
SCHNEL: scalable clustering of high dimensional single-cell data
Abdelaal, T.; Raadt, P. de; Lelieveldt, B.P.F.; Reinders, M.J.T.; Mahfouz, A.

Citation
Abdelaal, T., Raadt, P. de, Lelieveldt, B. P. F., Reinders, M. J. T., & Mahfouz, A. (2020).
SCHNEL: scalable clustering of high dimensional single-cell data. Bioinformatics, 36, I849-
I856. doi:10.1093/bioinformatics/btaa816
 
Version: Publisher's Version
License: Creative Commons CC BY 4.0 license
Downloaded from: https://hdl.handle.net/1887/3184427
 
Note: To cite this publication please use the final published version (if applicable).

https://creativecommons.org/licenses/by/4.0/
https://hdl.handle.net/1887/3184427


Data

SCHNEL: scalable clustering of high dimensional

single-cell data

Tamim Abdelaal1,2,†, Paul de Raadt2,†, Boudewijn P. F. Lelieveldt1,2,

Marcel J. T. Reinders1,2,3 and Ahmed Mahfouz 1,2,3,*

1Delft Bioinformatics Lab, Delft University of Technology, 2628 XE Delft, The Netherlands, 2Leiden Computational Biology Center and
3Department of Human Genetics, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands

*To whom correspondence should be addressed.
†The authors wish it to be known that, in their opinion, the first two authors should be regarded as Joint First Authors.

accepted on September 7, 2020

Abstract

Motivation: Single cell data measures multiple cellular markers at the single-cell level for thousands to millions of
cells. Identification of distinct cell populations is a key step for further biological understanding, usually performed
by clustering this data. Dimensionality reduction based clustering tools are either not scalable to large datasets con-
taining millions of cells, or not fully automated requiring an initial manual estimation of the number of clusters.
Graph clustering tools provide automated and reliable clustering for single cell data, but suffer heavily from scalabil-
ity to large datasets.

Results: We developed SCHNEL, a scalable, reliable and automated clustering tool for high-dimensional single-cell
data. SCHNEL transforms large high-dimensional data to a hierarchy of datasets containing subsets of data points
following the original data manifold. The novel approach of SCHNEL combines this hierarchical representation of
the data with graph clustering, making graph clustering scalable to millions of cells. Using seven different cytometry
datasets, SCHNEL outperformed three popular clustering tools for cytometry data, and was able to produce mean-
ingful clustering results for datasets of 3.5 and 17.2 million cells within workable time frames. In addition, we show
that SCHNEL is a general clustering tool by applying it to single-cell RNA sequencing data, as well as a popular ma-
chine learning benchmark dataset MNIST.

Availability and implementation: Implementation is available on GitHub (https://github.com/biovault/SCHNELpy).
All datasets used in this study are publicly available.

Contact: a.mahfouz@lumc.nl

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Cytometry is an established high-throughput technology for measur-
ing cellular proteins at single-cell resolution. In the traditional Flow
Cytometry (FC), cells are labeled with fluorescent antibodies that
bind specific proteins (Picot et al., 2012). Once excited, these anti-
bodies emit light in correspondence with the targeted protein abun-
dance. These light signals limit the number of potential protein
markers as the light spectra will eventually overlap. The advanced
Mass Cytometry, cytometry by time of flight, or CyTOF expands
the number of markers by using metal isotope antibodies (Bandura
et al., 2009). The theoretical upper limit to the number of markers is
100, in practice most CyTOF studies use between 30 and 40
markers (Spitzer et al., 2016). Cytometry, including both FC and
CyTOF, has become a vital clinical tool and has been applied to sev-
eral clinical studies, including, but not limited to: diagnose acute
and chronic leukemia (Virgo et al., 2012), monitoring patients’

immune systems after hematopoietic stem cell transplantations (de
Koning et al., 2016), defining biomarkers in case-control studies
(Stikvoort et al., 2017) and studying the immune cells differentiation
in lung cancer (Hernandez-Martinez et al., 2018).

Cytometry is a high-throughput technology resulting in high-
dimensional datasets of millions of cells, representing a major chal-
lenge in data analysis. A critical step in analyzing cytometry data is
grouping the individual cell measurements into distinct cell popula-
tions. Traditionally, FC data was manually analyzed by plotting
measured intensities of each pair of markers. This allows researchers
to gate distinct cell populations by selecting groups of cells with
similar protein expression patterns. Cells are grouped by either posi-
tive or negative expression of a marker. However, as the number of
markers that can be measured increases, the time required for proc-
essing this manual labor tremendously increases. This manual gating
process is not even applicable for CyTOF data, with �240 gates that
need to be analyzed when using 40 markers. Additionally, manual
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gating is biased by the person performing the gating and suffers
from reproducibility issues. It also assumes dichotomic expression
of a marker (either negative or positive), and ignores the potential of
a marker possessing a gradient pattern.

Consequently, researchers have turned to computational meth-
ods for analyzing cytometry data. Clustering is an unsupervised pro-
cess of grouping data points (cells) by its features (protein markers)
into distinct groups (cell populations). Many tools have already
been published for the task of clustering cytometry data into cell
populations (Aghaeepour et al., 2013; Chester et al., 2015; Weber et
al., 2016). These tools can be broadly divided into two categories:
dimensionality reduction based, and graph based.

In dimensionality reduction approaches, an algorithm first
reduces high dimensional data to fewer dimensions in which the
data is then clustered. Reducing to two or three dimensions allows
visual representation of high dimensional data, which is otherwise
impossible. The archetypical dimensionality reduction technique is
Principal Component Analysis (PCA). PCA is limited in its useful-
ness for cytometry data because it fails to capture non-linear pat-
terns which are characteristic of high dimensional omics data. A
popular non-linear dimensionality reduction technique in the single
cell community is t-distributed stochastic neighbor embedding
(tSNE) (van der Maaten et al., 2008). tSNE analyses local neighbor-
hoods of data points and tries to embed the shape of the high dimen-
sional data onto a lower number of dimensions. Clustering can then
be performed on the low dimensional embedding to reduce the com-
putational burden of clustering in high dimensional space. Tools
such as ACCENSE (Shekhar et al., 2014), ClusterX (Chen et al.,
2016) and DensVM (Becher et al., 2014) are all examples of tools
that perform clustering after dimensionality reduction. Non-linear
dimensionality reduction methods, like tSNE, suffer from scalability
to large datasets. Despite recent improvements of the algorithm, cal-
culating tSNE embeddings becomes prohibitively slow for more
than million data points (van der Maaten, 2014; Pezzotti et al.,
2017, 2020). In addition, tSNE embeddings are stochastic and the
resulting global structure of the embeddings for identical data will
be different between two runs. This can affect any clustering done in
the tSNE dimensions; the stochasticity of the embeddings will make
the results less reproducible and less reliable.

Hierarchical Stochastic Neighbor Embedding (HSNE) is a ma-
chine learning technique that was introduced to solve the scaling
problem associated with tSNE. HSNE transforms large volume of
high-dimensional data to a hierarchical set of smaller volumes at
representing different scales of the data (Pezzotti et al., 2016; van
Unen et al., 2017). At any scale, the data can be processed, such as
making tSNE embeddings to visualize the reduced data and sub-
sequently cluster the data at these scales. HSNE implementations
exist in Cytosplore (Höllt et al., 2016) and High Dimensional
Inspector (https://github.com/Nicola17/High-Dimensional-Inspector).
Cytosplore allows users to cluster the 2D tSNE embeddings of each
data scale with Gaussian Mean Shift clustering, remedying the scal-
ing problem as at these scales the volume of the data can be orders
of magnitude smaller than the full dataset. Nevertheless, the cluster-
ing still suffers from reproducibility and reliability because of the
stochastic tSNE step to reduce the dimensionality.

A different dimensionality reduction based tool is FlowSOM,
which clusters the data using a self-organized map (SOM) (Van
Gassen et al., 2015). Briefly, a SOM consists of a grid of nodes, each
representing a point in the high-dimensional space. The grid is
trained in such a way that closely connected nodes are highly simi-
lar. Each point of the dataset is clustered to the most similar node in
the grid. FlowSOM does not suffer from scalability issues, as the
computation time is extremely fast (Weber et al., 2016). However,
FlowSOM cannot automatically find the correct number of clusters,
producing less accurate clustering when cell populations are more
similar.

An alternative to clustering in low dimensional space, is to clus-
ter the data in the original high dimensional space using graph-
based techniques. Graph clustering tools like Louvain clustering in
Phenograph (Levine et al., 2015) and X-shift (Samusik et al., 2016)
start by finding for each data point the k nearest neighbors. The

neighborhood graph is then analyzed to find regions with high con-
nectivity, indicating clusters of similar cells. Compared to dimen-
sionality reduction tools, graph clustering tools provide more
reproducible, reliable and automated clustering, with a better ability
to detect cell populations with relatively few cells. On the other
hand, these graph based methods suffers heavily from the scalability
to large datasets, exemplified by runtimes for Phenograph and X-
shift that exceed 5 h for a dataset of �0.5 million cells (Weber et al.,
2016).

Here, we present SCHNEL, a scalable, reliable and automated
clustering tool for high-dimensional single-cell data. SCHNEL com-
bines the hierarchy idea of the HSNE transform with a graph based
clustering, making graph based clustering scalable to millions of
cells. SCHNEL produces fast and accurate clustering of cytometry
datasets, as well as different types of high-dimensional datasets such
as the popular machine learning benchmark dataset MNIST and
single-cell RNA-sequencing data.

2 Materials and methods

2.1 SCHNEL workflow
We developed SCHNEL, Scalable Clustering of Hierarchical sto-
chastic Neighbor Embedding hierarchies using Louvain community
detection, a novel method for clustering high dimensional data that
scales towards millions of cells. It combines the HSNE manifold-
preserving data reduction properties with graph clustering to assign
each data point to a meaningful cluster, while performing the actual
clustering on a reduced subset of the data. It uses the hierarchical in-
formation contained in HSNE to assign the predicted cluster labels
on a subset of the data, back to the full dataset (Fig. 1).

2.1.1 Creating hierarchy using HSNE

We used HSNE as introduced by (Pezzotti et al., 2016) to construct
a hierarchical data representation of the entire high-dimensional
dataset. In brief, the hierarchy starts with the raw data, which is
then aggregated (summarized) to more abstract scales. At the bot-
tom of the hierarchy, the first scale (data scale) S0 is the full dataset
(Fig. 1A). Using all data points, HSNE begins by constructing a
neighborhood graph based on a user defined number of neighbors k.
Next, HSNE defines a transition matrix T0 based on two properties.
First, the transition probability between two data points, i and j, is
inversely proportional to the Euclidean distance between them.
Second, each data point i is only allowed to transition to a data
point j, if j belongs to the k-nearest-neighborhood of i, otherwise the
transition probability is zero. The transition matrix encodes the
intrascale similarities between data points.

To define the next scale S1, HSNE selects representative data
points from scale S0, called landmarks. Landmarks on a given scale
Sn represent a subset of (landmark) points at the previous scale Sn�1.
To find the landmark point at scale S1, HSNE performs many ran-
dom walks of fixed length on the transition matrix T0, starting from
each data point at S0. Next, HSNE records the number of random
walks ending at each (landmark) point, reflecting the connectivity of
each data point. Data points at S0 with a connectivity above user
defined threshold are selected as landmarks for S1. As most data
points do not meet this threshold, the new scale S1 is more sparsely
populated than the previous scale S0 (Fig. 1B).

To generate a new scale (say S2) in the hierarchy, repeating the
previous procedure cannot retain the original data structure. For in-
stance, calculating another neighborhood graph on landmarks of
scale S1 will define neighbors with a short Euclidean distance that
do not follow the original manifold (Fig. 1B). To preserve the origin-
al data structure, HSNE uses a different concept, called the area of
influence, to define neighborhoods for landmarks (Fig. 1B and C).
The area of influence of a landmark on scale Sn encodes the set of
points, from the previous scale Sn�1, that can be represented by that
landmark. Consequently, the area of influence matrix encodes the
interscale similarities, where Anði; jÞ is the probability that point i at
scale Sn�1 is well represented by landmark j at scale Sn. The
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similarities between the landmarks of scale Sn are calculated based
on the overlap of their areas of influence on scale Sn�1, thus generat-
ing the transition matrix Tn for scale Sn (Fig. 1D). As a result, each
scale is sampled from the previous scale in such a way that the struc-
ture of the full data in the high dimensional space is retained.

2.1.2 Graph clustering

At any scale of the hierarchy, the dataset can be clustered using a
graph clustering to define the different clusters of points (cell popu-
lations for biological dataset) (Fig. 1E). Depending on the number
of (landmark) points on a scale this is feasible or not. In all our
experiments all scales, except the data scale, were feasible, as the
number of landmark points is at least an order of magnitude smaller
than the number of data points in the full dataset. We applied
the Louvain Community detection, which is a heuristic algorithm
that attempts to cluster the graph by maximizing the modularity
(Blondel et al., 2008). Modularity is a graph property measuring
how well clusters in a graph are separated (Newman, 2006).
Clustering is performed on the transition matrices, and the results
are propagated to the full dataset using the information encoded in
the area of influence (Fig. 1F and G), hence, for all scales, also a
clustering of all data points is achieved.

2.1.3 Label propagation

Once the landmarks of a given scale were clustered, these cluster
labels are propagated down the hierarchy to label the full dataset. For

this task, we used the area of influence (Supplementary Fig. S1). The
area of influence An at scale Sn is an i by j matrix, where j is the num-
ber of landmarks at scale Sn, and i is the number of landmarks/points
at scale Sn�1 preceding it. Each row is a probability distribution of
point i at scale Sn�1 being represented by landmarks at scale Sn.

We defined a cluster aggregated version of An named Ac
n, an i by

c matrix, where c is the number of clusters obtained from clustering
the j landmarks at scale Sn, and i is the number of landmarks/points
at scale Sn�1. For each row i, the probabilities of landmarks (col-
umns of An) belonging to the same cluster were summed. The inter-
scale connection is defined as the maximum aggregate value of each
row in Ac

n. The cluster label each row (data point that needs a label)
received was the column (cluster) that had the highest aggregated
probability in that row.

2.1.4 Implementation details

We calculated the HSNE hierarchy and converted it to binary for-
mat using an adapted version of the High Dimensional Inspector
Cþþ version 1.0.0 that saves the HSNE hierarchy to disk and omits
the interactive tSNE. Settings for HSNE were: Beta threshold 1.5,
number of neighbors 30, number of walks for landmark selection
200, number of scales round(log10(N/100)) where N is the number
of points in the dataset.

The graph clustering is applied using the Python Louvain imple-
mentation version 0.6.1 (https://github.com/vtraag/louvain-igraph).
The HSNE hierarchy is read using a custom written Python parser
(https://github.com/paulderaadt/HSNE-clustering). The Louvain

Fig. 1. SCHNEL workflow. (A) In silico generated dataset: random data points on a spiral manifold in three dimensions. The data scale represents all data points within the

dataset. The transition matrix is based on the kNN graph of all points. (B) At scale 1, highly connected points at the data scale are selected as landmarks. To keep the original

manifold, the area of influence for each landmark is calculated, storing the impact/relationship of a landmark at scale 1 on/with the data points at the data scale. The red lines

show that performing a kNN at scale 1 will find erroneous neighbors (in Euclidean space), i.e. neighbors that are more distant to each other than when following the spiral

manifold. (C) Landmarks in scale 2 are subsequently a subset from the landmarks of scale 1. Each scale is sampled from the previous scale in such a way that the non-linear

structure of the data in the high dimensional space is retained. (D) Flow of information in an HSNE hierarchy. Transition matrices are used to select landmarks for subsequent

scales. At all scales (excluding the data scale), the transition matrix is calculated from the area of influence, which in turn is calculated based on the landmark selection process

which is derived from the transition matrix at the previous scale. (E) Graph clustering is performed on a scale of choice, in this example scale 2. This is a computationally cheap

operation since only a small subset of the data is clustered. (F) Cluster labels have been assigned to each landmark of scale 2, the labels are now propagated down the hierarchy

to the data scale using the information encoded in the area of influence. (G) The full dataset now has cluster assignments, while only a fraction of the data was actually

clustered
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algorithm used the transition matrix values as weights, and
modularityVertexPartition as maximization objective (Traag et al.,
2019).

2.2 Datasets
In this study, we applied and evaluated SCHNEL using nine dif-
ferent datasets: one popular machine learning benchmark dataset,
seven publicly available cytometry datasets, and one single-cell
RNA-sequencing dataset (Table 1).

The MNIST dataset contains handwritten digits that were
scanned into a computer, each pixel has a value between 0 and 255
and is one of the 784 features of the dataset. It has ten different dig-
its, the numbers 0–9 (http://yann.lecun.com/exdb/mnist/).

All the cytometry datasets are Peripheral Blood Mononuclear
Cells (PBMC) or bone marrow samples measured with specific
markers to analyze the immune system. The AML dataset is a small
benchmark mass cytometry dataset, consisting of bone marrow sam-
ples from two healthy humans. The cells were manually gated by
experts into 14 different cell populations (Levine et al., 2015). The
BMMC dataset is another small CyTOF dataset, containing a
healthy human bone marrow sample from a single subject manually
gated into 24 cell populations (Levine et al., 2015). The Panorama
dataset is a larger CyTOF dataset with 10 replicates of mouse bone
marrow samples manually gated into 24 cell populations (Samusik
et al., 2016). The HMIS dataset is an even larger CyTOF dataset,
consisting of 47 human PBMC samples of healthy, Crohn’s disease
and Celiac’s disease patients. There are no manually gated labels
available. The HMIS dataset was analyzed and clustered using
Cytosplore resulting into six major immune clusters (van Unen
et al., 2016). The largest CyTOF dataset is Phenograph-Data, with
more than 17 million cells derived from 21 human bone marrow
healthy and leukemia individuals (Levine et al., 2015).

The Nilsson and Mossman datasets are both FC datasets from
healthy humans. For both the Nilsson and Mossman datasets there
are no full annotations available, only a very small (rare) population
is annotated. For the Nilsson dataset, 358 (0.8%) cells are annotated
as hematopoietic stem cells (Rundberg Nilsson et al., 2013). For the
Mosmann dataset, 109 (0.03%) cells are labeled as CD4 memory T-
cells (Mosmann et al., 2014).

Finally, we used the Mouse Nervous System (MNS) single-cell
RNA-seq dataset, measuring the transcriptome wide expression of
19 different regions of the MNS clustered into 39 cell populations
(Zeisel et al., 2018).

Prior to any analysis, The MNIST dataset and all the cytometry
datasets were arcsinh transformed with a cofactor of five, and all
features/markers were used as input to SCHNEL. While the MNS
dataset was first log-transformed, next we applied PCA retaining
only the top 100 principle components, before inputting the data to
SCHNEL.

2.3 Evaluation metrics
After propagating the cluster labels to all data points, the clustering
can be evaluated using the full dataset. Although the task at hand is
unsupervised clustering, we used three different supervised evalu-
ation metrics, as for all datasets, except Phenograph-Data, we had
manually annotated cell populations used as ground truth. The
evaluation metrics are:

The adjusted Rand index (ARI), measuring the similarity be-
tween two sets of cluster label assignments (Rand, 1971). It is
adjusted for the chance of coincidentally correctly assigning a pair
of data points to the same cluster. It lies in the range of [-1,1], where
-1 is worse than random cluster assignment, and 1 is a perfect
matching clustering.

The homogeneity score (HS), measuring the pureness of clusters,
given a clustering result with a ground truth (Rosenberg and
Hirschberg, 2007). It is a score between [0,1], where 1 means
that each cluster contains only data points of a single ground truth
label.

The completeness score (CS), conversely measuring whether dif-
ferent ground truth groups are captured in distinct clusters
(Rosenberg and Hirschberg, 2007). It is also a score between [0,1],
where 1 means that all members of a given ground truth label are
assigned to the same cluster.

There is a trade-off between high homogeneity and high com-
pleteness: e.g. when several ground truth groups all get clustered
into one cluster, completeness would be 1 and homogeneity would
be 0. It is thus important to evaluate both measures simultaneously.

2.4 Benchmarking tools
We benchmarked SCHNEL versus three popular clustering tools for
cytometry data, Phenograph (Levine et al., 2015), X-shift (Samusik
et al., 2016) and FlowSOM (Van Gassen et al., 2015). Phenograph
Version 1.5.2 was used with k¼30 and default settings for all other
parameters. (https://github.com/jacoblevine/PhenoGraph). X-shift
was applied using number of neighbors¼20, Euclidean distance,
noise threshold ¼ 1, no normalization, no minimal Euclidean length,
number of clusters K ranging from 225 to 15. The final number of
clusters was determined with the built-in elbow method. Release
26-4-2018 was used (https://github.com/nolanlab/vortex/releases).
FlowSOM was applied using x-dim¼10, y-dim¼10, compensate¼
False, transform¼False, scale¼False, maxMeta¼40. FlowSOM ver-
sion 1.1.4.1 was used, available as Bioconductor R package. All
experiments were limited to run on a single core Intel Xeon X5670
2.93 GHz CPU with 24 GB of memory (to be able to compare
runtimes).

3 Results

3.1 SCHNEL produces meaningful clustering
To evaluate the performance of SCHNEL, we first explored the
MNIST dataset, as it has the advantage of easy interpretation of the
resulting clusters (recall that the MNIST dataset consists of images
of handwritten digits). With SCHNEL, we generated three hierarch-
ical scales of the full dataset, and provided a clustering for each
scale. Clustering results as well as evaluation metrics are summar-
ized in Table 2. For all scales, SCHNEL produced good clustering,
with all evaluation metrics relatively high (>0.8), despite the differ-
ence in the number of landmark points that were clustered at each
scale, which vary by orders of magnitude. For instance, scale 3 had
only 142 (landmark) data points (�0.24% of the full dataset) and
SCHNEL was still able to produce good clustering with only one
cluster less than the original MNIST dataset (9 out of 10).

Next, we applied SCHNEL to three CyTOF datasets AML,
BMMC and Panorama, and evaluated the clustering of each scale
(Table 2). For the AML dataset, SCHNEL provided good clustering
of scales S1 and S2, with the number of clusters close to the ground
truth. While scales S3 and S4 showed under-clustering of the AML
dataset, probably because there were very few landmark cells at
these scales. For the BMMC dataset, SCHNEL under-clustered the

Table 1. Description of the different datasets employed, showing:

the total number of data points (cells or images), the number of

features (pixels, proteins markers or genes, for the MNIST dataset,

cytometry dataset and scRNA-seq dataset, respectively), labels

indicates the number of ground truth clusters of each dataset and

type of data

Dataset No. of points Features Labels Type

MNIST 60 000 784 10 Handwritten digits

AML 104 184 32 14 CyTOF

BMMC 81 747 12 24 CyTOF

Panorama 514 386 39 24 CyTOF

HMIS 3 553 596 28 6 CyTOF

Phenograph-data 17.2 M 31 – CyTOF

Nilsson 44 140 14 1 FC

Mosmann 396 460 13 1 FC

MNS 160 796 28 000 39 scRNA-seq
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data for all scales, with 10 clusters less than the ground truth for
both scales S1 and S2, but still with relatively good performance.
Also, we observed a similar clustering for both scales S1 and S2, with
an order of magnitude difference in the number of cells between
both scales (�17.04 and 2.45% of the full dataset, for S1 and S2, re-
spectively). We obtained similar observations for the Panorama
dataset. For scales S1, S2 and S3 (�12.92, 2.13 and 0.28% of the full
dataset, respectively), SCHNEL produced good clustering, with the
number of clusters close to the ground truth. S4 showed under-
clustering as it contained very few landmark cells (0.04% of the full
dataset).

The evaluation metrics give a general indication of the clustering
quality, but do not show what factors drive the joining or splitting
of manually annotated (ground truth) clusters. Therefore, for the in-
terpretable MNIST dataset, we inspected the clustering at the most
detailed scale (S1Þ and the least detailed scale (S3) (Supplementary
Fig. S2A and B). The contingency matrix at the detailed scale
showed good cluster assignments for each digit, although ones and
fives were split over multiple clusters (Supplementary Fig. S2A).
Further inspection of the average cluster images of the three clusters
representing a handwritten ‘one’ (clusters 8, 10 and 11) revealed
that their differences relate to the way a ‘one’ is written: straight
written ones (Supplementary Fig. S2C), ones written with a slant of
45 degrees clockwise (Supplementary Fig. S2D) and ones written at
angles in between (Supplementary Fig. S2E). At the least detailed
scale, the split clusters at S1 were merged, but now also the images
representing fours and nines were merged into a single cluster
(Supplementary Fig. S2B), due to an overlapping motif between
them (Supplementary Fig. S2F).

Next, we checked the contingency matrix of the AML dataset on
the most detailed scale S1 (Supplementary Fig. S3A). The first seven
clusters were homogeneous and represent some subsets of the major
lineages. In cluster 7, SCHNEL merged CD16 positive and negative
NK-cells, and in cluster 9 SCHNEL clumped many of the hemato-
poietic stem cells (HSPCs). We observed other instances where
SCHNEL splits the ground truth classes into multiple clusters.
Again, inspecting the cluster averages, which now can be repre-
sented as a heatmap of marker expressions, helps to reveal the rea-
sons for splitting or merging ground truth clusters (Supplementary
Fig. S3B). For example, clusters 2 and 3 contained almost exclusive-
ly CD4 T-cells, which were distinct in their expression of CD7.
Clusters 1 and 5 were most different in their expression of CD33.
Clusters 4 and 6 were split on distinct expression of CD20.
Additionally, cluster 14 contained CD4 and CD8 T-cells with very
high expression of CD235ab. Although some of these clusters seem
ambiguous, the overall results show the ability of SCHNEL to pro-
duce meaningful clusters using only a small fraction of the data
(�15.39%).

For the Panorama dataset, SCHNEL produced almost identical
clustering using less cells; at S1 having 66 466 (12.92%) landmark
cells, and at S3 even with only 1 436 (0.28%) landmark cells
(Supplementary Fig. S4). This illustrates the ability of SCHNEL to
pick landmark cells that represent the dataset structure well.

3.2 SCHNEL outperforms popular cytometry clustering

tools
To further evaluate the performance of SCHNEL, we benchmarked
SCHNEL against three popular clustering tools for cytometry data
(FlowSOM, Phenograph and X-shift), using the three CyTOF data-
sets: AML, BMMC and Panorama. In terms of the ARI evaluation
metric, SCHNEL outperformed other tools across all three datasets,
except Phenograph for the BMMC dataset which performed similar-
ly (Table 3). Further, SCHNEL showed better visual partitioning
agreement compared to the ground truth manual annotations
(Fig. 2).

Table 3. Performance summary of SCHNEL versus FlowSOM,

Phenograph and X-shift

AML BMMC Panorama

SCHNEL Clusters 14 14 21

ARI 0.78 0.90 0.84

FlowSOM Clusters 5 7 8

ARI 0.68 0.62 0.44

Phenograph Clusters 24 17 31

ARI 0.61 0.91 0.67

X-shift Clusters 21 19 70

ARI 0.69 0.67 0.66

Note: Clusters indicates the number of clusters found for each combination

of cluster tool and dataset, whereas ARI indicates the Adjusted Rand Index for

that combination expressing how much it overlaps with the ground truth data.

Fig. 2. tSNE maps of AML, BMMC and Panorama datasets (columns) colored with

different annotations (rows). Manual annotations indicate the ground truth labeling

of the datasets. SCHNEL showed good visual agreement with the manual annota-

tions. FlowSOM incorrectly merged different cell populations into mega clusters.

Phenograph showed very detailed clustering. X-shift struggled to define clear cluster

boundaries

Table 2. Summary of SCHNEL results for MNIST, AML, BMMC and

Panorama dataset, across all scales

Dataset Scale No. of points No. of clusters ARI HS CS

MNIST 1 12 014 13 0.83 0.89 0.82

2 1 759 11 0.87 0.90 0.87

3 142 9 0.82 0.85 0.90

AML 1 16 031 16 0.72 0.93 0.79

2 2 595 14 0.78 0.92 0.83

3 292 10 0.80 0.92 0.85

4 50 6 0.94 0.85 0.98

BMMC 1 13 932 14 0.92 0.88 0.94

2 2 002 14 0.90 0.87 0.93

3 118 9 0.79 0.79 0.96

Panorama 1 66 466 23 0.84 0.94 0.87

2 10 943 21 0.84 0.94 0.86

3 1 436 23 0.84 0.94 0.86

4 217 11 0.91 0.85 0.93
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FlowSOM under-clustered the data using the default settings, in
which case FlowSOM determines the optimal number of clusters
automatically (Fig. 2). However, FlowSOM was capable of a
good clustering when the predefined number of clusters is close
to the number of cell populations in the manual annotations
(Supplementary Fig. S5). But, generally, this information is not
available beforehand. FlowSOM, on the other hand, was extremely
fast (clustering the whole dataset under 10 min).

Phenograph showed similar partitioning to SCHNEL, but suf-
fered from over-clustering in some cases providing very detailed
small clusters (Fig. 2). Speed-wise, SCHNEL was an order of magni-
tude faster than Phenograph across all cytometry datasets used in
this study (Fig. 3). For the 3.5 million HMIS dataset, Phenograph
was even not able to complete the clustering after 7 days, at which
point it was discontinued.

X-shift performed reasonably well on the AML and BMMC
datasets, but found too many small clusters on the Panorama data-
set. Generally, X-shift failed to define clear boundaries between
clusters (Fig. 2). X-shift was not timed because its implementation is
a graphical user interface, but its computation time was around
30 min for the smaller datasets AML and BMMC, and up to 6 h for
the Panorama dataset. Similar to Phenograph, X-shift was not able
to complete the clustering of the HMIS dataset after 7 days.

3.3 SCHNEL scales to large datasets
SCHNEL was tested on datasets of different sizes to see how well it
scales. Figure 4A shows the computation time of SCHNEL specified
per task. Clustering the most detailed scale (S1) was the most time-
consuming operation. For the HMIS dataset this meant clustering
495 811 landmarks (similar as the entire Panorama dataset).
Excluding this scale, the HMIS dataset could be clustered in roughly
50 min.

Further, we tested the scalability of SCHNEL to cluster the
Phenograph-Data with 17.2 million cells, divided over 5 healthy and
16 leukemia individuals. In the original study, this dataset was ana-
lyzed per individual using the Phenograph clustering algorithm
(Levine et al., 2015). Using SCHNEL, we were able to pool all the
cells from all individuals together and obtained a single clustering.
We chose to represent the data at six different scales on top of the
data scale. These scales contained 2.3M, 378K, 53K, 9K, 784 and
48 landmark cells, from the most detailed scale (S1) to the least
detailed scale (S6), respectively. We skipped clustering S1 as it is
computationally very expensive. Clustering S2 to S6 resulted in 131,
133, 114, 47 and 5 clusters, respectively. Using the 47 cell clusters
of S5, we calculated the cluster frequencies across the 21 individuals
(Fig. 4B). Similar to the original study (Levine et al., 2015), we
observed a homogeneous pattern across all healthy individuals,
while the leukemia individuals had heterogeneous patterns. These

Fig. 3. Computation time in seconds of SCHNEL and Phenograph with different data-

set sizes. SCHNEL time is the clustering time of all scales in the hierarchy. Axes are

log scaled

Fig. 4. (A) Computation time of SCHNEL in seconds for different datasets. Different colors specify different steps in the SCHNEL algorithm. Green is calculating the HSNE

hierarchies, orange is reading the HSNE hierarchy into Python, the other colors are times for clustering individual scales. Note that clustering scale 1 of the HMIS dataset

(495 811 landmark cells) takes quite some time, showing the benefit of creating hierarchies and (only) clustering at higher scales having less landmarks. (B) Cluster frequencies

across all the 21 individuals of the Phenograph-Data dataset. Clusters obtained from SCHNEL using scale 5. Red line separates between healthy and leukemia individuals
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results show the scalability of SCHNEL to cluster such large datasets
and produce meaningful clustering.

3.4 SCHNEL detects rare cell population
Different cell types are expected to have very different abundances
and good clustering algorithms should be able to detect rare cell
populations which are often interesting to study. We used the
Mosmann and Nilsson datasets to test SCHNEL’s sensitivity for
detecting small populations. The Mosmann and Nilsson datasets
both had manual annotations for only one rare cell population pre-
sent within their full dataset. The Mosmann dataset contained a
population of 109 memory CD4 T-cells. The Nilsson set contained
358 stem cells. Table 4 shows the sensitivity of SCHNEL for detect-
ing these small populations. For both datasets, the cells belonging to
the rare populations nicely clustered together at the various scales
(CS), but for some scales these clusters also contained many other
cells (Cluster size). For the Mosmann dataset, SCHNEL was able to
capture the rare population in a single cluster without having many
other cells at scales S1 and S3.

3.5 Clustering scRNA-seq data using SCHNEL
After showing the potential of SCHNEL to cluster cytometry data,
we tested the ability of SCHNEL to cluster scRNA-seq data which
has many more features. We applied SCHNEL on the MNS dataset,
using four scales on top of the data scale. Compared to the ground
truth labels, the overall best clustering was obtained for scale 3 with
24 cell clusters, having an ARI of 0.68, HS of 0.83 and CS of 0.84.
Similar to the MNIST dataset, we checked the clustering result
details by calculating the contingency matrix, showing indeed a
good agreement (Supplementary Fig. S6), i.e. a clear one-to-one rela-
tion between SCHNEL clusters and ground truth labels. For ex-
ample, cluster 10 with ‘Microglia’ and cluster 18 with ‘Olfactory
ensheathing cells’. In some cases, SCHNEL merged similar classes
into one cluster. For instance, cluster 1 contained two ‘Enteric’ cells
(glia and neurons) classes. Cluster 23 grouped three classes of
‘Peripheral sensory neurons’, while cluster 15 had two classes
of ‘Vascular cells’. Alternatively, SCHNEL did find two subtypes
of ‘Astrocytes’ (cluster 3 and 7), and three subtypes of
Oligodendrocytes (cluster 0, 5 and 16).

4 Discussion

SCHNEL provides a scalable fast solution for clustering large single
cell data. Its novel approach utilizes HSNE for informed sampling of
the data points using the concept of landmark selection and area of
influence, which preserves the manifold structure of the full data.
The sampling reduces the computational challenge of clustering
many data points to a problem of clustering a subset of the data
points that is at least an order of magnitude smaller. The smaller

subset can be quickly clustered by the Louvain algorithm, a graph-
based clustering method. The manifold learning ensures that the
sampled data points (landmark points) retain the same structure as
the full dataset. As landmark points represent the data points, clus-
ter labels can be easily propagated down the hierarchy to the full
dataset.

Due to the informed sampling procedure, SCHNEL scales to
large datasets. The results of the Phenograph-Data, HMIS and
Panorama datasets showed that it is not necessary to cluster on the
full dataset or even the most detailed scale to capture all clusters,
even rare ones. In other words, a meaningful clustering can be
obtained from a sampling of the data that is two, or more, orders of
magnitude smaller than the full dataset. This gives SCHNEL the op-
portunity to cluster dataset sizes of up to millions of cells within
workable time frames.

When clustering the largest cytometry dataset, Phenograph-
Data, SCHNEL was able to pool all cells from all individuals to-
gether in one clustering. Compared to a clustering of each individual
separately (as done in the original Phenograph study), SCHNEL
achieved two major advantages. First, cell cluster frequencies across
individuals can be directly applied as all clusters emerged from one
clustering. This in contrast to clustering per individual which
requires matching the clusters obtained across individuals to be able
to compare their frequencies. Second, pooling all cells together helps
to emphasize small rare cell populations, making them easier to de-
tect. When analyzing per individual, rare cell population might be
divided across individuals, resulting in too few cells to be detected as
a separate population.

Using three CyTOF datasets, AML, BMMC and Panorama,
SCHNEL achieved similar or better performance compared to the
tested existing tools. Moreover, SCHNEL did not require any pre-
existing knowledge on how many clusters the data should contain.
We observed an under-clustering of the BMMC dataset using
SCHNEL, this may be due to the fact that the BMMC dataset con-
tains 11 (out of 24) small cell populations with less than 1000 cells.
These small populations might not have enough representative land-
marks in subsequent scales of the hierarchy.

When clustering the AML dataset, SCHNEL produced some
interesting cell clusters that might have biological relevance.
Clusters 2 and 3 separated the CD4 T-cells into two groups with dif-
ferent expression of CD7. CD7- CD4 T-cells have been reported be-
fore and can result from either ageing or prolonged immune system
activation (Reinhold et al., 1997). Clusters 4 and 6 were only dis-
tinct in their expression of CD20. Both clusters mainly contained
mature B cells. This suggests that cluster 4 (CD20-) is a plasma B
cell population, as CD20 is known to be highly expressed across all
mature B-cells except plasma cells (Leandro, 2013). Finally, Cluster
14 contained a set of 62 CD4 T-cells and 43 CD8 T-cells. Normally
these two proteins are mutually exclusive in mature T-cells. It could
be possible that SCHNEL detected a rare subset of CD4þCD8þ T-
cells. Therefore, formation of this cluster seems mostly driven by
high expression of CD235ab, a red blood cell protein used to filter
them out. It is suggested that these cells were not properly filtered
out during manual gating.

Clustering the MNS scRNA-seq dataset showed that SCHNEL
can handle large feature dimensions and produce meaningful clus-
tering. This result shows that SCHNEL can be used as general clus-
tering tool for single-cell data, not only cytometry data.

It is important to note that SCHNEL is a stochastic procedure,
as the HSNE employs an approximated nearest neighbor search for
generating the transition matrix on the data scale. This means that,
although extremely similar, different hierarchies made from the
same data with the same parameters will be slightly different. In
addition, the Louvain clustering algorithm is also stochastic because
it chooses random nodes as candidates for merging when trying to
optimize for modularity. Different runs of the Louvain method on
the same graph may produce slightly different results.

The current implementation of SCHNEL provides clustering for
all scales. This provides different level of details in the clustering;
however, it limits the automation of the algorithm to produce one
clustering of the data. Further improvements can automatically

Table 4. Performance of SCHNEL for capturing rare populations in

the Mosmann and Nilsson datasets

Dataset Scale No. of cells No. of clusters Cluster size CS

Mosmann 1 77 787 23 181 0.94

2 9 398 18 4 949 0.99

3 1 090 14 173 0.93

4 191 6 110 097 0.99

Nilsson 1 9 386 23 4 314 0.93

2 1 354 17 3 269 0.93

3 125 7 7 779 1

Note: Cluster size indicates the size of the cluster in which most cells of the

rare population were contained. Completeness Score (CS) indicates how

many of the annotated rare cells in the original dataset were in the cluster con-

taining most of the designated rare cells.
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determine the scale providing the best clustering, which may also re-
duce the computation time.

In conclusion, SCHNEL presents a reliable automated clustering
tool for single-cell high-dimensional datasets. Using the HSNE,
SCHNEL allows to perform graph clustering scalable to tens of mil-
lions of cells. Such clustering can be applied at different scales of the
hierarchy, providing different level of detail.
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