
Towards the automatic detection of syntactic differences
Kroon, M.S.

Citation
Kroon, M. S. (2022, November 10). Towards the automatic detection of syntactic
differences. LOT dissertation series. LOT, Amsterdam. Retrieved from
https://hdl.handle.net/1887/3485800
 
Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3485800
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3485800


CHAPTER 2

A filter for syntactically incomparable parallel
sentences

A version of this chapter was published as:
Kroon, M., Barbiers, S., Odijk, J., & van der Pas, S. (2019). A filter for

syntactically incomparable parallel sentences. Linguistics in the Netherlands, 36,
147-161. https://doi.org/10.1075/avt.00029.kro

Author contributions: MK, SB, JO and SvdP conceptualized the research; MK
designed and wrote the tools; MK and SvdP labelled the data; MK analyzed the

data and wrote the paper; SB, JO and SvdP supervised and critically reviewed the
research.

Abstract

Massive automatic comparison of languages in parallel corpora will
greatly speed up and enhance comparative syntactic research. Auto-
matically extracting and mining syntactic differences from parallel cor-
pora requires a pre-processing step that filters out sentence pairs that
cannot be compared syntactically, for example because they involve
“free” translations. In this paper we explore four possible filters: the
Damerau-Levenshtein distance between POS-tags, the sentence-length
ratio, the graph-edit distance between dependency parses, and a com-
bination of the three in a logistic regression model. Results suggest
that the dependency-parse filter is the most stable throughout language
pairs, while the combination filter achieves the best results.



16 Towards the Automatic Detection of Syntactic Differences

2.1 Introduction
An important goal of comparative syntactic research is to identify the syntactic
differences between languages and the correlations between these differences.
This should lead to an explanation of the locus and limits of syntactic variation
(cf. Barbiers 2009). Massive automatic syntactic comparison of languages will
greatly speed up and enhance this research. This is necessary given the enorm-
ous number of language varieties and syntactic variables involved. Parallel cor-
pora such as Europarl (Koehn 2005), containing sentence aligned versions of
the proceedings of the European Parliament in 21 languages, provide excellent
data for automatic syntactic comparison.1 The advantage of using a parallel
corpus over a non-parallel corpus for this goal is that in a parallel corpus one can
also identify in which contexts the differences occur, whereas in a non-parallel
corpus one can only identify quantitative differences (cf. Wiersma, Nerbonne
and Lauttamus 2011 for an example of the latter).

We are developing a pipeline to make automatic syntactic comparison of
parallel sentences possible, as part of the DeSDA project.2 The first step in
this pipeline is to filter out syntactically incomparable parallel sentences. Steps
two and three include the extraction of syntactic differences from the remaining
sentences and the application of data mining techniques to discover possible
correlations. This paper describes and evaluates the first step.

When extracting syntactic differences from parallel corpora, it is essential
only to compare sentence pairs that are syntactically sufficiently similar. A
method and measure is needed to filter out sentence pairs that are syntactically
too different, such as “free” translations. Any extracted differences from too
dissimilar sentence pairs will lead to noisy and uninterpretable results. In other
works, researchers manually discard incorrect translations or those that are
too free (among others, van der Klis, Le Bruyn and De Swart 2017; Abzianidze
et al. 2017), whereas we aim for the automatization of the task, which, to the
best of our knowledge, has not been attempted before.

In this paper we present four ways to automatically filter out parallel sen-
tence pairs that are not sufficiently similar syntactically,3 and report on exper-
iments using these filters on manually labelled datasets of English, Dutch and
German parallel sentences taken from the Europarl corpus – one filter based
on the Levenshtein distance (Levenshtein 1966), one on the sentence-length
ratio, one on the graph-edit distance between dependency parses and one that
combines the other three in a logistic regression model.

All four filters use a threshold value beyond which a sentence pair is filtered
out. In the case of the combination filter, this threshold is automatically de-
rived from the logistic regression model, which is trained in a supervised man-
ner, therefore requiring a gold standard dataset of labelled sentence pairs. The

1 http://opus.nlpl.eu/
2 https://www.universiteitleiden.nl/en/humanities/centre-for-digital-humanit

ies/projects/past-lucdh-research-projects#outline-of-the-desda-project
3 The code is made available on https://github.com/mskroon/DeSDA



Filtering for syntactic comparability 17

other three filters can either take a manually set threshold, or find an optimal
threshold value through supervised learning (see Section 2.4.5).

Syntactic comparability is hard to define and also depends on the research
goals. We shall therefore first discuss this concept in more detail. We then
describe the data and the filters, and how they were evaluated. Results are
presented thereafter. Finally, we discuss and conclude.

2.2 Syntactic Comparability
It is difficult to define syntactic comparability. The sentence pair (1a,b), from
the Europarl parallel corpus, involves “free” translation and is clearly not syn-
tactically comparable.

(1) a. That is what will make us strong.

b. Dan zijn wij sterk.
then are we strong
‘Then we are strong.’ (Koehn 2005)

A similar problem arises with idiomatic expressions, as in (2). Such cases
must be filtered out.

(2) a. ... I hope that this report will not be allowed to bite the dust on
account of this...

b. ... hoffe ich, dass dieser Bericht nicht deswegen zu Fall gebracht
hope I that this report not therefore to fall brought

wird...
is

(Koehn 2005)

Switching a sentence’s voice may also cause problems, as in the pair (3a,b).
The English fragment shows an active construction, the Dutch fragment a pass-
ive one. This example should preferably be filtered out for syntactic research,
as there is no reason other than (e.g.) a stylistic preference for changing the
voice of the verb: (3b′) shows an equally natural yet active translation.

(3) a. This can double the available resources...

b. Hierdoor kunnen de beschikbare middelen worden verdubbeld...
by.this can the available resources be doubled
Through this, the available resources can be doubled. (Koehn 2005)



18 Towards the Automatic Detection of Syntactic Differences

b′. Dit kan de beschikbare middelen verdubbelen...
this can the available resources double
This can double the available resources...

In this paper, we consider these kinds of examples to be syntactically incom-
parable. We realize, however, that other researchers may want to use different
constraints and definitions in selecting comparable material. The filters can
then still be used by manually or automatically setting a threshold that better
suits their wishes.

2.3 Data
In order to evaluate the filters, we compiled a dataset of 400 randomly selected
English-German-Dutch sentence triples from the Europarl corpus and labelled
for each pair whether its sentences are syntactically comparable. This gave us
three datasets of 400 sentence pairs, containing the same sentences so as to
ensure that the results would be comparable between different language pairs.

These datasets were all labelled by several annotators. The English-Dutch
dataset was annotated by three people, in which the inter-annotator agreement
(Fleiss’ κ (Fleiss and Cohen 1973) was 0.61). The judgement of the majority
was taken as truth. The German datasets were annotated by two people each,
with a Cohen’s κ (Cohen 1960) of 0.55 and 0.26 for the German-Dutch and the
German-English datasets, respectively. For the German sets, labelling as done
by the first author was taken as truth.

Before annotation, annotators were given the following rule of thumb, which
is in line with our definition of syntactic comparability but contains some
language-specific examples:

Two parallel sentences are considered syntactically comparable if:
All content words in sentence A have an alignment with a word in
sentence B and all content words in sentence B have an alignment
with a word in sentence A, ignoring word order, and there is no
voice shift, such as active to passive, an idiomatic construction in
one language or a (pseudo-)cleft in one language.

The datasets were somewhat imbalanced. The exact distribution of labels
(‘Y’ for syntactically comparable, ‘N’ for incomparable) can be found in Table
2.1.

2.4 Filters
In this section, we describe the filters in more detail. Each filter calculates a
specific value for every sentence pair. The filters determine on the basis of this



Filtering for syntactic comparability 19

Y N

German-English 131 269
German-Dutch 106 294
English-Dutch 173 227

Table 2.1: The distributions of the labels in the three datasets.

value whether to keep the sentence pair or to discard it. They are supervised
learners, and learn a threshold value, above which sentence pairs are filtered
out, from training data. They can also, however, use manually set thresholds
or a pre-trained model.

Given that languages differ particularly in the domain of function words and
the goal of comparative syntax is to identify syntactic variation, we give users
of the filters the option to automatically ignore specific functional material, as
based on the words’ POS tags.

2.4.1 Levenshtein distance on POS-tags

Using the Levenshtein distance (Levenshtein 1966) on POS tags, which rep-
resent morphosyntactic properties of word tokens in context, is a simple ap-
proach to filtering for syntactic comparability. The Levenshtein distance is the
minimum number of edit operations (in terms of insertion, deletion and sub-
stitution) needed to change one sequence into the other, e.g. DET NOUN to
ADJ NOUN requires one substitution of DET to ADJ (hence the Levenshtein
distance is 1). Intuitively, if the Levenshtein distance between two sentences is
low, the sentences are probably syntactically comparable – if it is high, they
probably are not.

Users can use the Damerau-Levenshtein distance (Bard 2007) as opposed to
the classic Levenshtein distance, adding transpositions to the allowable opera-
tions. This will yield lower edit distances between a language where adjectives
are prenominal and a language where they are postnominal, for example.

A weakness of the (Damerau-)Levenshtein distance is its sensitivity to whole
constituents or phrases moving around. In a comparison of an SVO and an SOV
language, the threshold will likely have to be very high to find syntactically
comparable sentences, but at the same time having a high threshold will lead
to many undesirable sentence pairs not being filtered out. For example, the
sentence pair in Figure 2.1 yields a (Damerau-)Levenshtein distance of 4, while
if it knew that the object phrase and the verbal cluster were transposed as a
whole, the Damerau-Levenshtein distance would only be 2 (1 transposition of
the phrases and 1 transposition between AUX VERB–VERB AUX).



20 Towards the Automatic Detection of Syntactic Differences

The old man will have bought a smaller table
det adj noun aux aux verb det adj noun

De oude man zal een kleinere tafel gekocht hebben
det adj noun aux det adj noun verb aux

Figure 2.1: The Levenshtein distance is very sensitive to transposing phrases.

2.4.2 Sentence-length ratio

Filtering based on sentence-length ratio is another simple approach: if the
sentence-length ratio of a sentence pair is very high or very low, they prob-
ably are not syntactically comparable. The sentence-length ratio is defined as
the number of words in the source sentence divided by the number of words in
the target sentence.

However, some languages use fewer words, for example because they are
highly inflectional or do not have articles. Therefore, a language-pair spe-
cific threshold is defined in terms of percentiles, where the n% most extreme
sentence-length ratios (relative to the median sentence-length ratio of a lan-
guage pair) are considered syntactically incomparable – i.e. the left and right
tails of the histogram in Figure 2.2 are filtered out. Note that the percentile-
based cut-off allows for asymmetric decision rules, where e.g. a sentence is
incomparable if it is twice as long in A as in B or three times as long in B as
in A.

A sentence-length ratio-based filter is computationally cheap but it does not
use any syntactic information, making it very coarse-grained: e.g., the English-
Dutch pair The next item is the vote.–Wij gaan over tot de stemming. is syn-
tactically incomparable, but the sentences have the same number of words and
will not be filtered out, since syntactic information is not taken into account.

Very short sentences are another concern. The pair in (4) is syntactically
comparable, but the Dutch and Italian sentences have a sentence-length ratio
of 2. A ratio of 2 probably indicates syntactic incomparability when comparing
two sentences with 12 and 6 words. This potential issue can be remedied by
ignoring function words such as pronouns.

(4) a. ik eet
b. mangio
‘I eat.’



Filtering for syntactic comparability 21

0 0.5 1 1.5 2
0

10

20

30

40

Figure 2.2: A histogram for sentence-length ratios for English and Dutch.
The left and right tail are filtered out. If the threshold is, e.g., 10%, the cut-offs
would be 0.74 and 1.38: sentence pairs where the English sentence is more than
1.38 times as long or less than 0.74 times as long as the Dutch counterpart will
be discarded.

2.4.3 Graph edit distance on dependency trees
Whereas the Levenshtein distance calculates an edit distance between two lin-
ear sequences, a graph edit distance (GED) can be applied to hierarchically
structured graphs. This has the benefit that it is insensitive to phrases or con-
stituents transposing.

The filter applies Abu-Aisheh et al.’s (2015) exact GED algorithm on de-
pendency parses, where the parses are represented as unordered directed trees
(as implemented in networkx, Hagberg, Schult and Swart 2008) with labelled
edges from heads to dependencies (cf. Figure 2.3). Importantly, both languages
should use the same tag set. Nodes, i.e. words, are considered equal if they have
the same POS tag; edges, i.e. syntactic relations, are considered equal if they
have the same label. Node and edge insertion, deletion and substitution are all
defined as 1.

The fact that graphs are unordered should make the algorithm more robust
between different languages and language families, as it ignores the linear or-
der between any two words, irrespective of whether these have a grammatical
relation between them. The linear order between a word, phrase or constituent
and its head is also not represented. Consequently, it is unimportant for the
GED whether a direct object is on the left or right of its (head) verb, nor is it
important what the linear order of the subject and the object is: transposition
costs between sister nodes are therefore 0. This makes it easier to correctly clas-



22 Towards the Automatic Detection of Syntactic Differences

chased
verb

was
aux

aux

dog
noun

the
det

det

nsubj

cat
noun

by
adp

case

the
det

det

obl

Figure 2.3: An example of a dependency parse (in Universal Dependencies) as
an unordered directed tree. Every edge is labelled and directed and the surface
order of the words is not represented in the graph.

sify sentence pairs between SOV and SVO (or other) languages as syntactically
comparable.4

We provide users with the option to ignore function words, similar to the
other filters. Importantly, to-be-ignored POS tags are removed from the graph.
If a node has children nodes, the edge leading to it is contracted. Any edge
leading from the removed POS tag now leads directly from its head to its
children (cf. Figure 2.4). The root of the sentence is never removed, sentences
always remain one connected component.

Although this approach uses syntactic structure to filter for syntactic com-
parability and is insensitive to phrase transposition, it is sensitive to parse
accuracy. If a dependency parse is erroneous or even slightly off, it will influ-
ence the filter as it will yield noisy GED values. Apart from that, it requires
the existence of a dependency parser for both languages, which must use the
same annotation guidelines and tag set. In our experiments the filter tags and
parses sentence pairs using UDPipe (Straka and Straková 2017).

2.4.4 Combination filter
Filtering is essentially a binary classification task. The final filter therefore com-
bines the other filters by fitting a logistic regression model on a pre-labelled
dataset of parallel sentence pairs. Each pair is binarily labelled as syntactically
(in)comparable. The values calculated by the other filters are then the features.
Given a pre-labelled dataset all sentence pairs are passed to the other filters,

4 The linear order of nodes in the tree is only important when discovering syntactic dif-
ferences, but since this filter is designed only to select sentence pairs from which to extract
syntactic differences in a later stage, the linear order can (and should) be ignored by the
filter.



Filtering for syntactic comparability 23

recurrence
noun

some
det

of
adp

case

factors
noun

nmod

obl
recurrence

noun

of
adp

case

factors
noun

nmod

Figure 2.4: An example of contracting edges when DETs are removed. The
graphs represent a fragment of the recurrence of some of these factors, as found
in the Europarl corpus and parsed in UDPipe (Straka and Straková 2017).

which calculate a value. These values are then passed back to a logistic re-
gressor, combined with the labels, to fit a model. This model can be used to
calculate the probability of a sentence pair either being or not being syntactic-
ally comparable, and to predict a sentence pair’s syntactic comparability – if
the calculated probability that the sentence pair is syntactically comparable is
too low, it will be filtered out. This filter has a clear drawback in that it must
have a pre-labelled dataset, which is not always available.

The user can choose which other filters to use for the feature calculation.
For every filter, users can select the same options described above. Importantly,
ignored functional material need not be the same for each filter.

2.4.5 Automatically setting a threshold
Threshold values can be automatically set with a pre-labelled dataset of sen-
tence pairs using a receiver operating characteristic curve (ROC curve), which
plots the true positive rate against the false positive rate at various threshold
values – true positive are sentence pairs correctly labelled as syntactically com-
parable; false positive are those incorrectly not filtered out. The threshold value
is found where there is a compromise between the false positive rate and the
true positive rate, which can be calculated with Youden’s J statistic (Youden
1950).

2.5 Evaluation of the filters
We evaluate the filters on all three datasets, and use them as test sets in order
to assess the filters’ performance. The sentences used for evaluation were POS
tagged and parsed in Universal Dependencies (UD)5 – a programme that aims

5 http://universaldependencies.org/



24 Towards the Automatic Detection of Syntactic Differences

at cross-linguistically consistent tagging and annotation of dependency trees
(Nivre et al. 2016) – so that all languages used the same tag set. Tagging and
parsing was done automatically using UDPipe (Straka and Straková 2017).6
Aiming for cross-linguistic consistency, UD defines a handful of coarse-grained
POS tags that only capture a word’s category; morphological information is
not included in these tags.7

The filters were tested in all possible set-ups and compared to a baseline,
which was a bare Levenshtein distance on POS tags: not ignoring any functional
material, no transpositions allowed.

When ignoring functional material, we tested all combinations of closed set
POS tags of the UD programme,8 to see which subset of functional POS tags
would render the best results when ignored, because the subset of POS tags
that are to be ignored is dependent on the language pair in question.

The combination filter was tested by fitting models for all possible combin-
ations of two or three filters in every set-up.

The filters were evaluated in terms of the area under the ROC curve (AUC).
For the combination filters, a ROC curve was plotted with the calculated prob-
abilities as threshold values in order to make the results comparable.

2.6 Results
The baselines performed with an AUC of 0.74 on the German-English and
English-Dutch sets and with an AUC of 0.76 on the German-Dutch set. Its best
thresholds (as found with Youden’s J statistic) were 10, 7 and 5, respectively.

Runs with the non-bare Levenshtein distance filters don’t clearly outperform
the baseline, achieving only slightly higher AUCs. The best runs were also
rather divergent in their parameter settings and thresholds.

In general it was observed that the sentence-length filter performed signi-
ficantly worse, with AUCs of on average about 0.05 lower than the baseline.
Ignored functional material differed greatly between the datasets.

The GED filter also did not clearly outperform the baseline in case of
German-English and German-Dutch. However, on the English-Dutch dataset
it performed somewhat better, with an AUC of 0.77.

More striking, however, is that it is more consistent in its parameter settings
throughout the datasets. All best runs included all functional material. Also
the threshold was consistent, discarding all sentence pairs with more than 4
edits.

The AUC and parameter settings are summarized in Table 2.3.
6 https://github.com/ufal/udpipe
7 Although UDPipe also does morphological tagging in the form of attributes, we only

used the coarse-grained POS tags in our evaluation. The set of morphological features used
by the three languages was too heterogeneous to achieve satisfying results.

8 UD defines eight POS-tags as being in the closed set: ADP (adpositions), AUX (aux-
iliaries), CCONJ (coordinating conjunctions), DET (determiners), NUM (numerals), PART
(particles), PRON (pronouns) and SCONJ (subordinating conjunctions).



Filtering for syntactic comparability 25

German-English German-Dutch English-Dutch

Lev. Sent.
length

GED Lev. Sent.
length

GED Lev. Sent.
length

GED

AUC 0.75 0.66 0.75 0.77 0.68 0.75 0.74 0.73 0.77

Threshold 9 24% 4 5 24.375% 4 7 20.625% 4

Ignored
func-
tional
material

AUX,
CCONJ,
NUM

ADP,
NUM

– ADP,
AUX,
CCONJ,
NUM,
PART

SCONJ – AUX,
CCONJ,
NUM

AUX,
NUM

–

Transpo-
sitions

No – – No – – Yes – –

Table 2.3: Overview of the results of the filters: AUC, and parameters per
language pair.

The combination filter more clearly outperformed the baseline, with AUCs
of on average about 0.06 higher than the baseline. It benefited from using all
other filters, all best runs using all three single filters, though interestingly with
different parameters.

In the best German-English run, the Levenshtein filter did not use transpos-
itions, and ignored CCONJ, NUM, and PART instead of AUX. The sentence-
length filter ignored ADP, but no NUM. The GED filter ignored NUM and
SCONJ. In this setup, it achieved an AUC of 0.79.

As for the German-Dutch dataset, the best run, with an AUC of 0.80,
was achieved by combining a Levenshtein filter that ignores ADP, CCONJ,
NUM, PART and SCONJ and allows transpositions, a sentence-length filter
that ignores all functional material but NUM, and a GED filter that ignores
CCONJ.

Finally, the best run for the English-Dutch dataset achieved an AUC of
0.81, combining a transposing, CCONJ ignoring Levenshtein filter, a sentence-
length filter that ignores nothing and a GED filter that ignores ADP, DET,
NUM and SCONJ.

2.7 Discussion
The results suggest chiefly that filtering for syntactic comparability is a hard
task, as corroborated by the annotations’ relatively low κ values. Nevertheless,
we believe that the presented filters are useful tools for automatizing the se-
lection of syntactically comparable sentences from a parallel corpus, especially
since it allows users to manually set thresholds and parameters and to work



26 Towards the Automatic Detection of Syntactic Differences

with other definitions of syntactic comparability.
The results further suggest that German, English and Dutch are rather

similar syntactically. If not, we would have expected a larger performance gap
between the GED and Levenshtein filters, due to the Levenshtein distance’s
sensitivity to constituents or phrases transposing. On the other hand, the dif-
ference in parameters between the Levenshtein runs does point towards syn-
tactic dissimilarity of the languages, since, if the languages were more similar,
the sets of ignored function words would have been smaller.

The filters’ sensitivity weakly suggest that there is a syntactic difference
to be found in the use of auxiliaries, adpositions and conjunctions. The fact
that numerals are often ignored can be explained by the difference in how nu-
merals are tagged by UDPipe: in English and German ordinal numerals are
often tagged as adjectives (e.g. second) or adverbs (e.g. thirdly) – which are
both rather frequent in the Europarl corpus – whereas in Dutch they are al-
ways tagged as numerals. This emphasizes the importance of uniform tagging
conventions between compared languages. Although UD aims for consistent
tagging, there are subtle differences from language to language. These differ-
ences, however subtle, lead to issues for our filters.

Overall, the best filter is the combination filter. It necessitates, though, the
existence of a pre-labelled dataset – and if such a dataset is available, doing a
grid search to find which parameters yield the best results is computationally
expensive. Also, the risk of overfitting on the dataset is high.

If a pre-labelled dataset is not available, the other filters can still be used
with reasonable results by setting thresholds manually. While the baseline is
not clearly outperformed by the other filters, the GED filter’s robustness in
its parameters, thresholds and performance throughout the different language
pairs suggests that it is most stable in all aspects. Its parameter robustness even
suggests that the settings found could be used as a default for other language
pairs. We also expect it to outperform other approaches more clearly when
supplied with more accurate parses.

The Levenshtein filter performs similarly, but has the advantage of not
requiring a parser model. If such a model is not available, the Levenshtein filter
could still be used, but it is likely to perform well on closely related languages
only and requires more parameter fine-tuning.

The sentence-length filter did not give satisfying results, as expected since
it does not use any syntactic information. Interestingly, the combination filter
did use sentence-length ratio. This makes sense, as using the sentence-length
ratio to filter out the most extreme sentence pairs allows for the model to more
finely tune the weights for the Levenshtein distance and GED, yielding more
informed decisions.

A point of improvement could be the edge contraction conventions when
nodes are removed in the GED; in our current design, the obl relation in
Figure 2.4 is lost entirely, which may be undesirable.

It will be most useful to improve the filter such that it also selects sen-
tence fragments that are syntactically comparable. Now an entire sentence can



Filtering for syntactic comparability 27

be filtered out despite being almost completely syntactically comparable. A
possible design of such a filter is top-down: if a sentence-pair exceeds the edit
threshold, the algorithm can search for two pairs of maximally large subtrees
that do not exceed the threshold.

The way the combination filter operates could perhaps be improved upon,
too. Now the other filters are combined in parallel. A sequential fashion may
yield better results, discarding sentence pairs that exceed some sentence-length
ratio before optimizing a threshold for the GED filter, for example.

2.8 Conclusion
Automatic extraction of cross-linguistic syntactic differences from parallel cor-
pora will greatly speed up comparative syntactic research. Automatic extrac-
tion requires a pre-processing step to filter out syntactically incomparable sen-
tence pairs, e.g., because they involve “free” translations. In this paper we
evaluated four possible filters. The best results were achieved with a filter that
combines the other three in a regression model, but it has the downside of
requiring a pre-labelled training set, more so than the others which allow for
manual tuning. Alternatively our filter based on the Levenshtein distance or our
GED filter can be used to achieve reasonable results, but both have their own
weaknesses. Our last filter, based on sentence length, did not achieve satisfying
results in itself, as expected.




