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ARTICLE

A network analysis to identify mediators of
germline-driven differences in breast
cancer prognosis
Maria Escala-Garcia et al.#

Identifying the underlying genetic drivers of the heritability of breast cancer prognosis

remains elusive. We adapt a network-based approach to handle underpowered complex

datasets to provide new insights into the potential function of germline variants in breast

cancer prognosis. This network-based analysis studies ~7.3 million variants in 84,457 breast

cancer patients in relation to breast cancer survival and confirms the results on 12,381

independent patients. Aggregating the prognostic effects of genetic variants across multiple

genes, we identify four gene modules associated with survival in estrogen receptor (ER)-

negative and one in ER-positive disease. The modules show biological enrichment for cancer-

related processes such as G-alpha signaling, circadian clock, angiogenesis, and Rho-GTPases

in apoptosis.
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Family-based studies have suggested that breast cancer sur-
vival in first-degree relatives has a hereditary component1,2.
Nevertheless, whereas large-scale genome-wide association

studies (GWASs) have made considerable progress in identifying
germline variants linked to breast cancer risk3, the identification
of germline variants linked to breast cancer prognosis has proven
more challenging4. An understanding of how and which germline
variants affect breast cancer prognosis could provide novel
insights into the etiology of the metastatic process in breast
cancer, increase knowledge on the underlying heterogeneity of the
disease, and help identify new therapeutic targets or select
patients most likely to benefit from existing therapies.

A major limitation of the studies to date is that the sample sizes
have been insufficient to detect the small effect sizes of germline
variants characteristic for breast cancer risk and survival4–6. Even
though our previous survival GWAS included >95,000 patients4,5,
the limiting factor was the relatively low number of events (breast
cancer-specific deaths) observed. One way to overcome this
limited power is to use pathway or network-based approaches7,8.
These techniques typically use predefined gene sets, annotated
pathways, or protein–protein interaction (PPI) networks to detect
genetic effects across multiple genes or proteins with similar or
related biological functions6,8–10. Using such methods, a biolo-
gical pathway might emerge as relevant even if none of its indi-
vidual germline variants reached genome-wide significance.
Moreover, assigning the variants to genes reduces dimensionality:
considering several pathways as opposed to millions of individual
variants leads to a substantial reduction in the number of tests
performed11. An additional advantage of performing a pathway
analysis is that it naturally suggests which biological processes
mediate the genetic association with survival, making the biolo-
gical interpretation easier7,11–13.

Here we report on a network-based GWAS to identify genetic
determinants of breast cancer prognosis in a dataset with a total
of 84,457 breast cancer patients of European ancestry. In line with
previous studies, we did not find many individual genetic variants
with strong effects14–17. However, aggregating the survival esti-
mates of multiple variants across genes and using a network
propagation method, we identified several biological processes
that may mediate a germline genetic effect on breast cancer
prognosis. These include key processes in cancer biology, such as
regulation of apoptosis, G-alpha signaling, and the circadian clock
mechanism. In our analysis, we show that the identified polygenic
effects are associated with survival not only in the discovery set
but also in an independent dataset of 12,381 patients. In addition,
we studied the downstream transcriptional changes and their
functional consequences due to the prognostic variants. We
observed similar biological processes in the enrichment of the
downstream and module-level gene analyses suggesting that both
levels are perturbed by the identified genetic variants.

Results
Single variant and gene analyses detect one independent hit.
We performed an analysis of the association between germline
genetic variants and breast cancer prognosis comprising data for
84,457 female breast cancer patients of European ancestry. To
account for potential subtype-specific associations, we also per-
formed separate analyses for estrogen receptor (ER)-positive and
ER-negative breast cancer. An overview of all data is given in the
“Methods” section and Supplementary Table 1. As a first step in
our analysis, we tested the association of ~7.3 million imputed
genetic variants with breast cancer-specific survival using a Cox
proportional hazard model (Fig. 1a). Based on a genome-wide
statistical significance P value threshold of 5 × 10−8, we identified

two variants at 8q13, in high linkage disequilibrium (LD) with
each other, associated with survival in ER-positive breast cancer.
The top variant was rs6990375 (chr8:70571531, P= 6.35 x 10−9)
followed by rs13272847 (chr8:70573316, P= 1.07 x 10−8) . We
did not find significant variants for ER-negative or all breast
cancer cases.

Next, we aggregated the summary statistics of the individual
variants into gene-level P values (~21,800 genes in total) using the
Pascal algorithm12 (Fig. 1b). We computed the gene score based
on the maximum chi-squared signal within a window size of 50-
kb around the gene region (see “Methods”; Fig. 2). Two genes
were associated with survival in ER-positive breast cancer at P <
0.05 after Bonferroni correction: SLCO5A1 (P= 4 × 10−7,
corrected P= 0.01) and SULF1 (P= 7 × 10−7, corrected P=
0.02) (Fig. 2c). These two genes are located in close proximity to
each other around the significant variants at 8q13 identified in the
single variant analysis. Their significance is therefore likely driven
by a single causal genetic variant. The top variant rs6990375 is
situated in the 3’ untranslated region of SULF1 where it may
affect the binding of regulatory micro-RNAs. While the
association of this variant with breast cancer survival has not
been identified previously, it has been reported to be associated
with age of onset of ovarian cancer18. SULF1 has been found to be
involved in cell proliferation, migration, and invasion as well as
drug-induced apoptosis in cancer cell lines19, most likely due to
its regulatory role in fibroblast growth factor20 and Wnt
signaling21. Less is known about the function of SLCO5A1,
although a role in cell proliferation has been suggested22. In line
with the single variant analysis, we found no significant genes for
all breast cancer or ER-negative breast cancer (Fig. 2a, b) when
aggregating individual variants into genes.

Network analysis finds germline-related prognostic modules
(GRPMs). To explore whether weaker signals of association were
hidden in our data, we investigated the hypothesis that the
germline genetic variants associated with breast cancer prognosis
target particular biological processes but within those processes
do not uniquely target one particular gene. Different subgroups of
patients might harbor variants in different genes, which ulti-
mately affect the same biological process. Such polygenic signals,
unless they have very big effects, may remain undetected if only
individual variants or even individual genes are tested. We
therefore applied network propagation23, a technique that maps
gene association scores onto a PPI network and uses the network
topology to detect sub-networks, or modules, of closely inter-
acting, high-scoring proteins (Fig. 1c). In the context of this
paper, we will refer to these modules also as germline-related
prognostic modules (GRPMs).

For the network propagation, we used the HotNet2 method13,
which has been used previously with GWAS data24. We based the
gene scores on the aggregate gene P values computed by the
Pascal method (see “Methods”). The protein interaction network
used by HotNet2 was obtained from iRefIndex25.

When considering all breast cancers, the HotNet2 analysis
identified no significant GRPMs (lowest P= 0.06, based on the
HotNet2 permutation test). In contrast, several GRPMs were
associated with prognosis in the analyses by ER subtype. For ER-
positive patients, the best HotNet2 result (P value <0.01)
comprised 31 GRPMs of ≥7 genes. For ER-negative patients,
the best HotNet2 results (P < 0.01) included 116 GRPMs of ≥4
genes. A list of all significant prognostic modules is presented in
Supplementary Data 1.

To help the interpretation of the identified GRPMs, we
developed an extension to HotNet2 that maps the module genes
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to the specific genetic variants that are most strongly associated
with prognosis. This was done by performing a Lasso-penalized
Cox regression on the genetic variants assigned to the module
genes. Using those selected variants and their effect sizes, a
polygenic hazard score (PHS) was computed and used to identify
a set of high-confidence GRPMs (Fig. 1d), as well as to perform a
functional characterization of the downstream effects of the
prognostic variants (Fig. 1e).

Prognostic modules point to underlying pathways. We
restricted our scope to a subset of high-confidence GRPMs. This
subset was identified by testing the association of each module’s
PHS with breast cancer prognosis in an independent set of 12,381
patients (with 1120 events) (Supplementary Table 2) that was not
used previously in the HotNet2 analysis or in the construction of
the PHS score. GRPMs with a significant association between
PHS and prognosis (P value <0.05, based on a one-sided Wald
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test) in this independent set were considered high confidence.
Following this procedure, we found four high-confidence GRPMs
for ER-negative breast cancer (Fig. 3a–c) and one high-confidence
GRPM for ER-positive breast cancer (Fig. 3d). Hazard ratios of
the association of the PHSs with breast cancer-specific survival
ranged from 1.09 to 1.28 (Fig. 3e). In the remainder of this sec-
tion, we will discuss the high-confidence GRPMs. The term PHS
P value will be used to refer to the P value of a GRPM’s PHS
association with survival.

To provide a functional characterization of the five high-
confidence GRPMs found in the ER-negative and ER-positive
subtypes, we tested each module for enriched biological processes
on two levels. The first, which we call the module-level, considers
the direct functions of the GRPM proteins themselves. These
were identified by an enrichment analysis of the annotated
biological functions of the module proteins and their direct
interactors in a PPI network annotation (see “Methods”). For the
high-confidence GRPMs in ER-negative breast cancer, we
identified enriched processes related to G-alpha signaling, cell
growth, and angiogenesis; insulin secretion; and circadian clock
(Supplementary Fig. 1a–d). For the ER-positive high-confidence
GRPM, the enriched processes included signaling by Rho
GTPases and apoptosis (Supplementary Fig. 1e).

The module-level enrichment provides a general summary of
the biological functions of the GRPM genes. However, it is based
on functional annotations that have been derived from studies in
many different cell types and biological environments. To study
the specific downstream effects of the identified prognostic
variants in breast cancer tumors, we performed enrichment
analyses on the downstream transcriptional changes due to the
prognostic variants affecting the module proteins.

We estimated these downstream transcriptional effects using
genetic variants and RNA expression data of female breast cancer
patients from The Cancer Genome Atlas (TCGA)26. For each of

the five GRPMs, the downstream analysis was performed on the
subset of TCGA patients matching the ER subtype in which the
GRPM was identified, 118 patients with ER-negative and 440
with ER-positive tumors. Using the germline genotype data of
these TCGA patients, we computed the PHS for each GRPM
(Supplementary Table 3). Based on these PHSs, we then
computed GRPM downstream transcriptional effect scores, which
reflect the correlation between a module’s PHS and the mRNA
expression level of every gene (Fig. 1e; see “Methods”). Using the
obtained downstream transcriptional effect scores, we performed
gene set enrichment analysis (GSEA)27 with gene sets based on
Reactome28 and the MSigDB29 Hallmark gene sets. The
enrichment results for the MSigDB Hallmark gene sets are
shown in Fig. 3, only pathways with a GSEA P value <0.001 and
false discovery rate (FDR) < 0.01 were included in the visualiza-
tion. The full list of enriched processes per high-confidence
GRPM can be found in Supplementary Data 2–6 and Supple-
mentary Fig. 2.

The enriched pathways in the downstream analysis included
biological processes, such as cell cycle, DNA repair, metabolism of
RNA, lipids or proteins, apoptosis, and translation of proteins.
Importantly, we observed overlap of the biological processes
enriched in the downstream analysis and those found for the
module proteins. This observation has two important implica-
tions. First, it provides additional support for the biological role
assigned to the module proteins. In addition to this, in cases
where module proteins may serve several roles, it helps identify
which of those roles is affected by the prognostic variants at a
transcriptional level. The enriched biological processes assigned
to the modules and the related downstream processes are
described below.

ER-negative: G-alpha signaling events: Two high-confidence
GRPMs found for patients with ER-negative tumors (Fig. 3a)
suggested, from the module-level analysis, G-alpha signaling and

Fig. 1 Network analysis pipeline (see “Methods” for details). a Cox models were used to estimate the association between each genetic variant and
breast cancer-specific survival in 84,457 patients of the Breast Cancer Association Consortium (BCAC) dataset (discovery set). b The P values of the
survival analyses for the genetic variants (blue diamonds) were used to compute gene scores using the Pascal algorithm. These gene scores were based on
the maximum chi-squared signal within a window size of 50-kb around the gene region and accounted for linkage disequilibrium structure (depicted in a
gradient blue scale). c The HotNet2 method was used to identify gene modules based on the −log10 P value of the computed gene scores. d The modules
found by HotNet2 were filtered to obtain a selection of high-confidence germline-related prognostic modules (GRPMs). We constructed a polygenic
hazard score (PHS) summarizing the prognostic effects of a set of selected genetic variants in the module. We then tested the association of this PHS with
survival in both the discovery set (gray) and the independent set (orange). eWe performed a functional characterization of the high-confidence GRPMs by
studying the downstream transcriptional effects. For that, we used genotype and expression data from The Cancer Genome Atlas (TCGA). We computed
the correlation between a GRPM’s polygenic hazard score and the expression of all available genes. Based on these correlation values, a gene set
enrichment analysis assigned biological processes that were enriched among the genes most correlated with the prognostic variants in the GRPM.
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G-protein activation as biological processes associated with
survival. The first GRPM (PHS P= 0.0096) includes ADCY10,
GNA11, PTGIR, and RGS3 (Fig. 3a, right) and the other GRPM
(PHS P= 0.0082) is a larger module of 19 genes: ADRBK2,
CCL16, CNR2, CXCR5, DNAJB4, F2R, GNA15, GNAT1, GRM4,
GUCA1A, GUCA1B, GUCA2B, GUCY2D, HRH4, LTB4R, OPRK1,
OPRM1, RGS9, and RGS9BP (Fig. 3a, left).

On closer inspection of the genetic variants selected for the two
modules’ PHSs, we observed that one genetic variant was shared
by both modules. The other variants in the PHSs, 2 variants in
total for the 4-gene module and 3 variants for the module of 19
genes, were also located in the same genomic region on
chromosome 19p13.3 (Fig. 4a). These variants are upstream of
GNA11 in the former module and GNA15 in the latter. For the
other genes in these two GRPMs, no genetic variants were
selected as part of the modules’ PHSs. This may be due to lack of
statistical power: although the gene scores were high enough to be
included in the module, none of their individual genetic variants
had a strong enough association. The co-location of GNA11 and
GNA15 provides an explanation for why the identified variants
were selected for both modules. It also suggests that the genetic
associations of these two genes and hence of the two modules are
not independent. Indeed, the patients’ PHSs for both GRPMs are
highly correlated (Fig. 4b), which supports a shared genetic
association. This raises the question of whether the putative
germline genetic effect on survival is mediated through both
genes or only one of the two. In the downstream analyses of both
modules, changes of GNA15 expression were identified as one of
the strongest downstream transcriptional effects, whereas this is

not the case for GNA11. Conversely, in an independent gene
expression dataset using KMplotter (http://kmplot.com/analysis),
we found that expression of GNA11 is significantly associated
with recurrence-free survival in ER-negative breast cancer
(Supplementary Fig. 3), while a similar effect was not seen for
GNA15. These preliminary observations leave open the hypoth-
esis of a role for both genes. A definitive answer will require more
functional analyses.

In the module-level analysis, the GRPM formed by four genes
also showed enrichment for insulin secretion. It has been shown
that there is a close relationship between G-proteins and their
coupled receptors (GPCR), insulin, and the insulin-like growth
factor I receptor. Altered versions of this crosstalk could play a
role in cancer cells30,31. For example, it has been proposed that, in
cancer cells, insulin can increase the activity of GPCRs in cancer
tissues via the mTOR (mammalian target of rapamycin)
pathway31, which was also one of the enriched processes in the
downstream analysis. The highest scoring gene in the module,
GNA11, codes for the alpha subunit of the G11 protein, which has
been linked to insulin secretion and signaling32,33.

For the 19-gene GRPM, we also identified thrombin signaling
and platelet aggregation as two of the main module-level enriched
pathways. Thrombin is a type of the above-mentioned GPCRs
with the capacity to upregulate genes able to induce, or contribute
to oncogenesis and angiogenesis, and is known to be able to
stimulate the adhesion of tumor cells to platelets34. In the
downstream analysis, we identified processes such as GPCR
ligand binding and hemostasis, which contributes to the
thrombosis process and therefore is also linked to GPCRs35
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(Supplementary Fig. 2a and Supplementary Data 2). It has been
reported that hemostatic elements such as platelets, coagulation,
and the fibrinolytic system might play an important role in breast
cancer progression and metastasis36.

ER-negative: circadian clock: Another module identified by our
network analysis consists of four genes with a strong link to the
circadian clock mechanism: PER1, PER3, TIMELESS, and TIPIN
(PHS P= 0.030; Fig. 3b). Having an important role in the
regulation of the cell cycle37, the circadian clock is believed to be
important in the development of cancer. Disrupted sleep patterns
and associated changes to the body’s circadian rhythm have long
been implicated in the risk of developing several cancers,
including breast cancer37–39. Although long-term night-shift
work has not consistently been found to be associated with breast
cancer40, one study reported an increased risk of ER-negative
breast cancer41. More recently, genetic variants in circadian clock
genes have been reported to be associated with breast cancer
risk42,43. In addition to risk, the circadian clock has also been
suggested to be involved in breast cancer progression and
prognosis44,45.

More specifically, the circadian clock genes in this module have
also individually been implicated in the biology of cancer in

general and breast cancer in particular. The period genes PER1
and PER3 have been found to suppress cancer cell growth46,47

and have also been observed to be deregulated in breast cancer48.
TIMELESS and its interactor TIPIN are believed to be central
players in the connection between the circadian clock and the cell
cycle and apoptosis49,50. The importance of these genes in the
regulation of the cell cycle was supported by the downstream
analysis, which pointed out that cell cycle-related processes are
strongly enriched among the downstream transcriptional
changes.

ER-negative: regulators of cell growth and angiogenesis: The last
high-confidence GRPM identified for ER-negative breast cancer
contains proteins that have been linked to regulation of cell
growth or angiogenesis: CHCHD4, PDE9A, SLC36A1, and
PHYHIPL (PHS P= 0.027; Fig. 3c). Knock down of CHCHD4
has been found to reduce tumor growth and angiogenesis
in vivo51. In addition, CHCHD4 has been observed to mediate the
mitochondrial translocation of p5352 through which it may
trigger apoptosis via the p53 mitochondrial pathway53. PDE9A is
a regulator of cGMP signaling, a pathway that is increasingly
being recognized as an important player in breast cancer
biology54. Inhibition of PDE9A has been found to trigger
apoptosis in both ER-positive and ER-negative breast cancer cell
lines55. SLC36A1, also known as PAT1, has been linked to tumor
cell growth through its involvement in the activation of
mTORC1. PHYHIPL (or PAHX-AP1) has mostly been described
in the context of neuronal cells, but no role in cancer has been
described.

ER-positive: Rho GTPases in apoptosis and cell growth: For ER-
positive tumors, we identified one high-confidence module (PHS
P= 0.020; Fig. 3d). The module was predicted to be involved in
Rho GTPases effectors, which typically function as binary
switches controlling a variety of biological processes. Because of
their ability to control cell motility, they have been hypothesized
to play a role in progression and metastatic dissemination of
cancer cells56. This GRPM contains seven genes: ARHGAP10,
CCNT2, CDR2, HEXIM1, NEUROD2, PKN1, and ZFAND6.
ARHGAP10 (rho GTPase Activating Protein 10) was previously
reported as the most significant locus (P= 2.3 × 10−7) in a
GWAS of breast cancer survival14. The top scoring gene in the
module, PKN1 (protein-kinase-C-related kinase), controls pro-
cesses such as regulation of the intermediate filaments of the actin
cytoskeleton, tumor cell invasion, and cell migration57. It is
activated by the Rho family of small G-proteins and might
mediate the Rho-dependent signaling pathway58, which was one
of the main enriched pathways in the module-level analysis.
PKN1 has also been described as an important player in other
cancers: in androgen-associated prostate cancer by controlling
migration and metastasis57 or in melanomas by inhibiting Wnt/
β-catenin signaling and apoptosis58.

From the module-level analysis, another enriched main process
was the pathway linked to PTEN (phosphatase and tensin
homolog deleted on chromosome 10) regulation, which is a well-
characterized tumor suppressor59. PTEN is directly involved in
the metabolism of phospholipids and lipoproteins60, adaptive
immune system, and B cell receptor associated events,61 which
were all hits in the downstream analysis. One of the six genes in
the module, HEXIM1 (hexamethylene bisacetamide-inducible
protein 1), is a positive regulator of p53 and has been identified as
a potential novel therapeutic target modulating cell death in
breast cancer cells62. In the downstream analysis of this module,
we also identified processes present in the module-level analysis
that highlighted key tumorigenic biological processes (Supple-
mentary Data 6), for instance, pathways related to p53 activity,
Wnt signaling, regulation of mRNA stability by proteins that bind
AU-rich elements, or apoptotic execution phase.

GNA15

PHS GNA15 = Genotype1 x β1 + Genotype2 x β2 + Genotype4 x β4.1

PHS GNA11 = Genotype3 x β3 + Genotype4 x β4.2
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Fig. 4 Genomic region 19p13.3 with the two genes GNA11 and GNA15. The
two G-alpha signaling high-confidence germline-related prognostic
modules (GRPMs) identified in the estrogen receptor (ER)-negative
subtype have a shared genetic signal in the same genomic region. a Top:
−log10(P) for the association with survival (y axis) of all variants in the
region 19p13.3 (y axis). Bottom: regression coefficients from the survival
model for the genetic variants in the module’s polygenic hazard scores
(PHSs). b Scatter plot comparing the two modules’ PHSs in the iCOGS
independent validation set. PHS of the GNA11 GRPM on the x axis and PHS
of the GNA15 GRPM on the y axis.
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Discussion
There is evidence that breast cancer prognosis has a heritable
component2,63,64. Exploring the possible link between germline
genetic variants and breast cancer survival may help to develop
better criteria for breast cancer stratification, which might have
implications for breast cancer prognostication and treatment65.
However, identifying germline genetic variants associated with
breast cancer prognosis has been challenging so far, mainly
because the current sample sizes have been insufficient to detect
small effect signals.

In this work, we started with a survival analysis based on
individual germline variants similar to the previous GWAS we
have undertaken4. While in the previous analyses no variants
reached genome-wide significance, here we identified two
genome-wide significant variants for ER-positive tumors
(rs6990375: P < 6.35 × 10−9 and rs13272847: P= 1.07 × 10−8)
located in 8q13. More complete follow-up and more conservative
variant filtering per dataset (only including variants with impu-
tation r2 > 0.8) may have enabled identification of these variants
that remained below genome-wide significance in our previous
study (P= 3.02 × 10−5 and P= 1.73 × 10−5, respectively). In the
gene-level analysis, we found two significant genes (SLCO5A1 and
SULF1, P < 0.05 after Bonferroni correction) associated with
breast cancer survival. It is likely that both associations were
driven by the identified leading variant rs6990375.

To address the lack of power in the individual germline variant
and gene-level analyses, we developed a network analysis method
that revealed five high-confidence GRPMs associated with breast
cancer prognosis. We identified four modules specific for ER-
negative breast cancer and one for ER-positive breast cancer. The
GRPMs comprise crucial processes such as cell cycle and pro-
gression, regulation of apoptosis, signaling by mTOR, immune
system, G-alpha signaling, and the circadian clock. These pro-
cesses are already known to play a role in cancer biology in
general and breast cancer prognosis specifically. However, our
results highlight the possible regulatory impact of germline var-
iants on these processes, which traditionally has received little
attention in cancer survival studies. The broad range of genes and
functions seems to indicate, as already hypothesized, that breast
cancer survival is a complex phenotype influenced by many
factors and biological mechanisms.

The analysis by ER status subtypes identified significant asso-
ciations that were not present when analyzing all patients toge-
ther. This is in line with the breast cancer risk analyses
undertaken in this same dataset, where the ER subtype analyses
also identified new associations3. In addition, the main classifi-
cation of breast cancer tumors used for prognosis and treatment
selection is based on immunohistochemical markers such as ER,
progesterone receptor, and HER2 status, reflecting the fact that
each group has a different etiology and prognosis. This
assumption is further supported by a comparison of the gene
association scores between the ER status subtypes. The gene
scores for ER-positive and ER-negative breast cancer are uncor-
related (Supplementary Fig. 4c) (Pearson correlation=−0.002),
while the gene scores for all breast cancer cases seem to resemble
the ER-positive subtype more (Supplementary Fig. 4a; Pearson
correlation= 0.366) than the ER-negative subtype (Supplemen-
tary Fig. 4b; Pearson correlation= 0.197). In addition, we found
that the distribution of PHSs across patients was similar for ER-
positive and ER-negative breast cancer patients (Supplementary
Fig. 5), but importantly, each PHS was associated with prognosis
only for the subtype in which it was found (Supplementary
Table 4). These differential associations across subtypes suggest
that prognosis is inherited differently for these two different
disease classes.

The network-based approach and the stratification of patients
by ER status enabled a refined interpretation of the GWAS
results5,66, but the findings are still limited due to the number of
deaths observed, limited follow-up, missing treatment informa-
tion, and possibly remaining heterogeneity of tumor subtype
within the ER classes. Increased sensitivity and specificity of the
results could be achieved by including additional patients and by
adjusting for more fine-grained tumor characteristics and the
treatment received. Moreover, the network propagation results
are dependent on the completeness of the PPI network used. As a
notable consequence of this, we did not identify modules con-
taining the two gene-level significant hits SLCO5A1 and SULF1,
due to the fact that the PPI network did not contain the proteins
they code for.

The modules that are identified also depend on the specificity
of the PPI network to the disease-relevant tissue. Many proteins
have tissue-specific expression patterns and functions; hence not
all interactions in a generic PPI network are found in all tissues.
The use of a tissue-specific PPI network may prevent discovery of
false positive modules. One single most relevant tissue for our
analysis is not easily identified though. Unlike the somatic
mutations found in tumor cells, the germline variants we studied
are present in every cell of the body. Their effect on survival may
therefore be mediated by cell types or tissues other than the
cancerous breast tissue. These include the various cell types
present in the tumor microenvironment or distant tissues that
form the pre-metastatic niche. Furthermore, a PPI network spe-
cific for healthy breast tissue may not accurately describe the
interactions active in transformed cancer cells. In our analysis, we
used a generic PPI network. To prevent false positive modules, we
complemented the network propagation with an extra filtering
step in which we select high-confidence modules based on their
association with survival.

Using curated protein interaction networks such as iRefIndex
in propagation analyses may cause a subtle type of ascertainment
bias: more interactions tend to be known for better studied
proteins, which proteins involved in tumor initiation and pro-
gression often are. As a result, gene scores may correlate posi-
tively with the number of interactions in the protein interaction
network. This is the case, for example, when gene scores are based
on somatic mutation frequencies in cancer. HotNet2 only con-
trols for this partially, whereas a recent extension to the HotNet2
method provides a more rigorous solution67. We tested whether
our analysis was vulnerable to this ascertainment bias by calcu-
lating the correlation between the gene scores computed by Pascal
and the number of interactions recorded by iRefIndex. For all,
ER-positive, and ER-negative breast cancer, these correlations
were close to zero (Pearson r2=−0.012, r2=−0.006, and r2=
0.003, respectively) showing no evidence of ascertainment bias
due to proteins’ numbers of recorded interactions.

In summary, our network propagation analysis shows a
germline genetic link to breast cancer survival and proposes a
mechanism by which multiple loci with small individual effects
might influence breast cancer-specific prognosis. Experimental
follow-up of the high-confidence GRPMs identified is required to
better understand the role of these modules. While we focused on
the subset of high-confidence modules, the other modules may
also yield new insights if assessed in the context of larger inde-
pendent datasets. Together the results presented here may feed
future hypotheses about the contribution of germline variation to
breast cancer survival.

Methods
Breast cancer patient data. We used data from 12 GWASs that together account
for 84,457 invasive breast cancer patients with 5413 breast cancer-specific deaths
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within 10 years (events). These included 55,701 patients with ER-positive breast
cancer (2854 events) and 14,529 patients with ER-negative breast cancer (1724
events), while the ER status was unknown for the remaining 14,227 patients. All
patients were females of European ancestry. A summary of the studies with the
numbers of patients and events by study is given in Supplementary Table 1. The
GWAS sample sets were genotyped using a variety of genotyping arrays, targeting
between 200,000 and 900,000 variants across the genome, and subsequently
imputed using a common reference (details given below). The majority of patients
came from the Breast Cancer Association Consortium (BCAC), which itself
comprised 69 studies from across the world that underwent a uniform data har-
monization and quality control (data freeze 10). Genotyping in BCAC was per-
formed in two rounds using two different genotyping platforms: iCOGS and
OncoArray. In subsequent analyses, we treated these two platforms as different
studies. The OncoArray dataset is the largest in BCAC, with higher-quality
imputed genotypes compared to the iCOGS data. As an independent dataset, we
separated out the entire SEARCH study, comprising 12,381 patients and 1120
events, from the BCAC data. Patients in the SEARCH study were recruited in the
United Kingdom. Their genotypes were obtained using either iCOGS or
OncoArray (Supplementary Table 2). Participants of all the studies provided
written informed consent and studies were approved by local medical ethical
committees.

Genotype data and sample quality control. Quality checks were performed by
the original studies3,5,68. Genotypes for all 12 datasets were imputed using a
reference panel from the 1000 Genomes Project69 March 2012 release. Imputation
was performed by a two-stage procedure3 using SHAPEIT70 for pre-phasing and
IMPUTE271 for genotype imputation. The genome-wide analyses were performed
on ~7.3 million variants that had a minor allele frequency (MAF) > 0.05 and were
imputed with imputation quality r2 > 0.8 in at least one of the studies.

GWAS survival analysis and summary statistics. The survival analysis was
performed for all invasive breast cancer cases combined and for each of the ER
status subtypes (ER-positive and ER-negative) individually. A Cox proportional
hazards model was fitted to assess the association of the genotype with breast
cancer-specific survival. Time to event was calculated from the date of diagnosis.
Yet, because patients were recruited at different times before or after diagnosis,
time at risk was calculated from the recruitment date (left truncation) in order to
avoid possible bias produced by prevalent cases. Follow-up was right censored on
the date of death if the patient died from a cause other than breast cancer, the last
date the patient was known to be alive if death did not occur, or at 10 years after
diagnosis, whatever came first. To control for cryptic population substructure, we
adjusted for principal components3 (for the number of principal components per
study, see Supplementary Table 1). Since BCAC-OncoArray and BCAC-iCOGS
comprised data from large international cohort studies, the Cox models for these
datasets were stratified by country. Separate survival analyses were performed for
each of the 12 main studies, after which overall results per variant were obtained by
combining the results of all studies with imputation quality r2 > 0.8 for that variant
using a fixed-effects meta-analysis. P values were computed using a two-sided
Wald test.

From variant P values to gene scores. We used the GWAS summary statistics
from the survival analysis as input for computing gene scores. To obtain gene
scores, we used the Pascal algorithm12, which combines variant P values while
taking into account dependence due to LD structure. The Pascal method imple-
ments two gene-level statistics, corresponding to the strongest single association
per gene (maximum of chi-squared statistics) or the average of all associations
across the gene (sum of chi-squared statistics). After computing both statistics, we
tested which one had more power. To this end, we represented the set of P values
into a quantile–quantile (QQ)-plot (Supplementary Fig. 6). For all breast cancer
cases and for both ER status groups, the QQ-plots suggested that the maximum
statistic has more power than the sum statistic. Therefore, of the two gene statistics
we chose the maximum of chi-squared statistics for the gene-level statistic.

For the LD reference population used in the gene computation, we created an
extended version that included more variants than the default library provided with
Pascal. This reference population was based on 503 European genomes from the
1000 Genomes Project (1KG)69. For the remaining parameters, we used the default
settings. First, only variants with an imputation quality r2 > 0.8 and MAF > 5% in
the patient data were considered. Second, the mapping of the variants to genes was
based on the Pascal’s default 50-kb window size from the start and end of the gene.
Finally, when computing gene scores, HLA genes were excluded. After the gene
score computation, we obtained 21,815 gene scores for all invasive breast cancer,
21,789 for ER-positive and 21,797 for ER-negative. The slightly different numbers
of gene scores between groups are due to the distinct selection of variants, which
may have different allele frequencies across groups. The gene scores used in the
HotNet2 analysis were obtained by taking the −log10 of the gene P values
computed with Pascal.

Network propagation with HotNet2. We performed a network propagation
analysis using the HotNet2 algorithm10 and the PPI network iRefIndex25 applied to

the −log10 gene scores obtained from the previous step. For edge removal on the
created modules, HotNet2 automatically selects four different values which
determine four different edge removal thresholds. The significance test is a two-
stage statistical test based on the number and size of the identified modules
compared to those found using a permutation test. We used 500 permutations and
a minimum network size of 2 for statistical testing. Further details are provided in
the original HotNet publication72,73.

Construction of PHSs. To summarize the total prognostic effect of the hereditary
variants within the significant GRPMs, we constructed PHSs, using a two-step
approach. First, we selected the set of variants that best represented the genetic
association of breast cancer survival with each GRPM. This variant selection was
performed on the BCAC-OncoArray data, since this was the largest study and had
the highest imputation quality. We performed the selection using the glmnet R
package74, fitting a Lasso (alpha= 1) model with tenfold cross-validation to tune
the sparsity penalty and the same selection of input variants as used for the
computation of the Pascal gene scores, that is, picking those variants with MAF >
5% and within a 50-kb window around the start and end of the gene. With the set
of germline variants selected using the Lasso procedure (Supplementary Table 3),
we fitted a Cox model to estimate unpenalized coefficients and extracted their effect
size estimates to compute a PHS per GRPM, which characterized the whole set of
variants for the specific module in a unique score. For a set of selected variants {1,
…,n}, the PHS is defined as in (1):

PHS ¼
Xn

i¼1
Xiβi ð1Þ

where Xi is the genotype for the ith variant and βi its associated coefficient.

Identification of high-confidence GRPMs. We obtained a selection of high-
confidence GRPMs from among all modules identified using HotNet2 by testing
the association of each module’s PHS in two datasets. The first dataset was the
BCAC-OncoArray data minus the SEARCH data component of BCAC, i.e., the
same data on which the PHS was derived, which was also a subset of the data used
in the HotNet2 analysis. The second dataset consisted of the SEARCH study, which
was held out of the BCAC data to serve as a truly independent set. Only GRPMs
that had a PHS significantly associated (P < 0.05) with breast cancer-specific sur-
vival in both the BCAC-OncoArray and the independent SEARCH data were
considered high-confidence GRPMs and kept for further analysis. To test the
association of a PHS with prognosis, we fitted a Cox model to the PHS, adjusted for
the first two genetic principal components and stratified by country. We then
calculated a one-sided P value for the association of the PHS covariate with sur-
vival, taking advantage of the fact that the direction of association of the PHS is
predefined, i.e., lower PHS means better survival. For the BCAC OncoArray data,
the P value was corrected for multiple testing using Bonferroni correction based on
the number of modules tested. The independent SEARCH data comprised two
subsets using either OncoArray or iCOGS data. We analyzed these two subsets
separately and then combined the results of both groups using a fixed-effect meta-
analysis.

Functional enrichment analysis of GRPM members. Using the Cytoscape ver-
sion 3.4.0 software75, we extended the GRPMs by adding the first direct neigh-
boring genes in the Mentha76 human PPI network. With the extension of the
GRPMs, we obtained bigger modules placed in a functional context. We then used
the Cytoscape app ClueGO77. ClueGO uses kappa statistics to group the elements
of the network and creates organized pathway categories based on the integrated
pathway annotation. We based the analysis on human Reactome28 pathways, a
Kappa Score Threshold of 0.4, and Bonferroni correction for the computed
enrichment P values. For the visualization, we selected the fusion feature that
groups pathways according to overlapping genes to facilitate interpretation of the
results. We selected pathways with a P value <0.05.

Downstream functional enrichment. In order to add biological and functional
interpretation to the GRPMs, we looked for associations between the modules’
PHSs and the expression patterns of potential downstream genes (Fig. 1e). From
TCGA26 library, we extracted matched RNA-seq and genotype data of female
breast cancer patients of European ancestry. This resulted in 118 patients with ER-
negative breast cancer and 440 patients with ER-positive breast cancer. For each
GRPM, we computed the previously obtained PHS for the subset of TCGA patients
with a tumor matching the subtype for which the GRPM was found. Next, we
aimed to quantify the downstream transcriptional effect of the GRPM on the
expression of every individual gene. To do so, we computed the Pearson correlation
between the GRPM’s PHS and the RNA expression of each gene. Finally, we
performed GSEA27 to test for enrichment of biological pathways among the highly
correlating genes. We used an annotation set of Reactome pathways28 and
MSigDB29 Hallmark gene sets to perform the pre-ranked GSEA. We visualized the
Reactome results with the EnrichmentMap78 Cytoscape app. Only biological
processes with P value <0.001 and FDR < 0.05 were considered as significantly
enriched.
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Ethical Approval. The study was performed in accordance with the Declaration of
Helsinki. All individual studies, from which data was used, were approved by the
appropriate medical ethical committees and/or institutional review boards. All
study participants provided informed consent.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All 10-year breast cancer-specific survival summary estimates are available via the BCAC
website (http://bcac.ccge.medschl.cam.ac.uk/bcacdata/). Individual patient data will not
be made publicly available without request due to restraints imposed by the ethics
committees of individual studies. Formal request can be made via the Data Access
Coordination Committee (DACC) of BCAC (http://bcac.ccge.medschl.cam.ac.uk/). A
subset of the data that supports the findings of this analysis is available at https://portal.
gdc.cancer.gov/ (accession number phs000178).
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