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Can you hear me now? Momentary increase in smartphone usage enhances 
neural processing of task-irrelevant sound tones 
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b Department of Biomechanical Engineering, Delft University of Technology, the Netherlands 
c Cognitive Psychology Unit, Institute of Psychology, Leiden University, the Netherlands  

A B S T R A C T   

According to popular belief when engaged on the smartphone surrounding information is ignored. However, emerging ideas based on laboratory-designed tasks 
suggest that the processing of task-irrelevant (distractor) information is enhanced when cognitive load is high as anticipated during intense periods of smartphone 
usage. Here we address the neural processing of task-irrelevant auditory tones while interacting with the smartphone touchscreen. We analyzed neural activity (EEG) 
while people (N = 24) were seated in public spaces and used their smartphones for ~1.5 h. During this period, the number of touchscreen interactions spontaneously 
varied from one moment to another. The central and frontal theta-band (4–8 Hz) oscillations, an index of cognitive load, increased proportionally to the number of 
interactions. Moreover, an index of excitation:inhibition balance derived from the aperiodic signal components increased with the interactions. The auditory tones 
resulted in prominent evoked potentials with peaks at ~50 ms, ~100 ms, and ~200 ms, reflecting the different cortical information processing stages. Of these, the 
~100 ms component was specifically related to the number of interactions such that the higher the number of interactions, the larger the neural signal amplitudes. 
Contrary to the popular notions but in keeping with emerging ideas on cognitive load, auditory information processing is enhanced with increased smartphone usage. 
In daily life, neural processing of the surroundings is partly shaped by the immediate cognitive demands imposed by the smartphone.   

1. Introduction 

Smartphones are routinely used to perform meaningful actions, and 
how smartphone-irrelevant (i.e., distractor) information is processed by 
the brain is important to elucidate. According to a held view – prevalent 
in both common discourses and behavioral sciences – the more engaged 
on the smartphone, the harder it is to process a non-smartphone infor-
mation source (Larue et al., 2020; Lin and Huang, 2017). Superficially, 
these ideas borrow from the mechanistic accounts of attention that 
suggest behavior (say smartphone interactions) is supported by the 
reactive or pro-active suppression of distractor information (non--
smartphone information) (Geng, 2014). 

Laboratory-designed tasks provide an alternative account of how 
distractors are processed when deeply engaged in a task. According to 
emerging behavioral evidence, spanning different task types and sensory 
modalities, tasks with high cognitive load enhance distractor processing 
(Dalton et al., 2009; Lavie, 2010; Lavie et al., 2014; Macdonald and 
Lavie, 2011). Moreover, the interaction between auditory and visual 
processing is enhanced with a high cognitive load (Michail et al., 2021; 
Michail and Keil, 2018). According to the cognitive load theory, 
demanding tasks occupy frontal cortical functions thereby limiting their 

ability to prevent distractor processing. The stages of information pro-
cessing impacted by the cognitive load can be revealed using the mea-
surement of brain activity (electroencephalography – EEG). For 
instance, when engaged in a visual working memory task, auditory 
evoked potential components that reflect primary processing are 
enhanced (Regenbogen et al., 2012). Note, that a distinct pattern of 
results forms with increased perceptual load and the distractor presented 
in the same modality – such that the higher the perceptual load the lower 
the distractor processing (Lavie et al., 2014). It is unclear if and how 
these ideas apply to real-world behavior. This study shall address: Does 
engaging on the smartphone enhance the processing of surrounding 
information? 

A challenge posed by the dynamic and complex nature of real-world 
behavior is to establish the momentary cognitive demand imposed by 
the behavior. This is in contrast to the carefully designed laboratory 
tasks where the cognitive load can be specifically manipulated. Intui-
tively, active smartphone behaviors requiring frequent user inputs are 
more cognitively demanding than the more passive behaviors conducted 
on the phone. In this real-world behavioral setting, a generic EEG 
marker of cognitive load – already well-established in controlled labo-
ratory settings – can be leveraged. In particular, neural theta oscillations 
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in EEG signals are considered a measure of cognitive load such that the 
higher the load, the larger the power in the theta band (Gevins and 
Smith, 2000; Kahana et al., 1999). 

In laboratory tasks, attentional processes are associated with a 
modality-specific increase in excitation in the sensory circuits (Waschke 
et al., 2021). Here the authors leveraged recent computational tools to 
infer the neural excitation:inhibition balance over the central (targeting 
auditory circuits) and occipital electrodes (targeting visual circuits) 
based on the aperiodic components (the fitted exponent and the shift) of 
the power spectral density (Gao et al., 2017; Jacob et al., 2021). The 
smaller the exponent (smaller the absolute value, the shallower power 
spectral density) the larger the ratio (i.e., more excitation). Notably, 
when in a vigilant state the exponent is smaller – indicating more neural 
excitation – than in unconscious states such as in sleep or under anes-
thesia (Colombo et al., 2019). The offset – capturing the broadband 
power – of the aperiodic fit reflects the neural spiking activity (Manning 
et al., 2009; Miller et al., 2009). Interestingly, with reduced arousal (as 
in under anesthesia), the offset increases (Lendner et al., 2020). More-
over, the lower the offset the larger the hemodynamic activity in the 
prefrontal cortical networks engaged in executive control (Jacob et al., 
2021). Our observations will help reveal how these parameters vary 
when engaged on the smartphone. Are the periods of intense smart-
phone interactions accompanied by a general increase in neural excit-
ability and diminished neural spiking – as in a vigilant or aroused state? 

In this study, we recorded EEG signals while participants engaged on 
their smartphone touchscreen in designated public spaces (campus café 
and seating area) for ~1.5 h. By using a background app we quantified 
the touchscreen interactions. We probed auditory processing by using 

smartphone-unrelated tones intermittently presented throughout the 
entire recording period. Our analysis suggests that in periods of 
heightened smartphone usage, cognitive load increases, accompanied by 
increased neural excitation diminished neural spiking activity, and 
enhanced cortical processing of auditory information. 

2. Results 

2.1. Neural oscillations related to smartphone behavior 

The number of smartphone interactions spontaneously generated by 
the participant varied from one moment to the next (Fig. 1). We related 
this behavioral variability to the EEG signals at the level of each 
participant using mass univariate regressions and then conducted 
follow-up statistics using the regression slopes to reveal the patterns 
consistent across the sample. The regressions considered the recording 
duration as an explanatory variable in addition to the number of in-
teractions. We ran separate regression analyses focused on the EEG 
spectral properties, the aperiodic components, and the auditory event- 
related potentials. 

The spectral analysis (periodograms) was adjusted for aperiodic 
components (Donoghue et al., 2020). The topology of the population 
average power revealed theta band (4–7 Hz) oscillations more promi-
nently at the central & frontal electrodes, the alpha band (8–12 Hz) 
oscillations at the occipital electrodes, and the beta band (13–30 Hz) 
bilaterally over the sensorimotor and frontal electrodes (using wavelet 
transform see Fig. 2, for the same analysis using the Welch’s method, see 
Suppl. fig. 1). According to the regression analysis, the power at the 

Fig. 1. A mobile EEG setup to study the processing of auditory tones while using the smartphone. (a) While participants interacted with their smartphones, an 
auditory tone was played to both ears every ~1–3 s (red dots). Each vertical black dash representant a single smartphone touch. Inter-touch intervals range from 100 
ms to 5 s. An example time-series of smartphone use throughout an experiment. Smartphone use is quantified as the square root of the number of touches accu-
mulated in a 1-min bin. The EEG was analyzed to study changes in the auditory evoked potentials and spectral properties for each participant and recorded channel 
separately. (b) The ERPs and periodogram were extracted in 1 min bins and used in a mass univariate regression with the factors of smartphone usage and time spent 
on the phone (level 1). Subsequently, one-sample t-tests were performed to confirm consistency of β-parameters across participants and channels (level 2). (For 
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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theta band was related to smartphone behavior – such that the larger the 
number of interactions in a minute bin, the higher the power in the 
corresponding bin (using wavelet transform see Fig. 2, for Welch’s 
method, see Suppl. fig. 1). The statistically significant clusters occupied 
the frontal, central and occipital electrodes (see also Suppl. fig. 2 for the 
p-values). The alpha band was more sparsely related and the clusters 
occupied mostly the central and frontal electrodes – such that the larger 
the number of interactions the higher the power. This pattern of nega-
tive correlations extended to the beta band (18–30 Hz) with the clusters 
occupying almost all electrode locations. No significant clusters were 
detected for the variable capturing the recording duration (Suppl. fig. 3). 

2.2. Aperiodic components related to smartphone behavior 

The aperiodic exponent was related to the number of interactions – 
such that the larger the number of interactions in the 1-min bin the 
smaller the exponent (i.e., shallower 1/f slope, using wavelet transform 
Fig. 3). This pattern of correlation was observed consistently at the 
electrodes contralateral to the (right) hand used to operate the 

smartphone. When using Welch’s method to estimate the exponent this 
pattern was absent (Suppl. fig. 4). The amount of time spent in the 
experiment or the duration of the recording was differently related – 
such that the longer the time spent in the experiment the larger the 
exponent (i.e., steeper 1/f slope, Suppl. fig. 5 using wavelet transform - 
& Suppl. fig. 6 using Welch’s method). This relationship was particularly 
prominent over the central electrodes and the contralateral parietal 
electrodes. The aperiodic offset – capturing the broadband shift of the 
periodogram – decreased with the number of smartphone interactions 
and increased with the time spent in the experiment (using wavelet 
transform: for smartphone interactions see Fig. 3 and for time see Suppl. 
fig. 7; using Welch’s method: Suppl. fig. 4 and Suppl. fig. 8). 

2.3. Enhanced event-related potential during periods of intense 
smartphone interactions 

The EEG signals time-locked to the auditory tones revealed signifi-
cant statistical clusters as early as 58 ms at the central and frontal 
electrodes (see Suppl. fig. 9 and 10). Strong negativity was visible over 

Fig. 2. EEG power spectrum is related with smartphone usage and the time spent on the phone. The relationships were observed at the level of each subject using 
linear regressions, and we performed one-sample t-tests of the regression coefficients (β) stemming from each subject. An increase in central and frontal theta band 
power (4–8 Hz) is observed with increased smartphone usage (a) The FOOOF corrected power spectrum (mean) and corresponding 95% confidence interval are 
shown for a central electrode (green dot). (b) The corresponding β-values (mean and 95% confidence interval) were derived from the regression model for the factors 
smartphone usage (i.e., number of interactions, blue line) and time spent on the phone (red line). The frequencies where significant statistical clusters related to 
smartphone usage were found (according to the one-sample t-test corrected for multiple comparison correction, MCC) are shaded in grey. The inset shows the 
regression model’s β-value at a single frequency (for visualization). No significant effects for the factor time were found (see Supplementary Fig. 1). (c) Scalp plots 
show the mean (FOOOF corrected) power for specific frequencies across the power spectrum. (d) Corresponding β-values of the regression model for the factor 
smartphone usage. (e) Corresponding F-values of the regression model for the factor smartphone usage masked for significance after MCC (note, F = T2 with the T 
value stemming from the one sample t-test). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of 
this article.) 
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the central electrodes at ~100 ms followed by positivity at ~160 ms and 
then again a more persistent central negativity at ~280 ms. The event- 
related potentials based on the EEG data accumulated over the 1-min 
bins showed temporally and spatially constrained correlations to the 
number of smartphone interactions. The higher the number of in-
teractions the larger (more negative) the signal amplitude at ~100 ms 
over the central electrodes (Fig. 4). In the regression analysis, the time 
spent in the experiment (simply proportional to the number of auditory 
tones presented) also showed significant statistical clusters at the same 
latency, but the longer the duration the smaller (more positive) was the 
signal (see Suppl. fig. 10). 

In sum, the neural oscillations, the aperiodic neural properties, and 
the auditory signal processing all reflected the fluctuations in smart-
phone interactions independently of the amount of time spent using the 
smartphone. These results indicate cognitive load is higher and auditory 
cortical processing is enhanced in periods of increased smartphone 
usage. 

3. Discussion 

When engaged on the smartphone, neural processing may be shaped 
by the momentary rise in smartphone behavioral needs. The rise in the 
power of theta oscillations proportional to the number of smartphone 
interactions indicates increased cognitive load underlay the more 
intense periods of smartphone usage. We further probed task-irrelevant 
input processing by using auditory tones. Neural processing of auditory 
tones was enhanced during more intense smartphone use. These findings 
are in keeping with the laboratory-based ideas of cognitive load theory: 
the higher the cognitive load the more enhanced the distractor 

processing. 
The theta, alpha, and beta bands, and the aperiodic components were 

all related to increased smartphone usage. The theta band power in-
crease was consistent with prior literature where the power reflects the 
extent of cognitive demands (Kahana et al., 1999). Similarly, the in-
crease in alpha band power too was consistent with prior observations 
implicating it as a correlate of heightened working memory load (Jensen 
et al., 2002). Interestingly, the beta power was bilaterally decreased 
with a rise in smartphone usage. Based on the laboratory-based attempts 
to separate the role of alpha and beta oscillations when performing a 
task, the rise in alpha power signals disengagement from task-irrelevant 
cortical regions whereas the reduced beta-oscillations indicate reduced 
motor inhibition (Brinkman et al., 2014). The latter is further supported 
here by the concomitant decrease in the 1/f exponent (based on the 
wavelet transform) – which is indicative of an increased synaptic exci-
tation:inhibition ratio (Gao et al., 2017). 

The event-related potential at a latency of ~100 ms detected over the 
central electrodes was specifically suppressed with the higher number of 
smartphone interactions. This neural signal – partly of auditory cortical 
origin – is considered an “exogenous” component due to its sensitivity to 
stimuli features: louder tones also result in larger signal amplitudes 
(Herrmann and Knight, 2001; Näätänen and Picton, 1987). Still, the 
auditory evoked potential is well implicated in attentional processes. For 
instance, the signal is enhanced under conditions of high visual working 
memory load (Regenbogen et al., 2012). Moreover, attending to audi-
tory tones too increases the same component (Folyi et al., 2012). Taken 
together, it is likely that the enhanced neural signals reflect a form of 
sensory gain under the putatively high cognitive load induced by 
smartphone usage. 

Fig. 3. Changes of the aperiodic power-spectrum (1/f exponent) and offset with smartphone use. A reduction in the exponent and offset was found across the brain 
with increased smartphone use. (a) Typical smartphone use pattern throughout the experiment. Smartphone use is visualized as the square root of the number of 
touches in each consecutive 1 min time window. (b) The corresponding FOOOF derived 1/f exponent for each time window. (c) The corresponding FOOOF derived 
offset for each team window. (d) The exponent was observed to significantly reduce across the brain with increased smartphone use, as can be observed from the 
topography of the regression model’s β-values of this individual and inset from a single electrode. (e) Grand mean topography of the exponent across time and 
participants. (f) Corresponding trimmed mean β-value of the regression model for the factor smartphone usage. (g) Corresponding F-values of the regression model 
for the factor smartphone usage masked for significance after MCC. (h–k) Legend equivalent to (d–h) but now for the offset component. The offset was observed to 
significantly reduce across the brain with recording time. 
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Our regression model also considered the time spent using the 
smartphone (i.e., the time spent in the recording session). The time spent 
was not related to the periodic components of the neural signals. 
However, the aperiodic exponent increased (became more negative) 
over time as if indicating a rise in synaptic inhibition over time ac-
cording to the excitation:inhibition framework (Gao et al., 2017). 
Moreover, the aperiodic offset increased over time. Taken together with 
the findings on how the aperiodic components may reflect excitability 
and consciousness/arousal, these findings suggest that as time lapsed on 
the smartphone the underlying neural state was more inhibited 
(Colombo et al., 2019). The auditory event-related potential (at ~100 
ms) was also diminished with time, but as the time spent was directly 
proportional to the number of experienced tones, the diminished signals 
could be due to sensory adaption rather than the underlying putative 
neural relaxation. 

The use of aperiodic components to infer neural states is an emerging 
approach, and our study provides some tangential insights into this. 
Firstly, the topology of the exponent is of general interest and was 
initially reported to follow a simple posterior to the anterior gradient at 
rest (Donoghue et al., 2020). However, we did not observe such a 
gradient either using the continuous wavelet transform or using Welch’s 
method. The exponent was higher at the frontal electrodes, to become 

lower in the more posterior electrodes, and then increased again over 
the central electrodes akin to what has been reported in young adults 
(Thuwal et al., 2021). Another factor (apart from age of the participants) 
that may have contributed to the distinct gradient compared to the 
initial report is that our measurements were conducted while actively 
engaged in a task, and the exponent is known to alter topology in a 
task-dependent manner (Waschke et al., 2021). Secondly, although the 
wavelet transform and Welch’s methods yielded similar topologies and 
behavioral correlates for the offset, there were notable differences. The 
exponents were higher for the Welch’s method and the smartphone use 
fluctuations were related to the wavelet-derived exponents but not for 
the Welch’s method. We chose the wavelet transform as we were 
interested in the time-variant spectral properties and the binning to 
relate with behavior could be performed after the time-frequency 
transformation. Welch’s method – although prevalent in prior work – 
had to be applied to the temporally binned data which is commonly 
considered to be a less sound method for determining time-frequency 
properties. While we cannot explain the reasons underlying the differ-
ences they do demonstrate that the methodology underlying the perio-
dogram may partly dictate the aperiodic components and their 
association with behavior. 

So why is the neural auditory processing enhanced with rising 

Fig. 4. Changes in the auditory evoked potential with smartphone use and time. An enhanced peak of the auditory evoked potential at ~100 ms was found with 
increased smartphone usage. (a) The mean auditory evoked potential and corresponding 95% confidence interval are shown for a midline central electrode (green 
dot). (b) The corresponding β-values (mean and 95% confidence interval) were derived from the regression model for the factors smartphone usage (blue line) and 
time (red line). The periods where significant statistical clusters related to smartphone usage were found (according to the one-sample t-test corrected for multiple 
comparison correction, MCC) are shaded in grey. The inset shows the regression model’s β- value at a single time-point (for visualization). The results for the factor 
time can be found in Supplementary Fig. 6. (c) Scalp plots show the mean auditory evoked potential for some specific time-points. (d) Corresponding β-values of the 
regression model for the factor smartphone usage. (e) Corresponding F-values of the regression model for the factor smartphone usage masked for significance after 
MCC. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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cognitive load putatively induced by smartphone usage? In keeping with 
the (cognitive) load theory, one possibility is that frontal or executive 
functions are pre-occupied in periods of intense smartphone usage 
failing to effectively inhibit distractors (Lavie, 2010). This is indirectly 
supported by the decrease in the aperiodic offset with increased 
smartphone usage; reduced offset is associated with increased hemo-
dynamic activity in the pre-frontal cortex (Jacob et al., 2021). Our 
findings raise further possible avenues of explanation. As indicated 
based on the aperiodic spectral components, when intensely interacting 
with the smartphone neural synaptic excitation: inhibition balance may 
shift towards excitation. Moreover, the enhancement could stem from 
increased emphasis on local computations as signaled by the rising alpha 
band power. All of these possibilities could well be causally interlinked. 
The results also raise a fundamental question on the functional relevance 
of enhanced processing under high load: is the enhanced processing a 
signature of a failing system or does it serve the purpose of making 
available environmental auditory inputs when otherwise deeply 
engaged on the smartphone? In general, our findings urge a reconsid-
eration of how distractors are processed when engaged in real-world 
behavior as they may not follow common intuition. 

4. Methods 

4.1. Participants 

Twenty-nine participants were recruited for this study from the 
Leiden University student community by using advertisements on flyers 
and a study platform. The participants were between 18 and 27 years of 
age (19 females). Only right-handed users with a personal Android 
operating smartphone were included in this study. Participants with any 
known neurological or mental illness, as disclosed by self-reports, were 
not included in the study. All experimental procedures were approved 
by the local ethics committee at the institute of psychology at Leiden 
University. Written informed consent was provided by all participants. 
The measurements were part of a larger study designed to address the 
neural correlates of smartphone behavior. 

4.2. Smartphone data gathering 

The TapCounter App (QuantActions, Lausanne) was installed on the 
participants’ smartphones to record the timing of the touchscreen in-
teractions at least 3 weeks before the laboratory visit. The time stamps 
were recorded in UTC millisecond format and processed using the scripts 
and download tool provided via taps.ai (QuantActions) (Balerna and 
Ghosh, 2018). Based on this data the four highly used – nonvideo 
streaming – apps were listed for laboratory use. The EEG recordings 
timestamps derived from a PC clock were converted to UTC millisecond 
format to align with the smartphone recordings. According to a separate 
analysis conducted in the laboratory, the mismatch between the two 
clocks was <4 s in a sampled population (absolute error 90th percentile 
3.2 s, median 1.3 s) (Kock et al., 2022). Our subsequent analysis 
involved simultaneously characterizing the behavior and EEG re-
cordings in 1 min bins. The putative clock mismatch errors mean that an 
EEG bin of 60 s may include <4 s of behavioral data from the neigh-
boring bin. In each of the 1-min bins, we quantified the number of in-
teractions. The features extracted from the EEG recordings are described 
below. The bin size of 1-min was driven by capturing ~30 trials of 
auditory stimulations per bin (for the stimulation rate see below). 
Although this targeted number of trials is lower than in auditory studies 
that use >1000 trials, meaningful results have been obtained with ~30 
trials per block in prior studies (Alain et al., 2010; Sánchez-Morla et al., 
2008). 

4.3. EEG recording setup 

EEG recordings were obtained using a 64-channel LiveAmp system 

(Brain Products GmbH, Gilching, Germany) together with a passive 
electrode cap (EasyCap, Herrsching, Germany). Sixty-two electrodes 
were equidistantly distributed over the scalp, and two electrodes were 
used to record ocular activity. All signals were online referenced against 
the vertex electrode and digitized at 1000 Hz. The skin was degreased by 
using alcohol, and the electrodes were brought in contact with the skin 
using Abralyt HiCl gel (EasyCap). Impedances were reduced to under 5 
kOhm by pressing the gel over the skin. The system was provided sup-
plementary power by using a power bank, and the setup, including the 
auditory tone generators mentioned below, was packaged into a pouch 
worn by the user. Short (<45 min) laboratory-based recordings were 
conducted in addition to the longer (~1.5 h) recordings out of the lab-
oratory. Only the out-of-laboratory recordings were used in the analysis. 
Two participants were eliminated due to data recording errors (reducing 
the available data from 29 to 27 individuals). 

4.4. Auditory tones 

Auditory tones were delivered by using earphones placed on both 
ears. A 1000 Hz tone with a pulse width of 50 ms was played at an 
interstimulus interval of 1–3 s (uniformly distributed). The same 
sequence of auditory stimuli was repeated every ~10 min. The auditory 
tones were generated using an audio file stored on a smartphone. A copy 
of the tone was passed through an Arduino Leonardo analog to TTL 
converter. The TTL pulses were registered on the LiveAmp. 

4.5. Out of the laboratory measurements 

The EEG was set up within the laboratory including the initial 
impedance measurements. Participants were brought outside the labo-
ratory attached to the EEG recording equipment described above and 
seated upright in the central entrance hallway or the main faculty 
restaurant. In both environments, participants used their phones for 
~45 min, after which the participant was made to switch locations. 
Ambient sound levels were monitored throughout the recordings using a 
smartphone app and microphone. The participants were encouraged to 
switch the app (to another pre-selected app) every 10 min by using a 
timer tone. 

4.6. EEG data analysis 

The data was processed and putative artifacts removed by using 
EEGLAB (implemented in MATLAB) (Delorme and Makeig, 2004). 
Channels with impedance >10 kOhm were eliminated from further 
consideration. The data was bandpass filtered between 0.1 and 70 Hz 
using a hamming windowed FIR filter (pop_eegfiltnew as implemented in 
MATLAB). Independent component analysis was run on the full 
recording period and the blink-related components were automatically 
detected and removed (Pontifex et al., 2017). Subsequently, the data 
were filtered with a low pass 45 Hz filter (for ERP analysis) and the 
eliminated channels were interpolated. The data were re-referenced to 
the common average of the scalp electrodes. 

Towards the event-related potential analysis, the data were seper-
ated in 1-min bins. At each bin, the data was epoched spanning − 200 to 
500 ms from the stimulation. The baseline was removed based on the 
signal mean from – 200 to 0 ms for each epoch. Epochs at the bin edges 
were eliminated. A minimum of 10 stimulations were necessary for in-
clusion in further analysis. The event-related potential was based on 
trimmed (truncated) means (20% as implemented in LIMO EEG toolbox, 
function limo_trimci) (Pernet et al., 2011). 

Towards the frequency analysis, the continuous wavelet transform 
was estimated for each channel and over the entire recording period 
using the function cwt (implemented in MATLAB, MathWorks). Towards 
this, 30 voices per octave and a time-bandwidth of 120 were used over a 
frequency range of 0.1–40 Hz. The transformed data were then binned 
over 1 min windows to estimate the periodogram based on the squared 
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mean magnitudes across the time window. In a parallel set of analyses, 
we used Welch’s method for spectral analysis using the function pwelch 
(implemented in MATLAB). The periodic and aperiodic components 
were separated by using the FOOOF toolbox (Donoghue et al., 2020). 
For both the event-related potential and the frequency analysis, the 
square root of the total number of interactions in the given bin, and the 
time elapsed at the bin onset were recorded for subsequent analysis. 

4.7. Statistical analysis 

We performed hierarchical linear modeling by using LIMO EEG 
across all electrodes, and time points or frequencies (including aperiodic 
components). As mentioned above, the continuous data were binned 
into 1-min bins to extract four types of parameters from each bin: (i) the 
event-related potential, (ii) the spectral properties including the perio-
dogram and aperiodic components, and (iii) the time spent in the 
recording along with (iv) the number of interactions. At the first level of 
analysis, we performed a mass univariate regression (iterative least 
squares) with the recording time elapsed and the square root of the 
number of interactions as explanatory variables. A threshold of 10 bins 
was set for this step (i.e., a minimum of 10, 1-min, bins were necessary to 
proceed with the regression). The regression slopes (βtime and βusage) 
were then gathered across all participants (with a standard deviation of 
the smartphone usage variable >1). At the second level, one-sample t- 
tests were performed (using trimmed means) across all electrodes and 
time points or frequencies and then corrected for multiple comparisons 
correction. For multiple comparison correction, two-dimensional 
(spatial-temporal or spatial-frequency) clustering was based on 1000 
bootstraps (α = 0.05). Three of the 27 subjects were eliminated due to 
inexplicable signals spotted during visual inspection of the data, which 
were probably a result of poor grounding or electrode bridges during the 
recording. For the ERP analysis, 23 subjects had the sufficient number of 
trials and were analyzed further. For the spectral analysis, all of the 24 
subjects were included. 
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