampus/amygdala during emotional memory encoding,
our study showed that the neural correlates of emotional memory
formation change with the improvement of the depressive state.
Furthermore, our findings suggest a normalization of activation,
especially for positive information. On the other hand, enduring
depressive symptom manifestation was not related to longitudinal
changes in hippocampal–amygdalar activation. Taken together,
our results suggest that hippocampal activation is a state-
dependent characteristic that is not related to the persistence of
depression. This may indicate that functional activation patterns
in depression are not subject to functional ‘scarring’, a hypothesis
that deserves further investigation.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0033291719001259.
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