
Superlattices in van der Waals materials: a low-energy
electron microscopy study
Jong, T.A. de

Citation
Jong, T. A. de. (2022, November 3). Superlattices in van der Waals materials:
a low-energy electron microscopy study. Casimir PhD Series. Retrieved from
https://hdl.handle.net/1887/3485753
 
Version: Publisher's Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/3485753
 
Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3485753


3
QUANTITATIVE ANALYSIS OF

SPECTROSCOPIC LEEM DATA

By aiming for better microscopy pictures,
new science will typically follow.

For many complex materials systems, low-energy electron microscopy (LEEM) offers de-
tailed insights into morphology and crystallography by naturally combining real-space
and reciprocal-space information. Its unique strength, however, is that all measurements
can easily be performed energy-dependently. Consequently, one should treat LEEM mea-
surements as multi-dimensional, spectroscopic datasets rather than as images to fully
harvest this potential. Here we describe a measurement and data analysis approach to
obtain such quantitative spectroscopic LEEM datasets with high lateral resolution. The
employed detector correction and adjustment techniques enable measurement of true re-
flectivity values over four orders of magnitudes of intensity. Moreover, we show a drift cor-
rection algorithm, tailored for LEEM datasets with inverting contrast, that yields sub-pixel
accuracy without special computational demands. Finally, we apply dimension reduction
techniques to summarize the key spectroscopic features of datasets with hundreds of im-
ages into two single images that can easily be presented and interpreted intuitively. We use
cluster analysis to automatically identify different materials within the field of view and
to calculate average spectra per material. We demonstrate these methods by analyzing
bright-field and dark-field datasets of few-layer graphene grown on silicon carbide and
provide a high-performance Python implementation.

Parts of this chapter have been published as T. A. de Jong, D. N. L. Kok, A. J. H. van der Torren, H. Schopmans,
R. M. Tromp, S. J. Van der Molen and J. Jobst, Ultramicroscopy 213 112913 (2020) [35].
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3.1 INTRODUCTION
In this Chapter, we describe the methodology developed to optimize the extraction of in-
formation out of LEEM data. LEEM has proven to be a versatile tool, due to its damage-
free, real-time imaging capabilities and its combination of electron diffraction with spec-
troscopic, and real-space information. This enables more advanced LEEM-based tech-
niques such as dark-field imaging, where electrons from a single diffracted beam are
used to create a real-space image, revealing spatial information on the atomic lattice of
the sample [36, 37].

Aside from usage as an imaging tool, LEEM is frequently used as a tool for quanti-
tative analysis of physical properties of a wide range of materials. Multi-dimensional
datasets can be created by recording LEEM images as a function of one or more param-
eters such as interaction energy E0, angle of incidence, or temperature [29, 38]. Using
this, a wide range of properties can be studied, for example, layer interaction, electron
bands [34], layer stacking [37], catalysis [39], plasmons [40], and surface corrugation [41].
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Figure 3.1: a, A stack of raw LEEM images where images are shifted with respect to each other
due to experimental drift. b, Drift correction aligns features in the detector-corrected images to
compensate for this drift. c, Spectra corresponding to pixels indicated in (b).

However, to unlock the true potential of quantitative analysis of multi-dimensional
LEEM data, post-processing of images and combination with meta-data is needed. In
particular, it is necessary to correct for detector artifacts and image drift and to convert
image intensity to physical quantities.

To this end, we here present a modular data acquisition and analysis pipeline for
multi-dimensional LEEM data, combining techniques well established in other fields
such as general astronomy or transmission electron microscopy (TEM), that yields high
resolution spectroscopic datasets and visualizations thereof. In particular, starting with
the raw data (shown in Figure 3.1a), we correct for detector artifacts using flat field and
dark current correction. Combining these corrections on the images with active feed-
back on detector gain enables High Dynamic Range (HDR) spectroscopy, which makes it
possible to measure spectra over four orders of magnitude of intensity. Subsequently, we
demonstrate that compensation of detector artifacts also enables drift correction with
sub-pixel accurate image registration, yielding a fully corrected data stack (Figure 3.1b).
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This creates a true pixel-by-pixel spectroscopic dataset, as shown in Figure 3.1c, i.e. every
pixel contains a reflectivity spectrum of the corresponding position on the sample. Fi-
nally, we explore the potential for more advanced computational data analysis. We show
that by using relatively simple dimension reduction techniques and clustering, these da-
tasets can be intuitively analyzed and visualized, enabling semi-automatic identification
of areas with different spectra. The implementation of the methodology presented here,
is programmed in Python and published as open source at Ref. [42].

To demonstrate these features and quantify the accuracy, we apply the drift correc-
tion algorithm to artificial data and then apply the full pipeline to a real dataset.The sam-
ple of the dataset is few-layer graphene grown by thermal decomposition of silicon car-
bide (SiC) [43], followed by hydrogen intercalation to decouple the graphene from the
SiC substrate [44, 45]. 1 Bright Field LEEM spectra can be used to distinguish the result-
ing mixture of bilayer, trilayer and thicker graphene, as interlayer states cause distinct
minima in the reflectivity spectra [30, 46]. In addition, the growth process causes strain-
induced stacking domains, which can be distinguished using Dark Field LEEM spec-
tra [37, 47]. The sample dataset consists of bright-field and dark-field LEEM images of
the same area for a range of landing energies (sometimes referred to as LEEM-I(V)). The
dark-field dataset uses a first order diffraction spot and tilted illumination such that the
incident beam has the opposite angle to the normal as the diffracted beam, as described
in more detail in Chapter 4. The data is available as open data [48] and is interpreted and
investigated in detail in Chapter 4.

3.2 DETECTOR CORRECTION
No physical detector system is perfect, i.e. each detector system introduces systematic
errors and noise. Knowledge of the sources of these imperfections enables the correc-
tion of most of them. The ESCHER LEEM has the classical detector layout: A chevron mi-
crochannel plate array (MCP, manufactured by Hamamatsu) for electron multiplication,
a phosphor screen to convert electrons to photons and a CCD camera (a PCO sensicam
SVGA) to record images of the phosphor screen.

The CCD introduces artifacts in the form of added dark counts and a non-uniform
gain [49–52]. Furthermore, the MCP gain is also spatially non-uniform, for example due
to overexposure damaging of the MCP, resulting in locally reduced gain. Therefore we
describe the measured intensity ICCD on the CCD as the following combination of the
previously named detector artifacts and the ‘true’ signal Iin:

ICCD(x, y) = DC (x, y)+ Iin(x, y) ·G(x, y) (3.1)

Where DC (x, y) is the intensity caused by dark current and G(x, y) is the position-dependent
and as-of-yet unknown gain factor comprising all modifications to the gain due to the
complete detector system comprised of the MCP, phosphor screen and CCD camera to-
gether.

To compensate for these detector artifacts, we employ techniques well-established
in astronomy (and other fields using CCD cameras) to effectively invert the relation in

1We thank Christian Ott and Heiko Weber for the fabrication of the graphene on SiC samples
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Figure 3.2: a, Dark Count image taken on ESCHER averaged over 19×16 images with 250 ms ex-
posure time. b, Flat field image with visible edges of the round microchannel plate and damaged
areas (arrow). c, Uncorrected bright-field LEEM image from the sample dataset. The field of view
corresponds to 3.5µm. d, Dark count and flat field corrected version of the image in (c). e, Line cut
through the raw image (c) and the corrected image (d) shown in red and green, respectively. Note
that the dip due to MCP damage at y = 140 (arrow) is removed and the profiles for similar areas are
flattened.

Eq. (3.1), to extract Iin(x, y) without the deleterious effects of background dark counts
DC (x, y) and local gain variations G(x, y).

First, the dark current of the CCD is compensated by pixel-wise subtracting a non-
illuminated dark count image, i.e. an image with the same exposure time as used for the
measurement, but no electron illumination at all. A pixel-wise average of a set of such
dark count images is shown in Figure 3.2a. The dark current arises from thermal exci-
tations in the sensor and varies over time with an approximately Gaussian distribution.
The mean of this distribution is dependent on the pixel, i.e. the x, y location, for exam-
ple visible in Figure 3.2a as a slight increase in the lower right corner. To suppress the
thermal fluctuations in the template dark current image, it is desirable to average over
several dark count images to prevent the introduction of systematic errors. We assume
that the per-pixel dark currents are identically distributed with a variance Vartherm except
for a spatial variance Varspatial of the mean. This is mathematically equivalent to assum-
ing the dark current fluctuates around its mean with both spatially dependent (but fixed
in time) noise and time-dependent thermal noise. By averaging multiple dark images,
we reduce the thermal variance but not the spatial variance. The remaining variance is
given by:

Vartot(n) = Vartherm(n)+Varspatial

= 1

n
Vartherm(1)+Varspatial

Where Var(n) is used to denote the variance of n pixel-wise averaged images. By de-
termining Vartot(n) and Vartot(1) experimentally we can isolate the thermal noise on a
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single image:

Vartherm(1) = [
Vartot(1)−Vartot(n)

] · n

n −1
(3.2)

For the ESCHER system with its Peltier-cooled camera, we find:

Vartherm(16×250ms image) = 114.3.

Therefore, by taking n = 120, a set of 120×16 images (a total exposure time of 8 minutes)
is sufficient to suppress the systematic errors to values smaller than the discretization
error. We find that the dark count image does not significantly change over time, and
therefore remeasuring dark count images is seldomly needed.

Second, to compensate for spatial gain variations, which are mostly due to the MCP,
a (conventional) flat field correction is performed, dividing the full dark count-corrected
dataset by an evenly illuminated image [53]. In LEEM, when the potential of the sample
corresponds to a higher potential electron energy than the kinetic energy of the elec-
trons of the beam, all incoming electrons turn around before they reach the sample. In
this situation the electron landing energy is negative and the sample behaves as a mir-
ror. Imaging at a landing energy of E0 ≈ −20eV yields an almost perfect flat field image
as approximation of G(x, y) in Eq. (3.1). A relatively large value for the negative energy
is taken to prevent artifacts from local in-plane electric field components, e.g. due to
work function or height differences in the sample [54–56]. For the ESCHER system, it is
necessary to take flat field images within hours of the measurement, as the MCP wears
over time and the gun emission profile and system alignment change on relatively short
timescales [57]. Furthermore, taking a flat field image at the same precise alignment as
the measurement is preferred for two reasons. First, barring absolutely perfect align-
ment of the system as well as a perfectly uniform emission from the electron gun, the
beam intensity is not spatially uniform. As illumination inhomogeneities are dependent
on the precise settings of the lenses, these will also be compensated for if the flat field is
recorded in the exact same configuration. Second, for proper normalization of the data,
as explained in Section 3.3, the same magnification (projector settings) is needed.

An alternative to this mirror mode flat fielding is to average over a sufficiently large
set of images of different positions on the sample and use the resulting average as a
flat field image. In most cases however, mirror mode flat fielding is preferred over such
ensemble-average flat fielding since for the latter many images of different locations are
required. Even when such a set is already available, it is hard to rule out any systematic
(statistical) errors. Lastly ensemble-average cannot provide proper normalization of the
data to convert to true reflectivity.

3.3 HIGH DYNAMIC RANGE SPECTROSCOPY
In LEEM and LEED, large variations occur in the amplitude of the signal, both within in-
dividual images and from image to image. For example, in quantitative LEED, features of
interest are often orders of magnitude less bright than primary Bragg peaks. This neces-
sitates a detector system with a large dynamic range. The CCD-camera of the ESCHER
setup has a bit depth of 12 bits and a possibility to accumulate 16 images in hardware,
yielding an effective bit depth of 16 bits for singular images.
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Figure 3.3: a, Calibration curves
as measured with 16 × 250ms
exposure time per image mea-
sured on graphene on SiC. b,
Calibration curves corrected for
dark count. c, Calibration
curves with matched intensity
and normalized by joint curve fit
of Eq. (3.3) and resulting best fit
(black line). d, Residuals of the
joint fit in (c).
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For most materials, the reflected intensity I (E0) changes over orders of magnitude as
a function of E0. Starting in mirror mode with unity reflectivity, the reflected intensity
tends to decrease orders of magnitude for E0 . 100eV. To obtain spectra with such a
large dynamic range, the dynamic range offered by the bit depth of the CCD alone is not
sufficient.

However, the gain G of the MCP, i.e. the ratio of outgoing electrons to incoming elec-
trons, can be tuned by the voltage VMCP applied over the MCP. This gain scales approxi-
mately exponential in VMCP (over a reasonable range, see next section), enabling image
formation of approximately constant intensity on the CCD, for a wide range of incident
electron intensities. We use this property to develop a scheme to further increase the
dynamic range in which G(VMCP) is adjusted by setting a new MCP bias for each new
image, i.e. increasing the gain for images where the reflected intensity is low. Measuring
VMCP for each recorded image and calibrating G(VMCP) makes it possible to employ the
full dynamic range of the CCD-camera for all landing energies, without losing the infor-
mation of the absolute magnitude of the measured intensities, thus extending the range
of spectroscopy without significant decrease in signal-to-noise ratio.

3.3.1 CALIBRATION

Hamamatsu Photonics K.K., the manufacturer of the microchannel plate in the ESCHER
setup, specifies an exponential gain as function of voltage for a part of the range of pos-
sible biases [58]. To extend the useful range beyond this limit and thus enable the use of
the full bias range up to the maximal 1800V, the gain versus bias curve was calibrated as
follows:
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1. First, in mirror mode, VMCP is adjusted such that the maximum intensity in the
image corresponds to the full intensity on the CCD, staying just below intensities
damaging the MCP.

2. While decreasing VMCP, images are acquired for evenly spaced bias values. The
intensities of these images form the dataset for calibration of the low bias part.

3. Returning VMCP to the previous maximum value, E0 is increased until the intensity
of the image is so low that it is barely distinguishable from the dark count.

4. Again VMCP is turned up until the maximum image intensity corresponds to the
maximum CCD intensity.

5. Steps 2. to 4. are repeated until a dataset is acquired starting at maximum MCP
bias VMCP. The resulting average intensity curves are shown in Figure 3.3a.

6. These datasets are then corrected for dark count as discussed above, resulting in
the average intensity curves shown in Figure 3.3b. Comparing to the uncorrected
curves, the increase in accuracy for low intensity values, crucial for accurate cali-
bration, is very apparent. Averaging over a sufficiently large area ensures sufficient
reduction of other noise sources such as MCP noise.

7. A joint fit of Eq. (3.3), allowing for a different amplitude Ai for each curve, is per-
formed to the corrected data to obtain a general expression for MCP gain G as a
function of VMCP. The fit is performed using least squares on the logarithm of the
original data with no additional weights, to ensure a good fit over the large range of
orders of magnitude. The fitted curve is then normalized to a convenient value, e.g.
G(1kV) = 1. This normalization can be freely chosen, as G will be applied equally
to datasets and flat field images, yielding absolute reflectivity as resulting data.

A first choice for a fitting function would be a simple exponential, but this would
not account for any deviation from perfect exponential gain, visible as deviations from a
straight line in Figure 3.3b. For the ESCHER setup we therefore choose to add correction
terms of odd power in the exponent:

G(VMCP) = Ai exp

(
8∑

k=0
ckVMCP

2k+1

)
(3.3)

Only odd powers were used to accurately capture the visible trends in the data. For the
ESCHER setup correction terms up to order V 17

MCP (k < 9) turned out to give a satisfactory
good approximation, as illustrated by the residuals in Figure 3.3d.

3.3.2 ACTIVE PER-IMAGE OPTIMIZATION OF MCP BIAS
The resulting curve with calibration coefficients is then used to actively tune the MCP
bias during spectroscopic measurements: A desired range is defined for the maximum
intensity on the camera, corresponding to a maximum safe electron intensity on the
MCP to prevent damage on the one hand, and a minimum desired intensity of the im-
age on the CCD on the other hand. Whenever the maximum intensity of an image falls
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outside this range, the MCP gain G(VMCP) will be adjusted such that the intensity of the
next image again falls in the center of this range. Assuming the intensity changes con-
tinuously, this method ensures the use of the full intensity range of the camera for each
image, while protecting the MCP against damage.

Additionally, after the measurements, the calibration curve is used to calculate the
real, relative intensity from the image intensity and the recorded VMCP. By dividing this
intensity by the intensity of the flat field image (taken in mirror mode and corrected for
dark current and the MCP bias), we calculate a (floating point) conversion factor to true
reflectivity values for each image. These ratios are added to the metadata of every im-
age. By applying this conversion as a final step after any analysis of the data, errors due
to discretization of highly amplified, and therefore low true intensity, images are mini-
mized. Note that this procedure makes the conversion to true reflectivity possible even
for datasets with no mirror mode in the dataset itself, such as dark field measurements.

3.3.3 COMPARISON OF RESULTS

Figure 3.4: Regular spectro-
scopic reflectivity curve (or-
ange) of bilayer graphene on
SiC, corrected for dark count
and flat field, but with a
single setting of VMCP (top
panel). The HDR mea-
surement of the same area
with active MCP bias tun-
ing (blue) can resolve details
down to lower intensity.
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Spectroscopic LEEM-I(V) curves on bilayer graphene on silicon carbide are mea-
sured both with constant MCP bias and with adaptive MCP bias as described above. A
comparison between the resulting curves is shown in Figure 3.4. While the regular, con-
stant MCP, curve starts to lose detail around E0 = 50eV, i.e. after a factor of 100 decrease
in signal, the adaptive measurement captures intensity variations in the spectrum al-
most 4 orders of magnitude lower than the initial intensity. We thus call the adaptive
method high dynamic range (HDR) imaging.

3.4 DRIFT CORRECTION BY IMAGE REGISTRATION
In LEEM imaging, the position of the image on the detector tends to shift during mea-
surement as shown in Figure 3.1a. This prevents per-location interpretation of the data,
both for spectroscopic measurements and measurements with varying temperature. Al-
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though the shift can be minimized by precise alignment of the system, we find that a
significant shift always remains, especially in tilted illumination experiments such as
DF-LEEM or angle-resolved reflected-electron spectroscopy (ARRES) [37, 38, 56], which
makes the compensation of this image drift necessary.

This problem has been studied in depth in the field of image registration, motivated
by wide-ranging applications such as stabilization of conventional video, combination
of satellite imagery and medical imaging [59–61]. Techniques generally rely on defin-
ing a measure of similarity between a template and other images, either by some form
of cross correlation, or by identifying specific matching features in both. The image is
then deformed by a fixed set of transformations (either affine, i.e. purely shifts and ro-
tations or non-rigid, i.e. additional deformation), until the match between the features
in the images and the features in the template is maximal. For LEEM data, the mea-
surement drift is almost completely described by in-plane shifts, significantly reducing
the space of expected transformations. A common approach in this case is to use the
(two-dimensional) cross-correlation as a measure of similarity between two shifted im-
ages and to find the maximum for all images compared to a template, as the location of
maximum of the cross-correlation corresponds directly to the shift between the image
and the used template.

The cross correlation of two n × n pixels images I1(x, y) and I2(x, y) is defined as
follows:

C (I1, I2)(x, y) = 1

n2

n−1∑
x′=0

n−1∑
y ′=0

I1(x ′, y ′)I2(x +x ′, y + y ′) (3.4)

where the coordinates can be wrapped around, i.e. all spatial coordinates are modulo n.
Furthermore, we can relate this to the convolution operation (denoted as ◦):

C (I1, I2)(x, y) = 1

n2

n−1∑
x′=0

n−1∑
y ′=0

I1(x ′, y ′)I2(x − (−x ′), y − (−y ′))

=:
(
I1(x ′, y ′)◦ I2(−x ′,−y ′)

)
(x, y)

(3.5)

Using this, the cross correlation can be expressed in terms of (two-dimensional) Fourier
transforms F :

C (I1, I2) = I1(x ′, y ′)◦ I2(−x ′,−y ′) =F−1
(
F (I1) ·F (I2)

)
(3.6)

Where F (I2) denotes the complex conjugate of the Fourier transform of I2. This makes
the cross-correlation extra suitable as a measure of similarity, since it can be computed
efficiently using the two-dimensional Fast Fourier Transform (FFT). Determining the lo-
cal maximum of the cross-correlation yields the integer shift for which the two input im-
ages are most similar, with the height of the maximum an indication of the quality of the
match. To further increase accuracy, several variants, such as gradient cross-correlation
and phase-shift cross-correlation, have been shown to achieve sub-pixel accuracy for
pairs of images [59, 62–64].

For LEEM data however, the straightforward cross-correlation approach is often hin-
dered by the physics underlying the electron spectra, resulting in contrast changes (cf.
Figure 3.5a,b) and even inversions for different values of E0. The problem can be slightly
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Figure 3.5: a,b, Two bright-field LEEM images of few-layer graphene obtained at different E0. c,d,
Their Gaussian and Sobel-filtered versions with a Gaussian standard deviation of 3 pixels high-
lights the edges and erases the contrast inversion. e, The cross-correlation of the filtered images
exhibits a clear maximum. Its position compared to zero (white lines) corresponds to the relative
shift of the images.

alleviated by using multiple templates, but in general this approach is unsatisfactory. In-
stead we present another approach here: We first apply digital filters and then compare
each image to all other images, similar to the algorithm by Schaffer et al. for energy fil-
tered transmission electron microscopy [65, 66]. It then uses a statistical average of the
found integer shifts between all pairs of images to achieve sub-pixel accuracy.

We analyze the accuracy of this algorithm using an artificial test dataset and show
that the accompanying Python implementation [42] is fast enough to process stacks of
hundreds of images in mere minutes by performing benchmarks on a real dataset, fol-
lowed by a discussion of the algorithm and results.

The algorithm consists of the following steps:

1. Select an area of each of the (detector-corrected) N images, suitably sized for FFTs
(i.e. preferably 2n ×2n pixels).

2. Apply Gaussian smoothing with standard deviation of σ pixels to reduce Poisso-
nian noise in the images.

3. Apply a (magnitude) Sobel filter to highlight edges only, as shown in Figure 3.5c
and d. As such, images with inverted contrast (cf. Figure 3.5a,b) become similar to
each other.

4. Using Eq. (3.6), compute the cross-correlation, as shown in Figure 3.5e. Do this for
all pairs (i , j ) of images.
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5. Compute the location (D X ,DY )i j and value Wi j of the maximum of the cross-
correlation for all image pairs (i , j ). D Xi j and DYi j form the anti-symmetric ma-
trices of found relative shifts in either direction, while Wi j is a symmetric matrix
of weights of the found matches, as shown in Figure 3.6.

6. Normalize the maximum values Wi j to be used as weights in step 8: W i j = Wi jp
Wi i ·W j j

.

7. Pick a threshold Wmin to remove any false positive matches between images. A
threshold of Wmin = 0.15, based on D X , DY and Wi j , is shown in Figure 3.6 as gray

shading. Set W i j = 0 for all W i j <Wmin.

8. To reduce the N 2 relative shifts D X to a length N vector of horizontal shifts d x,

minimize the errors
(
d xi −d x j −D Xi j

)
W

4
i j (using least squares). Do the same

with DY to obtain the vertical shift vector d y .

9. Apply these found shifts d x and d y to the original detector corrected images, in-
terpolating (either bi-linearly or via Fourier) for non-integer shifts.

i

j
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i
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i

Wij

−200
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Figure 3.6: Calculated shift matrices D X and DY and weight matrix W i j for the bright-field da-
taset. Matches of a weight below Wmin = 0.15 (shaded in gray) are mostly false positives. Conse-
quently, they are set to zero weight in the algorithm.

3.4.1 IMPLEMENTATION DETAILS
The implementation makes extensive use of dask [67, 68]. This open source library, de-
veloped and maintained by Anaconda Inc., in particular its Array submodule, enables
easy parallelization of array operations in common numpy syntax. It allows the lazy defi-
nition of computational operations on data, forming a task graph describing the compu-
tations to be performed. Delaying actual computation until explicitly called for enables
dask to easily parallelize and stream computations, efficiently using all cores of a single
computer. It should even allow to easily scale up to compute clusters.

The implementation uses of dask in combination with scikit-image code for blocked
filtering of images [69].

The complete set of correlations is written in dask via the FFT functions and the mul-
tiplication in Fourier space. This, via dask’s task graph, allows every forward FFT to be
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computed only once for each image, as opposed to the N times for the naive implemen-
tation.

The optimization step uses scipy code, in particular the least-squares routine in
the optimization module in combination with an explicit scipy.sparse Jacobian. [69–
72]. We found that the use of an explicit Jacobian significantly reduced computation time
and memory use for larger optimizations.

For easy interfacing with the user, jupyter-notebook and ipython-widgets are
used [73]. For the dimension reduction using principal component analysis and cluster-
ing described in Section 3.5, dask-ml and scikit-learn are applied [74].

3.4.2 ACCURACY TESTING

To validate and benchmark the accuracy of the drift correction algorithm beyond visual
inspection of resulting drift corrected datasets, an artificial test dataset with known shifts
was created. This enables exact comparison of results to a ‘true’ drift.
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Figure 3.7: a, Image shifts in x and y used for the synthetic dataset. b, Image 0 of the synthetic
dataset with Gaussian noise with standard deviation of A = 1.0. c, Gaussian- and Sobel-filtered
version of (b), with a Gaussian filter width of 5 pixels, highlighting edges.

The test dataset, as shown in Fig. 3.7, consists of N = 100 copies of an annulus of
intensity 1.0 on a background of 0.0. The dataset is shifted over a parabolic shift in the
x-direction and random shifts uniformly chosen from the interval [−0.5,0.5] pixels in
the y direction (see Figure 3.7a). Finally pixel-wise Gaussian (pseudo-) random noise is
added to all images. The standard deviation A of the added random noise is then varied
to simulate images with different signal-to-noise ratios (SNR).

BENCHMARK METHODOLOGY

Benchmarks were run on a desktop PC with an Intel i7-7700K running at 4.20 GHz with
32 GB of RAM and Windows 10 x64 installed. The full stack of images was read from
separate TIFF files on a Toshiba XG5 NVMe SSD for each run during the filter and cross
correlation phase and written to a uncompressed zarr archive on the same SSD during
the shift and write phase.

The benchmark was run in a Jupyter notebook, with an installation of the Anaconda
environment of Python 3.6 with at least the following packages installed:
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numpy=1.16.3, matplotlib=3.0.3, dask=1.2.0, distributed=1.27.1,
scikit-image=0.15.0, scipy=1.2.1, jupyterlab, scikit-learn=0.20.3,
dask-ml=0.12.0, xarray=0.12.0, h5py=2.9.0, mkl=2019.3, mkl_fft=1.0.12,
numba=0.43.1, zarr=2.2.0

Note: Accuracy benchmarks were performed with images of 512×512 pixels, the time
benchmarks in the next session on subimages of 256×256 pixels.

RESULTS
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Figure 3.8: a,b, Maximum and mean error in d x shift as calculated by the algorithm for differ-
ent values of noise amplitude A and smoothing parameter σ. The optimal value of the Gaussian
smoothing σ as a function of added noise amplitude A is drawn in white. Black contour lines are
added as a guide to the eye. c, Spread of the error for the optimal values of σ for varying A. Dark
and light bands are respectively 1 and 2 standard deviations, maximum error is indicated as gray
line. d,e,f, Same for the y direction.

The resulting maximum error in the found shift compared to the original, ‘true’ shift,
as well as the resulting mean error for different values of A and σ is shown in Figure 3.8,
separately for the x and y directions. These results verify that, at least for synthetic da-
tasets, the algorithm achieves sub-pixel accuracy, with the mean absolute error in pixels
of about 0.1 times the relative noise amplitude A for the optimal value of smoothing σ,
and the maximum absolute error just reaching 0.5 pixel for the extreme value of A = 2.
As expected, the error is strictly increasing for decreasing SNR, i.e. increasing A. After
an initial cutoff, visible in saturated yellow in Figure 3.8, the accuracy of the algorithm
is also generally decreasing for increasing smoothing width σ. However, after this initial
cutoff, there is a comfortably large range of σ where the algorithm performs well.

The choice of smoothing parameterσ has significant influence on the analysis of real
data, as is visible in Fig. 3.6: for high E0, the noise level is so high that no feasible matches
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were found for the used value of smoothing σ. Increasing σ alleviates this, but reduces
the match quality for images with low noise level.

We found that most features visible in the high-σ, high-A regime of Figure 3.8b,d are
dependent on the initialization of the random generator for the added pixel-wise noise
and are thus not significant.

3.4.3 TIME COMPLEXITY
To benchmark the computational complexity of the algorithm, it was applied to subse-
quently larger parts of the real dataset, while measuring the computation times for the
least squares optimization (step 8 above) and the shifting and writing of images (step 9)
separately.

The results show calculating the cross-correlations takes the most time, as it scales
almost perfectly quadratically in the number of images N , as shown in Fig. 3.9. The
shifting and writing of images scales linearly and is not significant for larger datasets.
The total time therefore scales nearly perfectly quadratically, with a dataset of 500 images
drift corrected in less than 7 minutes of computation time. As such, LEEM spectroscopy
datasets can be comfortably and regularly drift corrected on a desktop PC.
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Figure 3.9: Run times of different phases of the drift correction algorithm on 256×256 pixel im-
ages. Linear (green) and quadratic (red) slopes are added as a guide to the eye, illustrating that the
cross correlations scales quadratically in the number of images N , while the shifting and saving of
images itself is linear.

3.4.4 DISCUSSION
We elaborate here on the choices made in the algorithm. The use of the magnitude So-
bel filter has multiple benefits, similar to using the gradient cross-correlation: Contrast
inversions between areas with different spectroscopic properties nonetheless result in
similar images (cf. Figure 3.5c,d). In addition, the constant zero background reduces er-
rors due to wrap-around effects due to performing the calculation in the Fourier domain.

The exponent 4 for the weighing matrix Wi j in the least squares minimization step 8
was empirically found to give the best results for real datasets.

As already noted by Schaffer et al., the use of cross-correlation between multiple im-
age pairs and combining the returned integer shift values enables sub-pixel accuracy.
The maximum theoretical accuracy is 1

N pixels, but is reduced for images where false
positive matches are thresholded out.
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Alternative methods of obtaining sub-pixel accuracy in determining shifts include
a combination of upscaling and matrix-multiplication discrete cosine transforms [63]
and a rather elegant interpolation of the phase cross-correlation method proposed by
Foroosh et al. [59]. However our current method is less complex and combines robust-
ness against global drift with handling of changing contrasts, which is crucial for spec-
troscopic LEEM data. Although the sub-pixel precise phase correlation method seems a
straightforward extension of regular cross correlation, it is less suitable for datasets with
changing noise levels and not suitable for false positive detection by normalization, both
properties we found essential to handle spectroscopic LEEM data.

Fourier interpolation for non-integer shifts, corresponding to Whittaker-Shannon
interpolation, is optimal when the image resolution is limited by the optical transfer
function of the intstrument, instead of pixel sampling-limited [75]. In this case, almost
always true for LEEM measurements, the imaginary part is zero up to floating point pre-
cision and can be discarded. If however the resolution is limited by the detector, e.g. at
very low magnifications, bi-linear interpolation is the better choice.

Contrary to Schaffer et al., we found smaller values of Gaussian smoothing width
σ yield the best results, with larger values yielding artificial shifts around contrast inver-
sions for real datasets and generally performing worse for the synthetic dataset, as visible
in Fig. 3.8.

Schaffer et al. found their approach at the time (2004) not computationally feasible
for large amounts of images but, as shown in the previous section, the current imple-
mentation is able to drift correct a stack of several hundreds of images comfortably on
a single desktop computer. We want to emphasize that the use of Python gives flexi-
bility and makes it easy to adapt the code. For instance, increasing performance even
more lies within reach by performing the FFT cross-correlations and maximum search
on one or more graphical processing units using one of several libraries or by using a
cluster running a dask scheduler. Further speedup would be possible by pruning which
pairs of images are to be cross-correlated. An avenue not explored here, but used in the
image stitching described in Appendix B, is the use of pyramid methods to create a multi-
step routine where firstly a fast estimate of the shift is computed on a smoothened and
reduced-size image before using consecutively larger images to refine the estimate [76,
77].

Beyond drift correction, the same method presented here can also be applied to cre-
ate precisely stitched overview images of areas much larger than the electron beam spot
size. Although, as no contrast inversions or large feature differences are expected for the
matching areas, the added value of using a gradient filter is nullified. Additionally the
number of images that can be matched to the same template is limited, forcing a low
upper bound on the sub-pixel accuracy of the optimization part of the algorithm. In-
stead, we found that an algorithm based on more regular phase-shift cross-correlation
is sufficient for sub-pixel accurate stitching (See Appendix B).

3.5 DIMENSION REDUCTION
The sub-pixel accuracy drift correction now makes it possible to reinterpret a LEEM-
I(V) dataset as a truly per-pixel set of spectroscopic curves, opening up possibilities for
further data analysis. For a dataset of N images, each such curve (cf. Fig. 3.1) can be seen
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Figure 3.10: a, Scree plot indicating the retained variance per PCA component for the Dark Field
dataset. b, Images of the first six PCA components for the Dark Field sample dataset and the spec-
tra corresponding to the maximum and minimum of the respective components occurring in the
dataset. c, Images of the first six PCA components for the Bright Field sample data set and the
spectra corresponding to the maximum and minimum of this component occurring in the dataset
(dashed) and the spectrum corresponding to the corresponding eigen-spectrum itself.

as a vector in a N -dimensional vector space of the mathematically possible spectra. Even
for moderate datasets of a few hundred images this is a huge vector space. In almost all
cases however, the physical behavior of the data can be described with a model with
far fewer degrees of freedom, i.e. the vector space of physically possible spectra has a
much lower number of dimensions. Therefore, it should be possible to summarize all
significant behavior in a much smaller dataset, which can be analyzed (and visualized)
much more easily.

Here, we use Principal Component Analysis (PCA), a linear technique based on sin-
gular value decomposition (SVD), often used for dimension reduction in data science
fields [78–80]. The randomized iterative variant of PCA allows for efficient computation
of the largest variance components without performing the full SVD decomposition [81].
This technique therefore projects the spectroscopic data to a lower dimensional sub-
space, in such a way that maximal data variance is retained. It does so in a computation-
ally efficient way, making it well suited for, and popular in, data science. Before applying
PCA, we crop the dataset to remove any areas that lie outside of the detector for any im-
age inside the used range of E0. Additionally, each image is scaled to zero mean and unit
variance, to not let brighter images contribute more strongly to the analysis as they have
larger variance. A lot of other choices for standardization of the data are possible, most
of them with useful results, but for the scope of this paper we adhere to this standard
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choice.
After performing PCA, the lower dimensional subspace or PCA-space, is now spanned

by orthogonal ‘eigen-spectra’, referred to as PCA components. Since the projection map
onto this subspace retains most of the variance in the dataset, it is possible to build an
approximate reconstruction of the full physical spectra from the reduced PCA spectra.

Although the aim is dimension reduction, the number of PCA dimensions should
be chosen large enough, such that the mathematical PCA-space contains all physical
behaviour up to a certain noise level [82]. A so-called scree plot, displaying the cap-
tured variance, aids to pick the right number of dimensions. For the sample dataset of
dark-field images of N = 300 energies, a scree plot is shown in Figure 3.10a. In general,
for spectroscopic LEEM datasets, we find that reducing down to 6 dimensions is often
enough to capture more than 90% of all variance.

The dataset can be projected onto a single PCA component by taking the per-pixel in-
ner product with the corresponding ‘eigen-spectrum’. This yields images visualizing the
variance retained by the respective components, as shown in the top half of Figure 3.10b
and c, for all 6 PCA components of the dark field and bright field data respectively. Below
each image, the spectra corresponding to the pixels with the minimum and maximum
value of this projection are shown in black and color, respectively.

3.5.1 VISUALIZATION
Reducing a spectrum from hundreds of dimensions to a few opens up new opportunities
for data visualization. In particular, it allows for the visualization of nearly all of the
variation in spectra of an entire dataset in only two images, as shown in Fig. 3.11. Here,
the values of the six principal components (cf. Fig. 3.10), are displayed as the RGB color
channels of two pictures per dataset. To lift the degeneracy in the possibilities of the
sign of the PCA components (a PCA eigen-spectrum with the opposite signs retains as
much variance), we change the signs such that the a positive projection onto the PCA
component corresponds to having the higher average relative brightness in the images.
This way, areas that are bright in the majority of the original images also appear bright
in the visualization. To compensate for the human eyes’ preference for green, a scaling
of colors as proposed by Kovesi is applied [83]. It is given by the following matrix: R ′

G ′
B ′

=
 0.90 0.17 0.00

0.00 0.50 0.00
0.10 0.33 1.00

 R
G
B


The results are striking. All the sample features are directly visible in Fig. 3.11: In

the bright field dataset, bilayer and thicker graphene are clearly separated in orange and
green, respectively in the first three PCA components (Figure 3.11a). Moreover, SiC step
edges, domain walls and point-like defects are clearly visible. The next three PCA com-
ponents (Figure 3.11b) highlight the difference between bilayer (green), trilayer (orange)
and four-layer graphene (dark green) and in addition separates step edges (orange), do-
main boundaries (turquoise) and the defects in different colors. Furthermore, two types
of domain boundaries can be observed in the four-layer area that are hard to tell apart
in conventional LEEM images (See also Section 5.3). The light green and dark ones are
presumably domain boundaries in the top-most and lower layers, respectively.
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Figure 3.11: The first six PCA components can be used to summarize a spectroscopic LEEM mea-
surement in two RGB pictures. a,b, Visualization of a spectroscopic bright-field LEEM measure-
ment of quasi-freestanding few-layer graphene on SiC. Different layer counts, stacking boundaries
of two types and point defects are distinguishable. c,d, Visualization of a spectroscopic dark-field
LEEM measurement of the same area. All six different possible stacking orders for up to trilayer
graphene are easily distinguishable.

This visualization using the first three PCA components of the dark field dataset (Fig-
ure 3.11c) clearly separates the different stacking orders in bilayer (AB in orange and AC
in blue) and trilayer graphene. The PCA components 4 to 6 (Figure 3.11d) highlights the
different stacking orders in trilayer and four-layer areas (different shades of orange and
blue) and display an interference effect causing double lines at one type of (correspond-
ing to one direction of) domain edge. This clear visualization is particularly remarkable
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as the dark-field dataset presents a worst case scenario due to its extreme off-axis align-
ment (see Chapter 4 for full details), which causes strong image drift and relative shifts
of features.

3.5.2 CLUSTERING AND AUTOMATIC CLASSIFICATION
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Figure 3.12: a, Bright-field dataset visualized as point cloud in the space of the first three PCA
components. The points are colored according to the mapping in Fig. 3.11(a) and are projected
onto the planes in gray scale. b, Point cloud as in subfigure (a), but colored according to the com-
puted clustering. c, Indication of the cluster labels in the real-space image. d, Mean bright-field
spectroscopy curves for each cluster, automatically recovering layer count and domain walls. e,f,
Same as subfigures (c,d) for the dark-field dataset reveals all stacking orders present as well as two
sets of edge-case curves. Cf. Figure 4.2.

In addition to the visualization possibilities explored in the previous section, the di-
mension reduction by PCA lowers the complexity of the data enough to enable the use
of other, more quantitative data analysis techniques. In particular, reduction to less than
ten dimensions is enough to perform unsupervised classification or clustering on the
entire dataset. Here, we show that a relatively simple clustering algorithm, the classical
k-means, also known as Lloyd’s algorithm [84], applied to the PCA reduced dataset, can
already be used to distinguish the relevant, different areas. The structure of the bright
field dataset is visualized in terms of the first three PCA components in Figure 3.12a,
both as a point cloud with colors corresponding to Figure 3.11a and as density projec-
tions (gray scale) on the three planes. The resulting classification from the application
of k-means to the six PCA components is visualized in the same way in Figure 3.12b,
where the color of the points now corresponds to the assigned labels. These same label



3

38 3: QUANTITATIVE ANALYSIS OF SPECTROSCOPIC LEEM DATA

colors are shown in real space in Figure 3.12c. In the real space visualization it is clear
that the different layer counts are separated (bilayer, trilayer and four-layer as purple, or-
ange and red, respectively) from a class with the point defects and step edges (blue) and
a class containing the domain boundaries in the bilayer (green). The cluster labels can
now be used to calculate spectra of each area, e.g. all trilayer pixels without the defects.
For this, we take the mean over all pixels belonging to one cluster for each energy in the
full N-dimensional dataset. This can be done even for energies outside the range used
for the initial clustering as well as for energies where we only have partial data due to
drift. The resulting spectra for the clustering in Figure 3.12c are plotted in Figure 3.12d.

The same clustering method is applied only to the first 4 PCA components of the
dark-field dataset since component 5 and 6 show virtually no distinguishing features and
corresponds to very little variance (cf. Figure 3.10a,b). The resulting real space labeling
of the clusters and the spectra are shown in Fig. 3.12e and f, respectively. Here, although
not perfect, the clustering algorithm manages to mostly separate the different possible
stacking orders (red and orange for the bilayer and purple, brown, pink and blue for
the trilayer). The green and gray areas correspond to areas where clear classification
as a stacking order is not possible due to phase contrast and non-uniform illumination
artefacts due to the tilted illumination.

Thanks to the proper calibration and mutual registration of the data, this relatively
simple algorithm classifies the areas in the dark-field data set with only minor errors
(e.g. the incorrect assignment of brown trilayer spectrum in the lower left), without any
input of the positions of each spectrum in the image or any input about the expected
differences between spectra. We anticipate that this classification using unsupervised
machine learning will be useful for identifying unknown spectra in new datasets. In
Chapter 8 for example, it is applied to distinguish the different spectra found on TaS2

samples.

3.6 CONCLUSION
We have shown that treating (energy-dependent) LEEM measurements as multi-dimensional
datasets rather than as collection of images, opens rich opportunities for detailed and
quantitative insights into complex material systems that go well beyond morphological
and crystallographic characterization.

Three key steps are necessary to convert a stack of raw LEEM images into spectro-
scopic dataset with a greatly increased body of quantitative information. First, we com-
pensate for common detector artefacts such as camera dark count and non-uniform de-
tector gain, which is crucial to quantitatively interpret LEEM images. Second, by cali-
brating the channel plate gain and adjusting it during spectroscopic measurements, we
can not only extend the dynamic range of the dataset by two orders of magnitude, but
also convert image intensity into absolute reflectivity or electron intensity (provided the
beam current is accurately measured). Third, we describe a drift-correction algorithm
that is tailored for spectroscopic LEEM datasets where contrast inversions make many
other approaches infeasible. It relies on digital filtering and cross-correlation of every
image to all other images and, without requiring large computation times, yields sub-
pixel accuracy. It thus produces spectral LEEM data with high spatial resolution, i.e.,
true pixel-wise spectra.
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This suite of techniques is already in regular use to obtain data from the ESCHER sys-
tem in Leiden [25–27, 31, 34, 37]. In addition, the resulting spectral datasets enable more
sophisticated data classification and visualization methods that rely on the spectrum
(I(V)-curve) in every pixel. We demonstrate how we can use dimension reduction on the
spectra to automatically compose images from only the six strongest spectroscopic fea-
tures (PCA components). This approach produces rich color images that capture most
of the features of the dataset and can thus give an intuitive view on complex material
systems. Furthermore, we show that a relatively simple cluster analysis on those data
sets of reduced dimensionality yields a quantitative representation of this information.
Different materials within a field of view are automatically identified and statistical in-
formation such as the mean spectra and their spread per material can be extracted.

Treating LEEM measurements as multidimensional datasets as presented here will
further strengthen the role of LEEM as a quantitative spectroscopic tool rather than as
a pure imaging instrument, thus deepening its impact in the research and discovery of
novel material systems. Furthermore, the presented techniques can be applied to related
spectroscopic imaging techniques, such as energy-filtered PEEM [85] or even adapted for
use in scanning probe techniques such as scanning tunneling spectroscopy [79, 86]. To
facilitate the use of the approaches discussed here, the test data as well as Python code
is available online [42, 48].

3.7 OUTLOOK: DRIFT CORRECTION IMPROVEMENTS
This is an addendum to the drift correction algorithm and the image stitching algorithm
as described in this chapter and in Appendix B. The implementations of both are pub-
lished in Ref. [42].

The drift correction as presented in this chapter can straightforwardly be extended in
several ways, to increase computation speed or accuracy or to adopt to different datasets.
I will list some ideas to do so here. Some of these are borrowed from the work done for
stitching of images, others have been planned for a long time, but were never prioritized
enough for time to be available to implement them.

3.7.1 GPUS FOR FASTER COMPUTATION

Graphical Processing Units (GPUs) are very efficient at massively parallel computation
in general, and image handling specifically. Therefore moving computation from the
CPU to one or more GPUs can be a way to increase performance by orders of magnitude
if the workload allows. However, traditionally programming for GPUs has been more
involved, as it relied on specific extensions of general purpose programming languages
to allow computation on GPU. With this came a lot of specific programming paradigms
to accommodate the significantly different architecture of GPUs (compared to CPUs)
and the moving of data from main memory to the GPU memory and back.

However, the software stack has been significantly maturing, even for more high-
level languages such as Python, in particular for NVIDIA GPUs. This has led to Python
being adopted as the language of choice for the quickly emerging field of data science,
greatly enhancing the ecosystem by the sheer number of programmers working in it.
Therefore it would now be relatively straightforward to implement a GPU-accelerated
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version of the drift correction by utilizing cupy [87] to handle array computations where
numpy is used now. Massive work has been done to push the API of cupy towards higher
compatibility with numpy and scipy, meaning that for (almost) all used functions, drop-
in cupy replacements exist. Experience from rewriting some core pyGPA [88] routines to
use cupy confirms that significant gains in speed can be achieved without much (pro-
gramming) effort. Furthermore, it should work transparently with dask.

3.7.2 ALGORITHMIC SPEED IMPROVEMENTS

The core of the statistical drift correction algorithm is the O (N 2) comparison of every
pair of images. While this enables subpixel accuracy, it is a major Achilles heel in com-
putation speed and scalability. Not only does this mean a quadratic increase in compu-
tations for more images, it also prevents early release from memory of computed Fast
Fourier Transforms (FFTs) of images, as any block of images is needed in combination
with every other block of images. By drawing a parallel to the stitching algorithm, two
solutions to this present itself:

• For larger smoothing filters, images can be scaled down, significantly reducing
memory load and needed computation for the FFTs.

• Instead of comparing all pairs of images, we can compare each image only to k
‘nearest’ neighbors, with k ¿ N , resulting in a O (N ×k) algorithm, now linear in
N . The natural ‘distance’ to determine the nearest neighbors is now not the stage
coordinates, but whichever other (set of) parameters is changed, e.g. landing en-
ergy. Even just the time at which the images were taken, comparing images taken
after each other would yield a reasonable ‘distance’ to use. A non-optimized ver-
sion of this linear variant has been implemented in the repository [42].

It is even possible to combine the two approaches in a two-pass algorithm, to cre-
ate a faster algorithm without losing too much accuracy. This can work, because the
‘quality’ of a match between two images, depends on the overlap between them. A first,
linear pass, will be used to generate an initial estimate of the absolute shift vectors. The
subsequent, quadratic pass can now be done on crops based on the first pass, allow-
ing for smaller crops to be used, decreasing memory and computational load. For a 4
times smaller crop in each direction (a reasonable value) this would save a factor 42 = 16
on memory use and a factor 4log(4) on computation, with improved cache locality ex-
pected to provide further speed gains.

As an alternative for this two-pass algorithm, a mixed strategy could be considered,
optimizing for matrices of relative shifts containing both k nearest neighbors and the
quadratic, farther out combinations for every l-th image (striding through the full data-

set), corresponding to a O
(
N ×k + N 2

l 2

)
algorithm.

3.7.3 IMPROVEMENTS TO ACCURACY
For any pair of images, there is an optimal (Gaussian) smoothing widthσ to suppress the
noise, depending on the signal-to-noise ratio (SNR). In spectroscopic LEEM imaging, the
SNR strongly depends on the intensity of the image, and therefore on the landing energy,
resulting in a widely varying SNR within a single spectroscopic dataset. In the currently
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described algorithm, a fixed σ is manually picked for the entire dataset and any matches
between images with insufficient match quality, determined by the also manually set
wmin, are discarded.

This can be improved upon in several ways, as discussed below.

AUTOMATIC DETERMINATION OF wMIN

The most straightforward way is to borrow once again from the stitching algorithm, and
to determine wmin automatically as the maximum value for which the number of con-
nected components of the graph of all valid matches is still equal to 1, i.e. such that all
images can still be related to all the other images. An alternative, likely superior method
is described and implemented by Savitzky et al. in Ref. [66]. They force all relative shifts
to be consistent and drop any relative shifts that cause inconsistency in the optimization.

ADAPTIVE SMOOTHING

Two more elaborate ways to improve upon this involving an adaptive value for σ could
be explored.

The first uses image pyramids to find the lowest value for σ for each match pair for
which a sufficiently high w weight can be achieved. Image pyramids are a common way
of dealing with high resolution images [76]. The pyramid is formed by multiple versions
of the image, with each layer being a smoothed and down-scaled version of the layer
below. By moving down the pyramid, more detail is obtained, at the cost of a larger image
size. Starting at the top of the pyramid for each image, we have a high σ, low-resolution
version of the image, for which the cross-correlations can be computed cheaply, with a
high likelihood of a sufficient match between the images. Moving down the pyramid,
the match can be updated to a higher precision version, until wi j < wmin, or until a
larger than expected jump in the relative shift vector is detected. This algorithm is more
involved than the original algorithm, but allows for optimal σ value selection for each
match, ultimately increasing the information fed into the optimization and improving
the result, without just adding σ as another full dimension to the computation.

SIGNAL-TO-NOISE DETERMINATION

The second way to select an optimal value of σ per image pair is based on the following.
The smoothing is applied to suppress (amplification of) the noise in the image, which
causes spurious peaks in the cross-correlation. For a higher SNR, a larger σ value is
needed to average over enough pixels to suppress the noise to a level that the cross-
correlation yields the correct result. Therefore, if the SNR of an image is approximately
known, it would be possible to estimate the optimal value of σ to use on it.

The SNR can be determined by comparing two, subsequently taken, nominally equal
images by computing the normalized weight w̄ from the cross-correlations (equivalent
to what is used in the drift correction algorithm). A higher w̄ corresponds to more similar
images and therefore less random noise.

Although taking twice as many images might sound like a high cost at first glance, in
practice the cost is relatively low, as the images can be combined to a longer exposure
image by averaging and treated as a single image afterwards. This combination could
already be applied during imaging, and as an extension of that, one could adaptively
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average images until a sufficient SNR is achieved before moving on to the next parameter
value in the measurement.

However, we can circumvent the need for extra images entirely by an approximation
under the sufficient sampling assumption, i.e. in the case that subsequent images in
the dataset are sufficiently close together in parameter space to sample all behavior as
a function of the varied parameter (e.g. E0). This assumption should be satisfied in al-
most any sensible experiment, so it is a reasonable one to make. In this case, we can
replace the nominally equal image from the preceeding description by the next best op-
tion: a neighboring image in parameter space, which should only be marginally differ-
ent. An even more sophisticated option would be to take an average of two neighboring
images from opposing sides, although proper normalization of image intensities would
be needed in that case.

REGULARIZATION OF POSITIONS

A final, relatively easy to implement, possible improvement to the accuracy of the al-
gorithm is the addition of a regularization term in the optimization step. By penalizing
the second derivative of the position, prior information is added: generally, the image is
not expected to suddenly jump between subsequent images2, for example, in the case
of thermal drift, the mass of the stage and Newton’s second law alone prevent sudden
jumps of the sample stage, and therefore, of the image. This would also provide a better
solution in the (undesired) case of multiple connected components in the matrix of used
relative shifts, preventing the large jumps occurring without any regularization.
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