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A
GEOMETRIC PHASE ANALYSIS

This appendix provides a more elaborate description of Geometric Phase Analysis / Spa-
tial lock-in and adaptive GPA.

A.1 DEFORMATIONS OF A LATTICE
We perform lock-in measurements on images that clearly display a periodic lattice. In
STM, this implies we can use any topography of sufficient quality that displays the crys-
tal lattice. The idea is to use a lock-in measurement in order to find a transformation
of coordinates between the measured, “distorted” image and its pristine, undeformed
equivalent (in this work, a perfect triangular lattice). Defining the measured and pristine
image as Tm(r),Tr (r′) respectively, both with measurement coordinates r = (x, y) ∈ R2

and lattice coordinates r′ = (x ′, y ′) ∈R2, the following relation holds:

Tm(r) = Tr (r+u(r)) = Tr (f(r)) = Tr (r′) = Tm
(
f−1(r′)

)
where the transformation from measurement coordinates to lattice coordinates is given
by:

f(r) = r+u(r) = r′ (A.1)

Here, u(r) is called the displacement field, connecting the measurement coordinates
to the lattice coordinates, as is well-established in continuum mechanics. For conve-
nience, we also define the inverse displacement:

u′(r′) := f−1(r′)− r′ = r− r′

Note that by substitution, we have the following relation between forward and inverse
displacement:

u′(r′) = f−1(f(r))− (r+u(r)) =−u(r)

Parts of this appendix have been published in the Supplementary materials of Phys. Rev. Research 3,
013153 [141] and Nat. Commun. 13, 70 (2022) [135]. Tjerk Benschop made a significant contribution to this
appendix.

149



A

150 A: GEOMETRIC PHASE ANALYSIS

With this, we can express the pristine image at lattice coordinates in terms of the mea-
sured image:

Tr (r′) = Tm
(
f−1(r′)

)= Tm(r′+u′(r′))

= Tm
(
r′−u(r)

)
= Tm

(
r′−u(r′−u(r))

)
≈ Tm

(
r′− (u(r′)− (∇u)(r′− r))

)
= Tm

(
r′− (u(r′)+ (∇u)u(r))

)
= Tm

(
r′−u(r′)+ (∇u)u′(r′))

)

Therefore, if we can determine u(r), and thereby u′(r′), we can reconstruct the pris-
tine image. This is the idea of the Lawler–Fujita reconstruction algorithm [143]. In their
original paper, Lawler–Fujita uses u′(r′) = −u(r′), which is a good approximation if u
varies slowly.

A.2 PROPERTIES OF THE DEFORMATION
The displacement field u(r) as defined above, fully describes the deformation of the lat-
tice, but does not directly provide insight into the relevant properties. To that end, we
first define the Jacobian of the transformation f:

J ≡∇f =1+∇u

, where ∇u is the Jacobian of the displacement field, in continuum mechanics terminol-
ogy the deformation gradient tensor, and in canonical terms defined as follows:

∇u =
( dux

d x
dux
d y

duy

d x
duy

d y

)

In order to fully characterise the deformation of the lattice, we decompose J in its
polar form:

J =W P =W V >DV , (A.2)

where W is the rotation matrix corresponding to the rotation of the full lattice and the
matrix P describes the local anisotropy and scaling. P is further decomposed in the ro-
tation matrix V indicating the orientation of the axis of anisotropy (i.e. the axis of largest
scaling, with the axis of smallest scaling perpendicular to it) and the diagonal scaling

matrix D =
(
d1 0
0 d2

)
, where by convention and implementation d1 ≥ d2 holds for any

position r.
The geometric mean of these directional scaling factors is equal to the square root of

the determinant of D and therefore of J :
√

d1d2 = p
det(J ). As this corresponds to the

local scaling of the wavelength of the moiré lattice, we can use this to quantify the local
twist angle:
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λ(r) =
√

d1d2
4πp
3|q j |

(A.3)

Where |q j | is the length of the chosen reference vectors. This local wavelength is then
converted to a local twist angle using the well-known expression:

θ(r) = 2arcsin

(
2λ(r)

a

)
, where a = 2.46Å is the lattice constant of graphene and θ(r) the local twist angle.

A quantification of the local anisotropy is given by the ratio κ= d1/d2 and the angle

between the anisotropy axis and the x-axis is finally calculated from V : ψ= arctan
(

Vx y

Vxx

)
.

In our practical implementation, the singular value decomposition (SVD) is used
to obtain the decomposition in equation A.2 for each point in the image, and numpy’s
atan2 is used to find the right quadrant of the angles from the signs of Vxx and Vx y .

A.3 DETERMINATION OF THE DISPLACEMENT FIELD u(r)
In order to determine u(r) for a certain image, we perform a lock-in measurement. To
clarify, we can represent any (nearly) periodic image as:

Tm(r) = T0
∑

j
e i q j ·(r+u(r)) = T0

∑
j

e i (q j ·r+φ j ) (A.4)

where φ j = q j ·u(r) is the position-dependent phase of the lattice. The summation runs
over the reciprocal lattice vectors q j ( j ∈ {1,2,3} for a hexagonal lattice), T0 is the constant
indicating the amplitude of the modulation and u(r) is again the displacement field.

The phase is measured using standard lock-in procedure: The existing image is mixed
with a reference image containing a specific plane wave. If we choose the periodicity of
this reference wave sufficiently close to that of the lattice in the image itself, we can then
low-pass filter the mixed image and end up with a phase map for a specific wave. For
clarification:

cos(q j · r+φ j )e−i q j ·r = e iφ j

2

(
1+e−2i (q j ·r+φ j )

)
7→ 1

2
e iφ j

where the cosine in the first term denotes the (real-valued) measured image, whereas
the complex exponential denotes the reference wave and 7→ denotes low-pass filtering
in order to get rid of the last term between brackets, corresponding to a rotating wave
approximation. Alternatively, for a gaussian low-pass filter, this corresponds to a real
space gaussian integration window of the lock-in.

By taking the (pointwise) angle of the complex, filtered product image, we end up
with the phase map. In particular, this phase map contains information about the dis-
placements of each pixel in the measured image Tm(r) with respect to the pristine ref-
erence lattice Tr (r) along the wave vector q j used for the lock-in procedure. This pro-
cedure is repeated for at least one additional reciprocal lattice vector. The two phase
maps are then used to find the displacement field u(r). From the definition of u(r) (eq.
A.1), the following holds: r′ = r+u(r). Multiplying this equation by the reciprocal lattice
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vectors, we get a system of equations expressing the projection of the distortion onto the
reciprocal lattice vectors:

q j · r′ = q j · r+φ j , j ∈ 1,2,3

Selecting only j ∈ {1,2}, we have in matrix notation:

Q =
(−q1−
−q2−

)
=

(
q1x q1y

q2x q2y

)
such that we can write for φ= (φ1

φ2

)
:

Qr′ =Qr+φ . (A.5)

Multiplying by Q−1, we find r′ = r+Q−1φ, and therefore u(r) =Q−1φ(r).

A.4 ADDITIONAL NOTES ON CHOICE OF REFERENCE VECTORS
SELECTING TWO REFERENCE VECTORS

To obtain u(r) as described above, we only used the phase of the lock-in signal of two
reference vectors. For a triangular/hexagonal lattice, a priori three possible choices of
which two reference vectors to use are possible from the three linear independent ref-
erences vectors as fitted to the FFT of the image. To select which two vectors to use for
the reconstruction of u(r), we either selected the ones with the largest average lock-in
amplitude, or by inspecting the phase-unwrapped images and selecting the ones where
no remaining phase slips occurred.

USING MORE THAN TWO REFERENCE VECTORS

In principle, information is lost when only selecting the phase of the lock-in signal of two
reference vectors to obtain u(r). In low signal-to-noise ratio situations, it could be ben-
eficial to use all the information. Equation A.5 also holds for more than two phases and
reference vectors. Although Q is not a square matrix in this case, a solution can be ob-
tained for each pixel using linear least squares minimization of the following equivalent
equation:

Qu(r) =φ(r)

Where additionally the amplitude of the lock-in signals can be used as weights to the
minimization problem.

ISOTROPY

Enforcing the reference lattice to be isotropic can be done either in advance, by enforcing
isotropic reference wavevectors (as applied in this work) or alternatively, after the initial
lock-in step, by adding an additional linear phase ∆φ j = ∆q j · r to the obtained phase,
where ∆q j is the difference between the used reference wavevector and the isotropic
wavevector.

The advantage of the latter method would be a slightly improved signal-to-noise ra-
tio, as the smoothing window can be centered around the actual average wavevector
occurring in the image instead of the ideal, equal-length, 60 degree rotated ones.
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A.5 ADAPTIVE GPA
Regular GPA is limited in the wave vector deviations (with respect to the reference wave
vector) it can measure, due to the limitations in spectral leakage. This is no problem
when applied to atomic lattices, as the expected deviations are very small there. How-
ever, due to the moiré magnification of small lattice distortions, it does become a limiting
factor when applying GPA to small twist angle moiré lattices.

To overcome this limitation, we extended the GPA algorithm to use adaptive refer-
ence wave vectors, based on the combination of two ideas and related to earlier work
in laser fringe analysis [173]: First, a GPA phase calculated with respect to one reference
vector can always be converted to the GPA phase with respect to another reference vector
by adding a phase corresponding to the phase difference between the reference vectors.
Second, a larger lock-in amplitude corresponds to a better fit between the reference vec-
tor and the data.

The adaptive GPA algorithm therefore works as follows: The spatial lock-in signal is
calculated for a grid of wave vectors around a base reference vector, converting the GPA
phase to reference the base reference vector every time. For each pixel, the spatial lock-
in signal with the highest amplitude is selected as the final signal.

It was realized that to deduce the deformation properties, reconstruction to a glob-
ally consistent phase (requiring 2D phase unwrapping), as reported previously [141], is
not strictly needed, making it possible to circumvent the problems associated with 2D
phase unwrapping. Instead, the gradient of each GPA phase was calculated, requiring
only local 1D phase unwrapping (i.e. assuming the derivative of the phase in both the x
and y direction will never be more than π per pixel, an assumption in practice always
met). Subsequently, these three GPA gradients are converted to the displacement gradi-
ent tensor (in real space coordinates), estimating the transformation via weighted least
squares, using the local spatial lock-in amplitudes as weights.

As an added benefit, this entire procedure is local, i.e. not depending on pixels be-
yond nearest neighbors in any way except for the initial Gaussian convolution in deter-
mining the GPA. This reduces the effect of artefacts in the image to a minimum local area
around each artefact (where for in the 2D phase unwrapping they have a global influence
on the phases).

However, when the gradient is computed based on phase values stemming from two
different GPA reference vectors, i.e. at the edge of their valid/optimal regions, artefacts
appear due to their relatively large absolute error. To prevent this, the local gradient of
the phase with the highest lock-in magnitude is stored alongside the lock-in signal itself
in the GPA algorithm. This way, the gradient is calculated based on a single reference
phase, propagating only the much smaller relative/derivative error between the two sig-
nals instead of the absolute error.

As mentioned in Chapter 6, even adaptive GPA has its limits. In particular, too large
deviations from the base reference vector can not be resolved correctly, causing an er-
roneous, lower, extracted deviation, as is visible in the lower right of Figure 6.3e). As the
deformation becomes too large, e.g. towards the folds in the TBG, the highest lock-in
amplitude will occur at a different moiré peak or at the near-zero components of the
fourier transform, causing an incorrect value to be extracted.
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A.6 DECOMPOSITION OF THE DISPLACEMENT FIELD.
Kerelsky et al. [174] use the following idea to extract twist angle θT , strain magnitude ε
and strain direction θs from reciprocal moiré lattice vectors Ki s : These difference vectors
of the constituting atomic lattices are written in terms of a rotated and a strained lattice
vector each:

Ki s = ki r −ki s = R(θT )ki −S(θs ,ε)ki

where ki are the original lattice vectors. Kerelsky et al. assume k0 to be along the x-axis,
and get around this by taking amplitudes, discarding any global rotation. Here, we do
however introduce that global rotation, by a multiplication with R(ξ):

Ki s = (R(θT )−S(θs ,ε))R(ξ)ki

Eihter of these expressions can, and indeed by Kerelsky et al. is, numerically fitted to the
found amplitudes or k-vectors for each triangle. However, from GPA analysis we most
naturally obtain a Jacobian transformation Jac of the moiré k-vectors with respect to
some specific set of reference vectors with predefined strain and rotations:

Ki s = (J + I )Ki 0 = Jac Ki 0 = Jac (R(θT 0)−S(θs0,ε0))R(ξ0)ki := Jac A0R(ξ0)ki

Note that we can force ε0 = 0 → S(θs0,ε0) = I .
This simplifies to:

Jac A0R(ξ0)ki = (R(θT )−S(θs ,ε))R(ξ)ki

The linear transformation is uniquely described by its effect on two points in k-space, so
their matrix representations should be equal:

Jac A0R(ξ0) = (R(θT )−S(θs ,ε))R(ξ)

Jac A0 = (R(θT )−S(θs ,ε))R(ξ−ξ0)

The left hand side is a known quantity at each position, the right hand side remains to be
numerically fitted or extracted. This is implemented in pyGPA using scipy.optimize
and numba to just-in-time compile the fitting code [88, 246].

Alternatively, we could formulate a symmetric expression with two strains, but with-
out allowing for further joint rotation of the lattices:

Ki 0 = (R(θT 0/2)−R(−θT 0/2))R(ξ0)ki := B0R(ξ0)ki

Jac B0R(ξ0)ki = (S(θb ,εb)R(θT /2)−S(θa ,εa)R(−θT /2))R(ξ0)ki

Jac B0 = (S(θb ,εb)R(θT /2)−S(θa ,εa)R(−θT /2))
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B
LEEM STITCHING

To achieve stitching of images without inducing any additional deformation, a custom
stitching algorithm tailored towards such LEEM data, was developed, working as follows:

To compensate sample stage inaccuracy, nearest neighbor (by sample stage coordi-
nates) images are compared, finding their relative positions by cross-correlation. Using
an iterative procedure, calculating cross correlations of overlapping areas at each step,
the absolute positions of all images are found. Images are then combined in a weighted
fashion, with the weight sloping to zero at the edges of each image, to smooth out any
mismatch due to residual image warping. The full stitching algorithm is implemented in
Python, available as a Jupyter Notebook[42].

Figure B.1: Illustra-
tion of the sample
stage scanning for
stitched overview
images. Black arrows
indicate the direction
of the sample stage
movement. inset,
Illustration of the
square overlapping
regions of neighbor-
ing images used to
determine relative
positions.

It is designed for use with ESCHER LEEM images. For those images, their positions
are known approximately in terms of stage coordinates, i.e. the positions as reported by

This appendix has been published prior in the Supplementary material Nat. Commun. 13, 70 (2022) [135].
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the sensors in the sample stage. It should however generalize to any set of overlapping
images where relative positions of the images are known in some coordinate system
which can approximately be transformed to coordinates in terms of pixels by an affine
transformation (rotation, translation, mirroring).

The algorithm consists of the following steps:

1. Using the stage coordinates for each image, obtain a nearest neighbour graph with
the nearest n_neighbors neighbouring images for each image.

2. Obtain an initial guess for the transformation matrix between stage coordinates
and pixel coordinates, by one of the following options:

1. Copying a known transformation matrix from an earlier run of a comparable
dataset.

2. Manually overlaying some nearest neighbor images from the center of the
dataset, either refining the estimate, or making a new estimate for an un-
known dataset

3. Calculate an initial estimate of the pixel coordinates of the images by applying the
corresponding transformation to the stage coordinates

4. Apply a gaussian filter with width sigma to the original dataset and apply a mag-
nitude sobel filter. Optionally scale down the images by an integer factor z in both
directions to be able to reduce fftsize by the same factor, without reducing the
sample area compared.

5. Iterate the following steps until the calculated image positions have converged to
within sigma:

1. Obtain a nearest neighbour graph with per image the nearest n_neighbors
neighbouring images from the current estimate of the pixel coordinates and
calculate the difference vectors between each pair of nearest neighbours.

2. For each pair of neighboring images:

i. Calculate the cross-correlation between areas estimated to be in the cen-
ter of the overlap of size fftsize*fftsize of the filtered data. If the es-
timated area is outside the valid area of the image defined by mask/radius,
take an area as close to the intended area but still within the valid area
as possible.

ii. Find the location of the maximum in the cross-correlation. This corre-
sponds to the correction to the estimate of the difference vector between
the corresponding image position pair.

iii. Calculate the weight of the match by dividing the maximum in the cross-
correlation by the square root of the maximum of the auto-correlations.

3. Compute a new estimate of the difference vectors by adding the found cor-
rections. Reconvert to a new estimate of pixel coordinates by minimizing the
squared error in the system of equations for the positions, weighing by mod-
ified weights, either:
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i. wmod = w − wmin for w > wmin, w = 0 else, with wmin the maximum
lower bound such that the graph of nearest neighbours with non-zero
weights is still connected

ii. Only use the ‘maximum spanning tree’ of weights, i.e. minus the min-
imum spanning tree of minus the weights, such that only the n best
matches are used.

6. (Optional) Refine the estimate of the transformation matrix, using all estimated
difference vectors with a weight better than wmin est and restart from step 3.

7. Repeat step 4. and 5. until sigma is satisfactory small. Optionally repeat a final
time with the original data if the signal to noise of the original data permits.

8. Select only the images for stitching where the average of the used weights (i.e. where
w > wmin) is larger than qthresh for an appropriate value of qthresh.

9. (Optional) For those images, match the intensities by calculating the intensity ra-
tios between the overlap areas of size fftsize*fftsize and perform a global op-
timization.

10. Define a weighting mask, 1 in the center and sloping linearly to zero at the edges
of the valid region, over a width of bandwidth pixels, as illustrated in Figure B.2.

11. Per block of output blocksize*blocksize, select all images that have overlap
with the particular output block, multiply each by the weighting mask and shift
each image appropriately. Divide by an equivalently shifted stack of weighting
masks. As such information at the center of images gets prioritized, and transitions
get smoothed.
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Figure B.2: a, Weight mask
used to merge images. A
linear slope of the weight
towards the edges of
the round microchannel
plate detector is used to
smoothly merge images.
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B.1 CONSIDERATIONS
For square grids with a decent amount of overlap, it makes sense to put n_neighbors
to 5 (including the image itself), however, for larger overlaps or datasets where an extra
dimension is available (such as landing energy), it can be appropriate to increase the
number of nearest neighbors to which each image is matched.

Parameters and intermediate results of the iteration are saved in an xarray and
saved to disk for reproducibility.

B.2 PARALLELIZATION
Using dask, the following steps are parallelized:

• step 5B , where each pair of images can be treated independently. In practice paral-
lelization is performed over blocks of subsequent images with their nearest neigh-
bours. This could be improved upon in two ways: firstly by treating each pair only
once, and secondly by making a nicer selection of blocks of images located close to
each other in the nearest neighbor graph. This would most likely require another
(smarter) data structure than the nearest neighbour indexing matrix used now.

• Step 6 is quite analogous to 5B and is parallelized similarly.

• Step 11 is parallelized on a per block basis. To optimize memory usage, results are
directly streamed to a zarr array on disk.

• The minimizations are parallelized by scipy natively.
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C
ADDITIONAL DATA OF THE TWISTED

BILAYER GRAPHENE SAMPLE

Parts of this appendix have been published in the Supplementary materials of T. A. de Jong, T. Benschop, X.
Chen, E. E. Krasovskii, M. J. A. de Dood, R. M. Tromp, M. P. Allan and S. J. van der Molen, Nat. Commun. 13, 70
(2022) [135]. Xingchen Chen performed the AFM measurements in Section C.4.
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C.1 ADDITIONAL LEEM IMAGES/CROPS
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Figure C.1: A wider range of images found in the sample from Chapter 6, as used to determine
the histograms of twist angles and strain in Figure 6.3. Insets show FFT’s with the detected moiré
peaks
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Figure C.2: Locations of the crops in Figure C.1 indicated in the full overview (data is a super set of
the data in Figure 6.1e in Chapter 6).
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C.2 ADDITIONAL FIGURES ON DYNAMICS
Supplementary Video 1, the full movie showing the dynamics of a larger Field of View
compared to Figure 6.5 in Chapter 6, in real space LEEM data, difference data and GPA-
extracted displacement field is available in the Supplementary information of the pub-
lished paper, Ref. [135] at https://doi.org/10.1038/s41467-021-27646-1.
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Figure C.3: a, Local twist angle as extracted with GPA of the area imaged in Supplementary Video 1.
b, Local strain magnitude and direction as extracted with GPA of the same area. Purple rectangles
indicate the area depicted in Figure 6.5 in Chapter 6.
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Figure C.4: a, (Temporal) Mean absolute displacement from mean position during Supplementary
Video 1. b, Spatial mean absolute displacement from mean position during Supplementary Video
1 as a function of time for a center area.
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C.3 ADDITIONAL DISLOCATIONS
More dislocations than single one shown in Figure 6.4 in Chapter 6 were found on the
same sample. One additional dislocation in a low twist angle area is shown in Figure C.5a
together with the GPA phases, and next to a larger area around the dislocation in Fig-
ure 6.4. More dislocations in less clean areas of the sample are shown in Figure C.6. The
original dislocation had moved when re-examining the sample a few days later. The
dislocation before and after movement, together with a reconstruction based on the
decomposition of the displacement field as described in Appendix A.6 is shown in Fig-
ure C.7.

a b

Figure C.5: a, Additional edge dislocation found on the sample at a lower twist angle. b, Larger area
around edge dislocation in Figure 6.4f in Chapter 6. In both case GPA phases are also displayed.
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Figure C.6: More dislocations in the vicinity of the dislocation shown in Figure C.5b. d, corre-
sponds to the dislocation there. θ as extracted from the shown area here is a bit lower as unit cell
area tends to be a bit larger near the dislocation.
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Figure C.7: Movement of dislocation. a, Dislocation in its original location, indicated by red ar-
row. b, Image of the same area as in a,, but imaged two days later. The dislocation has moved, as
indicated by the red arrow. The former location is indicated with a blue arrow. c-e, Rendering of
the individual atomic lattices and the resulting moiré lattice from the extracted lattice parameters,
showing the atomic lattice directions.



C

168 C: ADDITIONAL DATA OF THE TWISTED BILAYER GRAPHENE SAMPLE

C.4 AFM COMPARISON

a

c

b

Figure C.8: a, Atomic Force Microscopy overview of sample area. Locations of line profiles and
detailed topographies in Figure C.9 are indicated. b,c, Line cuts along the cuts indicated in a.

Figure C.9: a, Atomic Force Microscopy of the dislocation area in Figure C.5a. Area is indicated
in red in Figure C.8a. b, Atomic Force Microscopy of the dislocation area in Figure C.5b. Area is
indicated in yellow in Figure C.8a.

To further characterize the surface properties of the sample, an AFM (JPK, NanoWiz-
ard 3) measurement was performed in AC tapping mode following the LEEM measure-
ments. Predominantly, the results show a very flat and clean graphene surface between
folds, indicating annealing at 500 ◦C in UHV had successfully removed the polymer residue
left on the surface.

In profile 1, the terrace height sees a difference of 0.3 nm, demonstrating the graphene
layer count goes down by one at this location. This corresponds to the layer counts ex-
tracted from the LEEM spectra.

Profile 2 to 4 shows 3 different kinds of defects in the bilayer graphene region. The
ridge at location 2 seems to be a neat folding of both the bilayer graphene flake (1.5 nm in
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height, four layers of graphene), whereas profile 4 shows wrinkles that are up to 120 nm
tall. This is also reflected by the distinct patterns in the LEEM bright field overview im-
age, respectively. While the wrinkles merely appear black, the ridge resembles more like
a unique layer count domain. Profile 3 shows two tears within the one layer of graphene,
corresponding nicely to the defect region observed in LEEM where monolayer graphene
shines through.

The zoomed-in small scale measurements marked by the red and yellow box shows
the topography on top of two dislocations observed in LEEM. As shown in Figure C.9, no
distinctive feature was observed at either dislocation. The topography, however, shows
an exceptionally flat surface with a height variation (peak-to-peak) of less than 1 nm.

C.5 SAMPLE HEATING
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Figure C.10: Sample temperature, heating rate and chamber pressure as measured by pyrometer
and IR camera during initial heating.
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ADDITIONAL TAS2 FIGURES

This appendix contains extra figures with spectra and other information supporting the
work in Chapter 8.
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Figure D.1: More BF-LEEM spectra of mixed polytypes. Curves are offset for clarity, with 2H-like
curves below 3 1T-like curves in each panel. Data in the lower panel and in Figure D.2 was taken
after the sample was kept in vacuum for 80 days.
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Figure D.2: (top), Diffraction spectrum of an 1T-like polytype, most similar to the brown curve
in Figure 8.7, i.e. fourth from the top in that figure and not the most similar to the pristine 1T.
(bottom), Diffraction spectrum of 2H-like polytype, most similar to the green and turquoise curves
in tyhe lower panel of Figure D.1. Dashed curves are corresponding ab-initio calculations for the
bulk polytypes without taking into account the CDW.
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Figure D.3: TensorLEED calculations for selected data from Figure 8.7. Taken from Ref. [232]. For
each area the closest matching structure and second closest match (dashed) are shown. Here, 4Hb
denotes alternating Oc and Pr layers, terminating in a Pr layer (i.e. a 2H-like layer on top), 4Hb’ the
same, but terminating in a Oc layer, 2H AB denotes the 2H4 polytype, and 2H AA’ corresponds to
2H7.
B: corresponds to ocre spectrum in Figure 8.7.
C: dark brown spectrum (fourth from top).
F: mint green spectrum (third from bottom).
H: bright red spectrum, (bottom spectrum).
Although the match between experiment and calculations is far from perfect (best Pendry R-factor
of 0.31), this comparison does support the hypothesis of 1T-like terminated and 2H-like termi-
nated polytype structures as discussed in the main text.
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Figure D.4: Auto-correlation of DF-LEEM images of the tC-CDW. a-c, Three DF-LEEM images of
the same area using different CDW spots. d-f, Auto-correlations of these images. From the minima
in the cross-correlations, we extract a characteristic domain size between 135 and 175 nm.

tC = 13.69 (±0.6 )a tC = 13.62 (±1.1 )b tC = 13.69 (±1.2 )c Dark Fieldd

Figure D.5: Comparison with data measured by Philip Schädlich at Chemnitz. a, Same as Fig-
ure 8.9e. b,c, Diffraction images taken in Chemnitz with the detected peaks indicated. d, Com-
posite Dark Field image taken in the same area as b,c. The indicated margin on the angles is the
standard deviation of the six angles within a single diffraction image. The fact that the data from
independently prepared samples in Chemnitz give such a similar mean angle suggests the error
on the mean angle is however much lower than this standard deviation, as averaging over all six
cancels out most diffraction pattern distortions.
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Figure D.6: 2H and 1T Diffraction profile fits. a-c, Diffraction images, corresponding to Fig-
ure 8.8a-c, but at the landing energy of the dark field images in Figure 8.10. For the 1T-like ar-
eas in a and c, a single pseudovoigt peak is enough to fit the profile (center row). For the 2H-
like area in b however, a broad background intensity is present, which can be sufficiently fit by a
broad Lorentzian background (bottom row). This broad background causes 2H-like areas to ap-
pear bright in the Dark Field images, as the total intensity of this background in the aperture is
larger than the total intensity of the CDW diffraction spot in the 1T-like areas.


