
Prediction of contralateral breast cancer: external validation of risk
calculators in 20 international cohorts
Giardiello, D.; Hauptmann, M.; Steyerberg, E.W.; Adank, M.A.; Akdeniz, D.; Blom, J.C.; ... ;
Schmidt, M.K.

Citation
Giardiello, D., Hauptmann, M., Steyerberg, E. W., Adank, M. A., Akdeniz, D., Blom, J. C., …
Schmidt, M. K. (2020). Prediction of contralateral breast cancer: external validation of risk
calculators in 20 international cohorts. Breast Cancer Research And Treatment, 181(2),
423-434. doi:10.1007/s10549-020-05611-8
 
Version: Publisher's Version
License: Creative Commons CC BY 4.0 license
Downloaded from: https://hdl.handle.net/1887/3184440
 
Note: To cite this publication please use the final published version (if applicable).

https://creativecommons.org/licenses/by/4.0/
https://hdl.handle.net/1887/3184440


Vol.:(0123456789)1 3

Breast Cancer Research and Treatment (2020) 181:423–434 
https://doi.org/10.1007/s10549-020-05611-8

EPIDEMIOLOGY

Prediction of contralateral breast cancer: external validation of risk 
calculators in 20 international cohorts

Daniele Giardiello1,2 · Michael Hauptmann3,4 · Ewout W. Steyerberg2,5 · Muriel A. Adank6 · Delal Akdeniz7 · 
Jannet C. Blom7 · Carl Blomqvist8,9 · Stig E. Bojesen10,11,12 · Manjeet K. Bolla13 · Mariël Brinkhuis14 · 
Jenny Chang‑Claude15,16 · Kamila Czene17 · Peter Devilee18,19 · Alison M. Dunning20 · Douglas F. Easton13,20 · 
Diana M. Eccles21 · Peter A. Fasching22,23 · Jonine Figueroa24,25,26 · Henrik Flyger27 · Montserrat García‑Closas26,28 · 
Lothar Haeberle23 · Christopher A. Haiman29 · Per Hall17,30 · Ute Hamann31 · John L. Hopper32 · 
Agnes Jager33 · Anna Jakubowska34,35 · Audrey Jung15 · Renske Keeman1 · Linetta B. Koppert36 · Iris Kramer1 · 
Diether Lambrechts37,38 · Loic Le Marchand39 · Annika Lindblom40,41 · Jan Lubiński34 · Mehdi Manoochehri31 · 
Luigi Mariani42 · Heli Nevanlinna43 · Hester S. A. Oldenburg44 · Saskia Pelders7 · Paul D. P. Pharoah13,20 · 
Mitul Shah20 · Sabine Siesling45 · Vincent T. H. B. M. Smit18 · Melissa C. Southey46,47 · William J. Tapper48 · 
Rob A. E. M. Tollenaar49 · Alexandra J. van den Broek1 · Carolien H. M. van Deurzen50 · Flora E. van Leeuwen51 · 
Chantal van Ongeval52 · Laura J. Van’t Veer1 · Qin Wang13 · Camilla Wendt53 · Pieter J. Westenend54 · 
Maartje J. Hooning7 · Marjanka K. Schmidt1,51,55

Received: 17 December 2019 / Accepted: 21 March 2020 / Published online: 11 April 2020 
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Background Three tools are currently available to predict the risk of contralateral breast cancer (CBC). We aimed to com-
pare the performance of the Manchester formula, CBCrisk, and PredictCBC in patients with invasive breast cancer (BC).
Methods We analyzed data of 132,756 patients (4682 CBC) from 20 international studies with a median follow-up of 
8.8 years. Prediction performance included discrimination, quantified as a time-dependent Area-Under-the-Curve (AUC) 
at 5 and 10 years after diagnosis of primary BC, and calibration, quantified as the expected-observed (E/O) ratio at 5 and 
10 years and the calibration slope.
Results The AUC at 10 years was: 0.58 (95% confidence intervals [CI] 0.57–0.59) for CBCrisk; 0.60 (95% CI 0.59–0.61) 
for the Manchester formula; 0.63 (95% CI 0.59–0.66) and 0.59 (95% CI 0.56–0.62) for PredictCBC-1A (for settings where 
BRCA1/2 mutation status is available) and PredictCBC-1B (for the general population), respectively. The E/O at 10 years: 
0.82 (95% CI 0.51–1.32) for CBCrisk; 1.53 (95% CI 0.63–3.73) for the Manchester formula; 1.28 (95% CI 0.63–2.58) for 
PredictCBC-1A and 1.35 (95% CI 0.65–2.77) for PredictCBC-1B. The calibration slope was 1.26 (95% CI 1.01–1.50) for 
CBCrisk; 0.90 (95% CI 0.79–1.02) for PredictCBC-1A; 0.81 (95% CI 0.63–0.99) for PredictCBC-1B, and 0.39 (95% CI 
0.34–0.43) for the Manchester formula.
Conclusions Current CBC risk prediction tools provide only moderate discrimination and the Manchester formula was poorly 
calibrated. Better predictors and re-calibration are needed to improve CBC prediction and to identify low- and high-CBC 
risk patients for clinical decision-making.

Keywords Contralateral breast cancer · Risk prediction · Validation · Clinical decision-making

Introduction

A rising number of women with breast cancer (BC) are at 
risk to develop a new primary tumor in the contralateral 
breast (CBC) with consequently another cancer treatment 
and potentially less favorable prognosis [1]. Although 
CBC incidence is low (~ 0.4% per year) in the general BC 
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population, contralateral preventive mastectomy (CPM) is 
increasing, also among women with low-CBC risk [2–5].

Three tools are tools currently available to predict the 
risk of CBC, although probably none are widely used: (1) 
the Manchester formula; (2) CBCrisk, and (3) PredictCBC 
[6–8]. The Manchester group in the United Kingdom (UK) 
proposed a set of guidelines for counseling women about 
CPM [8]. Based on a systematic review of the literature, they 
devised a formula to estimate lifetime CBC risk based on age 
at first primary BC, family history of BC, estrogen-receptor 
(ER) status, diagnosis of ductal carcinoma in situ (DCIS), 
and oophorectomy.

The second tool, CBCrisk, was developed using data on 
1921 CBC cases and 5763 matched controls with primary 
BC [7]. The model uses data on age at first BC diagnosis, 
age at first birth, first degree family history of BC, high-risk 
pre-neoplasia, breast density (obtained using the BI-RADS 
system), ER status, first BC type (pure invasive, pure DCIS, 
a mix of the two, unknown), and adjuvant endocrine therapy. 
External validation was performed using two independent 
studies in the United States (US) of 5185 and 6035 patients 
with 111 and 117 CBC events [7, 9]. A web-based applica-
tion provides individualized prediction of CBC risk [10].

Third, PredictCBC was developed, cross-validated and 
evaluated using data from 132,756 patients with first BC and 
4672 CBC events, as part of an international collaboration 
[5]. PredictCBC predicts CBC risk as a function of family 
history (first degree) of primary BC, and information of pri-
mary BC diagnosis: age, nodal status, size, grade, morphol-
ogy, ER status, human epidermal growth factor receptor 2 
(HER2) status, administration of adjuvant or neoadjuvant 
chemotherapy, adjuvant endocrine therapy, adjuvant trastu-
zumab therapy, and radiotherapy. Two versions were devel-
oped: PredictCBC version 1A includes presence or absence 
of a mutation in the BRCA1 or BRCA2 genes, an important 
determinant of CBC [5, 11, 12], while PredictCBC version 
1B was developed for untested patients.

External validation in different studies is relevant to 
assess the prediction performance of prediction models 
[13]. Our aim was to perform a head-to-head comparison 
between CBCrisk, PredictCBC and the Manchester formula. 
We hereto used several large population- and hospital-based 
studies used to develop and cross-validate the PredictCBC 
models.

Material and methods

External validation of CBCrisk and the Manchester formula 
was performed in 20 studies: four with individual patient 
data from the Netherlands [the Amsterdam Breast Cancer 
Study (ABCS), the Breast Cancer Outcome Study of Muta-
tion carriers (BOSOM), the Erasmus MC Breast Cancer 

Registry (EMC), the Netherlands Cancer Registry (NCR)]; 
and 16 other studies of the Breast Cancer Association Con-
sortium (BCAC). The latter is an international consortium 
of 102 studies comprising 182,898 patients (data version: 
January 2017) with a primary BC diagnosed between 1939 
and 2016 [14]. Of these, 16 non-familial BC BCAC studies 
including invasive non-metastatic European-descent female 
patients with first primary invasive BC diagnosed from 1990 
onwards, and with at least 10 CBC events, were included in 
the analyses [14]. Details about studies and patient selection, 
and data imputation were described previously [5].

The outcome was in situ or invasive metachronous CBC. 
Follow-up started 3 months after invasive first primary BC 
diagnosis, to exclude synchronous CBCs, and ended at date 
of CBC, distant metastasis (but not at loco-regional relapse), 
CPM or last date of follow-up (due to death, being lost to 
follow-up, or end of study), whichever occurred first. In the 
BCAC, 27,155 patients were recruited more than 3 months 
after diagnosis of the first primary BC (prevalent cases); for 
these patients, follow-up started at date of recruitment (left 
truncation). Distant metastasis and death due to any cause 
were competing events.

The Manchester formula provides an estimate of a wom-
an’s individual lifetime CBC risk. To assess the prediction 
performance, we translated the lifetime CBC risk to 5- and 
10-year CBC risks (see Supplementary Material). The pre-
dictors included in the CBC risk estimation in the Manches-
ter formula, CBCrisk and PredictCBC models are provided 
in Table 1. Predictors that were sporadically missing were 
multiply imputed as described elsewhere [5].

Statistical analysis

Discrimination, the ability of the model to differentiate 
between patients who experienced CBC and those who 
did not, was calculated by time-dependent Area-Under-
the-Curve (AUCs) based on Inverse Censoring Probability 
Weighting at 5 and 10 years [15, 16]. Values of AUCs close 
to 1 indicate good discrimination while values close to 0.5 
indicate poor discrimination (a coin flip). Calibration is the 
agreement between observed and predicted risk and is com-
monly characterized by calibration-in-the-large and slope 
statistic. Calibration-in-the-large characterizes the overall 
difference between the observed and predicted risks. It was 
calculated using the expected/observed (E/O) ratio. An E/O 
less than 1 indicates that the model systematically underes-
timates CBC risk, while an E/O above 1 indicates that the 
model systematically overestimates CBC risk. The expected 
number of cases was calculated by summing the individ-
ual predicted probabilities at 5 and 10 years, based on the 
patient-specific covariate values [17]. The observed number 
of cases was estimated by the non-parametric CBC cumula-
tive incidence at 5 and 10 years. The calibration slope was 
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estimated using a Fine and Gray regression model using the 
linear predictor of the prediction tools. The linear predictor 
was vs constructed as the sum of the factors included in each 
model weighted by the corresponding regression coefficients 
(or parameters), and then computed in the validation dataset 
exactly as reported for the development set. The calibration 
slope is determined as the regression coefficient for this lin-
ear predictor when fitted as a single covariate in a regres-
sion model of disease outcome in the validation dataset. A 
well-calibrated model should have a calibration slope of 1; 
slopes < 1 indicate that coefficients were too optimistic for 
the validation setting [18]. Calibration results were graphi-
cally displayed.

Analyses were stratified by geographic groups of studies, 
since stratification by individual studies would provide too 
few events in some strata [5, 13, 19]. To allow for heteroge-
neity across multiple studies, random-effect meta-analyses 
were performed. We calculated 95% confidence intervals 
(CI) and 95% prediction intervals (PI), which indicate the 
likely range for prediction accuracy of the model in a new 
dataset, for discrimination and calibration measures. A sen-
sitivity analysis was performed to check the consistency of 
CBCrisk performance measures when metachronous CBC 
was defined as an event after 6 instead of 3 months since 
the first BC diagnosis. More details are provided in the 

Supplementary Material. All analyses were implemented 
using SAS (SAS Institute Inc., NC, USA) and R software 
[20].

Results

We included 132,756 patients from 20 studies who expe-
rienced 4862 CBC events during a median follow-up of 
8.8 years. The main patient and clinical characteristics 
across studies and geographic areas are shown in Table 2.

The AUCs at 5 and 10 years was around 0.6: 0.59 (95% CI 
0.57–0.61; 95% PI 0.54–0.64) and 0.58 (95% CI 0.57–0.59; 
95% PI 0.55–0.61) for CBCrisk (Fig.  1); 0.61 (95% CI 
0.60–0.62; 95% PI 0.59–0.63) and 0.60 (95% CI 0.59–0.61; 
95% PI 0.58–0.62) for the Manchester formula (Fig. 2). The 
E/O ratio at 5 and 10 years was close to 1 for all models: 
0.86 (95% CI 0.50–1.46; 95% PI 0.20–3.75) and 0.82 (95% 
CI 0.51–1.32; 95% PI 0.21–3.14) for CBCrisk (Table 3); 
1.54 (95% CI 0.61–3.92; 95% PI 0.11–20.72, Table 4), 
and 1.53 (95% CI 0.63–3.73; 95% PI 0.13–18.52) for the 
Manchester formula (Table 4); 1.26 (95% CI 0.57–2.77; 
95% PI 0.14–11.34), and 1.28 (95% CI 0.63–2.58; 95% PI 
0.18–9.18) for PredictCBC-1A (Table 5); 1.33 (95% CI 
0.59–2.99, 95% PI 0.14–12.76), 1.35 (95% CI 0.65–2.77; 

Table 1  Predictors included 
in current contralateral breast 
cancer risk prediction tools

ER estrogen-receptor status, HER2 human epidermal growth factor receptor 2
a Contralateral breast cancer risk was calculated including women diagnosed with ductal carcinoma in situ
b Chowdhury et al. [7]
c Basu et al. [8]
d Giardiello et al. [5]

List of predictors CBCriskb Manchester 
 formulac

PredictCBC ver-
sion  1Ad

PredictCBC 
version  1Bd

Age at diagnosis ✔ ✔ ✔ ✔
Age at first birth ✔
First-degree family history ✔ ✔ ✔ ✔
BRCA1/2 germline mutation ✔ ✔
First breast cancer behavior  typea ✔ ✔
Lymph node status ✔ ✔
Breast density ✔
Tumor size ✔ ✔
Morphology ✔ ✔
Tumor grade ✔ ✔
High-risk pre-neoplasia ✔
ER status ✔ ✔ ✔ ✔
HER2 status ✔ ✔
Chemotherapy ✔ ✔
Endocrine therapy ✔ ✔ ✔
Radiation to the breast ✔ ✔
Trastuzumab ✔ ✔
Oophorectomy under 40 years ✔
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95% PI 0.19–10.24) for PredictCBC-1B (Table 5) [5]. The 
calibration slope was close to 1 for CBCrisk (1.26, 95% 
CI 1.01–1.50 and 95% PI 1.01–1.50, Tables 3, 4, 5), and 
PredictCBC-1A and 1B 0.90 (95% CI 0.79–1.02; 95% PI 
0.73–1.08), and 0.81 (95% CI 0.63–0.99; 95% PI 0.50–1.12) 
(Table 5), while prognostic effects were far too large for the 
Manchester formula (slope: 0.39, 95% CI 0.34–0.43, 95% 
PI 0.34–0.43, Tables 4, 5). Calibration plots of CBCrisk 
at 5 and 10 years are shown in Supplementary Fig. 1 and 

Supplementary Fig. 2. As reported previously [5], the AUCs 
at 5 and 10 years for PredictCBC-1A were 0.63 (95% CI 
0.58–0.67, 95% PI 0.52–0.74), and 0.63 (95% CI 0.59–0.66, 
95% PI 0.53–0.72), respectively; for PredictCBC-1B 0.59 
(CI 0.54–0.63, 95% PI 0.46–0.71, Table 5), and 0.59 (95% 
CI 0.56–0.62, 95% PI 0.52–0.66, Table 5), respectively.

Sensitivity analysis showed that the performance meas-
ures of CBCrisk did not change when metachronous CBC 
was defined after 6 months since first BC diagnosis (see 

Table 2  Description of main patient and clinical factors used for evaluation of the models and formula

More details about the main patient and clinical characteristics by study are available in the supplementary information of [5]
BOSOM Breast Cancer Outcome Study of Mutation carriers, EMC Erasmus Medical Center, NCR Netherlands Cancer Registry, BC breast can-
cer, ER estrogen receptor, CBC contralateral breast cancer, CI confidence interval
a The studies denoted with Europe and United States and Australia are part of the Breast Cancer Association Consortium
b Europe—other geographic area included studies from Belgium (1), Germany (2), Netherlands (2) and Poland (2)

Studya/geographic 
area

Europe —otherb Europe—Scan-
dinavia

Europe—United 
Kingdom

Netherlands—
BOSOM

Netherlands—
EMC

Netherlands—
NCR

United States 
and Australia

N 15,183 12,928 11,921 3760 3390 83,138 2436
Age at first diagno-

sis, years (%)
 < 30 152 (1.0) 46 (0.4) 156 (1.3) 108 (2.9) 46 (1.4) 388 (0.5) 41 (1.7)
 30–39 1252 (8.2) 489 (3.8) 1811 (15.2) 842 (22.4) 374 (11.0) 4241 (5.1) 494 (20.3)
 40 + 13,779 (90.8) 12,393 (95.9) 9954 (83.5) 2810 (74.7) 2970 (87.6) 78,509 (94.4) 1901 (78.0)
 Age at first 

birth = unknown 
(%)

15,183 (100.0) 12,928 (100.0) 11,921 (100.0) 3760 (100.0) 3390 (100.0) 83,138 (100.0) 2436 (100.0)

Family history (%)
 Yes 2123 (14.0) 818 (6.3) 1371 (11.5) 737 (19.6) 591 (17.4) 0 (0.0) 319 (13.1)
 No 8057 (53.1) 3158 (24.4) 8210 (68.9) 1177 (31.3) 2482 (73.2) 0 (0.0) 1498 (61.5)
 Unknown 5003 (33.0) 8952 (69.2) 2340 (19.6) 1846 (49.1) 317 (9.4) 83,138 (100.0) 619 (25.4)

First BC type = Pure 
invasive (%)

15,183 (100.0) 12,928 (100.0) 11,921 (100.0) 3760 (100.0) 3390 (100.0) 83,138 (100.0) 2436 (100.0)

Breast den-
sity = unknown 
(%)

15,183 (100.0) 12,928 (100.0) 11,921 (100.0) 3760 (100.0) 3390 (100.0) 83,138 (100.0) 2436 (100.0)

ER status (%)
 Negative 3387 (22.3) 1746 (13.5) 1718 (14.4) 896 (23.8) 842 (24.8) 14,591 (17.6) 445 (18.3)
 Positive 10,071 (66.3) 9401 (72.7) 7175 (60.2) 2024 (53.8) 2427 (71.6) 64,790 (77.9) 1572 (64.5)
 Unknown 1725 (11.4) 1781 (13.8) 3028 (25.4) 840 (22.3) 121 (3.6) 3757 (4.5) 419 (17.2)

High-risk pre-neo-
plasia = unknow 
n (%)

15,183 (100.0) 12,928 (100.0) 11,921 (100.0) 3760 (100.0) 3390 (100.0) 83,138 (100.0) 2436 (100.0)

Anti-estrogen 
therapy (%)

 Yes 7868 (51.8) 6434 (49.8) 8712 (73.1) 809 (21.5) 1559 (46.0) 40,214 (48.4) 363 (14.9)
 No 4570 (30.1) 1947 (15.1) 2046 (17.2) 2739 (72.8) 1821 (53.7) 42,924 (51.6) 8 (0.3)
 Unknown 2745 (18.1) 4547 (35.2) 1163 (9.8) 212 (5.6) 10 (0.3) 0 (0.0) 2065 (84.8)

CBC cumulative 
incidence (%)

 3-year (95% CI) 1.0 (0.8–1.2) 0.7 (0.5–0.9) 0.5 (0.3–0.7) 1.7 (1.3–2.1) 1.7 (1.2–2.1) 1.3 (1.2–1.4) 1.8 (0.8–2.8)
 5-year (95% CI) 1.6 (1.4–1.9) 1.0 (0.8–1.3) 1.0 (0.8–1.3) 3.0 (2.5–3.6) 2.6 (2.1–3.2) 2.4 (2.3–2.5) 2.8 (1.7–3.8)
 10-year (95% CI) 3.5 (3.1–3.9) 2.1 (1.7–2.4) 1.3 (1.0–1.5) 5.5 (4.7–6.2) 5.7 (4.9–6.6) 4.6 (4.5–4.8) 4.1 (3.0–5.3)



427Breast Cancer Research and Treatment (2020) 181:423–434 

1 3

Fig. 1  Prediction performance of the CBCrisk model (Chowd-
hury et  al. [7]). The upper and lower panel show the discrimina-
tion assessed by a time-dependent Area-Under-the-Curve at 5 and 
10 years, respectively. The black squares indicate the estimated accu-
racy of a model built on all remaining studies or geographic areas. 

The black horizontal lines indicate the corresponding 95% confidence 
intervals of the estimated accuracy (interval whiskers). The black 
diamonds indicate the mean with the corresponding 95% confidence 
interval of the predictive accuracy

Fig. 2  Prediction performance of the Manchester formula (Basu et al. 
[8]) The upper and lower panel show the discrimination assessed by a 
time-dependent Area-Under-the-Curve at 5 and 10 years, respectively. 
The black squares for each dataset indicate the estimated accuracy of 
a model built on all remaining studies or geographic areas. The black 

horizontal lines indicate the corresponding 95% confidence intervals 
of the estimated accuracy (interval whiskers). The black diamonds 
indicate the mean with the corresponding 95% confidence interval of 
the predictive accuracy
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Table 3  Calibration 
performance of the CBC risk 
model

Chowdhury et al. [7]
E/O expected-observed, CI confidence interval, UK United Kingdom, BOSOM Breast Cancer Outcome 
Study of Mutation carriers, EMC Erasmus Medical Center, NCR Netherlands Cancer Registry, PI predic-
tion interval

Validation dataset E/O ratio at 5 years (95% CI) E/O ratio at 
10 years (95% CI)

Calibration slope (95% CI)

Europe—Other 0.87 (076 to 0.98) 0.75 (0.68 to 0.81) 1.11 ( 0.40 to 1.83)
Europe—Scandinavia 1.59 (1.28 to 1.91) 1.23 (1.08 to 1.38) 0.86 ( 0.16 to 1.57)
Europe—UK 1.35 (1.38 to 2.17) 1.82 (1.53 to 2.11) 0.85 (− 0.03 to 1.73)
Netherlands—BOSOM 0.45 (0.37 to 0.53) 0.50 (0.43 to 0.57) 1.34 ( 0.76 to 1.93)
Netherlands—EMC 0.48 (0.38 to 0.57) 0.43 (0.37 to 0.50) 1.19 ( 0.65 to 1.73)
Netherlands—NCR 0.57 (0.54 to 0.59) 0.54 (0.52 to 0.56) 1.40 ( 1.11 to 1.68)
US and Australia 0.43 (0.33 to 0.54) 0.56 (0.45 to 0.67) 1.13 ( 0.25 to 2.00)
Meta-analysis 0.86 (0.50 to 1.46) 0.82 (0.51 to 1.32) 1.26 ( 1.01 to 1.50)
95% PI 0.20 to 3.75 0.21 to 3.14 1.01 to 1.50

Table 4  Calibration 
performance of the Manchester 
formula

Basu et al. [8]
E/O expected-observed, CI confidence interval, UK United Kingdom, BOSOM Breast Cancer Outcome 
Study of Mutation carriers, EMC Erasmus Medical Center, NCR Netherlands Cancer Registry, PI predic-
tion interval

Validation dataset E/O ratio at 5 years (95% CI) E/O ratio at 
10 years (95% CI)

Calibration slope (95% CI)

Europe—Other 1.64 (1.44 to 1.85) 1.46 (1.34 to 1.58) 0.40 (0.29 to 0.50)
Europe—Scandinavia 2.61 (2.09 to 3.12) 2.11 (1.85 to 2.37) 0.35 (0.13 to 0.57)
Europe—UK 3.34 (2.60 to 4.08) 3.49 (2.93 to 4.05) 0.42 (0.23 to 0.61)
Netherlands—BOSOM 0.81 (0.66 to 0.96) 0.92 (0.79 to 1.05) 0.45 (0.33 to 0.56)
Netherlands—EMC 0.94 (0.75 to 1.14) 0.87 (0.75 to 1.00) 0.35 (0.21 to 0.49)
Netherlands—NCR 1.00 (0.95 to 1.04) 1.01 (0.98 to 1.05) 0.37 (0.33 to 0.42)
US and Australia 0.77 (0.58 to 0.96) 1.02 (0.82 to 1.23) 0.51 (0.33 to 0.68)
Meta-analysis 1.54 (0.61 to 3.92) 1.53 (0.63 to 3.73) 0.39 (0.34 to 0.43)
95% PI 0.11 to 20.72 0.13 to 18.52 0.34 to 0.43

Table 5  Summary of prediction performance of CBCrisk, Manchester formula, and PredictCBC version 1A and version 1B with the correspond-
ing 95% prediction intervals (PI)

AUC  Area under the curve, PI prediction interval
a Chowdhury et al. [7]
b Basu et al. [8]
c Giardiello et al. [5], Fig. 1 and Figure S5
d version 1A includes BRCA  mutation status as a variable while 1B does not

Characteristics CBCriska Manchester  formulab PredictCBC version  1Ac,d PredictCBC version  1Bc,d

Discrimination
 AUC at 5 years (95% PI) 0.59 (0.54 to 0.64) 0.61 (0.59 to 0.63) 0.63 (0.52 to 0.74) 0.59 (0.46 to 0.71)
 AUC at 10 years (95% PI) 0.58 (0.55 to 0.61) 0.60 (0.58 to 0.62) 0.63 (0.53 to 0.72) 0.59 (0.52 to 0.66)

Calibration
 E/O ratio at 5 years (95% PI) 0.86 (0.20 to 3.75) 1.54 (0.11 to 20.72) 1.26 (0.14 to 11.34) 1.33 (0.14 to 12.76)
 E/O ratio at 10 years (95% PI) 0.82 (0.21 to 3.14) 1.53 (0.13 to 18.52) 1.28 (0.18 to 9.18) 1.35 (0.19 to 10.24)
 Slope (95% PI) 1.26 (1.01 to 1.50) 0.39 (0.34 to 0.43) 0.90 (0.73 to 1.08) 0.81 (0.50 to 1.12)
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Supplementary Materials, Supplementary Tables 1, 2 and 
Supplementary Fig. 3).

Discussion

Accurate CBC risk predictions are essential in clinical deci-
sion-making around CPM or tailored surveillance among 
patients with first primary BC. In particular, overestimation 
of risk can lead to recommending CPM among BC patients 
with low risks. Underestimation can lead to suboptimal 
surveillance or hesitance about recommending CPM for 
patients with substantial risk. Using individual patient data 
from multiple studies with long follow-up, we externally 
evaluated the prediction performance accuracy of CBCrisk, 
a tool developed and validated to provide individualized 
CBC risk prediction, and the Manchester formula, a heu-
ristically derived calculation of CBC lifetime risk [6–9]. In 
addition, the availability of different European-descendent 
studies allowed heterogeneity in the performance by geo-
graphic area to be assessed.

CBCrisk under-predicted the risk of CBC and had moder-
ate discrimination ability with considerable heterogeneity 
between studies. The Manchester formula was empirically 
derived from a systematic review, and its discrimination 
accuracy was higher than CBCrisk. This may be explained 
by the inclusion of BRCA1/2 mutation carrier information, 
an important determinant of CBC risk [21]. With the same 
large individual patient data sets, PredictCBC models had 
been developed and validated [5]. In particular, PredictCBC 
version 1A includes information of BRCA1/2 mutation carri-
ers and extensive information about the primary BC includ-
ing treatments. The discrimination of all three prediction 
models was moderate, with AUC values around 0.6.

CBCrisk was previously externally validated using two 
independent clinical studies from Johns Hopkins University 
(JH) and MD Anderson Cancer Center (MDA) in the US [9]. 
Discrimination ability was 0.61 and 0.65 at 3 years, and 0.62 
and 0.61 at 5 years for JH and MDA, respectively. The risk 
of CBC was overestimated in JH with E/O ratios of 2.02 and 
1.56 at 3 and 5 years, while underestimated in MDA with 
E/O ratios of 0.61 and 0.62, respectively.

The considerable heterogeneity in all CBC risk calcula-
tors, especially in the CBCrisk and the Manchester formula, 
reflects the different CBC incidences in every study [13]. 
Another potential source of heterogeneity is the carrier fre-
quency of germline mutations associated with CBC that may 
vary among studies, especially in the CBC calculators not 
including information of BRCA1/2 mutation as CBCrisk and 
the PredictCBC-1B [22]. In addition, heterogeneity may be 
due to the different proportions of the use of (neo)adjuvant 
systemic therapies explained by the different distribution of 
tumor subtypes among studies [4]. Besides, inter-observer 

variation in pathological examination of BC among stud-
ies may lead to different adjuvant systemic therapy advice 
and, consequently, prediction of CBC risk [23]. Variation 
in prediction performance and limited generalizability of 
CBC risk calculators can also be partially explained by dif-
ferences in how predictors are measured among studies [24, 
25]. For example, lack of family history knowledge may 
lead to uncertainty in risk prediction and varies according 
to demographics of the patients [26]. In particular, if in some 
studies BC patients misreported information about family 
history, the CBC risk would be over(under)estimated caus-
ing inappropriate decision-making regarding CPM or tai-
lored surveillance. Some limitations of our study must be 
recognized. First, our dataset, while large, had missing data 
for three covariates that were used in the CBCrisk model: 
breast density, age at first birth, and high-risk pre-neopla-
sia. The authors of CBCrisk estimated the relative risks for 
patients with the unknown characteristics, but the use of 
the missing indicator variable is suboptimal compared to 
having the prognostic information available. It may lead to 
over or under-estimation of absolute CBC risk [27]. For this 
reason, we suggest that it is preferable to use multiple impu-
tation of missing data, as is done in the PredictCBC models 
[28, 29]. In addition, investigation of the potential source of 
model misspecification due to possible different definitions 
or measurement error was not possible [30–32].

In conclusion, current statistical risk prediction mod-
els and heuristic formulas provided moderate CBC indi-
vidualized prediction performance. Careful re-calibration 
is required before considering these models for clinical 
decision-making. A more direct comparison between the 
current CBC risk prediction models using a large external 
dataset with complete information on all factors included in 
all CBC prediction models would be ideal, but is currently 
unavailable. There is an ongoing debate about improvements 
of clinical prediction performance using machine learning 
approaches compared to standard regression approaches for 
risk prediction [33, 34]. However, irrespective of the meth-
odology, better predictors are needed to predict CBC more 
accurately. Deeper biological insights and potential inclusion 
of other genetic markers such as CHEK2 c.1100del mutation 
status and polygenic risk scores based on common genetic 
variants may improve CBC risk prediction, although rare 
mutations are unlikely to contribute substantially to CBC 
risk in the general population [35, 36]. Life-style factors 
such as body mass index, alcohol consumption, and smok-
ing also may help to better stratify high- and low-CBC risk 
patients even though these factors are difficult to measure 
accurately. Moreover, breast density may be important. More 
detailed information about adjuvant systemic therapies may 
better identify patients with low- and high-CBC risk since 
chemotherapy and especially endocrine therapy reduce CBC 
risk [4]. After extension and further external validation of 
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prediction models for CBC risk, investigation of their poten-
tial clinical utility is an important future step.
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