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CLINICAL AND POPULATION SCIENCES

Common Genetic Variation Indicates Separate 
Causes for Periventricular and Deep White Matter 
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BACKGROUND AND PURPOSE: Periventricular white matter hyperintensities (WMH; PVWMH) and deep WMH (DWMH) are 
regional classifications of WMH and reflect proposed differences in cause. In the first study, to date, we undertook genome-
wide association analyses of DWMH and PVWMH to show that these phenotypes have different genetic underpinnings.

METHODS: Participants were aged 45 years and older, free of stroke and dementia. We conducted genome-wide association 
analyses of PVWMH and DWMH in 26,654 participants from CHARGE (Cohorts for Heart and Aging Research in Genomic 
Epidemiology), ENIGMA (Enhancing Neuro-Imaging Genetics Through Meta-Analysis), and the UKB (UK Biobank). 
Regional correlations were investigated using the genome-wide association analyses -pairwise method. Cross-trait genetic 
correlations between PVWMH, DWMH, stroke, and dementia were estimated using LDSC.

RESULTS: In the discovery and replication analysis, for PVWMH only, we found associations on chromosomes 2 (NBEAL), 
10q23.1 (TSPAN14/FAM231A), and 10q24.33 (SH3PXD2A). In the much larger combined meta-analysis of all cohorts, we 
identified ten significant regions for PVWMH: chromosomes 2 (3 regions), 6, 7, 10 (2 regions), 13, 16, and 17q23.1. New loci 
of interest include 7q36.1 (NOS3) and 16q24.2. In both the discovery/replication and combined analysis, we found genome-
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wide significant associations for the 17q25.1 locus for both DWMH and PVWMH. Using gene-based association analysis, 
19 genes across all regions were identified for PVWMH only, including the new genes: CALCRL (2q32.1), KLHL24 (3q27.1), 
VCAN (5q27.1), and POLR2F (22q13.1). Thirteen genes in the 17q25.1 locus were significant for both phenotypes. More 
extensive genetic correlations were observed for PVWMH with small vessel ischemic stroke. There were no associations 
with dementia for either phenotype.

CONCLUSIONS: Our study confirms these phenotypes have distinct and also shared genetic architectures. Genetic analyses 
indicated PVWMH was more associated with ischemic stroke whilst DWMH loci were implicated in vascular, astrocyte, 
and neuronal function. Our study confirms these phenotypes are distinct neuroimaging classifications and identifies new 
candidate genes associated with PVWMH only.

Key Words:  brain ◼ genome-wide association study ◼ neuroimaging ◼ risk factors ◼ white matter

Radiological white matter hyperintensities (WMH) of 
presumed ischemic origin are the most prevalent sign 
of cerebral small vessel disease (SVD) and represent 

40% of all SVD disease burden.1 They are detected as 
incidental lesions on T2-weighted magnetic resonance 
imaging.1 WMH are associated with increased risk for 
ischemic and hemorrhagic stroke, cognitive decline, and 
motor gait disorders.2–6 Two regional classifications, based 
on their anatomic relationship to the lateral ventricles in 
the brain, are periventricular WMH (PVWMH) and deep 
WMH (DWMH).5,7–9 PVWMH have been associated with 
declines in cognitive performance and increased systolic 
and arterial pressure, whereas DWMH are linked to body 
mass index, mood disorders, gait impairment, and arterial 
hypertension.10–12 This categorization reflects proposed dif-
ferences in underlying pathophysiology.5,7,8 DWMH lesions 
occur in the subcortex, areas primarily supplied by long 
microvessels, with lower estimated blood pressures, pos-
sibly subject to damage secondary to hypertension and 
possibly with consequent hypoperfusion.1,8,13,14 PVWMH 
are related to alterations in short penetrating microves-
sels ending in close approximation to larger arterial blood 
vessels with different vascular architecture such as 2 lep-
tomeningeal layers and enlarged perivascular spaces.1,15 
They are hypothesized to be affected more directly by 
hypertension and risk factors associated with stroke.1,8,13,14

These subclassifications may also reflect differences 
in associated underlying genetic factors.16 Twin and fam-
ily studies report that both PVWMH and DWMH have 
high heritability and genetic correlations.16,17 Recently, 
genome-wide association analyses (GWAS) for total 
WMH volume identified a major genetic risk locus on 
chromosome 17q25.118–21 and several other loci (eg, 
10q24, 2p21, 2q33, 6q25.1).19,21,22 However, the genetic 
determinants of regional WMH burden, specifically 
DWMH and PVWMH, remain elusive.

We combined all available participants aged 45 
and above with both DWMH and PVWMH measure-
ments from the CHARGE (Cohorts for Heart and Aging 
Research in Genomic Epidemiology) and the ENIGMA 
(Enhancing Neuro-Imaging Genetics Through Meta-
Analysis) consortia, and the UKB (UK Biobank). This is 

the only GWAS to date examining WMH subclassifica-
tions. We hypothesized that separating the two WMH 
subclassifications would mitigate phenotype heteroge-
neity, allowing us to identify additional risk loci and show 
that DWMH and PVWMH have different genetic under-
pinnings and pathophysiology.

METHODS
Summary data for this meta-analysis will be available through 
the database of Genotypes and Phenotypes Cohorts for Heart 
and Aging Research in Genomic Epidemiology Summary 
Results site, which can be downloaded via authorized access.

Study Cohorts
Study participants (total N=26 654) were drawn from cohorts 
in the CHARGE and ENIGMA consortia and the UKB. Detailed 
Methods are in the Data Supplement. All cohorts followed stan-
dardized procedures for participant inclusion, genotype calling, 
phenotype harmonization, covariate selection, and study-level 
analysis. Participants were included if they had phenotype, 
genotype, and covariate data available and were aged 45 
years and over without stroke, dementia, or any neurological 
abnormality at the time of magnetic resonance imaging scan-
ning. All participants provided written informed consent, and 
each study received ethical approval to undertake this work.

Phenotype and Covariates
The magnetic resonance imaging and WMH extraction meth-
ods for each study are detailed in the Data Supplement. In 
brief, PVWMH and DWMH volumetric data were extracted 
using automated methods for all studies except HUNT, LBC, 
and AGES, which used visual rating scales (Table I in the Data 
Supplement). Hypertension was defined as systolic blood pres-
sure ≥140 mm Hg and diastolic blood pressure ≥90 mm Hg or 
on current antihypertensive treatment.

Statistical Analysis
Each study fitted linear regression models to test the association 
of DWMH and PVWMH (continuous measures) with individual 
single nucleotide polymorphisms (SNPs). Additive genetic effects 
were assumed, and the models were adjusted for age (years), sex, 
and intracranial volume (where applicable). In addition, principal 
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components for population stratification and other covariates, 
such as familial structure, were included if necessary. Models 
were also fitted with hypertension as an additional covariate.

Fixed-effects, inverse variance–weighted meta-analysis 
was carried out in METAL,23 with correction for genomic con-
trol. Two meta-analyses were carried out: all cohorts excluding 
UKB (discovery, phase I) and all cohorts (phase II). Post meta-
analysis QC was also performed (see in the Data Supplement).

Genetic Correlations With Stroke and Dementia
Cross-trait genetic correlation between the 2 subclassifications 
of WMH, stroke, and dementia was estimated using LDSC24 on 
the GWAS summary statistics from phase II, MEGASTROKE 
(European ancestry only).25 Linkage disequilibrium scores were 
based on the HapMap3 European reference panel. Regional 
level correlation was investigated using the GWAS-PW and 
HESS methods.26,27

RESULTS
Detailed study descriptions are provided in Tables I 
through III in the Data Supplement. The discovery cohort 
was comprised of ≈18 234 older adults (≥45 years, 16 
studies) and was primarily white, with 736 blacks and 
658 Hispanics. The predominantly white UKB was used 
as the replication cohort (n=8428).

In the discovery analysis (phase I), genome-wide sig-
nificant associations (P<5×10−8) were observed in the 
17q25.1 region for both phenotypes (Tables IV and V in 
the Data Supplement). Only the PVWMH analysis found 
additional genome-wide significant associations on chro-
mosomes 2 and 10 (2 regions). Two of these regions 
had previously been described for total WMH burden 
(chromosomes 2, NBEAL,19,21 10q24.33, SH3PXD2A21), 
whereas 10q23.1 had not been described. Adjusting for 
hypertension made little difference to our findings (Tables 
VI through VII in the Data Supplement). Replication of 
the majority of genome-wide significant results for both 
phenotypes was observed after adjustment for multiple 
testing (DWMH P<3.6×10−4, PVWMH P<2.76×10−4, 
Tables VIII and IX in the Data Supplement).

Given the relatively large size of the replication cohort, a 
combined meta-analysis (phase II) was undertaken using all 
samples (N≈26 654). Removing either the small subsam-
ple of nonwhites or the cohorts with visual ratings did not 
substantially change the findings (beta value r2>0.93). The 
phase II GWAS meta-analyses identified 236 for DWMH 
and 513 genome-wide significant SNPs for PVWMH (Fig-
ure 1A, Table 1, Tables X and XI in the Data Supplement, 
respectively). Figure 1B shows the zoom plot of the single 
locus identified for DWMH on chr17q25.1. The associa-
tions of the identified genome-wide and suggestive asso-
ciations for each phenotype for the alternate trait are also 
provided in Tables X and XI in the Data Supplement. The 
only SNPs genome-wide significant for both phenotypes 
(n=209) were located on 17q25.1 (Figure 2A).

Ten chromosomal regions containing 290 genome-
wide significant SNPs for PVWMH only were identified 
on chromosomes 2 (3 regions), 6, 7, 10 (2 regions), 13, 
16, and 17q23.1 (Results, Table XI, and Figures I and II 
in the Data Supplement). Four loci had not been previ-
ously reported for associations with total WMH at the 
genome-wide significant level: (1) 7q36.1 (7.2 kb) con-
taining 2 exonic SNPs in the NOS3 gene; (2) 10q23.1 
(50.5 kb) containing 4 intronic SNPs in TSPAN14 & 
FAM231A; (3) 16q24.2 (1.2 kb) containing 2 inter-
genic SNPs; (4) 17q21.31 (27.2 kb) containing 8 
SNPs, most of which are intronic and in the NMT1 
gene. Many of these are expression quantitative trait 
loci or participate in long-range chromatin interactions 
(Figure 2B). Further descriptions of the PVWMH find-
ings are found in the Results in the Data Supplement.

As expected, the association of the 17q25.1 locus 
with both phenotypes was confirmed. The size of this 
region, including genome-wide significant SNPs only, 
was similar for both DWMH (236 SNPs, BP 73757836-
74025656, Figure 1B) and PVWMH (223 SNPs, BP 
73757836-74024711, Figure IA in the Data Supple-
ment). The top results in this locus were rs3744020 
for DWMH (P=7.06×10−35, TRIM47 intronic SNP) and 
rs35392904 for PVWMH (P=3.989×10−28, TRIM65 
intronic SNP), which are in high linkage disequilibrium 
(R2=0.902; Table 1). Many of these SNPs are expres-
sion quantitative trait loci or have long-range chroma-
tin interactions (Figure 2B and 2C). For further details, 
see the Results in the Data Supplement.

Using gene-based tests, 13 genes in the 17q25.1 
locus reached genome-wide significance (P<2.66×10−6) 
with both phenotypes (Table 2, Figure 2D, Tables XII and 
XIII in the Data Supplement). For PVWMH, an addi-
tional 19 genes were identified, covering the majority 
of regions/loci found in the SNP-based analysis (Fig-
ure 2D, Table 2, Table XIII in the Data Supplement). Four 
genes were located in previously unidentified regions: 
CALCRL (2q32.1), KLHL24 (3q27.1), VCAN (5q27.1), 
and POLR2F (22q13.1).

Heritability analyses revealed low to moderate herita-
bility for both traits (see Results in the Data Supplement). 
A high genetic correlation between DWMH and PVWMH 
was observed (rg=0.927, P=1.1×10−65), indicating a 
shared genetic architecture. Figure 3 shows the genetic 
correlations with DWMH, PVWMH, stroke, and Alzheimer 
disease. Positive genetic correlations with both pheno-
types were found for all stroke, ischemic stroke, and SVD. 
Intracerebral hemorrhage (all types) was correlated with 
DWMH only. No significant correlations were found with 
Alzheimer disease (Table XIV in the Data Supplement).

Using GWAS-PW,26 we observed several regions with 
high probability (>90%) for harboring a shared genetic 
variant between PVWMH and DWMH (Table XV in 
the Data Supplement). These regions encompass sev-
eral genome-wide significant loci that were identified 
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for PVWMH (2p16.1 [EFEMP1], 2q33.2 [CARF and 
NBEAL], 6q25.1 [PLEKHGI22], 16q24.2 [C16orf95], 
and 17q25.1 [TRIM47, TRIM65]). Additionally, by using 
HESS,27 regional level correlation estimates were 
derived for those regions identified by the Bayesian 
approach (GWAS-PW).

Finally, we investigated local regions of a shared 
genetic variant between the WMH subtypes and stroke 
(Table XV in the Data Supplement). A region on chromo-
some 7 (encompassing the PVWMH NOS3 exonic SNP) 
exhibited shared genetic influence of all stroke with both 
phenotypes. Other regions of shared influence with all 

Figure 1. Phase II genome-wide association analyses meta-analysis.
A, Miami plot for periventricular white matter hyperintensities (PVWMH; upper) and deep white matter hyperintensities (DWMH; lower). Dashed 
line shows genome-wide significance threshold (P<5×10−8). B, Chromosome 17 regional plot of genome-wide significant SNPs for DWMH. Colors 
of the SNPs indicate the level of linkage disequilibrium with the top SNP (purple), rs35392904.
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stroke were observed for PVWMH only. For the subtypes 
of stroke, significant regions were identified for DWMH 
and PVWMH, but none were found for both phenotypes 
except the chromosome 7 region for ischemic stroke 
(also identified for all stroke). Similar to the GW level 
correlation, a positive regional level genetic correlation 
was observed between the WMH subtypes and stroke 
(all stroke, all-ischemic, cardio-embolic and small vessel), 
by using HESS.27

DISCUSSION
In our meta-analyses using all available individuals 
(N=26 654, phase II), PVWMH had significant inde-
pendent associations with loci containing genes impli-
cated in large and SVD, as well as ischemic and deep 
hemorrhagic stroke suggesting a unique genetic and 
pathophysiological underpinning. Although our phase II 
GWAS were only slightly larger than the previous biggest 
GWAS on total WMH burden with 21 079 participants,21 
our detection rate of significant SNPs was substantially 
higher.18,19,21 This improved detection may be the result 
of reduced heterogeneity by separately analyzing the 
DWMH and PVWMH phenotypes.

We identified 11 independent loci for PVWMH and 
one locus for DWMH. Significant genes associated with 

WMH for the first time in PVWMH include CALCRL, 
VCAN, TSPAN, and NOS3. Most genes and loci previ-
ously reported as significant in total WMH.28–32 were now 
found to be associated with PVWMH alone, including 
PLEKHG1,22 SH3PXD2A,25,28,33 and COL4A2.33. Simi-
larly, genes viewed as potential candidates18,19,21 in prior 
studies we now find to be significantly associated only 
with PVWMH, including DYDC2 and NEURL1, as well 
as NMT1, GALK1, H3F3B, UNK, UNC13D, EVPL, ICAL1, 
WDR12/CARF, NBEAL1, and EFEMP1.

Many of these genes associated with PVWMH affect 
vascular function or vascular diseases, such as ischemic 
stroke or coronary artery disease. The NOS3 gene is 
associated with coronary artery disease, migraine, vas-
cular dysfunction, SVD, and ischemic stroke.22,29,30,34 
PLEKHG1 is associated with dementia and ischemic 
stroke,35 and SH3PXD2A has been previously associ-
ated with total WMH and ischemic stroke.19,25

The most notable associated vascular gene is 
COL4A2 that encodes for a subunit of type IV col-
lagen, which has been associated with SVD, ischemic 
stroke, intracranial hemorrhage, and coronary artery 
disease.31,35–38 It is a proposed therapeutic target 
for the prevention of intracranial hemorrhage.32,39 
The association of this vascular gene with PVWMH 
and deep intracerebral hemorrhage is suggestive of 

Table 1.  Top Genome-Wide Significant SNP Results From Each Genomic Locus Identified From the Phase II GWAS Meta-
Analysis for Deep and PV WMH

WMH rsID CHR POS
Nearest  

Gene
Function/
Position A1 A2

Freq 
(A1) Beta (SE) N Direction P Value

PV rs3744020 17q25.1 73871773 TRIM47 Intronic A G 0.1897 0.0899 (0.0073) 26 438 +++−+++?+++ 
++++++++++

7.06×10−35

Deep rs35392904 17q25.1 73883918 TRIM65 Intronic T C 0.7981 −0.0765 (0.0070) 26 642 −−−−−−−+−−−− 
−−−−+−−−−

3.99×10−28

PV rs3758575 10q24.33 105454881 SH3PXD2A Intronic A G 0.4904 0.0388 (0.0058) 26 654 +++−++−++++ 
++++++++++

2.00×10−11

PV* rs12928520 16q24.2 87237568 C16orf95 Intergenic T C 0.4252 0.0431 (0.0065) 26 327 +++++−?−+−− 
+++++++−++

4.22×10−11

PV rs275350 6q25.1 151016058 PLEKHG1 Intronic C G 0.4202 0.0374 (0.0057) 26 654 +−+−+++++− 
++++++−−−++

4.86×10−11

PV rs7596872 2p16.1 56128091 EFEMP1 Intronic A C 0.0975 0.0642 (0.0099) 25 730 −++++++−+− 
−+++???++++

8.66×10−11

PV rs72934583 2q33.2 204009057 NBEAL1 Intronic T G 0.8740 0.0529 (0.0087) 25 730 −+++++++++− 
+++???+−++

1.03×10−9

PV rs57242328 2p21 43073247 AC098824.6 Intergenic A G 0.3317 −0.0368 (0.0061) 25 730 −−−−+−−−−+ 
−−−−???−++−

1.85×10−9

PV* rs7213273 17q21.31 43155914 NMT1 Intronic A G 0.6668 0.0341 (0.0059) 26 111 +++++−??++− 
++−+++++++

8.89×10−9

PV* rs1993484 10q23.1 82222698 TSPAN14 Intronic T C 0.2388 0.0378 (0.0067) 26 654 ++++−+−−++− 
++−+++++++

1.36×10−8

PV rs11838776 13q34 111040681 COL4A2 Intronic A G 0.2793 0.0350 26 654 −+++++−++−+ 
++++++−+−+

2.82×10−8

PV* rs1799983 7q36.1 150696111 NOS3 Exonic T G 0.3201 0.0373 26 654 ++++++−−++− 
++−++−−−−+

3.68×10−8

Effect allele is A1. A1 indicates allele 1; A2, allele 2; Chr, chromosome; GWAS, genome-wide association analyses; POS, base pair position; PV, periventricular; and 
WMH, white matter hyperintensities.

*These loci have not been previously associated with total WMH.
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underlying regional gene effects of the COL4A2 gene 
on the microvasculature affecting the risk of vascu-
lar injury in the periventricular region. These include 
potential weakening of the structural integrity of the 
regional microvasculature by altered collagen type 
4 structural integrity, dysregulated gene expression 
of COL4A1 and COL4A2, and toxic cytosolic accu-
mulations of COL4A2 within microvascular struc-
tural cells.40 When comparing PVWMH and DWMH 
anatomy, these mechanisms may enhance the direct 
mechanical effects of hypertension, or the other 
stroke risk factors, on the unique microvascular struc-
ture of the PVWMH region that also has predicted 
higher ambient blood pressure.1,6,13

We also discovered a new set of putative PVWMH 
genes. These include: TSPAN14, which encodes one of 
the tetraspanins which organize a network of interactions 
referred to as the tetraspanin web, ADAM10, a metal-
loprotease that cleaves the precursor of cell surface 
proteins,41 KLHL24 encodes a ubiquitin ligase substrate 
receptor,42 VCAN encodes a large chondroitin sulfate 
proteoglycan that is found in the extracellular matrix. In 
a recent meta-analysis, VCAN was associated with white 
matter microstructural integrity.43 These candidate genes 
for PVWMH may influence the immediate tissues sur-
rounding microvessels and may contribute to SVD-asso-
ciated biological changes.

Figure 2. Overlap between significant SNPs and genes and Circos plots of the chromosome 17 region for deep (DWMH) and 
periventricular (PVWMH) white matter hyperintensities.
A, Overlap between genome-wide significant SNPs (P<5×10−8) for DWMH and PVWMH. B and C, Circos plots for chromosome 17 for both 
phenotypes, showing two identified regions for PVWMH (B) but only one for DWMH (C). Outer ring shows SNPs <0.05 with the most significant 
SNPs located towards the outermost ring. SNPs in high linkage disequilibrium (LD) with the independent significant SNPs in each locus are colored 
in red (r2>0.8)-blue (r2>0.2); no LD (gray). Genomic risk loci are colored in dark blue (second layer). Genes are mapped by chromatin interaction 
(orange), expression quantitative trait loci (green), or both  (red). D, Overlap between significant genes identified by MAGMA for both phenotypes.
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The only significant locus observed for DWMH was 
the previously reported total WMH 17q25.1 locus,18,19,21,22 
which was also found for PVWMH. This locus contained 
the SNPs with the largest effect sizes for both pheno-
types. The top genome-wide significant hits for DWMH 
and PVWMH (17q25.1) were either identical with the 
SNP recently reported by Traylor et al22 for total WMH 
(PVWMH rs3744020) or in high linkage disequilib-
rium (R2>0.9) with the previously identified top ranked 
SNPs in the same locus (rs3744028, Fornage et al,18 
rs7214628, Verhaaren et al21). Our identified SNPs were 

only in moderate linkage disequilibrium (R2≤0.396) with 
the top SNP (rs3760128) identified in a recent exome 
association analysis.19 All of these SNPs fall within or 
between the previously reported TRIM47 and TRIM65 
genes.18,21,22,35 This gene-rich locus contains genes that 
influence glial cell proliferation and have been hypothe-
sized to influence gliosis, which is a histological and mag-
netic resonance imaging marker of microvascular injury.1 
It includes previously identified total WMH genes, such as 
TRIM47/TRIM65 (glial proliferation, astrocytoma’s),18,21 

Table 2.  Thirty-Two Significant Genes Were Identified for PVWMH Using Gene-Based Tests (P<2.66×106)

Gene CHR START STOP N SNPs N P PVWMH P DWMH

WBP2 17 73841780 73852588 28 24 682 3.19×10−26 1.16×10−21*

TRIM65 17 73876416 73893084 52 24 555 7.73×10−24 9.12×10−19*

TRIM47 17 73870242 73874656 13 24 185 1.70×10−23 9.04×10−19*

RP11-552F3.12 17 73894726 73926210 53 24 351 2.15×10−20 1.76×10−15*

FBF1† 17 73905655 73937221 55 24 338 3.98×10−17 1.23×10−13*

GALK1† 17 73747675 73761792 36 24 307 6.34×10−16 3.23×10−14*

MRPL38 17 73894724 73905899 21 24 481 7.62×10−15 1.18×10−13*

UNC13D 17 73823306 73840798 73 23 788 3.10×10−14 1.22×10−13*

UNK 17 73780681 73821886 120 22 768 3.28×10−13 4.85×10−10*

H3F3B 17 73772515 73781974 23 24 009 4.43×10−12 1.41×10−10*

SH3PXD2A 10 105348285 105615301 788 24 847 8.43×10−12 0.21731

ACOX1 17 73937588 73975515 151 24 198 7.72×10−11 1.1×10−9*

EVPL 17 74000583 74023533 67 24 582 1.26×10−10 2.82×10−14*

PLEKHG1 6 150920999 151164799 1022 24 922 1.59×10−10 0.011765

WDR12† 2 203739505 203879521 322 23 753 2.53×10−10 0.00104

ICA1L† 2 203640690 203736708 224 23 843 8.44×10−10 0.001301

CARF† 2 203776937 203851786 157 24 076 2.41×10−9 0.001763

NMT1† 17 43128978 43186384 221 24 766 7.18×10−8 0.00034

CDK3† 17 73996987 74002080 12 24 433 8.54×10−8 1.82×10−8*

OBFC1† 10 105642300 105677963 99 25 461 1.41×10−7 0.054127

NOS3† 7 150688083 150711676 58 24 608 1.73×10−7 0.000371

DCAKD† 17 43100708 43138473 111 25 229 2.60×10−7 0.000363

DYDC2† 10 82104501 82127829 91 25 050 2.88×10−7 0.003460

NBEAL1 2 203879602 204091101 367 23 413 3.83×10−7 0.040539

NEURL1 10 105253736 105352309 296 25 038 4.84×10−7 0.098303

MAT1A† 10 82031576 82049440 66 25 295 4.90×10−7 0.002421

TSPAN14† 10 82213922 82292879 213 24 731 6.73×10−7 0.006605

CALCRL† 2 188207856 188313187 278 24 309 7.87×10−7 0.000574

KLHL24† 3 183353356 183402265 207 24 356 1.29×10−6 0.002571

POLR2F† 22 38348614 38437922 105 23 525 1.94×10−6 0.252540

VCAN† 5 82767284 82878122 316 24 248 2.52×10−6 0.065044

COL4A2 13 110958159 111165374 1140 24 876 2.61×10−6 0.365300

Chr indicates chromosome; DWMH, deep white matter hyperintensities; and PVWMH, periventricular white matter hyperintensities.
*Thirteen of these genes (chr17) were also significant for DWMH.
†Those loci bolded have not been previously associated with total WMH.
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ACOX1 (cell replication, hepatic cancer)18,19,21 and 
MRPL38 (protein synthesis).19 Genes associated with 
neuronal injury or neurodegenerative disorders are also 
found in the 17q25.1 locus, including CDK3 (neuronal cell 
death in stroke),44 H3F3B (schizophrenia pathogenesis) 
and GALK1 (galactosemia).45 Interestingly, 2 genome-
wide significant intronic UNC13D SNPs identified in this 
study and reported previously for total WMH burden,21 
rs9894244 and rs7216615, have been reported as 
expression quantitative trait loci for GALK1 and H3F3B, 
respectively.46 The PVWMH specific loci also contained 
genes that potentially influence astrocytic function and 
gliosis, several previously reported for total WMH. These 
include NBEAL1,19,21 WDR12,19 NEURL1,18,19,21 CARF,47 
and EFEMP1.37 Newly identified PVWMH genes poten-
tially affecting astrocytic functioning include NMT1,48 
ICA1L,49 POLR2F, OBFC1, and DYDC2.

Shortcomings of this study include the potential vari-
ability due to the different WMH extraction algorithms 
used, with a minority of samples using visual ratings. 
However, this is a common problem encountered in this 
type of study.18,19,21 Although our results suggest improved 
power and reduction in potential bias through the discrim-
ination of PVWMH from DWMH, the Euclidean method-
ology used by the majority of studies undoubtedly missed 
PVWMH lesions outside this boundary. The majority of 
the participants in this study were white, and hence these 
results may not apply to other ethnicities. Sex differences 
have been previously reported but were not examined in 
the current study.50 For the phase II meta-analysis, we did 
not have an independent replication cohort. Older adults 
were included in this study, and the majority of partici-
pants had both DWMH and PVWMH and not one or the 
other. However, selection of individuals with only one 
subtype of these lesions present may be more appropri-
ate to identify differences but would only be possible in 
younger cohorts. Future studies should aim to address 
these shortcomings, including continuing to improve and 
harmonize WMH measurement methods but also using 
consistent DWMH and PVWMH measurement methods 
across studies.

CONCLUSIONS
Our study confirms PVWMH and DWMH have distinct 
and shared genetic architecture. Genetic analyses indi-
cated PVWMH was more associated with ischemic 
stroke and vascular function (PLEKHG1, SH3PXD2, 
COL4A2, CALCRL, VCAN, NOS3), whereas DWMH loci 
were implicated in vascular, astrocyte and neuronal func-
tion (TRIM47/TRIM 65, ACOX1, MRPL38, H3F3B, GALK, 
UNC13D, GALK1). New genes for PVWMH, potentially 
affecting the extravascular connective tissue, were also 
identified (TSPAN14, ADAM10, KLHL24, VCAN). Our 
study confirms that PVWMH and DWMH are distinct 
neuroimaging classifications and identifies new candi-
date genes associated with PVWMH only.
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