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Breast cancer susceptibility variants frequently show hetero-
geneity in associations by tumor subtype1–3. To identify novel 
loci, we performed a genome-wide association study includ-
ing 133,384 breast cancer cases and 113,789 controls, plus 
18,908 BRCA1 mutation carriers (9,414 with breast cancer) 
of European ancestry, using both standard and novel meth-
odologies that account for underlying tumor heterogene-
ity by estrogen receptor, progesterone receptor and human 
epidermal growth factor receptor 2 status and tumor grade. 
We identified 32 novel susceptibility loci (P < 5.0 × 10−8), 15 
of which showed evidence for associations with at least one 
tumor feature (false discovery rate < 0.05). Five loci showed 
associations (P < 0.05) in opposite directions between lumi-
nal and non-luminal subtypes. In silico analyses showed that 
these five loci contained cell-specific enhancers that differed 
between normal luminal and basal mammary cells. The genetic 
correlations between five intrinsic-like subtypes ranged from 
0.35 to 0.80. The proportion of genome-wide chip heritabil-
ity explained by all known susceptibility loci was 54.2% for 
luminal A-like disease and 37.6% for triple-negative disease. 
The odds ratios of polygenic risk scores, which included 
330 variants, for the highest 1% of quantiles compared with 
middle quantiles were 5.63 and 3.02 for luminal A-like and 
triple-negative disease, respectively. These findings pro-
vide an improved understanding of genetic predisposition to 
breast cancer subtypes and will inform the development of 
subtype-specific polygenic risk scores.

Based on the largest genome-wide association study (GWAS) to 
date from the Breast Cancer Association Consortium (BCAC), over 
170 independent breast cancer susceptibility variants have been 
identified. Many of these variants show differential associations 
by tumor subtype, particularly estrogen-receptor-positive versus 
estrogen-receptor-negative or triple-negative disease1–3. However, 
previous GWASs have not simultaneously accounted for the high 
correlations among multiple, correlated tumor markers (such as 
estrogen receptor, progesterone receptor and human epidermal 
growth factor receptor 2 (HER2)) and grade, to identify specific 
source(s) of etiological heterogeneity. We performed a breast cancer 
GWAS using both standard analyses and a novel two-stage poly-
tomous regression method that efficiently characterizes etiological 
heterogeneity while accounting for tumor marker correlations and 
missing data4.

The study populations and genotyping are described else-
where1,2,5,6 and in the Methods. Briefly, we analyzed data from 
118,474 cases and 96,201 controls of European ancestry partici-
pating in 82 studies from the BCAC, as well as 9,414 affected and 
9,494 unaffected BRCA1 mutation carriers from 60 studies from the 
Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA) 

with genotyping data from one of two Illumina genome-wide cus-
tom arrays. In analyses of overall breast cancer, we also included 
summary-level data from 11 other breast cancer GWASs (14,910 
cases and 17,588 controls) without subtype information. Our study 
expands on previous BCAC GWASs1, with additional data on 
10,407 cases and 7,815 controls—an approximate increase of 10 and 
9%, respectively (Supplementary Tables 1–4).

The statistical methods are further described in the Methods and 
Extended Data Fig. 1. To identify variants for overall breast can-
cer (invasive, in situ or unknown invasiveness) in BCAC, we used 
standard logistic regression to estimate odds ratios (ORs) and 95% 
confidence intervals (95% CIs), adjusting for country and principal 
components. iCOGS and OncoArray data were evaluated separately 
and the results were combined with those from the 11 other GWASs 
using fixed-effects meta-analysis.

To identify breast cancer susceptibility variants displaying 
evidence of heterogeneity, we used a novel score test based on a 
two-stage polytomous model4 that allows flexible, yet parsimoni-
ous, modeling of associations in the presence of underlying het-
erogeneity by estrogen receptor, progesterone receptor, HER2 
and/or grade (Methods and Supplementary Note). The model 
handles missing tumor characteristic data by implementing an 
efficient expectation–maximization algorithm4,7. These analyses 
were restricted to BCAC controls and invasive cases (Methods). 
We fit an additional two-stage model to estimate case–control 
ORs and 95% CIs between the variants and intrinsic-like subtypes 
defined by combinations of estrogen receptor, progesterone recep-
tor, HER2 and grade8 (Methods): (1) luminal A-like; (2) luminal  
B/HER2-negative-like; (3) luminal B-like; (4) HER2-enriched-like; 
and (5) triple-negative or basal-like. We analyzed iCOGS and 
OncoArray data separately, adjusting for principal components 
and age, and meta-analyzed the results using a fixed-effects model. 
We evaluated the effect of country using a leave-one-out sensitivity 
analysis (Methods).

Among BRCA1 mutation carriers who are prone to develop-
ing triple-negative disease9, we estimated per-allele hazard ratios 
within a retrospective cohort analysis framework. We assumed 
that estimated ORs for BCAC triple-negative cases and estimated 
hazard ratios from CIMBA BRCA1 carriers approximated the same 
underlying relative risk9, and we used a fixed-effects meta-analysis 
to combine these results (Methods). Among all novel variants, we 
used the two-stage polytomous model to test for heterogeneity  
in associations across subtypes, globally and by tumor-specific 
markers (Methods).

Overall, we identified 32 novel independent susceptibility loci 
marked by variants with P < 5.0 × 10−8 (Fig. 1, Supplementary 
Tables 5–7 and Supplementary Figs. 1–5): 22 variants using  
standard logistic regression, 16 variants using the two-stage 
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polytomous model (eight of which were not detected by stan-
dard logistic regression) and three variants in the CIMBA/BCAC 
triple-negative meta-analysis (rs78378222 was also detected by the 
two-stage polytomous model in BCAC). Fourteen additional vari-
ants (P < 5.0 × 10−8) were excluded: 13 because they lacked evidence 
of association independent of known susceptibility variants in con-
ditional analyses (P ≥ 1.0 × 10−6; Supplementary Tables 8–10) and 
one (chr22:40042814) for showing a high degree of sensitivity in 
the leave-one-out country analysis following exclusion of studies 
from the United States (Supplementary Fig. 6). Supplementary Figs. 
7 and 8 and Supplementary Table 11 show associations between all 
32 variants and the intrinsic-like subtypes.

Fifteen of the 32 variants showed heterogeneity evidence (false 
discovery rate (FDR) < 0.05) according to the global heterogene-
ity test (Fig. 2 and Supplementary Table 12). Estrogen receptor 
(seven variants) and grade (seven variants) most often contrib-
uted to observed heterogeneity (marker-specific P < 0.05), fol-
lowed by HER2 (four variants) and progesterone receptor (two 
variants). rs17215231, which was identified in the CIMBA/BCAC 
triple-negative meta-analysis, was the only variant found to be 
exclusively associated with triple-negative disease (OR = 0.85; 95% 
CI = 0.81–0.89). rs2464195, which was also identified as associated 
in the CIMBA/BCAC triple-negative meta-analysis, was associ-
ated with both triple-negative (OR = 0.93; 95% CI = 0.91–0.96) 
and luminal B-like subtypes (OR = 0.96; 95% CI = 0.92–0.99; 
Supplementary Table 11) and is in linkage disequilibrium (coef-
ficient of determination (r2) = 0.62) with rs7953249, which is dif-
ferentially associated with the risk of ovarian cancer subtypes10. 
Five variants showed associations with luminal and non-luminal 
subtypes in opposite directions (Fig. 3). Four variants were associ-
ated in opposite directions with luminal A-like and triple-negative 
subtypes (rs78378222: OR = 1.13 and 95% CI = 1.05–1.20  

versus OR = 0.67 and 95% CI = 0.57–0.80; rs206435: OR = 1.03 
and 95% CI = 1.01–1.05 versus OR = 0.95 and 95% CI = 0.92–0.98; 
rs141526427: OR = 0.96 and 95% CI = 0.94–0.98 versus OR = 1.04 
and 95% CI = 1.01–1.08; rs6065254: OR = 0.96 and 95% CI = 0.94–
0.97 versus OR = 1.04 and 95% CI = 1.01–1.07). The tumor marker 
heterogeneity test showed associations for rs78378222 with estro-
gen receptor (PER = 7.0 × 10−6) and HER2 (PHER2 = 2.07 × 10−4), 
for rs206435 with estrogen receptor (PER = 2.8 × 10−3) and grade 
(Pgrade = 2.8 × 10−4) and for rs141526427 (PER = 1.3 × 10−3) and 
rs6065254 (PER = 4.3 × 10−3) with only estrogen receptor. rs7924772 
showed opposite case–control associations between HER2-negative 
and HER2-positive subtypes and, in agreement with these find-
ings, was exclusively associated with HER2 (PHER2 = 1.4 × 10−6;  
Fig. 3). rs78378222, which is located in the 3′ untranslated region 
of TP53, also showed opposite associations with high-grade serous 
cancers (OR = 0.75; P = 3.7 × 10−4) and low-grade serous can-
cers (OR = 1.58; P = 1.5 × 10−4). Previous analyses11 did not find 
rs78378222 to be associated with breast cancer risk, probably due 
to its opposite effects between subtypes.

Candidate causal variants (CCVs) were defined (Methods) for 
each novel locus and we investigated the CCVs in relation to pre-
viously annotated enhancers in primary breast cells12. Based on 
combinations of H3K4me1 and H3K27ac histone modification 
chromatin immunoprecipitation sequencing (ChIP–seq) signals, 
putative enhancers in basal cells, luminal progenitor cells and 
mature luminal cells were characterized as off, primed or active 
(Methods). We defined switch enhancers as those exhibiting differ-
ent characterizations between cell types. Among the five loci iden-
tified with associations in opposite directions between subtypes, 
at least one CCV per locus overlapped a switch enhancer (Fig. 4).  
For example, rs78378222 overlapped an active enhancer in basal 
cells, a primed enhancer in luminal progenitor cells and an off 
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Known variants

Significant variants in overall analysis

Overall analysis identified 22 novel variants

Subtype analysis identified eight novel variants

Significant variants in novel analysis incorporating subtype heterogeneity

Significant variants in BCAC triple-negative and CIMBA BRCA1 carrier meta-analysis

BCAC triple-negative and CIMBA BRCA1 carrier meta-analysis identified two novel variants
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Fig. 1 | Ideogram of all of the independent genome-wide-significant breast cancer susceptibility variants in overall, subtype, BCAC triple-negative 
and CIMBA BRCA1 carrier meta-analyses. The 32 novel variants are labeled with arrows. The other significant variants are within ±500 or linkage 
disequilibrium > 0.3 with previously reported variants.
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Fig. 2 | Heatmap and clustering of P values from a marker-specific heterogeneity test for 32 breast cancer susceptibility loci. P values are for associations 
between the most significant variants marking each locus (n = 106,278 invasive cases; n = 91,477 controls) and estrogen receptor (ER), progesterone 
receptor (PR), HER2 or grade, adjusting for the top ten principal components and age. P values are raw P values from two-tailed z-test statistics. The 15 
variants in red were significant according to the global heterogeneity tests (FDR < 0.05), of which 14 were found to be genome-wide significant by methods 
accounting for tumor heterogeneity. The blue color scale indicates variants significantly (P < 5.0 × 10−8) associated with risk in different models.
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enhancer in mature luminal cells. In comparison, 63% of the loci 
with consistent direction of associations across subtypes also over-
lapped with a switch enhancer (Supplementary Tables 13 and 14). 
These results suggest that some variants may modulate enhancer 
activity in a cell type-specific manner, thus differentially influencing 
the risk of tumor subtypes.

We used INQUISIT to intersect CCVs with functional annota-
tion data from public databases to identify potential target genes1 
(Supplementary Note and Supplementary Table 15). We predicted 
179 unique target genes for 26 of the 32 independent signals. 

Notably, rs78378222 has been reported to be associated with TP53 
messenger RNA levels in blood and adipose tissue11, which we did 
not replicate in breast tissue. However, our findings of rs78378222 
overlapping a cell type-specific regulatory element in breast basal 
epithelial cells implicates enhancer function as another potential 
TP53 transcriptional control mechanism. Twenty-three target genes 
in 14 regions were predicted with high confidence (designated 
level 1), of which 22 target genes in 13 regions were predicted to 
be distally regulated. Four target genes were previously predicted 
by INQUISIT13,14 (that is, POLR3C, RNF115, SOX4 and TBX3  
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Fig. 3 | Susceptibility variants with associations in opposite directions across subtypes. The case–control ORs and 95% CIs (left) are for associations 
of each of the five variants and risk for breast cancer intrinsic-like subtypes, estimated from the two-stage polytomous regression fixed-effects model 
(n = 106,278 invasive cases; n = 91,477 controls). The case–case ORs and 95% CIs (right) were estimated from the same two-stage polytomous model, 
and the parameter for each tumor characteristic was adjusted for the others. In both plots, the data points represent the per-minor-allele OR and the error 
bars show the 95% CI. Luminal A-like: ER+ and/or PR+, HER2−, grades 1 and 2; luminal B/HER2-negative-like: ER+ and/or PR+, HER2−, grade 3; luminal 
B-like: ER+ and/or PR+, HER2+; HER2-enriched-like: ER− and PR−, HER2+; and triple-negative: ER−, PR−, HER2−.

Table 1 | Genetic variance of invasive breast cancer explained by identified susceptibility variants and all reliably genome-wide 
imputable variantsa

Phenotype Genetic variance for 210 
identified susceptibility 
variantsb

Genetic variance for 
32 newly identified 
variantsb

Genetic variance 
for all GWAS 
variantsc

Proportion of genetic variance 
explained by identified 
susceptibility locid

Invasive breast cancere 0.253 0.016 0.515 45.51%

Luminal A-like 0.336 0.022 0.620 54.22%

Luminal B/HER2-negative-like 0.233 0.018 0.597 38.95%

Luminal B-like 0.270 0.020 0.740 36.46%

HER2-enriched-like 0.200 0.011 0.689 29.05%

Triple-negative 0.185 0.025 0.492 37.63%

CIMBA BRCA1 carriers 0.083 0.016 0.309 26.86%
aGenetic variance corresponds to heritability on the frailty scale, which assumes the polygenetic log-additive model as the underlying model. bSusceptibility variants included 178 previoulsy identified 
variants1,2 and 32 variants newly identified in this paper. cThe genetic variance of all reliably genome-wide imputable variants was estimated through linkage disequilibrium score regression, as described 

in refs. 18,19. Under the frailty scale, the genetic variance for all GWAS variants was characterized by population variance of the underlying true PRS as σ2GWAS ¼ Var
PM

m¼1 βmGm

 

I

, where Gm is the 

standardized genotype for the mth variant, βm is the true log[odds ratio] for the mth variant and M is the total number of causal variants among the GWAS variants (Methods). dProportion of genetic 
variance explained by 210 identified GWAS significant variants over the genetic variance explained by all GWAS variants. eInvasive breast cancer summary-level statistics were generated from 106,278 
invasive cases and 91,477 controls, which were the same samples used in the subtype analyses (Supplementary Table 2).

Nature GeNetics | VOL 52 | June 2020 | 572–581 | www.nature.com/naturegenetics 575



Letters Nature GeNetics

(a known somatic breast cancer driver gene15), along with genes 
implicated by transcriptome-wide association studies (LINC00886 
(ref. 16) and YBEY17).

We used linkage disequilibrium score regression to investigate 
genetic correlations18,19 between subtypes and compare enrichment 
of genomic features20 between luminal A-like and triple-negative 
subtypes (Methods). All subtypes were moderately to highly corre-
lated, with luminal A-like and triple-negative having a correlation of 
0.46 (s.e. = 0.05). The correlation between breast cancer in BRCA1 
carriers and triple-negative breast cancers in BCAC participants was 
0.83 (s.e. = 0.08), suggesting a high degree of similarity in the genetic 
basis between these subtypes (Fig. 5 and Supplementary Table 16). 
To compare genomic enrichment, we first evaluated 53 annota-
tions and found that triple-negative tumors were most enriched 

for ‘super-enhancers, extend500bp’ (3.04-fold; P = 3.3 × 10−6) and 
‘digital genomic footprint, extend500bp’ (from DNase hypersensi-
tive sites) (2.2-fold; P = 4.0 × 10−4); however, no annotations signifi-
cantly differed between luminal A-like and triple-negative tumors 
(Supplementary Table 17 and Supplementary Fig. 9). On investiga-
tion of cell-specific enrichment of the histone markers H3K4me1, 
H3K3me3, H3K9ac and H3K27ac (Supplementary Note), we found 
both luminal A and triple-negative subtypes enriched for gastro-
intestinal cell types and suppression of central nervous system cell 
types (Supplementary Fig. 10).

The proportions of genome-wide chip heritability explained by 
the 32 novel variants plus 178 previously identified variants1,2,21 were 
54.2, 37.6 and 26.9% for luminal A-like, triple-negative and BRCA1 
carriers, respectively (Table 1 and Supplementary Table 18). These 
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Fig. 4 | Heatmap of CCVs overlapping with enhancer states in primary breast subpopulations for five variants with associations in the opposite 
direction across subtypes. a–e, The lead variants, chromosomes and positions for each of the five variants were, respectively: rs78378222, 17 and 
7,571,752 (a), rs141526427, 20 and 11,502,618 (b), rs6065254, 20 and 39,248,265 (c), rs7924772, 11 and 120,233,626 (d) and rs206435, 18 and 
10,354,649 (e). Three different breast subpopulations were considered: basal cells (BCs), luminal progenitor cells (LPs) and mature luminal cells (LMs). 
Based on a combination of H3K4me1 and H3K27ac histone modification ChiP–seq signals, putative enhancers in basal cells, luminal progenitor cells and 
mature luminal cells were characterized as off, primed or active (Methods). The CCVs overlapping with enhancers are colored red.
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210 variants explained approximately 18.3% of the twofold famil-
ial relative risk for invasive breast cancer, while all reliably imput-
able variants on the OncoArray explained 37.1% (Methods). The 
per-standard deviation ORs between polygenic risk scores (PRSs) 
for luminal A-like and triple-negative subtypes (Methods), which 
included 313 published variants22 and 17 novel variants that were 
independent of the 313 variants (Supplementary Table 19), were 
1.83 (95% CI = 1.78–1.88) and 1.65 (95% CI = 1.57–1.73), with cor-
responding areas under the receiver-operator curves of 66.09 and 
63.58, respectively (Extended Data Fig. 2–6).

These analyses show the benefit of combining standard GWAS 
methods with methods accounting for underlying tumor hetero-
geneity. Moreover, these methods and results may help to clarify 
mechanisms predisposing to specific molecular subtypes, and pro-
vide precise risk estimates for subtypes to inform the development 
of subtype-specific PRSs22. However, to expand the generalizability 
of our findings, these analyses should be replicated and expanded in 
multi-ancestry populations.
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Methods
Study populations. The overall breast cancer analyses included women of 
European ancestry from 82 BCAC studies from over 20 countries, with genotyping 
data derived from two Illumina genome-wide custom arrays: the iCOGS and 
OncoArray (Supplementary Table 1). Most of the studies were case–control studies 
in the general population or hospital setting, or nested within population-based 
cohorts, but a subset of studies oversampled cases with a family history of the 
disease. We included controls, cases of invasive breast cancer, cases of carcinoma 
in situ and cases of unknown invasiveness. Information on clinicopathological 
characteristics was collected for the individual studies and combined in a central 
database after quality control checks. We used the BCAC database version 10 for 
these analyses. Among a subset of participants (n = 16,766) who were genotyped 
on both the iCOGS and OncoArray arrays, we kept only the OncoArray data. 
One study contributing to the iCOGS dataset (Leuven Multidisciplinary Breast 
Centre) was excluded due to inflation of the test statistics that was not corrected 
by adjustment for the first ten principal components. We also excluded OncoArray 
data from Norway (the Norwegian Breast Cancer Study) because there were no 
controls available from Norway with OncoArray data. All participating studies 
were approved by their appropriate ethics or institutional review board and all 
participants provided informed consent. The total sample size for this analysis, 
including iCOGS, OncoArray and other GWAS data, comprised 133,384 cases and 
113,789 controls.

In the GWAS analyses accounting for underlying heterogeneity according to 
estrogen receptor, progesterone receptor, HER2 and grade, we included genotyping 
data from 81 BCAC studies. These analyses were restricted to controls and cases 
of invasive breast cancer. We excluded cases of carcinoma in situ and cases with 
missing information on invasiveness, as ~96% of in situ cases were missing some 
or all of the tumor markers and in situ cases potentially have different tumor 
characteristic correlations compared with invasive cases, which could potentially 
bias the estimates from the expectation–maximization based missing data handling 
algorithm (Supplementary Table 2). We also excluded all studies from a specific 
country if there were no controls for that country, or if the tumor marker data 
were missing on two or more of the tumor marker subtypes (see the footnote of 
Supplementary Table 2 for a further explanation of the excluded studies). We did 
not include the summary results from the 14,910 cases and 17,588 controls from 
the 11 other GWASs in subtype analyses because these studies did not provide data 
on tumor characteristics. We also excluded invasive cases (n = 293) and controls 
(n = 4,285) with missing data on age at diagnosis or age at enrollment (included 
in the expectation–maximization algorithm to better impute missing tumor 
characteristics). In total, the final sample for the two-stage polytomous logistic 
regression comprised 106,278 invasive cases and 91,477 controls.

Participants included from CIMBA were women of European ancestry aged 
18 years or older with a pathogenic BRCA1 variant. Most participants were sampled 
through cancer genetics clinics. In some instances, multiple members of the same 
family were enrolled. OncoArray genotype data were available from 58 studies 
from 24 countries. Following quality control and the removal of participants who 
overlapped with the BCAC OncoArray study, data were available on 15,566 BRCA1 
mutation carriers, of whom 7,784 were affected with breast cancer (Supplementary 
Table 3). We also obtained iCOGS genotype data on 3,342 BRCA1 mutation 
carriers (1,630 with breast cancer) from 54 studies through CIMBA. All BRCA1 
mutation carriers provided written informed consent and participated under 
ethically approved protocols.

Genotyping, quality control and imputation. Details on genotype calling, quality 
control and imputation for the OncoArray, iCOGS and GWASs are described 
elsewhere1,2,5,6. Genotyped or imputed variants (including bi-allelic and multi-allelic 
single-nucleotide polymorphisms (SNPs) and small indels) marking each of the 
loci were determined using the iCOGS and OncoArray genotyping arrays and 
imputation to the 1000 Genomes Project (phase 3) reference panel. We included 
variants from each component GWAS with an imputation quality score of >0.3. We 
restricted analysis to variants with a minor allele frequency of >0.005 in the overall 
breast cancer analysis and >0.01 in the subtype analysis.

Known breast cancer susceptibility variants. Previous studies identified 
susceptibility variants from genome-wide analyses at a significance level 
of P < 5.0 × 10−8 for all breast cancer types, estrogen-receptor-negative or 
estrogen-receptor-positive breast cancer, in BRCA1 or BRCA2 mutation carriers, or 
in meta-analyses of these1–3. We defined known breast cancer susceptibility variants 
as those variants that were identified or replicated in previous BCAC analyses1,2. 
To help ensure that novel, independent susceptibility variants were identified, we 
excluded from these analyses variants within 500 kilobases (kb) of a previously 
published variant. These excluded regions were subject to separate, fine-mapping 
conditional analyses that were focused on identifying additional independent 
susceptibility variants in these regions14.

Standard analysis of BCAC data. Logistic regression analyses were conducted 
separately for the iCOGS and OncoArray datasets, adjusting for country and the 
array-specific first ten principal components for ancestry informative variants. The 
methods for estimating principal components have been described elsewhere1,2. 

For the remaining GWASs, adjustment for inflation was done by adjusting for up to 
three principal components and using genomic control adjustment, as previously 
described1. We evaluated the associations between approximately 10.8 million 
variants with imputation quality scores (r2) ≥ 0.3 and minor allele frequency (MAF) 
scores of >0.005. We excluded variants located within ±500 kb of, or in linkage 
disequilibrium (r2 ≥ 0.1) with, known susceptibility variants21. The association 
effect size estimates from these GWASs, as well as the previously derived estimates 
from the 11 other GWASs, were then combined using a fixed-effects meta-analysis. 
Since individual-level genotyping data were not available for some previous 
GWASs, we conservatively approximated the potential overlap between the GWAS 
and iCOGS and OncoArray datasets, based on the populations contributing to 
each GWAS (iCOGS/GWAS: 626 controls and 923 cases; OncoArray/GWAS: 
20 controls and 990 cases). We then used these adjusted data to estimate 
the correlation in the effect size estimates, and incorporated these into the 
meta-analysis using the method of Lin and Sullivan23.

Subtype analysis of BCAC data. We have described the two-stage polytomous 
logistic regression in more detail elsewhere4,24 (Supplementary Note). In brief, this 
method allows for efficient testing of a variant–disease association in the presence 
of tumor subtype heterogeneity defined by multiple tumor characteristics, while 
accounting for multiple testing and missing data on tumor characteristics. In the 
first stage, the model uses a polytomous logistic regression to model case–control 
ORs between the variants and all possible subtypes that could be of interest, 
defined by the combination of the tumor markers. For example, in a model fit to 
evaluate heterogeneity according to estrogen receptor, progesterone receptor and 
HER2-positive/negative status and grade of differentiation (low, intermediate or 
high grade), the first stage incorporates case–control ORs for 24 subtypes defined 
by the cross-classification of these factors. The second stage restructures the 
first-stage subtype-specific case–control OR parameters through a decomposition 
procedure resulting in a baseline parameter that represents a case–control OR of a 
baseline cancer subtype, and case–case OR parameters for each individual tumor 
characteristic. The second-stage case–case parameters can be used to perform 
heterogeneity tests with respect to each specific tumor marker while adjusting for 
the other tumor markers in the model. The two-stage model efficiently handles 
missing data by implementing an expectation–maximization algorithm4,7 that 
essentially performs iterative imputation of the missing tumor characteristics 
conditional on available tumor characteristics and baseline covariates based on the 
underlying two-stage polytomous model. In the two-stage model, the frequency 
of different tumor subtypes corresponding to different combinations of the tumor 
characteristics is allowed to vary freely through the model-free specification of the 
intercepts of the first-stage polytomous model (αm; see Supplementary Note for 
details). In other words, the intercepts are kept saturated. As these parameters are 
estimated from the data themselves, the methodology accounts for the correlation 
among the tumor markers in a robust manner that does not require strong 
modeling assumptions.

To identify novel susceptibility loci, we used both a fixed-effects two-stage 
polytomous model and a mixed-effects two-stage polytomous model. The score 
test we developed based on the mixed-effects model allows coefficients associated 
with individual tumor characteristics to enter as either fixed- or random-effects 
terms. Our previous analyses have shown that incorporation of random-effects 
terms can improve the power of the score test by essentially reducing the effective 
degrees of freedom associated with fixed effects related to exploratory markers 
(that is, markers for which there is little previous evidence to suggest that they are 
a source of heterogeneity)4. In contrast, incorporation of fixed-effects terms can 
preserve distinct associations of known important tumor characteristics, such as 
estrogen receptor. In the mixed-effects two-stage polytomous model, we therefore 
kept estrogen receptor as a fixed effect, but modeled progesterone receptor, 
HER2 and grade as random effects. We evaluated variants with MAF > 0.01 
(~10.0 million) and r2 ≥ 0.3, and excluded variants within ±500 kb of, or in linkage 
disequilibrium (r2 ≥ 0.1) with, known susceptibility variants. A MAF > 0.01 was 
chosen to ensure an adequate sample size to generate stable estimates. We reported 
variants that passed the P value threshold of P < 5.0 × 10−8 in either the fixed- or 
mixed-effects models.

Both fixed- and mixed-effects models adjusted for the top ten principal 
components and age. As age is correlated with tumor characteristics25, we added 
age as a covariate to improve the statistical power of the expectation–maximization 
algorithm. Country was not adjusted for in the subtype analyses, since doing 
so required adequate sample sizes for each subtype in each country to allow 
for convergence of the two-stage polytomous model. Instead, we assessed the 
influence of country on signals identified by the two-stage models by performing 
a leave-one-out sensitivity analyses in which we reevaluated novel signals after 
excluding data from each individual country. Data from the OncoArray and 
iCOGS arrays were analyzed separately and then meta-analyzed using fixed-effects 
meta-analysis.

Statistical analysis of the CIMBA data. We tested for associations between 
variants and breast cancer risk for BRCA1 mutation carriers using a score test 
statistic based on the retrospective likelihood of observing the variant genotypes 
conditional on breast cancer phenotypes (breast cancer status and censoring 
time)26. Analyses were performed separately for iCOGS and OncoArray data.  

Nature GeNetics | www.nature.com/naturegenetics



LettersNature GeNetics

To allow for non-independence among related individuals, a kinship-adjusted 
test was used that accounted for familial correlations27. We stratified analyses by 
country of residence and, for countries where the strata were sufficiently large 
(United States and Canada), by Ashkenazi Jewish ancestry. The results from the 
iCOGS and OncoArray data were then pooled using fixed-effects meta-analysis.

Meta-analysis of BCAC and CIMBA. As the great majority of BRCA1-related 
breast cancers are triple-negative28, we performed a meta-analysis with the 
BCAC triple-negative results to increase the power to detect associations for the 
triple-negative subtype. We performed a fixed-effects meta-analysis of the results 
from BCAC triple-negative cases and CIMBA BRCA1 mutation carriers, using an 
inverse-variance fixed-effects approach implemented in METAL29. The estimates 
of association used were the logarithm of the per-allele hazard ratio estimate for 
association with breast cancer risk for BRCA1 mutation carriers from CIMBA 
and the logarithm of the per-allele odds ratio estimate for association with risk of 
triple-negative breast cancer based on the BCAC data.

Conditional analyses. We performed two sets of conditional analyses. First, we 
investigated for evidence of multiple independent signals in identified loci by 
performing forward selection logistic regression, in which we adjusted the lead 
variant and analyzed the association for all remaining variants within ±500 kb of 
the lead variants, irrespective of linkage disequilibrium. Second, we confirmed 
the independence of 20 variants that were located within ±2 Mb of a known 
susceptibility region by conditioning the identified signals on the nearby known 
signal. Since these 20 variants were already genome-wide significant in the original 
GWAS scan and the conditional analyses restricted to local regions, we used a 
significance threshold of P < 1 × 10−6 to control for type I error30.

Heterogeneity analysis of new association signals. We evaluated all novel signals 
for evidence of heterogeneity using the two-stage polytomous model. We first 
performed a global test for heterogeneity under the mixed-effects model test to 
identify variants showing evidence of heterogeneity with respect to any of the 
underlying tumor markers, estrogen receptor, progesterone receptor, HER2  
and/or grade. We accounted for multiple testing of the global heterogeneity test 
using an FDR < 0.05 under the Benjamini–Hochberg procedure31. Among the 
variants with observed heterogeneity, we then further used a fixed-effects two-stage 
model to evaluate the influence of specific tumor characteristic(s) driving  
observed heterogeneity, adjusted for the other markers in the model. We also fit 
separate fixed-effects two-stage models to estimate case–control ORs and 95% 
CIs for five surrogate intrinsic-like subtypes defined by combinations of estrogen 
receptor, progesterone receptor, HER2 and grade8: (1) luminal A-like (estrogen 
receptor+ and/or progesterone receptor+; HER2−; grades 1 and 2); (2) luminal  
B/HER2-negative-like (estrogen receptor+ and/or progesterone receptor+; HER2−; 
grade 3); (3) luminal B-like (estrogen receptor+ and/or progesterone receptor+; 
HER2+); (4) HER2-enriched-like (estrogen receptor− and progesterone receptor−; 
HER2+); and (5) triple-negative (estrogen receptor−; progesterone receptor−; 
HER2−). Furthermore, we conducted sensitivity analysis by fitting a standard 
polytomous model among cases with complete data on the five intrinsic-like 
subtypes for the 32 novel variants and compared these results with the results from 
the two-stage polytomous model accounting for missing tumor data.

CCVs. We defined credible sets of CCVs as variants located within ±500 kb of the 
lead variants in each novel region and with P values within 100-fold of magnitude 
of the lead variants. This is approximately equivalent to selecting variants whose 
posterior probability of causality is within two orders of magnitude of the most 
significant variant32,33. This approach was applied for detecting a set of potentially 
causal variants for all 32 identified variants. For the novel variants located within 
±2 Mb of the known signals, we used the conditional P values to adjust for the 
known signals’ associations.

Enhancer states analysis in breast subpopulations. We obtained enhancer maps 
for three enriched primary breast subpopulations (basal, luminal progenitor and 
mature luminal) from Pellacani et al.12. Enhancer annotations were defined as 
active, primed or off based on a combination of H3K27ac and H3K4me1 histone 
modification ChIP-Seq signals using fragments per kilobase of transcript per 
million mapped reads thresholds, as previously described12. Briefly, genomic 
regions containing a high H3K4me1 signal observed in any cell type were 
used to define the superset of breast regulatory elements. A subpopulation cell 
type-specific H3K27ac signal (which is characteristic of active elements) within 
these elements was used as a measure of overall regulatory activity, where active 
sites were characterized by H3K4me1-high/H3K27ac-high, primed sites were 
characterized by H3K4me1-high/H3K27ac-low, and off sites were characterized by 
H3K4me1-low/H3K27ac-low. This enabled annotation of each enhancer element 
as either off, primed or active in all cell types. We then defined enhancers that 
exhibited differing states between at least one cell type as switch enhancers.

Genetic correlation analyses. We used linkage disequilibrium score 
regression18–20 to estimate the genetic correlation between five intrinsic-like 
breast cancer subtypes. The analysis used the summary statistics based on the 
meta-analysis of the OncoArray, iCOGS and CIMBA meta-analysis. The genetic 

correlation18 analysis was restricted to the roughly 1 million variants included in 
HapMap 3 with a MAF of >1% and an imputation quality score r2 of >0.3 in the 
OncoArray data. Since two-stage polytomous models integrated an imputation 
algorithm for missing tumor characteristic data, we modified the linkage 
disequilibrium score regression to generate the effective sample size for each 
variant (Supplementary Note).

Genetic variance explained by identified susceptibility variants and all 
genome-wide imputable variants. Genetic variance corresponds to heritability on 
the frailty scale, which assumes a polygenetic log-additive model as the underlying 
model. Under the log-additive model, the frailty scale heritability explained by the 
identified variants can be estimated by:

Xn

i¼1
2pi 1� pið Þ β̂2i � τ2i

� 

where n is the total number of identified variants, pi is the MAF for the ith variant, 
β̂i is the log[odds ratio] estimate for the ith variant and τi is the standard error of 
β̂i. To obtain the frailty scale heritability for invasive breast cancer explained by all 
of the GWAS variants, we used linkage disequilibrium score regression to estimate 
heritability (σ2GWAS

I
) using the full set of summary statistics from either standard 

logistic regression for overall invasive breast cancer, the two-stage polytomous 
regression for the intrinsic-like subtypes or the CIMBA BRCA1 analysis for 
BRCA1 carriers. σ2GWAS

I
 is characterized by population variance of the underlying 

true polygenetic risk scores as σ2GWAS ¼ Var
PM

m¼1 βmGm
� 

I
, where Gm is the 

standardized genotype for the mth variant, βm is the true log[odds ratio] for the mth 
variant and M is the total number of causal variants among the GWAS variants. 
Thus, the proportion of heritability explained by identified variants relative to all 
imputable variants is:

Xn

i¼1
2pi 1� pið Þ β̂2i � τ2i

� 
=σ2GWAS

To estimate the proportion of the familial risk of invasive breast cancer that 
is explained by susceptibility variants, we defined the familial relative risk, λ, as 
the familial relative risk assuming a polygenic log-additive model that explains all 
of the familial aggregation of the disease34. Under the frailty scale, we define the 
broad sense heritability35 as σ2. The relationship between λ and σ2 was shown to be 
σ2 = 2 × log[λ]34. We assumed λ = 2 as the overall familial relative risk of invasive 
breast cancer34; thus, σ2 = 2 × log[2] and the proportion of the familial relative risk 
explained by identified susceptibility variants is 

Pn
i¼1 pi 1� pið Þ β̂2i � τ2i

� 
=log 2½ 

I
, 

and the proportion of the familial relative risk explained by GWAS variants is 
σ2GWAS= 2 ´ log 2½ ½ 
I

. Analyses of heritability and the proportion of explained familial 
risk were restricted to 106,278 invasive cases and 91,477 controls (Supplementary 
Table 2). In addition, we compared estimates of GWAS chip hereditability across 
five intrinsic subtypes using linkage disequilibrium score regression where the 
summary statistics were derived using either a standard polytomous model applied 
to complete cases or the novel two-stage method that incorporates cases with 
missing tumor characteristics.

PRSs for five intrinsic-like subtypes. We constructed PRSs for the intrinsic-like 
subtypes, incorporating the newly identified variants and 313 variants previously 
reported in the development of PRSs for overall and estrogen-receptor-specific 
breast cancer22. The 313 SNPs included SNPs that did not reach genome-wide 
significance. After excluding variants within 500 kb of the 313 SNPs or with a 
linkage disequilibrium r2 ≥0.1, 17 of the 32 novel variants were independent of 
the 313 SNPs. The BCAC data were split into a training dataset and a test dataset 
with proportions of 80 and 20%, respectively. Half of the test dataset were five 
studies nested within prospective cohorts, including Karolinska Mammography 
Project for Risk Prediction of Breast Cancer–Cohort Study, Mayo Mammography 
Health Study, The Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer 
Screening Trial, The Sister Study and UK Breakthrough Generations Study 
(Supplementary Table 2), and the other half were randomly selected among 
the subjects in OncoArray, excluding studies of bilateral breast cancer, studies 
or sub-studies with oversampling for family history, cases with ambiguous 
diagnosis and cases with missing tumor characteristics. We obtained the overall 
and estrogen-receptor-specific log[odds ratios] for 313 SNPs by respectively 
fitting standard and estrogen-receptor-specific logistic regression on the training 
dataset. We obtained the log[odds ratio] for 330 SNPs by fitting the fixed-effects 
two-stage polytomous model for five intrinsic-like subtypes on the training dataset 
(Supplementary Table 19).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Summary-level statistics are available from http://bcac.ccge.medschl.cam.ac.uk/
bcacdata/ and http://cimba.ccge.medschl.cam.ac.uk/projects/. Requests for 
data can be made to the corresponding author or the Data Access Coordination 
Committees (DACCs) of BCAC (see above URL) and CIMBA (see above URL). 
BCAC DACC approval is required to access data from the 2SISTER, ABCS, 
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ABCS-F, ABCTB, BBCC, BCEES, BCFR-NY, BCFR-PA, BCINIS, BIGGS, 
BREOGAN, BSUCH, CECILE, CGPS, CNIO-BCS, CPSII, CTS, DIETCOMPLYF, 
ESTHER, FHRISK, FHRISK, GENICA, GEPARSIXTO, HABCS, HCSC, HEBCS, 
HMBCS, HUBCS, KARBAC, KARMA, KBCP, KCONFAB/AOCS, LMBC, 
MABCS, MBCSG, MCBCS, MISS, MMHS, MTLGEBCS, NBCS, NCBCS, 
OBCS, ORIGO, PKARMA, PREFACE, PROCAS, RBCS, SEARCH, SKKDKFZS, 
SUCCESSB, SUCCESSC, SZBCS, TNBCC, UCIBCS, UKBGS, UKOPS and USRT 
studies (Supplementary Table 1). CIMBA DACC approval is required to access data 
from the BCFR-ON, CONSIT TEAM, DKFZ, EMBRACE, FPGMX, GC-HBOC, 
GEMO, G-FAST, HEBCS, HEBON, IHCC, INHERIT, IOVHBOCS, IPOBCS, 
MCGILL, MODSQUAD, NAROD, OCGN, OUH and UKGRFOCR studies 
(Supplementary Table 3).

Code availability
The data analysis code relevant to this paper is available at https://github.com/
andrewhaoyu/breast_cancer_data_analysis. The implementation of this two-stage 
polytomous regression method is available in an R package called TOP (https://
github.com/andrewhaoyu/TOP), with a detailed tutorial available at https://github.
com/andrewhaoyu/TOP/blob/master/inst/TOP.pdf.
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Extended Data Fig. 1 | Overview of the analytic strategy and results from the investigation of breast cancer susceptibility variants in women of 
European descent. Analyses included investigating for susceptibility variants for overall breast cancer (invasive, in-situ or unknown invasiveness) and 
for susceptibility variants accounting for tumor heterogeneity according to the estrogen receptor (ER), progesterone receptor (PR), human epidermal 
growth factor receptor 2 (HER2), and grade, and specifically investigating for variants that predispose for risk of the triple-negative subtype. 1) Genotyping 
data from two Illumina genome-wide custom arrays, the iCOGS and Oncoarray, and imputed to the 1000 Genomes Project (Phase 3). (2) Overall breast 
cancer (invasive, in-situ, or unknown invasiveness) analyses included 82 studies from the Breast Cancer Association Consortium (BCAC; 118,474 cases 
and 96,201 controls) and summary level data from 11 other breast cancer GWAS (14,910 cases and 17,588 controls; Supplementary Table 1). (3) Analyses 
accounting for tumor marker heterogeneity according to ER, PR, HER2 and grade included 81 studies from BCAC (106,278 invasive cases and 91,477 
controls). (4) Analyses investigating triple-negative susceptibility variants included 91,477 controls and 8,602 triple-negative TN (effective sample, see 
Supplementary Note) cases from BCAC and 9,414 affected and 9,494 unaffected BRCA1/2 carriers from 60 studies from the Consortium of Investigators 
of Modifiers of BRCA1/2 (CIMBA; Supplementary Table 3). (5) Variants excluded following conditional analyses showing the identified variants to not 
be independent (P>1x10-6) of 178 known susceptibility variants (see Methods). (6) See Supplementary Fig. 6 for results of country-specific sensitivity 
analyses. (7) See Supplementary Table 5 for the 22 independent susceptibility variants identified in overall breast cancer analyses. (8) See Supplementary 
Table 6 for the 16 independent susceptibility variants identified using two-stage polytomous regression, accounting for tumor markers heterogeneity 
according to ER, PR, HER2, and grade. Note that 8 of the 16 variants were also detected in the overall breast cancer analysis (9) See Supplementary Table 7 
for the 3 independent susceptibility variants identified in the CIMBA/BCAC- triple-negative TN meta-analysis. Note that rs78378222 was detected in both 
the analyses using the two-stage polytomous regression and in CIMBA/BCAC- triple-negative TN.
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Extended Data Fig. 2 | Associations between three different polygenetic risk scores1,2,3 and luminal A-like4 risk in the test dataset. Odds ratios for 
different quantiles of the PRS against the middle quantile (40%–60%) of the PRS. The odds ratios were estimated using the test dataset like (n = 7,325 
Luminal-A like cases, n = 20,815 controls).
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Extended Data Fig. 3 | Associations between three different polygenetic risk scores1,2,3 and luminal B/HER2-negative-like4 risk in the test dataset. Odds 
ratios for different quantiles of the PRS against the middle quantile (40%–60%) of the PRS. The odds ratios were estimated using the test dataset like  
(n = 1,779 Luminal B/HER2-negative-like cases, n = 20,815 controls).
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Extended Data Fig. 4 | Associations between three different polygenetic risk scores1,2,3 and luminal B-like4 risk in the test dataset. Odds ratios for 
different quantiles of the PRS against the middle quantile (40%–60%) of the PRS. The odds ratios were estimated using the test dataset like (n = 1,682 
Luminal B-like cases, n = 20,815 controls).
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Extended Data Fig. 5 | Associations between three different polygenetic risk scores1,2,3 and HER2-enriched-like4 risk in the test dataset. Odds ratios 
for different quantiles of the PRS against the middle quantile (40%–60%) of the PRS. The odds ratios were estimated using the test dataset like (n = 718 
HER2-enriched-like, n = 20,815 controls).
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Extended Data Fig. 6 | Associations between three different polygenetic risk scores1,2,3 and triple-negative4 risk in the test dataset. Odds ratios for 
different quantiles of the PRS against the middle quantile (40%–60%) of the PRS. The odds ratios were estimated using the test dataset like (n = 2,006 
triple-negative cases, n = 20,815 controls).
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The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection We used SAS and R to access and manage the data.

Data analysis We used these softwares to finish all the analysis: 1) R version 3.6.0 2) LDSC version 1.0.1 3) METAL 2011/03/25 version 4) MatrixEQTL 
v2.2. The analysis code could be found in GitHub repository (https://github.com/andrewhaoyu/breast_cancer_data_analysis). The 
analysis completed in the submitted paper could be reproduced through the code in the GitHub repository screened on Sep 13, 2019 
with git commit id as 872fc6e. 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

A subset of the BCAC data that support the findings of this study is publically available via dbGaP (www.ncbi.nlm.nih.gov/gap; accession number phs001265.v1.p1). 
The complete dataset will not be made publicly available due to restraints imposed by the ethics committees of individual studies; requests for data can be made to 
the corresponding author or the Data Access Coordination Committee (DACC) of BCAC (http://bcac.ccge.medschl.cam.ac.uk/): BCAC DACC approval is required to 
access data from studies ABCFS, ABCS, ABCTB, BBCC, BBCS, BCEES, BCFR-NY, BCFR-PA, BCFR-UT, BCINIS, BSUCH, CBCS, CECILE, CGPS, CTS, DIETCOMPLYF, ESTHER, 
GC-HBOC, GENICA, GEPARSIXTO, GESBC, HABCS, HCSC, HEBCS, HMBCS, HUBCS, KARBAC, KBCP, LMBC, MABCS, MARIE, MBCSG, MCBCS, MISS, MMHS, MTLGEBCS, 
NC-BCFR, OFBCR, ORIGO, pKARMA, POSH, PREFACE, RBCS, SKKDKFZS, SUCCESSB, SUCCESSC, SZBCS, TNBCC, UCIBCS, UKBGS and UKOPS (see Supplementary Table 
1). Summary results for all variants will be made available at http://bcac.ccge.medschl.cam.ac.uk/ before the publication. Requests for further data should be made 



2

nature research  |  reporting sum
m

ary
O

ctober 2018
through the BCAC DACC (http://bcac.ccge.medschl.cam.ac.uk/). 
A subset of the CIMBA data that support the findings of this study is publically available via dbGaP (accession number phs001321.v1.p1 ). The complete dataset will 
not be made publically available due to restraints imposed by the ethics committees of individual studies; requests for data can be made to the corresponding 
author or the Data Access Coordination Committee (DACC) of  CIMBA (http://cimba.ccge.medschl.cam.ac.uk). CIMBA DACC approval is required to access data from 
studies BCFR-ON, CONSIT TEAM, DKFZ, EMBRACE, FPGMX, GC-HBOC, GEMO, G-FAST, HEBCS, HEBON, IHCC, INHERIT, IOVHBOCS, IPOBCS, MCGILL, MODSQUAD, 
NAROD, OCGN, OUH and UKGRFOCR. The CIMBA complete summary results are available through: http://cimba.ccge.medschl.cam.ac.uk/oncoarray-complete-
summary-results/ 

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size We analyzed all the studies available for breast cancer genome-wide association studies (GWAS) and pathology information from the largest 
consortium. 

Data exclusions We excluded OncoArray data from Norway (the Norwegian Breast Cancer Study) because there are no controls available from Norway with 
OncoArray data. We also excluded one Study (Leuven Multidisciplinary Breast Centre) contributing to the iCOGs dataset due to inflation of the 
test statistics that was not corrected by adjustment for the first ten PCs.

Replication We analyzed the all studies available instead of dividing the dataset into discovery and replication sets because of statistical power. We 
checked consistency of the results across studies/countries for replicability. 

Randomization This was an observational genetic association study, hence randomization was not relevant. The analyses were adjusted for country and 
ancestry informative principal components, as described in the methods

Blinding The laboratories conducting the genotyping did not have access to the phenotypic data (i.e. were blinded). Moreover, genotype calling was 
automated. The phenotype and genotype data were only combined during the statistical analysis

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants
Policy information about studies involving human research participants

Population characteristics The analysis of data from  Breast Cancer Association Consortium (BCAC) included women aged 16 years or older of European 
ancestry from 82 BCAC studies from over 20 countries, with genotyping data derived from two Illumina genome-wide custom 
arrays, the iCOGs and OncoArray. Most of the studies were case-control studies in the general population, or hospital setting, or 
nested within population-based cohorts, but a subset of studies oversampled cases with a family history of the disease We 
included controls and cases of invasive breast cancer, carcinoma in-situ, and cases of unknown invasiveness. Information on 
clinicopathologic characteristics were collected by the individual studies and combined in a central database after quality control 
checks. We used BCAC database version 'freeze' 10 for these analysis. All participating studies were approved by their 
appropriate ethnics or institutional review board and all participants provided informed consent.  The total sample size from 
BCAC including iCOGs, OncoArray, and other GWAS data, comprised 133,384 cases and 113,789 controls.   
Participants included from Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA) were women of European ancestry, 
aged 18 years or older with a pathogenic BRCA1 variant. Most participants were sampled through cancer genetics clinics. In 
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some instances, multiple member of the same family were enrolled. OncoArray genotype data was avaiable from 58 studies 
from 24 countries. Following quality control and removal of participants that overlapped with BCAC OncoArray study, data were 
available on 15,566 BRCA1 mutation carriers, of whom 7,784 were affected with breast cancer. We also obtained iCOGs 
genotype data on 3,342 BRCA1 mutation carriers (1,630 with breast cancer) from 54 studies through CIMBA. All BRCA1 
MUTATION carriers provided written informed consent and participated under ethically approved protocols. 

Recruitment Participants were recruited from epidemiology studies and selection factors are very unlikely to be related to genotypes.

Ethics oversight All the studies were approved by local IRBs. 

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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