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Every day Tuberculosis (TB) kills approximately three thousand people, a number 
that is on the rise due to the impact of the current COVID-19 pandemic on essential 
TB services (1). The causative agent of TB, Mycobacterium tuberculosis (Mtb), is an 
ancient pathogen that through its evolution developed complex mechanisms to 
evade immune surveillance and acquired the ability to establish persistent infection 
in its hosts (2). Currently, it is estimated that one-fourth of the human population is 
latently infected with Mtb and among those infected 3–10% are at risk of developing 
active TB disease during their lifetime (3). The available diagnostics cannot detect 
this risk group for prophylactic treatment to prevent disease progression. Anti-TB 
drugs can be used only as long (>six month) regimens with considerable side effects, 
which could both be reduced if adequate tests were able to monitor the response 
of TB to treatment (4). New vaccines are urgently needed to substitute or boost 
Bacillus Calmette-Guérin (BCG), the only approved TB vaccine, which however fails 
to impact the incidence of pulmonary TB in adults, and therefore has little effect on 
TB transmission (5).

To achieve TB eradication, the discovery of Mtb antigens that effectively correlate 
with the human response to infection, with the curative host response following TB 
treatment, and with natural as well as vaccine induced protection is critical. This thesis 
contributes to this ambitious aim through several findings. First, it uncovers multiple 
new in vivo expressed Mtb (IVE-TB) antigens by combining Mtb-transcriptomic data 
with advanced bioinformatics tools and medium throughput cytokine screening. 
Second, it deepens our understanding of the cellular and humoral immunity to Mtb 
antigens in latently Mtb infected donors (LTBIs) and TB patients as well as in animal 
models. Lastly, it demonstrates the feasibility of combining and integrating pre-
clinical research of multiple mycobacterial diseases, which are endemic in the same 
areas and against which vaccines could induce cross-disease protection (i.e., TB and 
leprosy).

The present chapter integrates and discusses the main results of this thesis 
(summarized in Figure 1) and, by considering emerging evidence, drafts future 
perspectives on the search of Mtb antigens for target-based TB vaccines, diagnostics, 
and drug discovery.

IVE-TB genes: understanding the Mtb expressome to better control 
TB
The discovery of Mtb antigens that correlate with infection, protection, and vaccine 
immunogenicity is a complex process that has evolved over decades, and now is 
yielding important new results. In the early stages of antigen discovery, there were 
significant limitations in the resolution of biochemical technologies used to isolate 
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and characterize proteins from Mtb in vitro cultures. These limitations were overcome 
first by the availability of Mtb genome-wide expression libraries and subsequently 
by the availability of the whole Mtb genome sequence in 1998. This breakthrough 
allowed informational and experimental access to the entire Mtb antigenome, 
with its approximately 4,000 open reading frames (ORFs). These ORFs have now 
been probed extensively for their potential antigenicity, using several genome-
wide strategies. However, little is known of whether and to which extent the genes 
encoding these antigens are expressed by Mtb in the primary TB target organ, the 
lung. Filling this knowledge gap is a crucial step for target-based vaccine and drug 
discovery. In 2013, Commandeur et al. determined a new class of Mtb antigens, 

Figure 1. Schematic overview of the thesis results by chapter.
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which were designated as IVE-TB (in vivo expressed) antigens (6). This approach 
identified Mtb genes highly expressed at six- and nine-weeks post-infection in the 
lung of four mouse strains associated with distinct TB susceptibility phenotypes. 
From this first pool of IVE-TB genes, Rv2034, which was highly expressed in the 
susceptible mouse strain B6.C3H-sst1 (super susceptibility to TB 1 locus), emerged 
as a potential vaccine candidate (7). To extend the set of putative IVE-TB antigens, 
chapter 2 proposes a new genome-wide algorithm. Data included the relative gene 
copy numbers of 2,068 Mtb genes expressed in the lungs of the B6 (resistant to 
TB) vs. C3H (susceptible to TB) mouse strains, at multiple times post-infection (two, 
four, six, nine, and 12 weeks). A total of 194 genes was found to be consistently 
up-regulated in the lung, independently of the time of infection or the host genetic 
background. This new analysis, even though it differed from the first IVE-TB study for 
the characteristics described above (i.e., mouse strains and time points), confirmed 
58 out of the 68 IVE-TB genes previously described. Interesting overlaps comprised 
genes important for virulence (e.g., Rv3615, Rv3616c, Rv3864, and Rv3865), iron 
acquisition (e.g., Rv2382, Rv0287, and Rv0288), glyoxylate shunt, and the methyl 
citrate pathway (e.g., Rv0467), which are all required for in vivo mycobacterial host 
adaptation (8).

Both IVE-TB studies present obvious limitations. Mice were infected with the 
laboratory-adapted Mtb Erdman, which under host immune pressure might respond 
differently than clinical TB strains (9). Furthermore, IVE-TB genes were selected based 
on the Mtb transcriptomes conditioned by the interaction between the pathogen 
and the murine pulmonary (immune) environment. Thus, one could contend that 
the findings are not representative of the human Mtb expressome. Indirect proofs 
against this argument are that most IVE-TB candidate antigens identified were 
highly conserved among the genomes of >200 human isolated Mtb strains, and 
were recognized by immune cells from Mtb responsive human subjects (chapters 
2, 3, and 5). Importantly, the evidence that these Mtb IVE-TB genes are expressed 
in the Mtb infected human lung is formally given in chapter 6. This chapter analyses 
and compares seven in vivo expressed Mtb-transcriptomic datasets derived from 
the airways from mice (n=23) and humans (n=35). A strong positive correlation was 
shown between the Mtb transcriptomes signatures from infected lungs of C3H mice 
(which corresponds to the C3H dataset used in chapter 2) and those identified from 
sputum and bronchoalveolar lavage fluid (BAL) of TB patients. This remarkable level 
of commonality in the Mtb expressome among species is in line with the recent 
finding that the host transcriptomic signatures induced upon infection translates 
across genetically diverse mice, macaques, and humans (10).
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Furthermore, chapter 6 defines a core set of 90 highly expressed Mtb genes during 
pulmonary infection that includes Mtb genes of potential interest as targets for 
vaccination, diagnostics, or antibiotic treatment. As expected, the top Mtb lung-
expressed genes were enriched for biological processes consistent with active Mtb 
infection (i.e., growth, translation, pathogenicity, protein secretion, and response to 
hypoxia and oxidative stress). Of note, 67 out of 90 top expressed genes defined 
in chapter 6 overlap with those identified in chapter 2. Among those are Mtb 
transcripts (Rv0005, Rv1305, Rv3854c, Rv3874, Rv3619c, Rv3620c, Rv2660c, Rv3875, 
Rv0288, Rv3614c, and Rv3615c) that encode for target of TB drugs (Moxifloxacin, 
Bedaquiline, Isoniazid, Prothionamide, and Ethionamide) (11), approved TB 
diagnostics (12) and TB subunit-vaccine candidates (ID93, RhCMV6, H4, H64, and 
H56) (www.tbvi.eu). This supports the hypothesis that highly expressed genes 
mostly translate in highly abundant transcripts and proteins, which are then valuable 
candidate targets for efficacious anti-TB measures. Corroborating this proposition 
is the observation that the poor or good performance of new diagnostics (TB7.7 vs. 
ESAT6 free immunodiagnostic tests) and candidate vaccines (MVA85A vs. H4 or M72) 
seems to reflect the low or high expression levels of the genes encoding their targets 
as described in chapter 6. In a large phase IIb trial, the vaccine MVA85A expressing 
the early secreted protein but lowly expressed Ag85A failed to induce additional 
protective efficacy against developing TB (in a PoD (prevention of disease) trial 
design) on top of initial standard BCG vaccination in children (13). In a more recent, 
prevention of infection (PoI) clinical study in the same area, H4 (a fusion protein of 
highly expressed secreted antigens Ag85B/TB10.4) was administered admixed with 
the Th1/Th17 inducing IC31 adjuvant to previously BCG vaccinated adolescents. 
Although H4:IC31 failed to prevent initial or sustained Mtb infection significantly, a 
clear trend towards reduced sustained infection (sustained infection here defined as 
three consecutive positive IGRA tests) was distinguishable in this PoI trial, providing 
a first “signal” for a TB subunit vaccine. Finally, the third and most recent clinical trial 
data with a TB subunit vaccine came from a PoD trial with the M72 (GSK) vaccine, a 
fusion protein consisting of rearranged antigen fragments from Rv0125 and the highly 
expressed Rv1196, adjuvanted in the Th1 promoting adjuvant AS01E. The results 
of this seminal study showed a highly encouraging 50% efficacy against active TB 
in the 3 years follow up time in a cohort of latently Mtb infected (LTBI) adults (14).

Although the definition of high or low gene expression is a relative concept, robust 
data on the Mtb in vivo expressome can help de-risking TB vaccine and drug 
development.

Several promising TB subunit-vaccine candidates contain at least one protein 
encoded by a highly expressed Mtb gene, as shown in chapter 6. Interestingly, all 
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the three antigens constituting H56, which is undergoing a phase IIb trial for efficacy, 
safety, and immunogenicity (NCT03512249), are highly expressed both in mice and 
humans. The results of this trial (expected by 2024) may provide additional indirect 
evidence of whether targeting antigens encoded by IVE-TB genes contribute to 
effectively reducing TB cases.

In vitro immune responses to IVE-TB proteins
Mtb proteins encoded by highly expressed genes are not necessarily immunogenic. 
To elicit humoral or cell-mediated immune responses, Mtb proteins should in fact be 
available during infection and containing epitopes that, by binding to HLA molecules, 
can be presented to immune cells. Out of the 50 IVE-TB proteins selected in this 
thesis for antigen screening, 21 were chosen because they were predicted to have 
wide HLA coverage and/or the highest numbers of predicted HLA class I and II 
binders (chapter 2). Although the presence of T-cell epitopes in these proteins was 
not tested in vitro, all of them were consistently recognized by T cells from LTBI 
subjects and TB patients (chapters 2 and 3), with the exception of Rv3583c. This 
highly expressed in vivo protein (chapter 6), also known as CarD, is essential in 
regulating the Mtb transcription machinery (15) and its inhibition has been recently 
proposed as a novel target for anti-TB therapy (16, 17). The scarce immunogenicity 
detected for this crucial Mtb protein raises the question of whether Mtb employs 
escape mechanisms to impede CarD’s presentation by HLA or if CarD induces anti-/
pro-inflammatory responses not explored in this thesis. Answering these questions 
could certainly increase our understanding of the Mtb survival machinery and reveal 
processes that could be redressed in favour of the host.

To expand the characterization of well-defined Mtb antigens and discover new IVE-TB 
antigens, multiple analytes (TNF-ɑ, IL-17, IL-13, IP-10, GM-CSF, IL-9, IL-10, IL-22, and 
IL-32 alpha) were measured as immunological read-outs, next to classical standard 
IFN-γ read outs (chapters 2, 3, and 4). Although it would have been interesting to 
assess the cytokines and chemokines’ kinetics in response to the Mtb antigens at early 
and late timepoints, the amount of blood that could be drawn from the participants 
(especially from the adolescent donors described in chapter 3) limited the possibility 
to investigate and evaluate those dynamics across different Mtb infected donors. 
Thus, the cytokines’ responses were evaluated at day 6 after Mtb protein stimulation, 
a choice that may have biased the results towards cytokines optimally secreted at 
that time point.

Overall, blood cells from Mtb exposed individuals (n=72) recognized 37 IVE-TB 
proteins, which were able to induce multi-functional cytokine responses (Figure 1).
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To the best of our knowledge, among these 37 IVE-TB antigens, 21 were described 
for the first time as Mtb antigens (chapters 2 and 3) (Figure 1). Interestingly, almost 
half of those antigens were recognized by cells producing multiple cytokines 
and chemokines other than IFN-γ, including IP-10, GM-CSF, IL-17 and TNF-ɑ. In 
agreement with this finding, non-IFN-γ responses were measured to a substantial 
number of antigens in splenocytes and cells from the mediastinal draining lymph 
nodes of Mtb infected C57BL/6 mice (chapter 4). This data suggests that IFN-γ 
based screening approaches may have significantly underestimated as well biased 

Figure 2. Most promising IVE-TB antigens. Legend: *Selected in chapter 1 for high homology 
with M. leprae. Mycobacterium tuberculosis (Mtb) antigens previously identified by other 
antigen discovery strategies are colour coded in grey. IVE-TB: in vivo highly expressed Mtb 
genes; TB: tuberculosis; LTBI: latent TB; BCG: Bacillus Calmette–Guérin; nt: not tested.
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Mtb antigen discovery studies. While useful, sensitive and robust, clearly many other 
molecules are secreted by immune cells, often in the absence of IFN-γ (18). This is 
also evident when examining alternative T cell responses such as those restricted by 
HLA-E, which often release Th2 rather than Th1 cytokines (19).

As for IFN-γ, there is no clear proof defining certain cytokines as indispensable 
in containing latent Mtb infection (20-23) or active TB disease in humans (24-27). 
However, IP-10 was recently showed to be mechanistically involved in controlling 
mycobacterial growth in MGIA assays in recently Mtb infected individuals (28). 
Likewise, GM-CSF and IL-17 have been associated with protective immunity both 
in in vivo and in vitro models (23, 29-35). In the absence of validated correlates of 
protection, multiple antigens included in TB vaccine candidates have been chosen 
because they were recognised by screening blood of LTBIs (36-38). Though the 
underlying immune mechanisms remain unknown, LTBIs contain Mtb infection 
better than TB patients (39) supporting the hypothesis that those Mtb antigens more 
strongly recognized by blood cells of LTBIs, can induce more effective host immune 
responses when used as vaccine targets. In chapter 3, the levels of IL-17A, IFN-γ, 
and IP-10 in response to several Mtb antigens were higher in the LTBI’s blood cell 
supernatants compared to the concentrations found among TB patients (Figure 1). 
Additionally, when a set of these antigens was tested in mouse models, different 
cytokine recognition profiles were found between TB resistant and susceptible mice 
(chapter 4) (Figure 1). This is an interesting finding since, once verified that an 
antigen is recognised in a TB susceptible mouse strain, such as in the C3HeB/FeJ 
mice, appropriate adjuvant or vaccine formulation could redirect the immune system 
towards a protective response (e.g., the response found in TB resistant mouse strains, 
i.e., C57BL/6 mice). Therefore, if these assumptions were correct, multiple IVE-TB 
antigens identified in this thesis could serve as potential prophylactic or therapeutic 
TB vaccine candidates (Figure 1). Since, in most of the cases, subunit TB vaccines 
would be tested and used in areas where the BCG vaccination is given at birth, it 
would be important to assess also whether and how BCG vaccinated individuals 
recognize these antigens and compare those responses with what has been found 
in LTBIs from non-endemic TB countries. In animal models, it has been shown that 
BCG drives T cells towards a more differentiated phenotype that does not sustain 
long protection against Mtb (40). Thus, prior exposure to BCG might impact the way 
immune cell subsets respond to immunization and Mtb infection (41). In chapter 
4, two out of 15 IVE-TB antigens (Rv0470 and Rv3616c) were recognized by BCG 
vaccinated C3HeB/FeJ mice. Rationally, BCG-shared antigens would be preferable 
for subunit TB vaccines aiming to boost BCG. However, if an antigen-based vaccine 
would contain BCG-shared epitopes and be co-administered with BCG, some 
antigens may inhibit BCG replication, as observed for the H4:IC31® vaccine (42). 
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Combining BCG with a subunit TB vaccine might be especially attractive if BCG re-
vaccination will be introduced as additional measure to contain TB (ongoing trial: 
NCT04152161). Interest in this approach rose after the unexpected and encouraging 
results from a recent trial showing that BCG revaccination led to a significant reduction 
in sustained Mtb infection as determined by three consecutive QFG/IGRA tests (43). 
A recent study investigated the co-administration of BCG with the fusion protein 
H107 composed of eight Mtb proteins, which include five IVE-TB antigens described 
in this thesis (Rv1980c, Rv2873, Rv3615c, Rv3616c and Rv3875). Complementing 
BCG with H107 resulted in a less differentiated T cell repertoire, skewed towards 
a Th1/Th17 phenotype (as expected by the use of the CAF®01 adjuvant), and 
in a longer protective efficacy compared to BCG, H107 or H65 (42). The latter is 
composed by six Mtb proteins, which include Rv0287 and Rv0288, also described 
as IVE-TB antigens. None of the antigens included in H107 were recognised by BCG 
vaccinated CB6F1 mice, in contrast to what was found for the antigens comprised 
in H65. Therefore, the authors interestingly speculated that subunit vaccines with 
de novo antigens might act more synergistically with BCG than vaccine composed 
of BCG-shared antigens when co-administered (42). It would be informative to test 
this hypothesis also in TB susceptible mouse strains since the results of chapter 4 
suggest that immune responses against these proteins after BCG vaccination might 
differ in C3HeB/FeJ mice.

In chapter 3, TNF-ɑ responses to Mtb antigens were found to be higher in TB 
patients than LTBI. Based on this observation, which was recently confirmed in an 
independent study analysing samples of TB cases and controls among HIV infected 
patients (44), measuring TNF-α could be useful to discriminate between active 
TB and LTBI. A recent study is in line with this proposition since it showed that a 
fluorospot-based IFN-γ/TNF-α dual release assay performed better than IFN-γ alone 
in diagnosing active TB (45).

TNF-α plays an intriguing role in TB: both in animal models and humans its dearth 
increases susceptibility to TB, while an excess correlates with TB pathogenesis (46-
52). In chapter 4, lung and mediastinal lymph node cells from the TB susceptible 
C3HeB/FeJ mice did not secrete measurable TNF-α in response to Mtb antigens 
and several positive mitogen controls. As a result of this low TNF-α secretion, it is 
possible that those mice may develop necrotic lesions, as has been shown for other 
mouse strains (51, 52). However, that seems contrasting with the excess of TNF-α 
found in active TB patients also characterized by the same histopathology. The 
picture becomes even more complicated when considering that TNF-α responses 
seems to differ among age groups. In chapter 3, TNF-α+ cells in response to a 
selected group of IVE-TB antigens or PPD were more abundant in adult TB patients 
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than adult LTBIs, but an opposite trend was seen in adolescents. By zooming into 
these subsets, we found that these TNF-α+ cells displayed a different phenotype and 
functionality between the two age groups. A subset of TNF-α+ cells co-expressing 
CD14 was abundant in adolescent LTBIs but scarcely present in adult LTBIs. These 
cells might correspond to pro-inflammatory, non-classical monocytes, which have 
previously been associated with recent exposure to Mtb (28, 53). Differences in the 
amounts of myeloid-associated pro-inflammatory mediators have been also recently 
described between infants and young adults (54).

Although both studies rely on relatively small size cohorts, these results show 
differences in age-associated immune responses that might play a role in the risk of 
developing active TB and reflect the spectrum of Mtb infection and Mtb exposure 
(55-57). Large longitudinal study following-up LTBIs and high TB risk household 
contacts across their lifespan could help understanding the optimal balance between 
pro- and anti-inflammatory responses to seek in anti-TB interventions.

The TNF-α+ cells from adult LTBIs were predominantly characterized by a terminal 
effector memory (TEMRA) like phenotype co-expressing CD8, IL-22, IL-32, and 
IFN-γ. TNF-α+ CD8+ TEMRA cells have been already proposed to play a role in 
antimicrobial activity against TB reactivation in adult LTBI (66, 67). While it is accepted 
that polyfunctional CD4+ cells are necessary but not sufficient in protective immunity 
against TB, the role of CD8+ T cell responses in TB remains less clear (41). Although 
CD8 depletion hampers the control of Mtb replication in BCG vaccinated non-human 
primates (NHPs), in murine models vaccine-induced CD8+ T cells failed to reduce 
Mtb proliferation (58, 59). In the context of vaccine studies, Ag85A-specific CD8+ 
cells were barely detectable in immunized MVA85A or H4:IC31 subjects (60-65), while 
M72/AS01E vaccination boosted detectable M72-specific polyfunctional CD8 T cells 
frequencies above pre-vaccination levels a week after the first immunization (66). This 
timepoint was not included in the M72/AS01E phase 2b trial, therefore it needs to 
be determined whether CD8+ cells contributed to the protective efficacy reported 
for this vaccine candidate (14). Similarly, VPM1002, another promising whole-cell 
(recombinant BCG) based candidate vaccine induces multifunctional CD8+ T cells in 
vaccinees (67). In line with these findings, prominent CD8+ T cell responses were also 
associated with the high protective efficacy elicited by the CMV-Mtb and intravenous 
BCG vaccination in NHPs (38, 68).

Besides conventional CD4+ and CD8+ cells, new high-dimensional cytometry 
analyses identified new cell subsets in differently exposed Mtb adolescents. Those 
new populations included for instance CD4 CD8 double positive T cells (chapter 3), 
NK cells, CD27–CD8+ αβ T cells, ILC3, and B cells (69, 70).
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The contribution of B cells and humoral immunity in TB host defence is becoming 
progressively more recognized (71-74). The association of Ag85A-specific IgG 
boosted by MVA85A vaccination with a significantly reduced risk of developing TB, 
underlined the potential protective role of antigen-specific antibodies in TB (75). 
Furthermore, recent studies in NHPs showed that that after mucosal or intravenous 
BCG vaccination, a robust expansion of antigen-specific IgA and IgM in the BAL 
was associated with protection against Mtb infection and TB progression (35, 68, 
76) (ref). In chapter 5, the IgG titres against ESAT/CFP10, Rv3616c and Rv0867c 
were increased in active TB patients compared to controls at high-risk for TB. Only 
antibodies directed to Rv1733c were higher in the controls compared to TB patients, 
indicating a possible role of these specific antibodies in controlling TB progression. 
Thus, these antigens are targeted by the humoral response during natural Mtb 
infection, TB disease and potentially TB control. It would be important to characterize 
these antibodies in term of isotypes, subclasses, avidity and glycosylation patterns, 
as well as to extend this analysis to other promising IVE-TB antigens. Accumulating 
evidence shows in fact striking differences in the glycosylation profiles, the Fc 
functions and the subclasses of mycobacteria-specific IgG between LTBIs, active 
and treated TB patients (77, 78).

Knowing which cellular and humoral responses mediate TB disease or protection 
is fundamental to rationally guide future vaccine design. The identification of the 
key immune components against TB could be accelerated by a broad and high 
dimensional evaluation of the immunogenicity elicited by protective TB vaccines. 
Hopefully, new insights will result from on-going analysis of successful clinical vaccine 
studies (41). The discovery of mediators of TB protection will help selecting the 
best antigens and vaccine formulations to contain TB. Yet, a deep knowledge gap 
still exists, hampering this quest. While impressive advances have been made in 
determining the cells, molecules and pathways involved in TB, there is still not a full 
explanation to account for TB control vs. progression and subsequent pathogenesis 
(2). Only when it will be clear why certain people are susceptible to TB, it will be 
possible to develop tools to protect them.

IVE-TB antigens: one toolbox against several mycobacterial diseases?
To select the most promising genes for functional and immunological evaluation, 
several criteria were applied. Among others, genes encoding proteins predicted 
to share high homology with other pathogenic mycobacteria were selected. Of 
note, high priority was given to homologs of M. leprae proteins. Despite M. leprae, 
which causes leprosy, being the second most pathogenic mycobacterium after Mtb 
(79), there is an extreme gap between the number of vaccines developed against 
TB and leprosy. Notwithstanding the new WHO Global Leprosy Strategy, which 
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aims to interrupt leprosy transmission and achieve zero leprosy cases by 2030 
(80), the disparity described in chapter 7 increased in the last years (www.tbvi.eu). 
Repurposing TB vaccines against leprosy could narrow this inequality. The idea of 
preventing TB and leprosy with one vaccine is per se quite old if considering that 
BCG has been largely used in this fashion (5). However, for none of the current 16 
TB candidate vaccines in clinical evaluation studies (www.tbvi.eu), the impact on 
leprosy is currently being taken into account. This thesis demonstrates that novel TB 
vaccine candidates can cross-protect against leprosy. Specifically, chapter 7 shows 
cross-protection induced by two Mtb antigens, ESAT6 (Rv3875) and Ag85B (Rv1886c), 
against M. leprae in mice. This finding supports integrating pre-clinical research 
against several mycobacterial diseases (i.e., TB, leprosy, and Buruli ulcer) at an early 
stage of antigen discovery, as done in chapter 2 and calls for harmonizing efforts 
in future clinical trials.

Mtb antigens: concluding remarks and future perspectives
Up to date, 4,727 Mtb (ID1773) epitopes and more than 900 Mtb antigens (IEDB—
immune epitope database—, www.iedb.org) have been identified. However, the 
majority of the Mtb epitopes reported disproportionally (56%) belongs to a relatively 
small proportion of proteins (n = 45) (IEDB). Furthermore, the antigenicity of these 
recombinant peptides and proteins has been typically defined by in vitro measuring 
of IFN-γ and proliferative T cell responses using PBMC, T cell lines, or whole blood 
from LTBI donors. This thesis contends that additional parameters need to be 
included as well, based in part on the observations that many new Mtb antigens 
were recognized by cells producing cytokines other than IFN-γ, and often no IFN-γ 
at all. This suggests that IFN-γ-based screening approaches may not have captured 
the Mtb antigenome adequately.

Current diagnostic tests, including TST and IGRA, have poor prognostic capacity in 
predicting which Mtb infected individuals will progress towards TB, which would allow 
rapid preventive treatment of these subjects to decrease the risk of Mtb progression 
and subsequent transmission. Differences in Mtb antigen specific IFN-γ production 
and in polyfunctionality of T cell responses, such as to Rpf or DosR regulon antigens, 
have been found repeatedly between LTBI and TB patients (81, 82). However, not 
many of such antigens have been assessed in longitudinal follow-up studies of TB 
household contacts to examine whether they could predict TB progression. The novel 
epitopes or antigens identified by wide genome screenings have been evaluated 
sporadically in multiple TB cohorts. When analysed, very few differences in the 
magnitude and frequency of responses, which were mostly IFN-γ centred, were found 
between TB patients and LTBI (6, 83-85). However, the number of subjects included 
in those studies was generally quite low and future studies would need to screen 
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larger cohorts including follow-up analyses to capture their disease -or protection- 
association. Such studies could also be interesting as they might elucidate how the 
immune response repertoire against antigens/epitopes is shaped during the natural 
course of infection. That is important considering that antigens highly expressed at 
an early stage of infection can lead to T cell exhaustion and dysfunction (40, 86) while 
others not evoking exhaustion could induce long term memory. Interestingly, new 
published data indicate that antigens presenting a delayed in vivo expression induce 
less differentiated CD4 T cells but also low protection when used for vaccination 
in murine models (87). On the contrary, highly in vivo expressed antigens drive 
CD4+ cells toward terminal differentiation during natural infection. However, 
immunization with such antigens in appropriate formulations can sustain T cells in a 
less differentiated state and induce better protection than the one elicited by delayed 
in vivo expressed antigens (87).

Most of the novel Mtb antigens/epitopes identified have high homologies to antigens 
from NTM or other bacteria (85, 88, 89), including those present in the human 
microbiota. How this impacts their reactogenicity in TB needs to be clarified. In 
fact, it should be recognized that prior sensitization to mycobacterial antigens can 
influence the nature and course of all Mtb subsequent infections (2). Additionally, 
the currently used rather narrowly focused immunological read-outs (mostly IFN-γ or 
polyfunctional CD4 + T cell centred) are unlikely to detect immunological changes in 
other domains of immunity, which widely occur in Mtb carrying hosts as they transit 
from a stage of controlling Mtb infection to a process culminating in active TB disease 
(90-92). Identifying such changes and defining the corresponding biomarkers of 
TB risk would greatly facilitate early TB diagnosis and prediction of TB onset at an 
early stage. Innovative animal models, like cynomolgus macaques that can display 
the entire human TB clinical spectrum (93, 94), and which can also recognize CD4+ 
epitope pools defined in humans (95) would be of great value to help identifying 
such markers in translational studies.

Most Mtb genome wide antigen discoveries have relied on samples from LTBI donors. 
Those individuals are interesting from a vaccine development point of view, since 
LTBI results in an almost 80% lower risk of developing active TB than non LTBI 
subjects upon re-infection (96). However, the underlying biological mechanisms 
and immune correlates remain unknown (97). As discussed, most studies today still 
follow IFN-γ oriented approaches although we know that the presence of activated 
and polyfunctional (IFN-γ+/IL-2+/TNF-α+) T cells are not correlates or sufficient 
mediators of protection (75, 98). A recent study in mice demonstrated that CD4 
+ T cells activated by systemic peptide administration was able to reach the lung 
parenchyma but, critically, failed to act directly with Mtb infected cells (99). Mtb 
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infected cells have the ability to decoy immune cells through different mechanisms 
such as suboptimal antigen presentation, antigen camouflage, exporting antigens to 
bystander uninfected cells, thereby reducing the recognition of those cells containing 
the mycobacteria, the release of inhibitory cytokines or the induction of inhibitory 
mechanisms such as regulatory T cells (100-104). It would be interesting to study 
whether the decoy activity is restricted to certain antigens, such as secreted Mtb 
antigens, which are more exposed to the immune system. If so, vaccine strategies 
might need to be focused on non-secreted antigens, which would be contrary to 
most current thinking.

To advance novel antigens into the TB vaccine pipeline, it will be necessary to prove 
their immunogenicity and especially their protective efficacy in preclinical animal 
models of increasing complexity and relevance to human TB. To our knowledge, 
from all antigens identified by recent genome wide strategies, only few antigens 
(http://www.tbvi.eu/what-we-do/pipeline-of-vaccines/) have been tested in vivo. Mice 
are generally used as first line in vivo model and usually the protective effects of 
adjuvanted/vectored proteins are tested alone and compared to BCG. This might 
not be the best strategy since most protein-based subunit vaccine candidates aim to 
boost BCG vaccination, and there could be antigens able to improve the protective 
efficacy of BCG but not as much reduce the bacterial load as stand-alone vaccines. 
Moreover, the diversity in mouse strains, regimens, adjuvants, infection challenges 
and doses used differ widely and impede a comparison between different vaccine 
candidates. In that regard, a head-to-head comparison of vaccine candidates in 
the same models and experiments should be strongly promoted to provide more 
solid and consistent data in the pre-clinical stage of vaccine development. TBVI is 
one of the first organisations that has been promoting such a TB vaccine selection 
process during the past decade (105). Also interesting is the so called “Collaborative 
Cross” (CC) panel composed of mouse recombinant inbred lines displaying genetic 
diversities ad thereby susceptibility to TB and TB vaccination (106). Even more 
attractive for evaluating new TB vaccines are lung-oriented mycobacterial controlled 
human infection models using live BCG and PPD, which have been recently shown 
to be practicable and safe (107).

TB vaccines have been generally formulated as viral-vectored vaccines, subunit 
vaccines, and whole-cell live or non-live mycobacterial vaccines. The recent approval 
of several mRNA-based COVID-19 vaccine (108), prompted efforts to introduce such 
a new platform in the TB vaccine pipeline (109). This novel vaccine approach will in 
all likelihood open new exciting possibility for TB vaccination.
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In conclusion, genome wide strategies, including the one proposed in this thesis, 
have discovered a wealth of new Mtb antigens and epitopes that have escaped 
detection by previous classical methodologies, with interesting overlaps among those 
identified by independent approaches (Supplementary Table 1 available online at: 
https://doi.org/10.1016/j.smim.2018.07.001).

Unlocking their potential as vaccine and drug targets as well as TB biomarker 
antigens, e.g., for diagnostic or prognostic purposes, will be the next fascinating 
challenge.
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