Universiteit

w4 Leiden
The Netherlands

Exploring the Mycobacterium tuberculosis antigenome:
New insights for the development of vaccines, diagnostics

and drugs
Coppola, M.

Citation

Coppola, M. (2022, November 3). Exploring the Mycobacterium tuberculosis
antigenome: New insights for the development of vaccines, diagnostics and
drugs. Retrieved from https://hdl.handle.net/1887/3485193

Version: Publisher's Version
Licence agreement concerning inclusion of doctoral
License: thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/3485193

Note: To cite this publication please use the final published version (if
applicable).


https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3485193




CHAPTER 6

The in vivo transcriptomic blueprint of
Mycobacterium tuberculosis in the lung

Mariateresa Coppola1'*, Rachel P-J Lai?>3, Robert J Wilkinson 23#, Tom HM
Ottenhoff!

1 Department Infectious Diseases, LUMC; Leiden, The Netherlands.

2 The Francis Crick Institute; London, United Kingdom.

3 Department of Infectious Diseases, Imperial College London; London, United
Kingdom.

4 Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious
Disease and Molecular Medicine and Department of Medicine; Cape Town, South
Africa.

Front Immunol. 2021 Dec 22; 12:763364
doi: 10.3389/fimmu.2021.763364



Highly expressed IVE-TB genes Rank

0-25 25-50 50-75 75-100
& - 12 TB vaccine candidates \‘:5
Untreated Mtb infected 27 IVE-TB antigens @ -
TB patients C3H mice 2 antigens in commercial diagnostics il
7 TB drugs targets |-
v

Only partially overlaps

Top 90 IVE-TB genes——  with the top highly

expressed in vitro genes

iyt @
\

4 known as 51 known 35 unexplored

drug target as antigen genes

R

Mycobacterium tuberculosis (Mtb) genes encoding proteins targeted by vaccines and drugs
should be expressed in the lung, the main organ affected by Mtb, for these to be effective.
However, the pulmonary expression of most Mtb genes and their proteins remains poorly
characterized. The aim of this study is to fill this knowledge gap. We analysed large scale
transcriptomic datasets from specimens of Mtb-infected humans, TB-hypersusceptible
(C3H/FeJ) and TB-resistant (C57BL/6J) mice and compared data to in vitro cultured Mtb
gene-expression profiles. Results revealed high concordance in the most abundantly in vivo
expressed genes between pulmonary Mtb transcriptomes from different datasets and different
species. As expected, this contrasted with a lower correlation found with the highest expressed
Mtb genes from in vitro datasets. Among the most consistently and highly in vivo expressed
genes, 35 have not yet been explored as targets for vaccination or treatment. More than half
of these genes are involved in protein synthesis or metabolic pathways. This first lung-oriented
multi-study analysis of the in vivo expressed Mtb-transcriptome provides essential data that
considerably increase our understanding of pulmonary TB infection biology, and identifies
novel molecules for target-based TB-vaccine and drug development.
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INTRODUCTION

Tuberculosis (TB) is an ancient disease caused by the airborne pathogen
Mycobacterium tuberculosis (Mtb), which has infected billions of people and has
killed more people than any other bacterial infectious agent (1). Current tools to
combat TB, including diagnostics, vaccines and drugs, each for their own reasons, are
insufficient to diminish the global TB burden. In response to this WHO has formulated
consensus research priorities to accelerate the discovery and development of better
TB drugs, diagnostics and vaccines (1, 2).

The current clinical TB vaccine pipeline includes more than 20 new candidates,
which in pre-clinical animal models are able to reduce Mtb infection in the lung
(quantified by measuring numbers of viable Mtb and/or pathology in the lung) and/or
systemically (often the spleen), or TB morbidity (quantified by tissue pathology, weight
loss or host survival) (1, 3). Recent human phase Il studies showed that sustained
Mtb infection can be prevented by BCG revaccination of Mtb uninfected individuals
(as measured by interferon gamma release assay conversion), and that incidence of
new TB cases can be reduced amongst persons with LTBI by the M72 TB subunit
vaccine (4, 5). While these results are highly encouraging, the immune mechanisms
underlying these protective effects remain poorly understood. Current understanding
of the molecular and cellular basis of Mtb/human host interaction is limited, and
the exact mechanisms exerting protection against TB remain largely unknown, and
could range from (trained) innate to adaptive immune effector mechanisms (6). Many
of the most advanced TB subunit candidates are based on Mtb proteins historically
identified from in vitro cultured Mtb which were thereafter tested for antigenicity
using peripheral blood cells from Mtb exposed individuals (7).

Although immune recognition of such proteins suggests previous immune priming
by these antigens, it does not provide information regarding the expression of these
antigens in the main organ affected by Mtb, the lung. We have hypothesized that in
order for vaccine antigens to be protective (and for drug targets to be effective), a
minimal requirement is that they are expressed in the lung of Mtb infected individuals,
preferably over prolonged periods of time such that immune cells can recognize
and eliminate infected targets cells presenting these antigens; or conversely, that
TB drugs are able to act effectively on such Mtb target molecules. To address this
important issue, which cannot easily be studied in humans, we recently reported
a novel in vivo pulmonary Mtb gene expression analysis based on the Mtb RNA
expression patterns in the lung of highly susceptible (C3HeB/FeJ) as well as resistant
(C57BL/6J) mice after aerosol Mtb (Erdman) infection, from early to late time points
(8). Of note, the highly susceptible C3HeB/FeJ “Kramnik” mice uniquely develop a
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form of lung TB that includes centrally necrotic lesions characteristic of human TB. By
analysing the expression of 2,068 Mtb genes (selected to represent the first genes
of most predicted Mtb operons, in order to enhance representative “genome wide”
coverage (9)) in their lungs during early and late phase Mtb infection, we identified
upregulated Mtb genes that were designated in vivo expressed Mtb (IVE-TB) genes.
A total of 50 IVE-TB candidate antigens was selected further based on information
including high-level conservation among whole-genome sequenced Mtb-complex
strains (n=219) and algorithms predicting epitopes presented by HLA-class-la and -II.
Many of the IVE-TB candidate antigens were highly conserved among the genomes
of >200 human isolated Mtb strains, and were recognized by Mtb responsive human
subjects, supporting the hypothesis that the IVE-TB genes found in the C3HeB/FeJ
“Kramnik” mouse lung were also expressed and presented in humans, likely in the
lung.

Nevertheless, formal proof that these Mtb IVE-TB genes are truly expressed in
the Mtb infected human lung is lacking. Only few studies have evaluated the Mtb
transcriptome by human lung infection centred approaches, using sputum and
bronchoalveolar lavage (BAL) samples from pulmonary TB patients. Those few studies
used mostly quantitative real-time PCR (RT-PCR) or microarray platforms (10-15). In
these reports, the expression levels of Mtb genes recovered from human sputum
were compared to those in in vitro cultures. Up- and down-regulated Mtb genes were
reported mainly as ‘fold-changes’ compared to in vitro cultured Mtb or evaluated as
quantitatively altered Mtb gene expression profiles in samples collected during TB
treatment. Since a direct comparison between these ‘fold-changes’ and quantitative
gPCR data was not immediately possible, we collected and reanalysed all raw data
and relative expression scores of Mtb transcripts from three studies (11, 12, 15).
These human transcriptomic data sets were selected because raw data were publicly
available and allowed comparative analysis. Ranking Mtb genes within each dataset
allowed us to assess and combine in vivo Mtb gene expression in multiple individual
studies independent of their individual design. Using this information and comparing
three independent Mtb transcriptome datasets from human sputum or BAL with our
previously published dataset from C3HeB/FeJ “Kramnik” mouse lungs (8), which
was then complemented by validation in a recently deposited Mtb RNA-Seq dataset
(GEO: GSE132354) (16) from alveolar macrophages of Mtb infected C57BL/6J mice,
as well a partial validation in a Mtb RNA-Seq dataset from seven human active TB
sputum samples (GEO: GSE137518) (17), we here provide a first lung-centric multi-
study transcriptomic integrated dataset, which provides a novel tool likely to be
useful to TB vaccine and drug target discovery.
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RESULTS

Most abundant Mtb transcripts in human airway overlap with those in
Mtb-hypersusceptible-mice lung

Three published quantitative RT-PCR datasets were used to assess the most abundant
Mtb transcripts across host species (mice (n=20) (8) and humans (n=28) (11, 12)) and
lung-derived specimen-type (murine lungs (n=20) (8), human BAL (n=11) (12) and
sputum (n=28) (11, 12)) (a brief description of the datasets is provided in Table 1).
As mentioned above, the number of Mtb genes examined in these studies ranged
between 1,970 and 2,406, mostly selected to represent the first genes of predicted
Mtb operons.

Before comparison, within each dataset a relative score from 0 to 100 was calculated
by scaling the expression values of all detected Mtb genes, with O and 100
representing the lowest and highest expressed genes, respectively (Data file S1:
Table S1.1, S1.2, S1.3). By comparing the most abundant Mtb transcripts, arbitrarily
defined as genes having a relative expression rank of 85% or higher, 90 Mtb genes
were identified as overlapping in this cross-study analysis (Figure 1A). Interestingly,
49% of the top expressed Mtb genes in the Mtb-hypersusceptible-mice lung overlaps
with those found in human sputum or human BAL (Figure 1A). If considering the
human data only, the top ranked genes would mount up to 133 overlaps (Data file S1:
Table S1.8). However, since mice are the most commonly used model for preclinical
research on TB vaccine and drug development, we will focus the following analysis
on the most abundant Mtb transcripts shared between humans and mice.

To validate these 90 Mtb transcripts found to be consistently highly expressed in
different human and mouse lung-derived TB datasets (Figure 1B), we compared
these findings to unbiased Mtb RNA-Sequencing (RNA-Seq) data from alveolar
macrophages of Mtb infected C57BL/6J mice (Data file S1: Table S1.6, dataset e)
(GSE132354) (Table 1). Out of these 90 Mtb genes, 80 were also listed in the mouse
lung-derived RNA-Seq library and except for three genes (Rv1037c, Rv1038c and
Rv3619c) they were detectable in all samples studied (i.e., more than five reads). In
addition, among the top 15% expressed Mtb genes detected in the mouse RNA-Seq
dataset (104 out of 3,766, Data file S1: Table S1.6), 17 (RvO005, Rv0284, Rv1161,
Rv1297, Rv1398c, Rv1611, Rv1783, Rv1925, Rv2031c, Rv3051¢, Rv3219, Rv3248c,
Rv3583c, Rv3841, Rv3854c, Rv3874, and Rv3875) were shared with the RT-PCR
datasets. Furthermore, a partial validation was performed by using a Mtb RNA-
Seq dataset from seven human active TB sputum samples (Data file S1: Table S1.7,
dataset f) (GSE137518) (17) (Table 1): 79 out of 90 Mtb antigens were detectable
in all samples, seven (Rv1131, Rv1738, Rv1888c, Rv2031c, Rv3108A, Rv0569 and
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Figure 1. Most abundant Mtb transcripts in human airway overlap with those in Mtb-
hypersusceptible-mice lung. (A) Venn diagram indicating the numbers of top 15% expressed
Mtb genes that overlap among four published in vivo RT-PCR datasets from the lungs of
infected C3HeB/FeJ (C3H) mice (8) (dataset a), human sputa (11, 12) (datasets b and c1)
and human BAL samples (12) (dataset c2). (B) The top ranked expressed Mtb genes (n=90)
overlapping among all these in vivo datasets, see (A), are shown in two heatmaps. The left
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Rv0991c) in six samples, three (Rv0572c, Rv1037c and Rv3619c¢) in five samples and
one (Rv2660c) in three samples. In addition, among the top 15% expressed Mtb
genes detected in the human RNA-Seq dataset (24 out of 3,716, Data file S1: Table
$1.7), eight (Rv3874, Rv0467, Rv1398¢, Rv1131, Rv3051¢c, Rv0284, Rv3248¢ and
Rv1297) were shared with the RT-PCR datasets.

We also performed a similar analysis on a published microarray Mtb transcriptome
(number of genes=3,924) obtained from human sputum samples (n=7) (15) (Data
file S1: Table S1.5) (Table 1). Of the most abundant 90 Mtb transcripts found in
the RT-PCR datasets, only seven genes (Rv1915, Rv1388, Rv3667, Rv0715, Rv1738,
Rv3601c, and Rv0287) overlapped with the top 15% ranked genes of the published
microarray dataset. Microarray data are known to be less quantitative and to have a
lower dynamic range compared to RT-gPCR, which probably underlies this relatively
limited correlation (18).

Strikingly, 51 of the most abundant transcripts have previously been described as Mtb
antigens and four (Rv0005, Rv1305, Rv3601c, and Rv3854c) as targets of approved
TB drugs (7, 19, 20) (Figure 1B, left panel). To the best of our knowledge, 35 of the
top ranked Mtb transcripts have not been examined yet as potential targets for TB
vaccination or treatment (7, 19, 20) (Figure 1B, right panel). Among this pool of
unexplored genes, the majority encodes for ribosomal proteins or proteins needed
for energy-transducing processes, thus essential for Mtb growth and survival.

Among the above identified 90 abundantly expressed Mtb “pulmonary core Mtb
transcript set”, significant enrichment was observed in genes related to specific
biological processes (21) including: Mtb growth, pathogenesis, response to hypoxia,
response to stress, translation, and protein secretion by the type VIl secretion
system. The latter process was the most enriched, compatible with its major role

heatmap lists genes that have been investigated as antigens or TB drugs; the right heatmap
lists genes of which the vaccine or drug potential remains unexplored. The colour coding
represents the expression rank for a certain gene (rows) in each dataset (columns). The genes,
identified by their Rv numbers, are ordered based on expression rank from top to bottom.
(C) GO enrichment analysis performed on the top expressed Mtb genes (n=90), see (A) and
(B). The fold enrichments, the adjusted p value (Fisher, FDR) and the number of genes within
each GO term, are shown only for biological processes significantly enriched. (D) STRING
network analysis performed on the top expressed Mtb genes (n=90), see (A) and (B). Blue
nodes indicate biological process in tricarboxylic acid metabolic process and red nodes
indicate growth. The colour of the lines indicates the following: light blue = known interaction
from curated databases; pink = known interaction from experiments; red = predicted gene
fusions; blue = predicted gene co-occurrence; black = co-expression. Disconnected nodes
were hidden.
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The in vivo transcriptomic blueprint of Mycobacterium tuberculosis in the lung

in virulence and pathogenesis (Figure 1C). By using STRING, most of the predicted
protein-protein interactions were found among those involved in growth (especially
ribosomal proteins), tricarboxylic acid metabolic process, and secreted/virulent
proteins (Figure 1D). Furthermore, multiple Mtb genes among the 90 consistently
highly expressed have previously been associated with key functional categories (11,
22). These include: genes induced by oxidative, non-specific and stringent stress as
well as by enduring hypoxia (EHR); regulatory genes, and genes involved in aerobic
or anaerobic respiration. Furthermore, several esx genes were highly expressed in
all datasets (Supplementary Figure 1). Genes encoding for phage proteins, toxin and
antitoxins, and for PE/PPE proteins were often not determined in RT-PCR datasets,
and were detected at low levels in the other datasets (Supplementary Figure 1).
Similarly, many genes associated with cholesterol metabolism and its regulon were
not determined or not highly expressed in the RT-PCR datasets, with the exception
of Rv3503c (Supplementary Figure 1) (22).

Taken together, this first cross-study analysis identified a pulmonary core Mtb
transcript set of 90 Mtb genes that were highly and consistently expressed among
different datasets analysed by gqRT-PCR. Of note, the detection of most of these
genes was validated in mouse as well as human lung-derived RNA-Seq datasets.
Importantly these genes encode for proteins involved in biological processes
essential to survival and likely also transmission of Mtb. Interestingly, the vaccine or
drug potential of 35 top ranked genes remains unexplored. When further confirmed,
including at the proteomic level, these results significantly increase our understanding
of in vivo Mtb-infection biology, and provide novel targets for innovative TB vaccine
and drug discovery.

In vivo and in vitro Mtb transcriptome dataset comparison

Although there was high concordance between gRT-PCR datasets from the different
studies, as expected there also were some differences in the most abundantly
expressed genes between gRT-PCR, microarray and RNA-Seq datasets. To compare
all nine Mtb transcriptome datasets analysed in this study we calculated Spearman’s
rank correlation coefficients “r” among each of the datasets. In this analysis we also
examined two additional in vitro Mtb RT-PCR transcriptome datasets (12) (a brief
description of the datasets is provided in Table 1). The entire datasets-comparison
consisted of the ranked expression of Mtb genes (n=1,813) that were commonly
investigated in all nine Mtb transcriptomes. Most of the in vivo datasets correlated
positively (Figure 2A). The strongest in vivo data correlation (r=0.83) was found within
Mtb transcriptome datasets based on RNA obtained from BAL and sputum from the
same individuals (South Africa cohort), and results obtained with the same technology
platform (RT-PCR) as previously described in the original manuscript (12). The RT-PCR
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Figure 2. In vivo and in vitro Mtb transcriptome dataset comparison. (A) Correlation
between in vivo and in vitro Mtb transcriptome datasets (n=nine) measured using Spearman’s
rank correlation coefficients “r” (from 1 to -1). This comparison was based only on the ranked
expression of Mtb genes (n=1,813) investigated in all nine Mtb transcriptomes. The datasets
included are the following: C3HeB/FeJ mouse lung dataset (8) (a); human sputum (HS) dataset
from Ugandan TB patients (10) (b); HS (c1) and BAL (c2) from a cohort of South African TB
patients (12); a microarray (MA) based dataset (15) (d) from sputa of Indian TB patients (15);
RNA-Seq dataset from alveolar macrophages (AM) of Mtb infected C57BL/6J mice (GEO:
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dataset based on human sputum of Ugandan TB correlated most strongly with other
datasets including those from the South Africa TB patient cohort (sputum and BAL),
the RNA-Seq dataset from the seven South Africa TB patients’ sputa and with both
the RNA-Seq and the RT-PCR datasets from Mtb infected mice (r values were 0.72,
0.63,0.31,0.27, and 0.59, respectively). Of all the in vivo datasets the latter showed
the highest correlation with the mouse and human RNA-Seq transcriptome datasets (r
values were 0.34, and 0.39). Importantly, the mouse RNA-Seq transcriptome dataset
highly correlated with the RNA-Seq data derived from human samples (r=0.76).

The microarray Mtb transcriptome dataset did not correlate well with any of the
other datasets investigated here, probably for the reasons described above (see also
Figure 2A). When comparing the in vivo and in vitro Mtb transcriptome based on the
RT-PCR datasets, the expression ranks of the in vivo data correlated most strongly
with the expression ranks obtained in vitro from log phase grown Mtb (datasets
c3) (Figure 2A). However, despite the overall positive correlation, the top ranked
expressed genes identified under the in vitro conditions

only partially overlapped with the in vivo pulmonary core Mtb transcript set identified
in the in vivo datasets, strongly suggesting different biology (Figure 2B). Confirming
what already was described for the whole datasets, the overlaps were higher with the
top ranked genes from log phase aerobic grown Mtb H37Rv (n=44) than those from
the non-replicating persistence state cultured Mtb H37Rv (n=26) (Figure 2B) (Data
file S1: Table S1.9). Of note, the overlaps between the top ranked genes of the two
different experimental models were lower than those found when comparing the in
vitro datasets individually to the in vivo transcriptomes (n=16).

Thus, this latter comparison showed that the expression ranks of Mtb genes identified
in in vivo and in vitro positively correlated among multiple datasets, including those

GSE132354) (39)) (e); and RT-PCR based datasets from log phase aerobic grown Mtb H37Rv
(c3) and non-replicating persistence state (NRP-2) cultured Mtb H37Rv (c4). (B) Scatter plots
(left and middle panel) displaying the relationship between the median expression ranks of the
four published in vivo RT-PCR based Mtb transcriptomes (datasets a, b, c1 and c2) (x-axes) and
the median expression ranks of the two published in vitro RT-PCR based Mtb transcriptomes
(c3 and c4, left and right plot, respectively) (y-axes). Dots are colour coded according to the
median expression ranks of the in vivo datasets. At the value of 85%, dotted lines intersect the
axes indicating the top 15% expressed Mtb genes. Venn diagram (right panel) showing the
numbers of top ranked in vivo Mtb genes (n=90), described in Figure 1, that overlap with the
top ranked in vitro Mtb genes from log phase aerobic grown Mtb H37Rv and non-replicating
persistence state (NRP-2) cultured Mtb H37Rv.
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derived from different species. In addition, it also revealed that the set of highly
in vivo expressed Mtb genes substantially differs from the set of highly in vitro
expressed Mtb genes.

Expression of Mtb genes encoding candidate antigens for TB vaccines

and diagnostics across datasets

In order to be effective, TB vaccines would need to contain antigens consistently
expressed by Mtb at the site of infection, the lung, and across various diverse
populations. We therefore interrogated published (8, 11, 12, 15) Mtb transcriptome
datasets to evaluate the expression levels of genes encoding proteins constituting
subunit TB vaccine candidates (n=22) (7) as well as a selection of the most promising
IVE-TB antigens previously identified (n=30) (8). As described above, to compare
multiple datasets we used normalized and ranked Mtb gene expression values.
Two genes, namely Rv2608 and Rv3872 belonging to the PE/PPE family, were not
determined in all RT-PCR datasets. As expected from the previously described
general comparison (Figure 2A), the microarray dataset showed the most discordant
expression levels with the exception of a few genes (Figure 3A and B). Next, Mtb
genes were assigned to the first, second or third quartiles based on the median
expression rank across the gRT-PCR and microarray datasets. Among 22 Mtb genes
encoding current TB vaccine candidates, 12 ranked in the upper quartile (Rv3615c,
Rv3620c, Rv0288, Rv3614c, Rv3619c, Rv3875, Rv2660c, Rv2626c, Rv3865, Rv1196,
Rv3407, and Rv1886c), nine ranked in the interquartile range (Rv0867c, Rv3804c,
Rv0125, Rv0139, Rv1285, Rv2389c¢, Rv3849, and Rv1813c) and only two ranked in the
lower quartile (Rv2608, and Rv3872) (Figure 3A). By performing the same analysis,
among the most promising 30 IVE-TB genes, 20 ranked in the upper quartile (Rv0467,
Rv3462c, Rv1131, Rv3615¢c, Rv0287, Rv0288, Rv1284, Rv1221, Rv1872c, Rv0640,
Rv3614c, Rv3616c, Rv0991c, Rv2215, Rv2626c, Rv0470c, Rv0642c, Rv0468, Rv3865,
and Rv1846) and ten ranked in the interquartile range (Rv1980c, Rv2873, Rv2941,
Rv2007c, Rv0826, Rv2461c, Rv1791c, Rv0645¢c, Rv0423c, and Rv0440) (Figure 3A).

as IVE-TB antigens (font colour red, n=30) previously identified. On the left of each antigen is
indicated the name of the vaccine candidates of which they are part (font colours in black or
grey differentiate candidates in clinical and pre-clinical studies, respectively). (B) Expression
ranks of genes used in commercial diagnostics (Rv2348c, font colour grey) and genes encoding
Mtb proteins described as promising antigens (n=70) by at least two previous independent
studies other than the IVE-TB approach (7, 23). Undetermined expression ranks are colour
coded in white. Datasets are listed from left to right as in Figure 2 (see legend Figure 2).
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All these genes, except nine (detected in six samples: Rv0826, Rv0991, Rv2873,
Rv3407; detected in five samples: Rv1285, Rv2608, Rv2626, Rv3619; detected in
three samples: Rv2660c), were detected in all human samples analysed by RNA-Seq
(dataset f) whereas 44 were traceable in the mouse RNA-Seq dataset (dataset e) and
among those only one (Rv3619) was not detected (i.e., less than five reads) in the
mouse samples analysed by that platform. Among genes used in commercial immune-
(interferon gamma release assay, IGRAs) diagnostics, we found the expression of
ESAT6 (Rv3875c) and CFP10 (Rv3874) to rank in the upper quartile (Figure 3A), and
TB7.7 (Rv2654) in the lower quartile (Figure 3B). All the genes encoding for antigens
proposed in an ESAT6 free immunodiagnostic test (Rv2348c, Rv3615c¢, and Rv3865)
were expressed among the upper quartile (23) (Figure 3A and B).

As mentioned above, multiple Mtb antigens have been discovered over the
last 40 years using different strategies other than our IVE-TB approach. For our
expression analysis here, we focused on 70 genes encoding Mtb proteins which have
been described as promising antigens and validated in at least two independent
studies (7). Of the 70 Mtb genes only 11 had expression median ranks in the upper
quartile (Rv2031c, Rv1793, Rv2346c, Rv1037c, Rv2780, Rv0934, Rv0983, Rv0129c,
Rv1270c, Rv0632c, and Rv1047) and were detected in all samples by RNA-Seq (with
the exception of Rv1037 and Rv1047) (Figure 3B). Finally, we performed a similar
analysis on 89 Mtb genes encoding peptides that have been included in the so-
called mega-pool of epitopes which has been widely tested in numerous different
settings (24, 25). Out of 89 Mtb genes, 29 had an expression rank in the upper
quartile (Supplementary Figure 1). Among these highly in vivo expressed genes 12
(Rv3418¢, Rv3023c, Rv1199c, Rv0985¢, Rv3115, Rv3022¢, Rv2512¢, Rv0299, Rv0294,
Rv3018c, Rv2996c, and Rv1908c) were not previously described as IVE-TB genes or
implemented in TB vaccines or diagnostics (Supplementary Figure 1).

Taken together, these analyses show that most potent candidate TB vaccine
antigens, some of which are in advanced clinical evaluation studies, are indeed highly
expressed at the RNA level in infected lungs of mice and humans. This supports our
previous hypothesis that Mtb antigen expression in the lung (if confirmed at the
protein level) is a critical feature of potential vaccine efficacy, and that this could
guide target selection to advance and improve TB vaccine development as well as
new TB diagnostics.

Expression profiles of Mtb genes encoding TB drugs targets

Twenty-eight TB drugs have been approved for use against TB (20). Since these drugs
can cure drug sensitive TB, we would predict that their targets, which are mostly
proteins, should be expressed particularly during pulmonary Mtb infection. Based

188



The in vivo transcriptomic blueprint of Mycobacterium tuberculosis in the lung

on the information available on the TBDRUGS-Database of Drugs for Tuberculosis
(version 1.0) at http://bmi.icmr.org.in/tbdrugs/, we evaluated the median expression
ranks across four published studies of 22 Mtb genes encoding major TB drugs
targets, or prodrug-drug converting enzymes, across the qRT-PCR, and microarray
transcriptomic datasets (Supplementary Figure 1). Similar to the above, Mtb genes
were again assigned to the first, second and third quartiles based on the median
expression rank across the gRT-PCR and microarray datasets. Seven Mtb genes
which ranked in the upper quartile (Rv1305, Rv0005, Rv3854c, Rv3423c, Rv1484,
Rv1908c, and Rv020é6c) are targets (or prodrug-drug converting enzymes) of drugs
inhibiting the synthesis of mycolic acids (Isoniazid, Prothionamide and Ethionamide),
peptidoglycans (Cycloserine and Terizidone), or DNA (Gatifloxacin, Moxifloxacin and
Ofloxicin), or interfering with trehalose monomycolate export (SQ109), or interfering
with oxidative phosphorylation (Bedaquiline) (Figure 4). All other genes encoding
drug targets had median expression ranks in the interquartile range (Rv0667, Rv3794,
Rv3795, Rv2447, Rv2163c, Rv0006, Rv3608, Rv3547, Rv2068¢c, Rv0706, Rv0701,
Rv3793, and Rv2981c), with the exception of the target gene (Rv2763c) of the pro-
drug Para-aminosalicylic acid (PAS) which had an expression rank in the lower quartile
(Figure 4).

Of note, all 22 Mtb genes reviewed here, except three (Rv3608 and Rv2447 not
traceable in the mouse dataset, Rv3608 and Rv2763c not found in some of the

human samples), were detected in all samples evaluated by RNA-Seq analysis (Data
file S1: Table S1.6 and S1.7).

Thus the 22 Mtb genes evaluated here which encode targets for drugs efficacious
clinical TB-drugs are all expressed by Mtb in the mouse and human lung across
multiple datasets.

Taken together, our analyses significantly increase current knowledge on the in vivo
expression of the pulmonary Mtb transcriptome expression. These insights and new
data could be highly valuable in guiding rationalized target selection of new TB
antigens (for both diagnostics and vaccines) as well as TB drug discovery.
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Figure 4. Expression profiles of Mtb genes encoding TB drugs targets. Based on the
information available on the TBDRUGS-Database of Drugs for Tuberculosis (version 1.0),
available at http://bmi.icmr.org.in/tbdrugs/, the median expression ranks of 22 Mtb genes
encoding TB drugs targets or prodrug-drug converting enzyme were evaluated across
published (8, 10, 11, 14) lung Mtb infection-centred transcriptomic datasets. Nodes
representing genes are coloured based on the median expression rank. Blue, magenta and
orange text indicate first-line drugs, other approved drugs or drugs evaluated in clinical trials,
respectively. Source data are provided in Supplementary File 1.

DISCUSSION

This study represents the first lung-oriented description of Mtb transcripts from
sputum and bronchoalveolar lavage (BAL) of TB patients and from the lungs of Mtb
infected mice (8, 11, 12, 15). Our analysis identified considerable overlap among
the most abundant Mtb transcripts in different settings, spanning information from
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mouse (C3H/FelJ) and human Mtb infection. The only exception were microarray
based data, probably due to the lower dynamic range of that platform (discussed
further below). These findings were further validated and corroborated using mouse
and human sputum Mtb transcriptomes measured by RNA-Seq. In addition, the data
were compared with in vitro datasets, revealing significant differences as expected.

An important observation was that many Mtb genes encoding new candidate Mtb
vaccine antigens or existing drug targets were among the most highly expressed Mtb
genes in the lungs of infected mice and humans. A second important observation was
that our analysis revealed high expression of 35 Mtb genes that have not been studied
as vaccine antigens, diagnostic or drug target molecules, suggesting that the here
reported data might inform novel strategies for discovery of new antigens and drug
targets. Thus, this first comprehensive lung infection centred Mtb gene expression
comparison provides novel insights into the pulmonary Mtb transcriptome signature
and the biological pathways involved, significantly enhances our understanding of
Mtb infection biology and is useful in deciphering the in vivo expressed pulmonary
Mtb transcriptome, which can guide precision development of new TB diagnostics,
drugs and vaccines (7).

Assessing the Mtb transcriptome in infected human organs is challenging since
airway specimens such as sputum, BAL and biopsies are not always easy to obtain.
Among those, sputum collection is the only non-invasive procedure and therefore
the most commonly used to investigate Mtb transcriptomes in TB (10-15). However,
adequate RNA isolation from sputum is hampered by several factors such as the
small size of the samples, the presence of RNases, and the contamination with other
commensal or pathogenic bacteria (26). In past studies, we circumvented those
limitations by analysing RNA isolated from lung of Mtb infected mice, including those
of highly susceptible C3HeB/FeJ “Kramnik” mice presenting with pulmonary lesions
characteristic of human TB (8, 27), using RT-PCR. Although these methods allowed
the identification of a new class of in vivo expressed Mtb (IVE-TB) antigens, proven
to be recognized by peripheral blood cells of Mtb infected individuals (8, 27), it was
not clear whether the Mtb transcriptome signature found in the lung of “Kramnik”
mice sufficiently reflected that of clinical Mtb isolates infecting the human respiratory
tract. The present comparison shows a strongly positive correlation between Mtb
transcriptomes signatures from infected lungs of “Kramnik” mice and three out of
four published Mtb transcriptome signatures identified from sputum and BAL of TB
patients (Figure 2). The only Mtb transcriptome dataset that did not correlate with
the mouse dataset was obtained using micro-arrays, and also did not correlate with
any of the other human datasets (Figure 2). There are two main factors that could
explain this lack of correlation: the most likely is the technology platform used (dual
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microarray vs. RT-PCR: microarrays are less sensitive and quantitative than RT-qgPCR
and have a significantly lower dynamic range (18) although we cannot exclude a role
for the geographic area of patients’ recruitment, India vs. Sub-Saharan Africa (there
are different distributions of geographically restricted Mtb strains detected in the
samples (28)). The differences compared to the microarray dataset was also clear
when the top 15% expressed Mtb genes of each published dataset were compared:
only seven of the 90 Mtb top expressed genes which were shared in all RT-PCR
datasets, were found to be highly expressed in the microarray dataset (Figure 1B).
This discrepancy is evident also when comparing our findings to those obtained
in a previous study (29) that analysed the overlaps between upregulated genes in
human and murine lungs identified from two microarray datasets (30, 31). In this
meta-analysis only four genes were shared across species (Rv0316, Rv3347c, Rv3532,
and Rv3706c¢), none of which is included in the top ranked transcripts of our analysis.
Besides the fact that this data was based on microarray assays, the limited overlaps
could be explained by the fact that in these studies the up-regulation of the genes
is relative to the expression found in in vitro transcriptomics. Our findings differ also
from another comparative analysis among Mtb transcriptomes from susceptible (I/
StSnEgYCit) and resistant (C57BL/6YCit) mouse strains, which defined 209 commonly
upregulated genes using the Audic-Claverie algorithm (32). However, from this list
only 17 Mtb transcripts overlap with the top ranked genes found in our C3HeB/FelJ
“Kramnik” dataset, a number that decreases to two if including in the comparison
also the human datasets (Data file S1: Table S1.10). Therefore, we think it is crucial
to use the same analysis pipeline when examining different datasets.

We also analysed two additional in vitro Mtb transcriptome (RT-PCR based) datasets,
both from log phase as well as from stationary phase cultured Mtb bacteria, and
compared their gene expression profiles with those from the in vivo analyses. As
expected, the in vitro log phase grown data correlated most strongly with the in vivo
datasets (Figure 2B). However, despite the overall correlation, the in vivo pulmonary
core Mtb transcript set only partially overlapped with the in vitro data, emphasizing
the need for unbiased in vivo analyses to identify core Mtb transcriptome expression
signatures that can inform the design of intervention tools, such as diagnostic tests,
vaccines or new drugs. Of note, when taking only the top ranked transcripts from the
in vitro datasets these had more overlaps with the human datasets than those found
between the two in vitro conditions. This finding may suggest that a combination of in
vitro experimental models may translate better into the dynamic and heterogeneous
state of Mtb during an in vivo infection (33).

The 90 Mtb top expressed genes were enriched for biological processes such as
growth, translation, pathogenicity, protein secretion, and response to hypoxia and
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oxidative stress (Figure 1C). This trend was found also when genes were grouped
according to previously described functional categories (11). In fact, the highest
and most consistent expression ranks included virulence-associated Mtb genes, and
were found among esx genes, ribosomal protein genes, genes related to metabolic
pathways, and genes encoding proteins in response to hypoxic and oxidative stress,
suggesting the presence of metabolic active bacilli in the samples investigated here
(Supplementary Figure 1). These signatures are compatible with active Mtb infection.
Additionally, most of the 90 top expressed genes within the RT-PCR dataset were
found expressed in independent and unbiased mouse and human derived RNA-Seq
datasets. Unexpectedly, 35 out of these 90 highly abundant Mtb transcripts encode
for proteins have not yet been described as Mtb antigens or drug targets (Figure 1B)
(7, 19). This key finding underscores how our integrative transcriptomic approach
helps generate new hypotheses worth future investigation.

Although based on different mouse strains (C3H vs. BL6), and time of infection
(five time points spanning from two to 12 weeks vs. two weeks only), the mouse
lung RT-PCR dataset showed the highest correlation with the unbiased RNA-Seq
datasets (Figure 2A) which detected, with only one exception (Rv3619c for the mouse
derived dataset) , all genes encoding IVE-TB antigens. The latter had been selected
based on high expression in the Mtb infected lungs of “Kramnik” mice, and the
present analysis further extends this to human Mtb infected lung derived samples
(Figure 3A) (8). By contrast, many of the Mtb genes encoding antigens identified
only on the basis of their recognition in human peripheral blood, mostly showed
lower expression than the IVE-TB antigens in the lung-centric datasets studied here
(Figure 3B). Based on our hypothesis this suggests that only a subset of proteins
immunogenic in human blood tests might have vaccine potential, but this needs to
be demonstrated formally. However, one case in point is the failure of the MVA85
phase llb trial which showed no additional efficacy of MVA85 booster vaccination
on top of BCG in preventing TB in infants (34). We found that the encoded antigen,
Ag85A (Rv3804c) used in MVABS5A exhibited lower expression than for example
antigens contained in the successful M72 vaccine (Figure 3A) (5), and this may
underlie Rv3804c’s poor performance as single subunit vaccine antigen. Although
the different protective efficacies of subunit vaccines are difficult to compare, antigen
availability and presentation to immune cells in the respiratory tract of Mtb infected
subjects may well be a key factor influencing their eventual efficacy. Of note, in our
analysis, most promising TB subunit-vaccine candidates, including those in current
clinical trials, contained at least one protein encoded by a highly expressed Mtb
gene in multiple transcriptomic datasets.
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We also performed further comparative analyses on genes encoding antigens that
are currently used in commercial TB diagnostics or additional candidate vaccines (7).
As expected, antigens implemented in approved TB diagnostics such as ESAT6 and
CFP10 (Rv3875c and Rv3874) were highly or moderately expressed, except TB7.7
(Rv2654) that showed only low or undetectable expression levels. T cell reactivity
towards TB7.7 has been investigated in short-term T cell cultures (35, 36) and in a
direct ex vivo assay (37). The latter approach failed to find evidence for antigenicity
of TB7.7 in a cohort of 18 LTBI donors (37). This result was unexpected given the
presence of HLA-class Il binding peptides in the antigen. Here we postulate that this
lack of antigenicity in fact may reflect the low expression levels of TB7.7 which we
find in the respiratory tract of untreated TB patients. Together, these findings support
the use of other antigens for early detection of Mtb infection such as those recently
proposed to be included in ESAT6 free immunodiagnostic tests (Rv2348, Rv3615,
and Rv3865) (23), which were instead found highly expressed (Figure 3B).

Another interesting application of our findings may be the refinement and
implementation of new mega-pools of Mtb epitopes, a first version of which has
already been tested in several cohorts of Mtb infected subjects (24, 25). Our analysis
revealed that 19% (n=17) of the 89 Mtb genes encoding for those epitopes were
poorly expressed in vivo (Supplementary Figure 1). If confirmed also at a protein level,
depleting new mega-pools of such peptides might help denoising the promiscuous
immune reactivity found against the Mtb epitope mega-pool (24) and allow a better
characterization of those peptides most likely available during infection.

A limitation of our analysis might be that differential gene expression does not
by definition correlate with differential protein expression, and differential protein
expression does not equal differential functionality. The analysis of large sets of genes
as performed in this study, however, we think might have mitigated this risk, even
though at the individual gene level exceptions may exist. Several Mtb proteomic
datasets have been reported, confirming high expression of Mtb proteins known
to be diagnostic or candidate vaccine antigens, but as far as we know this has
not been correlated systematically to vaccine-, diagnostic- of drug-target efficacy.
Furthermore, although Mtb transcript levels may not necessarily predict protein levels
(38), they are helpful in understanding global transcriptome dynamics with impact on
potential local antigen availability and presentation as well as drug target expression
during Mtb infection. Such knowledge may help de-risking TB vaccine and drug
development by selecting the most highly expressed and presented Mtb genes and
proteins in the human lung during infection.

194



The in vivo transcriptomic blueprint of Mycobacterium tuberculosis in the lung

Currently there are 28 approved TB drugs which have been or are being prioritized
and combined based on the sensitivity of Mtb to these drugs. Isoniazid, Rifampin (or
rifapentine or Rifabutin), Ethambutol (administered for six months) and Pyrazinamide
are used as first-line drugs for drug sensitive TB, while the rest are used in different
regimens against multi- or extensively-drug resistant TB (MDR-TB and XDR-TB
respectively) (http://bmi.icmr.org.in/tbdrugs/). An important aspect of our analysis
is that it confirmed the high-medium expression of all 22 Mtb genes encoding targets
of TB drugs efficacious in clinical settings (Figure 4, Supplementary Figure 1). These
results indirectly validate our approach but, more importantly, support the value of
using pulmonary Mtb transcriptomic datasets to select for new potential TB drug
targets. Indeed, our work also reveals high expression of Mtb genes that have not
been studied as drug target molecules, suggesting that the here reported approach
could inform discovery of new drug targets.

Collectively, by our comparative analyses of in vivo pulmonary Mtb transcriptomes
both from Mtb infected animals and humans significantly increase our understanding
of in situ host-pathogen interactions in TB, and can help refining the in vivo expressed
Mtb genes and proteins to accelerate and innovate TB vaccine, diagnostics and
drug development. Enhanced focus on lung centric studies in TB should therefore
be encouraged.

MATERIALS AND METHODS

Study design. The central aim of the study was to examine the gene expression
profile of Mtb during in vivo pulmonary infection in humans and mouse models
and compare those to the Mtb in vitro expression signature. We analysed large
scale transcriptomic datasets from Mtb-infected human sputa (n=35), human
bronchoalveolar lavages (n=11), TB-hypersusceptible (C3H/FeJ) mouse lungs (n=20),
alveolar macrophages from TB-resistant (C57BL/6J) mice (n=three) and compared
data to in vitro cultured Mtb gene-expression profiles and to a RNA-Seq human
sputum derived Mtb transcriptome dataset from TB patients (n=seven) (Table 1).
Within each dataset and each sample, a relative score was calculated by ranking the
expression level of each gene relative to all genes assayed.

Dataset a: RT-PCR Mtb transcriptome dataset from lung of Mtb infected mice:
data source and data process (data obtained from (8)). In brief, C3HeB/FeJ
(C3H) mice, housed under specific pathogen-free conditions were infected with Mtb
Erdman by aerosol challenge (25-50 CFU Mtb using a Madison chamber). Four mice
per group were sacrificed at five different time points. Quantification of Mtb transcript
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profile was performed on 2,068 genes, mostly representing the first gene of each
predicted operon, as previously described (8). Total Mtb RNA was isolated from
infected mouse lung tissue, after two, four, six, nine, and 12 weeks of Mtb infection.
cDNA synthesis was conducted and cDNA further amplified via controlled multiplex
pre-amplification. Sequences and design of PCR primer/probe sets are available at
http://genes.stanford.edu/technology.php. Individual gene transcript quantification
was carried out using TagMan primer/probe sets (Biosearch Technology, Petaluma,
CA, USA). For each time point after infection, the median cycle threshold values of
four mice per strain were transformed to relative gene copy numbers (RGCNs) based
on logarithmic transformation/linear regression equations devised from calibration
curves (CT and RGCNs used in this paper are available in the Data file S1: Table
S1.1) (8).

For each time point, a relative score was calculated by ranking the median RGCN of
each gene to all genes assayed. A rank of 100 represents the most highly expressed
gene, a rank of zero represents the lowest expressed gene. The same percentile rank
values were assigned to genes with same median RGCN. Thereafter, the median
relative expression score among all time points was calculated for each gene (Data
file S1: Table S1.1).

Dataset b: RT-PCR Mtb transcriptome dataset from human sputum of Ugandan
TB patients: data source and data process (data obtained from (11)). Mtb gene-
based RT-PCR data were obtained from the supplementary files from the original
paper (Data file S1: Table S1.2) (11). Briefly, in that study expectorated sputum of
17 Ugandan adults with untreated pulmonary TB was collected into a sterile cup
containing guanidine thiocyanate solution for immediate RNA preservation. Total
RNA was extracted and amplified. The authors quantified a total of 2,406 Mtb
transcripts via multiplex quantitative RT-PCR, and normalized mRNA expression data
using a minimum-variance data-driven method. For each sample, we calculated a
relative score by ranking the expression level of each gene to all genes assayed.

A rank of 100 represents the most highly expressed gene, a rank of zero the lowest
expressed gene. For each gene, the median relative expression score was available
for specimen collected before TB treatment and therefore used in this analysis (Data
file S1: Table S51.2).

Dataset c1 and c2: RT-PCR Mtb transcriptome dataset from human sputum and
BAL of South African TB patients: data source and data process (data obtained
from (12)). Mtb gene-based RT-PCR data were obtained from supplementary files
provided in the original paper (Data file S1: Table S1.3) (12). Briefly, in that studly,
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human sputum (dataset c1) and BAL (dataset c2) samples were collected from 11
untreated South African TB patients. From these specimens, RNA extraction was
performed using a phenol/chloroform protocol and transcriptional profiling of
1,970 Mtb genes was assessed via multiplex quantitative RT-PCR (TagMan) with a
LightCycler 480 (Roche, Indianapolis, Indiana) (details in the original manuscript).
Data were batch corrected using a median approach. Since BAL and sputa were
paired samples, the Mtb transcriptional data were normalized using a previously-
described minimum variance method (12) (Data file S1: Table S1.3).

For each time point and sample, a relative score was calculated by ranking the
median CT level of each gene among all genes assayed. Rank of 100 represents the
most highly expressed gene, a rank of zero the lowest expressed gene. Identical
percentile rank values were assigned to genes with the same median CT (Data file
S1: Table S1.3).

Dataset ¢3 and c4: RT-PCR Mtb transcriptome dataset from in vitro cultured
Mtb: data source and data process (data obtained from (12)). Mtb gene-based
RT-PCR data were obtained from supplementary files provided in the original paper.
Briefly, this study provided Mtb gene expression data from H37Rv cultured in log
phase aerobic growth (four replicates) (dataset c3) and in non-replicating persistence
state (NRP-2; 0.06% of oxygen in the culture) (six replicates) (dataset c4) (Data file
S1: Table S1.4) (12). From these specimens, RNA extraction was performed using
a phenol/chloroform protocol and transcriptional profiling of 2,124 Mtb genes was
assessed via multiplex quantitative RT-PCR (TagMan) with a LightCycler 480 (Roche,
Indianapolis, Indiana) (details in the original manuscript) (12).

For each time point and sample, a relative score was calculated by ranking the
median CT level of each gene to all genes assayed. Rank of 100 represents the
most highly expressed gene, a rank of zero the lowest expressed gene. Identical
percentile rank values were assigned to genes with the same median CT (Data file
S1: Table S1.4).

Dataset d: Microarray Mtb transcriptome dataset from human sputum from
untreated Indian TB patients: data source and data process (data obtained from
(15)). Microarray data of 3,924 Mtb genes were obtained from the files deposited
in GEO database, accession number: GSE?3316. Briefly, in this study human sputa
from seven untreated TB patients were collected in Chandigarh, India and used for
extraction of RNA by RNAZOL in Primestore. For DNA microarrays, the DNase treated
RNA (50ng) was amplified using the MessageAmp™ |I-Bacteria RNA Amplification
Kit (Ambion®) and then reverse transcribed using superscript lll RT. The amplified
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and labelled cDNA was then hybridized to Mtb arrays obtained from the Center for
Applied Genomics (Public Health Research Institute; Newark, NJ). The microarrays
were scanned with Axon 4000B scanner and processed further with GenePix Pro 6.1
software.

For our analysis, we used the within sample print-tip Lowess normalized fluorescence
intensities (F635 medians from the original paper) detected from the cDNA of the
smear positive samples. Quantile normalization was performed in R studio, as
described in the methods below. Within each sample, genes were ranked from zero
to 100, with zero and 100 representing respectively the lowest and the most highly
expressed gene. The same percentile rank values were assigned to genes with same
normalized fluorescence intensities. The median rank was calculated for each gene
among the donors (n=seven) (Data file S1: Table S1.5).

Dataset e: RNA-Sequencing (RNA-Seq) Mtb transcriptome dataset from
alveolar macrophages of Mtb infected mice: data source and data process (data
obtained from (39)). Normalized Mtb transcriptome data were obtained from the
Supplementary file 2 of the GEO depository (GSE132354). Briefly, as described in the
depository, C57BL/6J mice (n=three) purchased from the Jackson Laboratory were
infected with Mtb smyc’::mCherry Erdman for 14 days. The total mixed RNA enriched
for bacterial reads was extracted following the protocol described in the paper
(39). rRNA removal was performed using 50-100ng total RNA input and a modified
protocol for the Ribo-Zero Epidemiology Gold rRNA removal kit (lllumina). Briefly,
90 pl bead stock was used per sample, together with two pl each of reaction buffer
and removal solution in a 20 pl reaction volume, as detailed in the manufacturer’s
protocol. The rRNA-depleted samples were purified by precipitating the RNA.
Sequencing libraries were generated using the NEBNext Ultra™ Il Directional RNA
Library Prep Kit for lllumina (New England BiolLabs). Libraries were sequenced on
a NextSeq500 (lllumina) in multiple rounds until the desired sequencing depth for
bacterial reads was reached (target 1M 85nt reads). Flexbar (v. 3.4) has been used
to remove low quality reads and trim Illumina adapters. rRNA reads have been
removed using Bowtie2 (sensitive mode). rRNA filtered fastq files were split using
Bowtie2 (very-sensitive mode) into species-specific files using the two reference
genomes, GRCm38.94 for Mus musculus and NCBI assembly GCA_00668235.1 for
Mtb Erdman Hisat2 (v. 2.1.0). Raw read counts for each sample were obtained using
HTSeq (v. 0.11.0).

A total of 3,766 Mtb genes whose names could be assigned to the corresponding

Rv numbers were considered in our analysis. Within each sample, genes were ranked
from zero to 100, with zero and 100 representing respectively undetected and the
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most highly expressed gene. The same percentile rank values were assigned to genes
with same raw read counts. The median of these ranks was calculated for each gene
among samples (Data file S1: Table S1.6). Since this in vivo RNA-Seq dataset was
derived only from an early stage of Mtb infection (two weeks), the data was used
primarily to validate results obtained from the RT-PCR Mtb transcriptomes.

Dataset f: RNA-Sequencing (RNA-Seq) Mtb transcriptome dataset from human
sputum of South African TB patients: data source and data process (GSE137518)
(17). RNA-Seq libraries for the seven sputum samples from six untreated South
African TB-only and 1 TB-HIV patients were prepared with 200ng of corresponding
RNA using the Ovation Human FFPE RNA-Seq Multiplex System (NuGen, San Carlos
CA, USA). To guarantee immediate RNA preservation, the sputum was lysed in Trizol
immediately after collection and total RNA was extracted using chloroform and
purified and concentrated with the RNA Clean & Concentrator kit Zymo Research,
Irvine CA, USA. Each sputum library was loaded onto a single lane in a flow cell and
sequenced with a Hi-Seq 2500 instrument using SE100 reaction (lllumina, San Diego
CA, USA).

The quality of the sequencing fastq files was analysed using FastQC (v0.11.5).
Sequence reads were adapter- and quality- trimmed using Trimmomatic (v0.36)
before aligning to the human genome (Ensembl GRCh38 build 88) using STAR
aligner (v2.5.2a). To assure that the reported RNA-Seq reads did not map to other
commensal bacteria such as oral flora, the sequence reads were quality filtered and
then aligned to the human genome, with unaligned reads extracted for microbiome
taxonomy classification, species mapping and subsequently aligned to reference
genomes of Mtb using STAR aligner (v2.5.2a). The alignment files were name sorted
by SAMtools (v1.2) and gene expression was quantified using BEDTools (v.2.26.0).
The RNA-Seq data reported in this paper have been deposited at GEO with the
accession number GSE137518.

Quantile normalization was performed in R studio, as described further in these
methods. Within each sample, genes were ranked from 0 to 100, with O and 100
representing respectively undetected and the most highly expressed gene. The
same percentile rank values were assigned to genes with same raw read counts. The
median of these ranks was calculated for each gene among donors (n=seven) (Data
file S1: Table S1.7). In the human sputum samples, although the number of detected
Mtb genes varied between 2957 and 3993 (median=3,716), many genes had both
equal raw read counts and read counts below 100, thus skewing the expression rank
towards the lower interquartile. Therefore, the in vivo RNA-Seq dataset was mostly
used to validate results obtained from the RT-PCR Mtb transcriptomes.
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Quantile normalization of RNA-Seq and microarray datasets. In order to compare
microarray data among biological samples, read counts and signal intensities have to
be adjusted to eliminate systematic effects that are not associated with the biological
differences of interest. It has been shown that quantile-based normalization is a
robust procedure to remove technical variations without introducing additional noise
and to make distributions identical across samples (40). Quantile normalization was
performed in R studio by applying the following function (41):

quantile_normalisation <- function(df)

{df_rank <- apply (df,2, rank, ties.method="min")

df_sorted <- data.frame (apply (df, 2, sort))

df_mean <- apply (df_sorted, 1, mean)

index_to_mean <- function (my_index, my_mean) {return (my_mean [my_index])}
df_final <- apply (df_rank, 2, index_to_mean, my_mean = df_mean)

rownames (df_final) <- rownames(df)

return(df_final)}

GO and STRING analysis. Gene ontology (GO) enrichment analysis was performed
by using PANTHER Overrepresentation Test (21). The most expressed Mtb genes
shared among the Mtb transcriptome datasets previously described were evaluated
in respect to the Mtb genome (all genes in the database). P values were calculated
by Fisher's exact test adjusted for false discovery rate. Only biological processes
significantly enriched (p value < 0.05) were reported. STRING (https://string-db.
org/) was used to predict protein-protein interactions and show network connectivity
(42). The network was based on evidence from experiments, curated databases or
prediction of co-expression, and gene fusions (medium confidence score >= 0.4).

Correlation matrix. All datasets were compared in R using the ggcorrplot package
(https://cran.r-project.org/web/packages/ggcorrplot/ggcorrplot.pdf). Spearmans
rank correlation coefficient was computed based on the median rank of the 1,813
Mtb genes investigated in all datasets. Since the datasets used in our analysis consist
of a large sample size, all Spearmans rank correlation coefficients above 0.13 were
significant (calculated using the cor.test function in R).

Venn diagrams. To show the numbers of top ranked Mtb genes that overlap
between in vivo and in vitro datasets, Venn diagrams have been made using the
ggVennDiagram and the ggplot2 packages (https://cran.r-project.org/web/packages/
ggVennDiagram/index.html and https://cran.r-project.org/web/packages/ggplot2/
index.html).
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Code Availability. Code is available in the Methods section and at the following link:
https://cran.r-project.org/web/packages/ggcorrplot/ggcorrplot.pdf.
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Supplementary Figure 1. Expression level of Mtb genes belonging to specific categories
previously defined in literature. Each heatmap lists Mtb genes belonging to previously
defined functional categories (11, 22). Specific pathways are indicated on the right of the
genes encoding proteins related to metabolic pathways. Each column represents the relative
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Supplementary Figure 1 continued

expression rank within each dataset. Datasets are listed from left to right with the following
order: C3HeB/FeJ mouse lung dataset (8) (a); human sputum (HS) dataset from Ugandan
TB patients (10) (b); HS (c1) and BAL (c2) from a cohort of South African TB patients (12); a
microarray (MA) based dataset (d) from sputa of Indian TB patients (15). Red colour coded
Rvs indicate Mtb genes of the mega-pool which overlap with Figure 3.
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