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A B S T R A C T   

This work introduces RADIUS, a framework for anomaly detection in sewer pipes using stereovision. The 
framework employs three-dimensional geometry reconstruction from stereo vision, followed by statistical 
modeling of the geometry with a generic pipe model. The framework is designed to be compatible with existing 
workflows for sewer pipe defect detection, as well as to provide opportunities for machine learning imple
mentations in the future. We test the framework on 48 image sets of 26 sewer pipes in different conditions 
collected in the lab. Of these 48 image sets, 5 could not be properly reconstructed in three dimensions due to 
insufficient stereo matching. The surface fitting and anomaly detection performed well: a human-graded defect 
severity score had a moderate, positive Pearson correlation of 0.65 with our calculated anomaly scores, making 
this a promising approach to automated defect detection in urban drainage.   

1. Introduction 

The SewerSense project aims to improve sewer condition assessment, 
in part through novel inspection techniques and data processing [1]. 
Many sophisticated technologies have been suggested to improve sewer 
quality assessment [2,3], but to our knowledge, none have yet been 
implemented on a large scale, while the preliminary results are prom
ising. In this work, we consolidate several techniques into RADIUS 
(Robust Anomaly Detection In Urban drainage with Stereovision), a 
framework for anomaly detection in sewer pipes. 

The RADIUS framework is designed to be compatible with the 
existing workflow of the trained operator, as well as be future-proof for a 
completely automated sewer inspection system, for which advances are 
being made rapidly. The framework also has a low up-front investment 
in terms of equipment, as it uses two cameras for data collection, and 
image processing steps that can be performed on a consumer-grade 
computer within a reasonable amount of time. 

Our proposed method revolves around the technique of computer 
stereovision, which uses two or more well-calibrated cameras placed side 
by side, in order to create a sense of depth, similar to how the binocular 
vision in humans is used to capture the spatial configuration of one’s 
surrounding. In that sense, the proposed method is a type of 3D ranging 
technique that promises to produce a fairly faithful 3D reconstruction of 

the interior of a sewer pipe in the form of a 3D point cloud with asso
ciated color information. Since the raw output of our stereovision setup 
captures the pipe’s surface in considerable detail (the extent of this is 
determined by the resolution of the cameras employed), it can theo
retically be used to recognise various different categories of pipe defects 
that have a spatial nature. These include deposits, holes, cracks, in
trusions and exposed granulates. Some of these may in fact be harder to 
correctly classify using traditional single CCTV setups, since without 
further spatial clues, they cannot be distinguished (for example, a crack 
(on the surface) vs. an intruding root (away from the surface)). 

While in terms of types of defects to be recognised, our method is 
open-ended, we focus in this paper on the recognition of two specific 
types of defects, namely deposits and exposed granulates. For other 
defect types (such as misaligned joints) the larger part of our proposed 
pipeline remains unchanged, but in the final stages provisions need to be 
made to account for the different spatial phenomena at hand. When 
focusing on deposits and exposed granulates, we need to recognise areas 
in the pipe where the surface is further inward or outward than one 
would expect. In other words, there is an expected pipe geometry (the 
pipe model) and a measured pipe geometry, and any deviations between 
these will be expressed in an anomaly score. Although this form of 
anomaly detection sounds fairly straightforward, it relies on the avail
ability of a pipe model, which is actually non-trivial. First of all, the 
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precise location and orientation of the camera pair inside the pipe is 
uncertain. We can only assume that the cameras are pointing roughly 
along the main axis of the pipe, not too far removed from the center of 
the pipe. Second, our method should be robust with respect to the shape 
of the pipe, such that different pipe topologies can be dealt with, without 
having to reconfigure the recognition system. This means we will take a 
data-driven approach that assumes that the larger part of the pipe is 
unaffected, such that a ‘normal’ geometry can be derived from that, and 
the outliers with respect to this geometry are the anomalies. 

In broad strokes, our method works as follows. In the image acqui
sition stage, any radial lens distortion is removed from the images, and 
slight misalignment between the left and right image are corrected. An 
existing semi-global algorithm for stereo matching [4] then produces 
pairs of corresponding pixels in both images. The computed disparity 
between each pair can be translated into a distance for this pixel: closer 
points will appear further apart in the two images. The resulting point 
cloud already captures the pipe geometry, but needs to be further pro
cessed in order to automatically identify the defects of interest, in our 
case deposits and exposed granulate. The next stage of surface fitting 
combines a parameterised surface model, one that can adapt to a wide 
range of pipe types, with the robust regression algorithm RANSAC [5]. 
This algorithm assumes that the majority of the data fits a predefined 
model class (our parameterised pipe model), but also that a certain 
fraction of the data constitutes outliers. This allows us to use the para
meterised pipe model without the fit being influenced by these outliers. 
The deviation of the measured geometry from the expected geometry as 
predicted by the RANSAC model is used as an anomaly score. 

The main contributions of this paper are:  

• We demonstrate how a faithful and high-resolution reconstruction of 
the pipe surface, including its defects, can be obtained with stereo 
cameras and a stereo matching algorithm.  

• We propose a generic pipe surface model that is able to model the 
pipe geometry of a range of pipe shapes (including circular and egg- 
shaped), captured under various angles. This pipe surface model has 
the attractive property that it falls in the category of functions that 
can be statistically fit with the Ordinary Least Squares method [6], 
making it computationally efficient.  

• We propose a method based on the RANSAC algorithm to fit point 
cloud data that is a mixture of regular pipe surface and anomalies. 

• We define a global anomaly score that quantifies the amount of de
viation from the pipe model per image pair. 

The paper is outlined as follows. Section 2 outlines selected prior 
work. Section 3 contains an overview of prerequisite knowledge. The 
RADIUS framework is described in full detail in Section 4. Section 5 
gives an overview of the data and the experiments, the results of which 
are summarised and discussed in Section 6. Section 7 discusses the 
limitations of the framework, its envisioned applications, and possible 
future work. 

2. Prior work and motivation 

In the field of 3D ranging techniques, which our approach belongs to, 
the use of laser scanners for sewer pipe inspections has been thoroughly 
researched, see for example [7–10]. The reasons we have opted to go 
with stereovision instead of laser scanning are threefold, i) the equip
ment cost of two cameras versus that of a laser scanner is significantly 
lower, making this approach more accessible, ii) a stereovision setup has 
no moving parts, which matters in real-world scenarios, where the 
environment of a sewer pipe can be very abrasive to moving parts in 
particular, and iii) the point cloud obtained from stereovision will be 
linked directly to images with a color component, whereas a laser 
scanner only provides the geometry. 

2.1. Stereovision 

While not much research has been done on the use of stereovision in 
the context of sewer condition assessment, the use of stereovision in the 
general context of sewer maintenance is not new. Most works restrict 
their approach to cylindrical pipes, as these our fairly common, but our 
work does not impose that limitation. 

Ahrary et al. (2005) [11] propose an algorithm for navigation of an 
autonomous vehicle through a sewer network based on stereovision. 
Later, Ahrary et al. (2008) developed a computationally efficient stereo 
matching algorithm specifically for sewer pipes [12]. We do not use 
either of these algorithms, as processing power is not a limitation in our 
research, and navigation of an autonomous vehicle is outside our scope. 

Tangentially related to this work, Koodtalang et al. [13] use stereo
vision to determine manufacturing defects in pipes prior to installation. 

Gunatilake et al. [14] combine a stereovision setup with two laser 
profilers to map the images recorded by the cameras onto the potentially 
more accurate point cloud produced by the laser profilers. This produces 
a high-resolution RGB-D dataset for later inspection, either by a trained 
expert or another algorithm. The method is tested on a single, heavily 
corroded pipe, as well as an artificial pipe. 

Most closely related to the work presented in this paper, Huyhn et al. 
have published two works [15,16] on anomaly detection in sewer pipes 
with stereovision. They demonstrate the visibility of artificial defects in 
point clouds generated from stereovision. A critical difference to their 
approach is that our approach requires no human operator to center the 
defect into the camera’s field of view, but instead is able to highlight 
anomalies in the entire pipe from a set of images, and is thus more 
suitable for automated defect detection. 

2.2. Anomaly detection 

Anomaly detection has been used extensively in sewer condition 
assessment [17–22] as a stepping stone from “traditional” data that is 
gathered for manual classification, towards automation of the inspection 
process. Meijer et al. [17] performed principal component analysis on 
various feature descriptors of a labelled set of CCTV images and 
compared the partial reconstruction with the actual values for an un
supervised approach, and compared this with a convolutional autoen
coder. Myrans et al. [18] performed anomaly detection on sewer CCTV 
images by training a random forest and a support vector machine on 
GIST-features. Myrans et al. [19] later expanded on this by exploring the 
use of a one-class support vector machine, a type of support vector 
machine designed specifically for anomaly detection. Moradi et al. [20] 
similarly used a one-class support vector machine to detect anomalies 
from SIFT features, and combined this approach with localization of the 
pipe through text recognition. Fang et al. [21] performed anomaly 
detection on sewer CCTV video footage by performing principal 
component analysis (PCA) on various local feature descriptors. Russo 
et al. [22] use a convolutional autoencoder to detect anomalies in CCTV 
images. 

While numerous other works that use computer vision or image 
processing to detect defects in sewer pipe images exist, we have limited 
this section to only those that perform unsupervised anomaly detection, as 
they are most similar to this work. For a more broad perspective on 
recent advances in this field, please refer to Haurum and Moeslund [23]. 

3. Prerequisites 

3.1. Sewer pipeline quality assessment 

Sewer pipes have to be periodically inspected to ensure proper 
function. CCTV inspection is one of the most common approaches: a 
remotely operated vehicle is lowered into a manhole, equipped with a 
camera and possibly other sensors, to gather data for classification by a 
trained operator [24]. This process is labor-intensive, and often does not 
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lead to reliable results, as the classification and severity ratings thereof 
are highly subjective, differing not only between operators, but also for 
the same operator on repeated inspections [25]. It would be beneficial to 
automate (parts of) the process, which should lead to higher consistency 
of the assessments, as well as improvement of the overall quality of the 
assessments. 

3.2. Three-dimensional point clouds 

A point cloud is a collection of data points that include two- or three- 
dimensional spatial coordinates [26]. We use ‘point cloud’ to refer to a 
three-dimensional point cloud specifically. A point cloud may be the 
result of physical measurements, including but not limited to: laser 
scanning, tomography, or photogrammetry (including in this work). The 
data points that make up the point cloud also may contain additional 
information, such as velocity, color, etc., depending on the type of 
measurement that was performed. 

Laser scanning may refer to one of two different techniques: either 
laser telemetry, or laser triangulation. Laser telemetry emits a narrow 
beam pulse, then measures the time of flight until the beam returns to 
determine the distance to the reflecting surface [27]. Laser triangulation 
emits a narrow beam and uses a camera adjacent to the laser emitter to 
determine the distance to the reflecting object, based on the location of 
the laser’s dot in the camera’s field of view [28]. To generate a point 
cloud with this technique, the emitter and sensor must move to ‘scan’ 
across a surface. The trade-off between telemetry and triangulation is 
mostly one of range and precision. Laser telemetry has a high range (in 
the order of kilometers), but a low precision (in the order of millime
ters), whereas laser triangulation has a low range (in the order of me
ters), but a high precision (in the order of ten microns). 

Photogrammetry refers to the process of inferring information about 
physical objects through analysis of photographic images [29]. More 
specifically, stereophotogrammetry is the process of inferring the three- 
dimensional shape of an object from multiple images, recorded from 
different positions. Similar to laser triangulation, this process uses 
triangulation between points that appear in multiple images to deter
mine its location. The precision of photogrammetry is dependent on the 
camera sensors, lenses, lighting conditions, proximity to the measured 
object, and working resolution, but a precision in the order of tenths of 
millimeters is achievable. As such, there are no inherent limitations that 
make photogrammetry unsuitable for use in sewer pipes. A more 
detailed overview of the specific case of stereophotogrammetry that we 
employ, computer stereovision, is given in Section 3.3. 

Tomography is beyond the scope of this work, but has been used for 
sewer pipe measurements in the past, see for example [30,31]. 

3.3. Computer stereovision and epipolar geometry 

Computer stereovision, or simply ‘stereovision’, is a computer vision 
technique in which two side-by-side cameras simultaneously record an 
image. The correspondence between points that appear in both images 
gives us information on the distance from the cameras to that point, 
similar to how the correspondence between the left and right eye allows 
humans to perceive depth [32]. 

To illustrate the principle, we examine the epipolar plane [33] of two 
horizontally aligned cameras and an object that is visible to both cam
eras, as in Fig. 1. The problem can be significantly simplified by the 
camera axes being parallel, which is an achievable configuration for this 
application. C1 and C2 are the two cameras, and P the point of interest. 
Both cameras have identical physical properties, and we consider C1 to 
be the reference camera. f is the focal distance of the cameras, b is the 
baseline distance between the cameras, two physical distances that we 
know precisely. I1 and I2 are the virtual image planes, one focal length 
distance in front of the cameras. 

We first calculate X and Z, the physical location of P in the epipolar 
plane, from the perspective of our reference camera C1. Consider d1 and 

d2, the projected locations of P onto I1 and I2, relative to the centres of 
the image planes.1 Similar triangle geometry allows us to solve for Z and 
X: 

d1/f = X/Z (1)  

− d2/f = (b − X)/Z (2)  

(d1 − d2)/f = b/Z (3)  

Z = b⋅f/(d1 − d2) (4)  

X = d1⋅b/(d1 − d2) (5) 

Two important things should be noted at this point:  

• The Y coordinate of P, which is orthogonal to the X-Z plane shown in 
Fig. 1, also has to be computed. 

Y = dy⋅b
/
(d1 − d2) (6)  

where dy is the vertical distance from the centre of the projection of P on 
I1. Since the cameras are aligned in the horizontal plane, there is no need 
to take a vertical shift into consideration, as any point will be projected 
on both virtual image planes at equal height.  

• For the calculated coordinates to be represented in physical units, we 
can either express d1 and d2 in physical units, or we can express f in 
pixels instead of physical units. Either conversion is done by finding 
the physical size of a pixel on the camera’s sensor array. In this work, 
we will assume the focal length f is expressed in pixels. 

Stereovision algorithms apply this principle to all pixels in an image: 
each pixel in the image produced by the reference camera is matched to 
a pixel in the second image, and the difference in horizontal positions of 
these pixels produces the disparity (d1 − d2). More specifically, for each 
pixel in the reference image, a local neighbourhood around the pixel is 
compared to a patch of the same size as this neighborhood, in the same 
position in the other image, but shifted horizontally. The horizontal shift 
that minimises the difference between the two image patches is 
considered the best match. 

This introduces multiple difficulties, as finding the correspondence 
between pixels is not feasible to do exhaustively in a short amount of 
time, making it a heuristic search process, expected to have multiple 

Fig. 1. Epipolar geometry with parallel camera axes.  

1 Note that we take d2 to be a negative value in this case, as it is to the left of 
the centre of I2. If P would be on the same side of both camera axes, d1 and d2 
would have the same sign. 
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local optima. Images that have some periodicity in the horizontal di
rection may result in the correspondence being off by a multiple of the 
period. An even bigger challenge arises when the selected neighbour
hood patch is entirely smooth: matching the exact location will become 
difficult, as small shifts lead to little difference in matching quality. 
Practically, an exact alignment of the cameras is also difficult to achieve, 
and any physical camera and lens are going to introduce distortion to the 
recorded images [34], both of which will have to be corrected before the 
matching process commences. 

A more detailed overview of the specific stereovision algorithm used 
is given in Section 4.2. 

3.4. Anomaly detection 

Anomaly detection, sometimes referred to as outlier detection, is a 
machine learning problem aimed at finding instances in a dataset that 
deviate from the majority [35]. It has many applications, from fraud 
detection to noise removal. Anomaly detection can be supervised, semi- 
supervised, or unsupervised. This distinction indicates whether all 
training data is labelled as anomalous by some expert, only some of the 
data is labelled, or whether no such data is available, respectively. This 
work relies on unsupervised anomaly detection, meaning there is no 
knowledge of the anomalousness of any instance. 

Unsupervised anomaly detection relies in most cases, including ours, 
on robust2 regression. This means that we look for some model that 
explains the behaviour of most instances in our dataset. Any instances 
not explained by this model are considered to be anomalies or outliers. 

An important quality of the model we fit on our data is that it has 
limited complexity. If the model’s complexity is too high, it may fit the 
anomalies that we are trying to detect as well, meaning they become 
inliers and are no longer detected as anomalies. Still, a certain degree of 
complexity may be required in order to account for regular aspects of the 
pipe geometry. This implies a trade-off between how complex we allow 
patterns to be, and when complexities become anomalies. In this case, 
we let this trade-off be informed by the expected geometry of the un
damaged sewer pipes. 

4. Framework 

We propose a framework for anomaly detection from stereovision 
measurements in sewer pipes, as shown in Fig. 2. The framework con
sists of five major steps: image acquisition, semi-global stereo matching, 
three-dimensional geometry reconstruction, robust pipe surface fitting, 
and anomaly detection and processing. These steps are designed to be 
executed in sequence, each step’s output being the next step’s input. The 
five steps composing the framework are each discussed in detail in 
Sections 4.1–4.5. 

4.1. Image acquisition 

The stereovision setup requires two cameras placed side-by-side, at 
equal height, pointed in the same direction. Perfect alignment of the 
cameras is near impossible, but correcting a slight misalignment is 
possible. The setup is then directed into the pipe, such that the camera 
axes are mostly parallel to the pipe axis. For in-situ inspection, this 
means that the setup has to be attached to the pipe inspection vehicle, 
while aimed directly into the pipe. 

Any optical lens introduces some radial distortion to an image [34], 
meaning that points at different distances from the lens axis have 
different levels of magnification. As the lens axes of the two cameras are 
parallel but translated, this may introduce a difference in magnification 
of a point between the two cameras, and thereby a difference in vertical 
position. Depending on the severity of this distortion (or if the cameras 

and lenses are not of identical make), correction may be required for the 
images to be suitable for stereo matching. 

By taking pictures of a chessboard pattern from different angles and 
distances, we can observe the effects of the radial distortion: without any 
distortion, the lines on a chessboard should be entirely straight, but 
slight curves may appear as a result of the radial distortion. Radial 
distortion can be reversed digitally by performing a second radial 
distortion to undo the first. The correct inverse distortion parameters 
can be estimated from the deviations in the images of the chessboard 
pattern, as outlined in more detail in [36]. 

Once images from both cameras are free of (extreme) lens distortion, 
an alignment between the cameras must also take place, in order to 
compensate for a vertical misalignment or rotation of one camera 
around its axis. From a set of images with several visible landmarks (the 
same images of the chessboard pattern may be used), we can estimate 
any vertical shift between the images, as well as a possible rotation along 
the camera axis, and correct this with a simple affine transformation 
[37]. If the camera axes themselves are not perfectly aligned, this may 
be visible as a horizontal shift of points that are very far away, as a point 
on the horizon should in theory have the same position in both images. 

After camera alignment, the first step is complete and the images can 
serve as input for the second step: semi-global stereo matching. 

4.2. Semi-global stereo matching 

As described in Section 3.3, stereo matching relies on comparing 
projected locations of a three-dimensional point onto two-dimensional 
images. Stereo matching an entire image is generally done by 
comparing a position in the reference image to a horizontally shifted 
position in the second image, often to sub-pixel accuracy [38]. The shift 
that best matches the pixels in the reference image to the pixels in the 
second image is called the disparity for that pixel. The comparison may 
be done by minimising the difference in values of the pixels, but better 
results may be obtained by using a matching cost that relies less on 

Fig. 2. Overview of the proposed framework.  

2 Robust in this context refers to a reduced sensitivity to noise or outliers. 
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absolute values, such as cross-correlation, Hamming distance, or 
Birchfield-Tomasi dissimilarity [39]. 

Matching single pixels from the two images is going to lead to a 
substantial amount of incorrect matches. Suggested solutions for this 
include matching a window around each pixel to a window of the same 
size, enforcing some type of smoothness between disparity in neigh
boring pixels, and various combinations thereof [40]. 

Unique to our problem is the fact that the sewer pipe axis is parallel 
to the camera axes. The surface we are most interested in, the pipe wall, 
is perpendicular to the image plane. This results in the Z-distance and 
disparity to gradually change and not be constant anywhere inside the 
pipe. Window-based stereo matching methods are designed to perform 
best when large patches of the reference image have the same disparity, 
which is not the case in this scenario. 

This gradual change requires the window around the pixel that is to 
be matched to be small (we suggest <10 pixels on either side). The larger 
the window is, the more difficult it will be to match it properly. The 
extremes of the window are expected to have a different disparity from 
the center pixel, so too large a window will be impossible to match 
correctly. 

To enforce smoothness, we suggest using Hirschmüller’s semi-global 
matching algorithm [4], which adds two regularisation parameters. 
These parameters, P1 and P2, penalise a pixel having a different disparity 
from its neighbouring pixels. The best match for each pixel in the 
reference image is chosen as the match that minimises the sum of the 
matching cost M and the regularisation cost R. This introduces a circular 
dependency, as the regularisation cost depends on the best match of 
neighbouring pixels, which itself depends on the regularisation cost. 
Because of this, the algorithm usually requires multiple passes to 
stabilise. 

Each neighbouring pixel contributes 0, P1, or P2 to the regularisation 
cost, depending on whether the neighbour has the same disparity, an 
absolute difference in disparity of 1, or a larger difference in disparity 
with the current pixel, respectively. Specifically, each match is given the 
regularisation cost: 

R(d1, d2) =

⎛

⎝
0 if d1 = d2
P1 if∣d1 − d2∣ ≤ 1
P2 if∣d1 − d2∣ > 1

(7) 

Again taking into account the fact that we expect the disparity to 
change gradually, we suggest setting P1 ≪ P2. A value of P1 = 0 may 
prove successful, but could also lead to erratic results. With a small or no 
penalty on small differences in disparity, but a large penalty on larger 
disparities, we can enforce the type of smoothness that we expect in 
sewer pipe images. The best value of P2 depends on the window size 
chosen for matching, the matching cost itself, and the number of 
neighbours that the semi-global matching algorithm considers 
(commonly 4 or 8). 

To reduce false detections further, we also suggest using a uniqueness 
ratio, which requires that the best disparity must have a score that is at 
least u times as large as the next best disparity. This may lead to correct 
disparities also being discarded, but this happens most commonly in 
very smooth regions, where the exact disparity is difficult to pinpoint. 
For the purposes of anomaly detection, this is not an issue, as these re
gions are unlikely to contain anomalies. 

With an accurate estimation of the disparity for each pixel, these 
disparities can be used to reconstruct a three-dimensional point cloud. 

4.3. Three-dimensional geometry reconstruction 

As outlined in Section 3.3, we can triangulate the three-dimensional 
location of a point visible in both cameras once we know the disparity, 
using eqs. (4), (5), and (6). Eqs. (5) and (6) may be rewritten as 

X = (x − x0)⋅Z/f (8)  

Y = (y − y0)⋅Z/f (9)  

where [x,y] is the pixel position of the triangulated point in the refer
ence image, and [x0,y0] is the pixel position of the center of the refer
ence image. This means that the center of the image will be projected to 
some position on the Z-axis, both the X and Y coordinates of the point 
being zero. Note that no two points can have the exact same X and Y 
coordinates, as one would occlude the other in that case. 

Doing this for every pixel in the image (that has a valid disparity) 
gives us a point cloud with one point for every pixel. It may be useful to 
keep the RGB values of the pixels attached to the points in the point 
cloud for easier inspection and later processing. But a few important 
caveats arise when we move away from the ideal purely mathematical 
situation as introduced in Section 3.3 though. 

The value of b will have some non-zero error, which leads to a scaling 
of the entire point cloud by a factor of b′

b where b′ is the measured 
baseline and b the actual baseline. The more accurately b′ is measured, 
the closer to 1 this scaling factor is. It should also be noted that if correct 
physical dimensions of the point cloud are not important to the appli
cation, this does not have to be taken into consideration. 

If the camera axes are not entirely parallel in the epipolar plane, the 
calculated disparity will have a small error. This may lead to a perceived 
deviation in radius along the length of the pipe, meaning a cylindrical 
pipe may appear conical in the point cloud. 

While these are both issues to be aware of, they do not hinder the 
pipe model we propose in this work. 

4.4. Robust pipe surface fitting 

At this point, we have a three-dimensional point cloud of a pipe 
which can be used to estimate the original pipe geometry as a mathe
matical model, excluding any anomalies (henceforth simply referred to 
as the ‘geometry’). 

While the image will be perfectly in-focus at a specific distance, a 
region known as the depth of field around this distance is determined to 
be the range with acceptable levels of focus [41]. The distance range of 
the depth of field is a simple function of the focus distance, the focal 
length, and the aperture size, which is adjustable in most cases. A 
smaller aperture size will give a larger depth of field, at the cost of less 
light reaching the camera sensor, leading to more sensor noise at equal 
exposure times [41]. To inspect an entire pipe, we might move the pipe 
inspection vehicle through the pipe at small intervals, taking measure
ments at each interval. This means that a larger depth of field leads to 
fewer measurements needed to process a unit length of pipe, as a larger 
portion of the pipe can be captured in a single photograph. This results in 
a point cloud of a pipe, centered approximately around the Z-axis. Points 
with a Z value outside the depth of field can be discarded, as we are 
better off estimating the geometry of such points when the cameras are 
positioned at a different position along the pipe. 

A transformation to cylindrical coordinates at this point allows for a 
more natural notation of the geometry. We define: 

r =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
X2 + Y2

√
(10)  

θ = arctan2(Y,X) (11)  

where arctan2 is the two-argument arctangent, which spans the interval 
(− π,π]. We can now without loss of generality express each point in (r,θ, 
Z). 

A naive approach at this point might be to fit a cylinder model of 

r = r0 (12)  

to capture the geometry of the pipe, where r0 is the radius of the pipe. 
There are a few reasons why this is a poor approach: 
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i. The Z-axis may not be the precise center of the pipe, depending on 
how accurately it was possible to align the reference camera’s 
axis with the pipe axis.  

ii. The pipe might not have a circular profile. In our experiments we 
use both cylindrical and egg-shaped pipes, but any pipe with a 
somewhat smooth profile should work with our approach.  

iii. The radius and center of the pipe may appear slanted in the point 
cloud along the Z-axis as a result of a slight misalignment of the 
camera axes in the epipolar plane. 

We can address each of these issues in order. 
To address the first issue, we assume for now that the pipe is cylin

drical along the Z-axis, but not perfectly centered. Using a polar coor
dinate representation of an off-centre circle, [42] we may express the 
geometry as 

r =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

r2
0 − d2sin2(θ − ϕ)

√

+ dcos(θ − ϕ) (13)  

where d is the distance between the axis of the cylinder and the Z-axis, 
and ϕ is the angle at which the distance to the Z-axis is maximal. It can 
be observed that if d ≪ r0 (the center of the pipe is close to the center of 
the image), we may simplify eq. (13) to 

r ≈ r0 + dcos(θ − ϕ)(for ​ d≪r0) (14) 

At this point, we take a small sidestep to rewrite eq. (14) using a 
trigonometric identity into 

r = r0 + asin(θ) + bcos(θ) (15) 

It can be seen that these two forms are identical when d =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
a2 + b2

√

and ϕ = arctan2(b,a). The reason for this rewrite is entirely practical: we 
still have two unknowns to solve for, but both unknowns are now pa
rameters of a linear function, meaning that we can now solve a and b 
with Ordinary Least Squares regression [6], whereas that would not be 
possible for the parameter ϕ, because it is inside a cosine. 

To address the second issue, the possibility of pipes with non-circular 
profiles, we need a more complex function to describe the radius r as a 
function of the angle θ. To prevent modeling possible defects into the 
geometry, making them impossible to detect as anomalies, we use a 
limited approximation of r in terms of functions of θ. Different approx
imations can be used, but we suggest the use of a Fourier series 
approximation, as the radius is inherently periodic as a function of the 
angle. We redefine the model as 

r = r0 +
∑K

k=1
(aksin(kθ) + bkcos(kθ) ) (16)  

where K dictates how many Fourier components are used to approxi
mate the radius. It may be seen that eq. (15) is an instance of eq. (16), 
with K = 1. For ‘egg’-shaped pipes, we find a value of K = 6 to be 
generally sufficient, but any pipe profile with corners or otherwise non- 
smooth sections may require a higher value of K. Fig. 3 illustrates how 
an ‘egg’-shaped pipe may be expressed in these Fourier components. 

To address the third and final issue, we allow the radial parameters 
to change along the Z-axis, that is, along the pipe axis. To account for 
both a translation and scaling of the profile along the Z- 
axis—corresponding to a misalignment of camera axis and pipe axis, and 
a measurement error in the baseline distance, respectively—we allow 
each of the previously introduced parameters to vary linearly along the 
Z-axis. For every term in eq. (16), we add another term with a different 
parameter, and multiply by Z, giving us: 

r = (r0 + ρ0Z)+
∑K

k=1

(
aksin(kθ) + bkcos(kθ)+
αkZsin(kθ) + βkZcos(kθ)

)

(17) 

Eq. (17) is the model we will use to fit the transformed point cloud 
data, but as we expect anomalies, we will have to employ a robust 

regression method. 
The robust regression method we use is RANSAC, short for ‘random 

sample consensus’ [5]. RANSAC fits a model a large number of times on 
a ‘minimal subset’ of data, then selects a model fit that has both a large 
amounts of inliers, and a low error rate for those inliers. In this context, a 
minimal subset is the minimum number of points we need to fit the 
model. As our model has 2 + 4K parameters, we need as many points. 

Then we determine the inliers, the points that are accurately 
described by this fit, according to some maximum difference between 
the actual value of r and the one predicted by the fit, known as the inlier 
threshold. If the number of inliers meets a set minimum, the model is fit a 
second time, but on all inliers this time. We store this new fit, along with 
the error rate on its inliers. This process is repeated a large number of 
times, after which we select the fit with the lowest error rate on its 
inliers. 

The value of the inlier threshold will depend on the variance of the 
predicted variable. The minimum number of inliers required will usually 
be defined as a percentage of all data points, depending on the ratio of 
anomalous data points we expect to have. The chance that a minimal 
subset will result in a good fit of the data is low, but this first fit is only 
used to determine which points are the inliers that we want to perform 
the second fit on. Depending on how likely it is that the first fit reaches 
the minimum number of inliers under the chosen inlier threshold, the 
number of times the process should be repeated can differ by orders of 
magnitude: 10, 100, or 1000 could all be reasonable numbers. 

If we choose the RANSAC algorithm parameters reasonably, this 
should give us a fit of the model described in eq. (17) that accurately 
describes a large portion of the data points, while not taking the actual 
anomalies into account. 

4.5. Anomaly detection and processing 

The final step in the framework, anomaly detection, is trivial at this 
stage: the difference between the actual value of r and the value 

Fig. 3. Cross-sectional profile of a (fictional) deformed ‘egg’-shaped pipe 
(black, solid), with a fit of Eq. (16) for K = 6 (red, dashed). (For interpretation 
of the references to color in this figure legend, the reader is referred to the web 
version of this article.) 
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predicted by the best fit is an ‘anomaly score’. We might threshold these 
scores to distinguish anomalies from non-anomalies, or consider the 
scores themselves as a continuous indicator. 

Depending on the context in which the framework is employed, we 
have several suggestions for further processing of the anomaly scores:  

• the ratio of anomalous pixels to regular pixels may be an aggregated 
indicator of anomalousness of a length of pipe,  

• for further human inspection, the anomaly scores can be visualised in 
either an interactive point cloud or the original images, to indicate 
areas that might warrant attention,  

• if pixel-wise classification is the goal, the anomaly scores can 
augment the RGB values of a pixel in a subsequent classifier.  

• the size of continuous anomalous regions, as well as the absolute 
anomaly scores in such regions, might be used for defect identifica
tion or even severity. 

In the experiments performed for this paper, we have calculated a 
global anomaly score per image set as follows: 

A =
1
N

∑N

i=1
‖ min(ri − r̂ i, 0) ‖ (18)  

where ri is the radius of a point in the point cloud and ̂ri is the predicted 
radius for that point. The point anomaly scores are clipped into the range 
(− ∞,0] and we calculate the average absolute value over all points in 
the point cloud. The point anomaly scores are clipped to only negative 
values, as otherwise the many points outside of the inner pipe wall 
present in our point clouds would skew the global anomaly score. This 
clipping would not be necessary in in-situ inspections, because no points 
outside the pipe should be visible, except if caused by defects. 

5. Experimental setup 

We evaluated the efficacy of the framework in a laboratory experi
ment. A total of 26 sewer pipe segments in various conditions were 
photographed with a stereocamera setup. Two Basler Ace2 A1920- 
160umBAS area scan cameras were fitted with lenses with a 16 mm 
focal length and attached side by side to a metal plate. The baseline was 
determined to be 29 mm, the lenses were focused at approximately 1.5 
m distance, and the lens aperture was set to an f-number of 6, meaning 
the aperture diameter was equal to 16/6 ≈ 2.667 millimeters. A single 
pixel of an object at the in-focus distance corresponds to approximately 
2.2 mm in real-world coordinates. In the ideal circumstances the algo
rithms can detect a shift of 1/16th of a pixel, so the maximum sensitivity 
we can expect to achieve is in the order of 1/10th of a millimeter. 

The plate was attached to a rail, to allow for movement of the setup 
along the camera axes. The cameras were directed into the sewer pipe, 
which was covered at both ends with a piece of cloth. The pipe segments 
were illuminated with an LED light placed behind the cameras. The 
entire setup is depicted in Fig. 4. 

22 of the 26 sewer pipes were photographed from both ends, the 
other 4 sewer pipes were photographed from one end only, giving us a 
total of 48 image sets. 

5.1. Image data 

Fig. 5 shows examples of stereo images sets of the sewer pipes as 
obtained with the experimental setup. Subfigure 5 shows a typical 
naturally aged cylindrical pipe, containing plenty of texture to use for 
the stereo matching. Subfigure 5b shows a typical naturally aged egg- 
shaped pipe, the reason we need a non-cylindrical model. Subfigure 5c 
shows a new cylindrical pipe, lacking sufficient texture to accurately 
stereo match. 

5.2. Implementation details and parameters 

The framework was implemented in OpenCV 4.5 [43] and Python 
3.6 [44]. Using the default implementation of semi-global stereo 
matching in OpenCV, we chose a search range between 20 and 220 
pixels of disparity, used a block size of 7, P1 = 100, P2 = 10,000, and a 
uniqueness ratio of 10. 

After stereo matching and geometry reconstruction, the red cloth 
background of the images is removed automatically with a flood fill and 
a valid Z-range can be selected by the user, or a default of Z ∈ [1.5,2.0] 
meters from the camera may be used. 

After conversion to cylindrical coordinates, we fit the model in eq. 
(17) with K = 6. RANSAC is run for 10 iterations, the initial fit is 
calculated on 50 randomly selected datapoints, inliers are determined 
by a maximum absolute difference of 0.005, and the second fit is 
calculated on the inliers if those inliers make up at least 90% of the 
datapoints. The fit with the lowest error on its inliers is chosen, or if no 
initial fit had enough inliers, the entire process is repeated with 10 
iterations. 

The best fit from the RANSAC model is applied to all data points, 
including those outside the Z-range that the model was fit on, and the 
deviation from the fit is presented for visual inspection in both a point 
cloud and the reference image. 

The code of our implementation is available to try as a demo. It can 
be found at: 

https://github.com/data-flux/StereoDemo3 

6. Results and discussion 

6.1. Stereo matching and geometry reconstruction 

Let us start our discussion of the results by considering the first half 
of our approach, the stereo matching and geometry reconstruction. 
Getting an objective, unequivocal assessment of the produced point 
cloud is challenging, since we do not have a golden standard measure
ment of the 3D pipe geometry to compare the point clouds with. Because 
of this, we will mostly have to rely on subjective validation of the results. 
We asked a human assessor to judge each point cloud on how accurate 
and consistent the point cloud reconstructed the original 3D geometry, 
on a scale from 1 (very poor) to 10 (very accurate). Over the 48 image 
sets, an average rating of 8.4 was assigned, indicating that the 3D 
reconstruction was quite good. In Fig. 6.1, four examples of different 
types of pipes are given where the reconstruction was successful 

Fig. 4. Experimental setup (not the final lighting setup).  

3 Note to reviewers: This repository is set to private, pending approval of our 
funding committee, please find the demo among the supplemental materials 
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(average rating of 8.5). The left picture shows the left image of each 
stereo pair, and the right image shows the point cloud with points 
colored by the color from the original (left) image. The characteristics of 
the virtual lens of the generated image deviate from the physical lens 
somewhat, and the virtual camera was deliberately placed somewhat 
further ahead. This allows the viewer to somewhat appreciate the 3D 
nature of the point cloud (rather than reproducing the images on the left 
without knowing the depth). Specifically, the forward camera position 
allows observing any occluded areas by ‘seeing around’ the humps on 
the pipe surface. Especially in the point cloud image on the first row of 
Fig. 6, areas of occlusion behind the various deposits are clear. Viewed 
from the side, this point cloud has considerable gaps behind all deposits. 

A minority of the pipes were not reconstructed perfectly. Five image 
sets (from four pipes) scored a value below 8 (average score 6), with the 
lowest being two scores of 5. What these five image sets have in com
mon, compared to the remaining successful image sets, is that they 
involve pipes with areas of smooth and monochrome surface, as can be 
seen in Fig. 7. Such areas are especially common in relatively new pipes 
which do not show much deterioration. The surface of such pipes will be 
hard to stereo-match, since few surface features can be used to match 

pixels in the stereo pair. The result is that entire patches of pixels have an 
undetermined depth. Further contributing factors to this poor matching 
are low lighting and lack of lens focus. With improved focus and light
ing, the tiniest surface features will lead to proper matching again. 

6.2. Surface fitting and anomaly detection 

Next, we consider the quality of the surface fitting and subsequent 
anomaly detection steps of our framework on the 48 image sets. In 
Fig. 8, the four pipes of Fig. 6 are shown again, with the local anomaly 
score assigned to the derived point cloud. As can be seen, most of the 
clear deposits present are identified by the anomaly detection method. 
In the first row, all of the clear deposits on the left-hand side have been 
identified, and also some of the less obvious deposits on the right can be 
made out, for example on the low-right at half-depth. Additionally, some 
of the surface roughness is indicated at the top. Note also the large oc
clusion areas, which do not play a role in our detection algorithm, but 
further strengthen the identified anomalies. The pipe in the second row 
shows some deposits hanging from the top of the pipe, as well as 
considerable unevenness in the surface texture throughout the pipe that 

Fig. 5. Three examples of stereo image sets as obtained with the experimental setup. All images have lens distortion correction, the left images also have a vertical 
translation correction according to the process described in Section 4.1. 
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is also captured by the framework as local anomalies. In this pipe, 
however, we also see evidence of some false positives in the detection, in 
the lower far corner of the pipe. It appears that here, the point cloud 
contains too little data in the lower regions (closer to the camera, the 
field of view does not contain the bottom of the pipe), such that the 
model is possibly inaccurate. In this particular area, there indeed appear 
to be some deposits around the flood line, but not to the extent indicated 
by the model. This phenomenon, that also plays a small role in row 
three, appears to be an artefact of the (in hindsight somewhat unfortu
nate) choice of lens that doesn’t allow a full view of the pipe. The 
problem is easily remedied by removing the near and far end of the pipe 
and focussing on the middle band of the point cloud, which incidentally 

also concerns the pixels with the best focus. Remember that in the field, 
the camera will be slowly inched forward through the pipe, allowing for 
a complete sweep of the pipe. Our framework can thus focus on the band 
of data where results are the most reliable. 

Of the 48 image sets, a total of six images could not be fitted properly 
with our RANSAC method (not reaching the required fraction of inliers). 
Five of these concern the cases mentioned in the previous section as 
suffering from a poor stereo matching. The resulting point cloud has a 
non-negligible number of points that erroneously lie inside the pipe, 
reducing the number of inliers. The sixth pipe that could not be fitted 
properly had an entire section broken off, probably during extraction 
from the soil. The remaining 42 cases (87.5%) were properly fitted, 

Fig. 6. Four examples of the stereo matching. Left shows the reference image, right shows the reconstructed point cloud.  
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producing the marked point clouds demonstrated in Fig. 8, as well as a 
single global anomaly score per image, as defined in eq. (18). Prior to 
validating the anomaly detection, the photographs of the pipes were also 
graded subjectively in terms of defect severity, to have an independent 
ground truth to compare the detected anomalies levels with. For the 42 
cases where our framework produced a global anomaly score, a Pear
son’s correlation of r = 0.65 with the ground truth was obtained, which 
is, according to the customary interpretation, a moderate, positive 

correlation. 

6.3. Discussion 

Although our framework demonstrates good results on the two 
defect types of exposed granulate and deposits, not all pipes are correctly 
assessed. The main weakness of our method appears to revolve around 
the images with smooth pipe surfaces. The problem with these pipes 

Fig. 7. Images of pipes that had problems with stereo matching, due to patches of pixels with mostly constant surface color. Especially in areas where along a 
horizontal line there is little color variation, this might lead to considerable confusion in the matching. For the top-left image, this confusion is limited to the lower 
right-hand corner near the flood line. For the other images, the problems occur in the lower half of the images, that are overly smooth. 

D. Meijer et al.                                                                                                                                                                                                                                  



Automation in Construction 139 (2022) 104285

11

occurs in the first part of our framework, the stereo matching, which 
indeed is known to be problematic in images with limited texture. The 
upside of this limitation is that pipes with smooth surfaces (often fairly 
new pipes) typically do not contain any defects. The main problem here 
is hence one of false alarms: the method sometimes erroneously iden
tifies defect in smooth pipes because points are incorrectly placed in the 
3D space. In future work, we will investigate whether stereo matching 
could also produce a confidence score, indicating the quality of the 
stereo matching in each region of the image. If successful, the method 
would only identify a defect if both the confidence is high (in other 
words, not a smooth surface) and the anomaly score is high. 

Whenever the stereo matching produces at least a reasonable result, 
the surface fitting and anomaly detection correctly identifies the various 
defects present. It should be noted that the framework even identified 
defects that were overlooked in the initial subjective quality grading of 
single images (not stereo pairs). In that sense, other than merely auto
mating parts of the inspection process, our framework also has the po
tential to outperform human inspectors in certain respects. 

Our experiments were performed in the lab, which may have had 
some minor effects on the outcome, although both in a positive and a 
negative sense. On the positive side, our experiments were perhaps 
made more challenging than necessary due to some initial choices that 

Fig. 8. Examples of four anomaly scores. Left shows the reference image, right shows the identified anomalies. Note that the anomalies on the edges and outside of 
the pipes are ignored. 
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ended up being suboptimal. For example, the chosen lenses were not of 
sufficiently wide angle, such that in the region of focus not the entire 
pipe could be captured, especially for egg-shaped pipes. The effect of this 
on the results is that for some regions of the pipe, such as the corners of 
the point clouds corresponding to the edges of the image, not enough 
evidence of the regular geometry is available in order to reliably decide 
on deviations from that geometry. This effect, which may cause both 
false positives and false negatives locally, can be observed in the third 
row of Fig. 8. This problem can be easily corrected by taking a wider 
lens. Another unfortunate choice concerns the low lighting conditions, 
which could have been corrected with a longer exposure of the images. 
Low lighting has not played a significant role (as the mostly good results 
demonstrate), but may have contributed to the lack of matching in areas 
with smooth surfaces. 

Another property of the lab set-up was that we search for anomalies 
in the entire pipe, which is not necessary in the field, and produces some 
challenges with limited focal depth and missing parts of the pipes (due to 
extraction). In a more practical setting, in an actual in-situ pipe, a single 
image pair would only be inspected for a somewhat narrow band, cor
responding to the region of focus. After that, the pipe inspection vehicle 
would move forward by a small distance and the process would be 
repeated. Note that although our framework makes no such assumption, 
being in pipes of mostly the same geometry would allow one to assume a 
certain steady geometry, and deviations from this could be more easily 
recognised. 

On the negative side, our lab set-up is less realistic as we only inspect 
individual pipe segments, not longer pipe systems. As a result, we have 
no images of pipe joints, which in most cases would produce a (false 
positive) deviation from our fitted surface. Although we expect the pipe 
joints to be easily matched by the stereo matching, and proper handling 
of these ‘acceptable anomalies’ would not be difficult, our current 
method does not include such facilities, nor have we been able to test 
this. As future work, it would be interesting to develop a method that 
uses 3D point clouds of joints in order to recognise joint-related defects 
such a misaligned joints or signs of leakage. A final difference between 
our setting and actual sewer systems is that the inspected pipes, after 
having been washed out, will be wet, whereas our lab pipes were 
recorded in a dry state. We do not expect this difference to have a sig
nificant effect on the results, but would need to set up new experiments 
to assess this.4 

In future experiments it may be interesting to look at discontinuities 
in the points on the pipe surface as well, as these may be caused by 
occlusions. An occlusion of a portion of the pipe surface may be just as 
informative as the geometry of the visible parts of the pipe surface, but 
could be indicative of foreign objects present in the pipe, such as roots. 
However, because poor stereo matching may also result in such dis
continuities, it may be advisable to require that such discontinuities 
exist only in the point cloud, and not in the disparity map. 

7. Conclusion 

7.1. Summary 

In this work we have proposed RADIUS, an anomaly detection 
framework for sewer pipes based on computer stereovision. The 
framework consolidates several successful techniques into a sequential 
process, to allow for anomaly detection in an automated fashion from 
stereo photographs without intermediate user input. We performed ex
periments to demonstrate the efficacy of the framework and conclude 
that it is successful in detecting defects present in physical pipes as 
anomalies in the three-dimensional geometry, and moves the state of the 

art closer towards fully automated sewer asset management. 

7.2. Limitations 

The major limitation of this work is the varying quality of the data 
obtained in the lab, as a result of our limited experience with the 
hardware. Some of the images were made in poor lighting conditions 
and without proper camera calibration. Repetition of the experiments 
was not possible due to time and budget constraints, and because a part 
of the pipes have been subjected to destructive full-scale testing in other 
experiments. A secondary limitation related to this is the total number of 
experiments performed. 

A more intrinsic limitation of the approach of stereovision is that 
smooth, undamaged concrete may not contain enough texture or 
markers to accurately match the reference image to the secondary 
image. While this is potentially an issue for a large portion of sewer 
pipes, we argue that such regions are unlikely to contain any anomalies. 
That said, since the absence of a match may also be an indicator of oc
clusion, we advise authors of future research to distinguish causes of a 
lack of a match: in the case of a too smooth pipe, the cause is likely a 
match that does not meet the uniqueness ratio required, while still 
having a relatively high matching score, as opposed to a patch in the 
reference image that does not appear in the secondary image due to 
occlusion. 

In spite of these limitations, we feel the efficacy of the framework has 
been more than adequately demonstrated. 

7.3. Recommendations 

While anomaly detection may be a goal in itself, the authors hold the 
view that it is a stepping stone towards fully automated sewer condition 
assessment. To this end, we recommend future research to be performed 
into a follow-up step for the proposed framework: automated classifi
cation of the anomalies into defect classes. We feel that (the deviation 
from) the surface found through robust regression has a lot of potential 
for classification, as it will theoretically contain very little noise, as well 
as have a notion of “expected” behaviour. 

It must be noted that while we have shown stereovision to be a viable 
tool for sewer pipe defect classification, the added value in practical 
settings has yet to be demonstrated. We have designed this framework to 
be compatible with current inspection practices: (monovision) CCTV 
inspection can still be performed while collecting data from two camera 
sources for stereovision experiments. This data may be used in parallel 
to both inch the industry towards automation of inspections, as well as 
to improve manual inspection techniques with an additional mode of 
data. State-of-the-art sewer defect detection solely based on CCTV data 
may suffer from a relatively large false positive rate [3], but the addi
tional depth information provided by an additional camera could lower 
this significantly. While the ambition of automated inspection is 
currently en vogue (again), the added value of multi-sensor inspection 
for more reliable, precise, and complete detection of a range of 
observable sewer defects, is an important added value worth researching 
further. 
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