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7. Calculating energy
derivatives for quantum
chemistry on a quantum
computer

7.1. Introduction

Quantum computers are at the verge of providing solutions for certain
classes of problems that are intractable on a classical computer [47].
As this threshold nears, an important next step is to investigate how
these new possibilities can be translated into useful algorithms for spe-
cific scientific domains. Quantum chemistry has been identified as a
key area where quantum computers can stop being science and start
doing science [18, 19, 185, 186]. This observation has lead to an in-
tense scientific effort towards developing and improving quantum algo-
rithms for simulating time evolution [187, 188] and calculating ground
state energies [39, 86, 87, 189] of molecular systems. Small prototypes of
these algorithms have been implemented experimentally with much suc-
cess [39, 41, 42, 83, 100]. However, advances over the last century in clas-
sical computational chemistry methods, such as density functional theory
(DFT) [190], coupled cluster (CC) theory [191], and quantum Monte-
Carlo methods [192], set a high bar for quantum computers to make im-
pact in the field.

The ground and/or excited state energy is only one of the targets for
quantum chemistry calculations. For many applications one also needs
to be able to calculate the derivatives of the molecular electronic energy
with respect to a change in the Hamiltonian [193, 194]. For example,
the energy gradient (or first-order derivative) for nuclear displacements is
used to search for minima, transition states, and reaction paths [195] that
characterize a molecular potential energy surface (PES). They also form
the basis for molecular dynamics (MD) simulations to dynamically ex-
plore the phase space of the system in its electronic ground state [196] or,
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7. Energy derivatives on a quantum computer

after a photochemical transition, in its electronically excited state [197].
While classical MD usually relies on force-fields which are parameterized
on experimental data, there is a growing need to obtain these parame-
ters on the basis of accurate quantum chemical calculations. One can
easily foresee a powerful combination of highly accurate forces generated
on a quantum computer with machine learning algorithms for the gen-
eration of reliable and broadly applicable force-fields [198]. This route
might be particularly important in exploring excited state PES and non-
adiabatic coupling terms, which are relevant in describing light-induced
chemical reactions [199–201]. Apart from these perturbations arising from
changing the nuclear positions, it is also of interest to consider the effect
that small external electric and/or magnetic fields have on the molecular
energy. These determine well-known molecular properties, such as the
(hyper)polarizability, magnetizability, A- and g-tensors, nuclear magnetic
shieldings, among others.

Although quantum algorithms have been suggested to calculate deriva-
tives of a function represented on a quantum register [184, 202–205], or of
derivatives of a variational quantum eigensolver (VQE) for optimization
purposes [115, 206], the extraction of molecular properties from quan-
tum simulation has received relatively little focus. To the best of our
knowledge only three investigations; in geometry optimization and molec-
ular energy derivatives [207], molecular vibrations [116], and the linear
response function [208]; have been performed to date.

In this chapter, we perform a geometry optimization of the H2 molecule
on a superconducting quantum processor, as well as its response to a small
electric field (polarizability), and find excellent agreement with the full
configuration interaction (FCI) solution.

7.2. Background

Let Ĥ be a Hamiltonian on a 2Nsys -dimensional Hilbert space (e.g. the
Fock space of an Nsys-spin orbital system), which has eigenstates

Ĥ|Ψj〉 = Ej |Ψj〉, (7.1)

ordered by the energies Ej . In this definition, the Hamiltonian is parametrized
by the specific basis set that is used and has additional coefficients λ1, λ2, . . .,
which reflect fixed external influences on the electronic energy (e.g. change
in the structure of the molecule, or an applied magnetic or electric field).
An dth-order derivative of the ground state energy with respect to the
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7.3. The quantum chemical Hamiltonian

parameters λi is then defined as:

Dd1,d2,...
λ1,λ2,...

=
∂dE0(λ1, λ2, . . .)

∂d1λ1, ∂d2λ2, . . .
, (7.2)

where d =
∑
i di. As quantum computers promise exponential advantages

in calculating the ground state E0 itself, it is a natural question to ask
how to efficiently calculate such derivatives on a quantum computer.

7.3. The quantum chemical Hamiltonian

A major subfield of computational chemistry concerns solving the elec-
tronic structure problem. Here, the system takes a second-quantized ab
initio Hamiltonian, written in a basis of molecular spinors { φp(r) } as
follows:

Ĥ =
∑
pq

hpqÊpq +
1

2

∑
pqrs

gpqrs

(
ÊpqÊrs − δq,rÊps

)
, (7.3)

where Êpq = ĉ†pĉq and ĉ†p (ĉp) creates (annihilates) an electron in the
molecular spinor φp. With equation (7.3) relativistic and non-relativistic
realizations of the method only differ in the definition of the matrix ele-
ments hpq and gpqrs [209]. A common technique is to assume pure spin-
orbitals and integrate over the spin variable. As we want to develop a
formalism that is also valid for relativistic calculations, we will remain
working with spinors in this chapter. Adaptation to a spinfree formalism
is straightforward, and will not affect computational scaling and error
estimates.

The electronic Hamiltonian defined above depends parametrically on
the nuclear positions, both explicitly via the nuclear potential and implic-
itly via the molecular orbitals that change when the nuclei are displaced.

7.4. Energy derivative estimation using
eigenstate truncation approximation

In this section, we present a method for calculating energy derivatives
on a quantum computer. For wavefunctions in which all parameters are
variationally optimized, the Hellmann–Feynman theorem allows for ready
calculation of energy gradients as the expectation value of the perturbing
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7. Energy derivatives on a quantum computer

operator [207, 211]:

∂E0

∂λ
= 〈Ψ0|

∂Ĥ

∂λ
|Ψ0〉. (7.4)

This expectation value may be estimated by repeated measurement of a
prepared ground state on a quantum computer, and classical calculation
of the coefficients of the Hermitian operator ∂Ĥ/∂λ. If state preparation
is performed using a VQE, estimates of the expectation values in Eq. 7.4
will often have already been obtained during the variational optimization
routine.

The Hellmann–Feynman theorem cannot be so simply extended to higher-
order energy derivatives. We may write an energy derivative via pertur-
bation theory as a sum of products of path amplitudes A and energy
coefficients fA. For example, a second order energy derivative may be
written as

∂2E0

∂λ1∂λ2
= 〈Ψ0|

∂2Ĥ

∂λ1∂λ2
|Ψ0〉

+
∑
j 6=0

2 Re

[
〈Ψ0|

∂Ĥ

∂λ1
|Ψj〉〈Ψj |

∂Ĥ

∂λ2
|Ψ0〉

]
1

E0 − Ej
, (7.5)

allowing us to identify two amplitudes

A1(j) = 〈Ψ0|
∂Ĥ

∂λ1
|Ψj〉〈Ψj |

∂Ĥ

∂λ2
|Ψ0〉, (7.6)

A2 = 〈Ψ0|
∂2Ĥ

∂λ1∂λ2
|Ψ0〉, (7.7)

and two corresponding energy coefficients

f1(E0;Ej) =
2

E0 − Ej
, f2 = 1. (7.8)

The generic form of a d-th order energy derivative may be written as

D =
∑
A

∑
j1,...,jXA−1

Re[A(j1, . . . , jXA−1)]

× fA(E0;Ej1 , . . . , EjXA−1
), (7.9)

where XA counts the number of excitations in the path.
One may approximate the sum over (exponentially many) eigenstates
|Ψj〉 in Eq. 7.9 by taking a truncated set of (polynomially many) ap-

proximate eigenstates |Ψ̃j〉. We call such an approximation the eigenstate
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7.4. Energy derivative estimation

truncation approximation, or ETA for short. However, on a quantum com-
puter, we expect both to better approximate the true ground state |Ψ0〉,
and to have a wider range of approximate excited states [82, 100, 214–216].
Here, we focus on the quantum subspace expansion (QSE) method of [82].
This method proceeds by generating a set of NE vectors |χj〉 connected

to the ground state |Ψ0〉 by excitation operators Êj ,

|χj〉 = Êj |Ψ0〉. (7.10)

This is similar to truncating the Hilbert space using a linear excitation
operator in the (classical) equation of motion coupled cluster (EOMCC)
approach [217]. The |χj〉 states are not guaranteed to be orthonormal;
the overlap matrix

S
(QSE)
j,k = 〈χj |χk〉, (7.11)

is not necessarily the identity. To generate the set |Ψ̃j〉 of orthonormal
approximate eigenstates, one can calculate the projected Hamiltonian ma-
trix

H
(QSE)
j,k = 〈χj |Ĥ|χk〉, (7.12)

and solve the generalized eigenvalue problem:

Ĥ(QSE)~v(j) = ẼjŜ
(QSE)~v(j) → |Ψ̃j〉 =

∑
l

~v
(j)
l |χl〉. (7.13)

Regardless of the method used to generate the eigenstates |Ψ̃j〉, the
dominant computational cost of the ETA is the need to estimate N2

E ma-
trix elements. Furthermore, to combine all matrix elements with constant
error requires the variance of each estimation to scale as N−2

E (assuming
the error in each term is independent). Taking all single-particle exci-
tations sets NE ∝ N2

sys. However, in a lattice model one might consider
taking only local excitations, setting NE ∝ Nsys. Further reductions to NE

will increase the systematic error from Hilbert space truncation, although
this may be circumvented somewhat by extrapolation.

For the sake of completeness, we also consider here the cost of numeri-
cally estimating an energy derivative by estimating the energy at multiple
points;

∂2E

∂λ2
=

1

δλ

(
∂E

∂λ
(λ+ δλ/2)− ∂E

∂λ
(λ− δλ/2)

)
+O(δλ2). (7.14)

In this equation, the derivatives can be computed using VQE via the
Hellmann–Feynman theorem. One can see that the sampling noise is
amplified by the division of δλ.
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7. Energy derivatives on a quantum computer

7.5. Geometry optimization on a
superconducting quantum device

To demonstrate the use of energy derivatives directly calculated from a
quantum computing experiment, we first perform geometry optimization
of the diatomic H2 molecule, using two qubits of a superconducting trans-
mon device. (Details of the experiment are given in Sec. 7.B.) Geom-
etry optimization aims to find the ground state molecular geometry by
minimizing the ground state energy E0(R) as a function of the atomic
co-ordinates Ri. In this small system, rotational and translational sym-
metries reduce this to a minimization as a function of the bond distance
RH−H In Fig. 7.1, we illustrate this process by sketching the path taken by
Newton’s minimization algorithm from a very distant initial bond distance
(RH−H = 1.5Å). At each step of the minimization we show the gradient
estimated via the Hellman–Feynman theorem. Newton’s method addi-
tionally requires access to the Hessian, which we calculated via the ETA
(details given in Sec. 7.B). The optimization routine takes 5 steps to con-
verge to a minimum bond length of 0.749Å, within 0.014Å of the target
FCI equilibrium bond length (given the chosen STO-3G basis set). To
demonstrate the optimization stability, we performed 100 simulations of
the geometry optimization experiment on the quantumsim density-matrix
simulator [92], with realistic sampling noise and coherence time fluctua-
tions (details given in Sec. 7.C). We plot all simulated optimization tra-
jectories on Fig. 7.1, and highlight the median (RH−H, E(RH−H)) of the
first 7 steps. Despite the rather dramatic variations between different
gradient descent simulations, we observe all converging to within similar
error bars, showing that our methods are indeed stable.

To study the advantage in geometry optimization from direct estima-
tion of derivatives on a quantum computer, we compare in Fig. 7.2 our
performance with gradient-free (Nelder-Mead) and Hessian-free (conju-
gate gradient, or CG) optimization routines. We also compare the perfor-
mance of Newton’s method with an approximate Hessian from Hartree-
Fock (HF) theory. All methods converge to near-identical minima, but
both Newton methods converge about twice as fast as the raw CG method,
which in turn converges about twice as fast as Nelder-Mead. The density-
matrix simulations predict that the ETA method Hessians provide less
stable convergence than the HF Hessians; we attribute this to the fact
that the HF Hessian at a fixed bond distance does not fluctuate between
iterations. The density-matrix simulations also predict the CG method
performance to be on average much closer to the Newton’s method perfor-
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7.5. Geometry optimization on a superconducting quantum device

Figure 7.1.: Illustration of geometry optimization of the H2 molecule. A clas-
sical optimization algorithm (Newton) minimizes the estimation of the true
ground state energy (dark blue curve) on a superconducting transmon quantum
computer (red crosses) as a function of the bond distance RH−H. To improve
convergence, the quantum computer provides estimates of the FCI gradient (red
arrows) and the Hessian calculated with the response method. Dashed verti-
cal lines show the position of the FCI and estimated minima (error 0.014Å).
Light blue dashed lines show the median value of 100 density matrix simula-
tions (Sec. 7.C) of this optimization, with the shaded region the corresponding
interquartile range.
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7. Energy derivatives on a quantum computer

Figure 7.2.: Comparison of geometry optimization via different classical opti-
mization routines, using a quantum computer to return energies and Jacobians
as required, and estimating Hessians as required either via the ETA on the
experimental device, or the Hartree-Fock (HF) approximation on a classical
computer. Each algorithm was run till termination with a tolerance of 10−3,
so as to be comparable to the final error in the system. (Inset) bar plot of the
number of function evaluations of the four compared methods. Light blue points
correspond to median Nfev from 100 density-matrix simulations (Sec. 7.C) of
geometry optimization, and error bars to the interquartile ranges.
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7.5. Geometry optimization on a superconducting quantum device

Figure 7.3.: Absolute error in energies and energy derivatives from an exper-
imental quantum computation on 11 points of the bond dissociation curve of
H2. The error is dominated here by experimental sources (in particular qubit
decay channels); error bars from sampling noise are smaller than the points
themselves. Continuous lines connect the median value of 100 density matrix
simulations at each points, with the shaded region corresponding to errors to
the interquartile range.

mance. However, we expect the separation between gradient and Hessian-
free optimization routines to become more stark at larger system sizes, as
is observed typically in numerical optimization [155].

To separate the performance of the energy derivative estimation from
the optimization routine, we study the error in the energy E, the Jacobian
J and Hessian K given as εA = |AFCI −Aexpt|, (A = E, J,K). In Fig. 7.3,
we plot these errors for different bond distances. For comparison we ad-
ditionally plot the error in the HF Hessian approximation. We observe
that the ETA Hessian is significantly closer than the HF-approximated
Hessian to the true value, despite the similar performance in geometry
optimization. The accuracy of the ETA improves at large bond distance,
where the HF approximation begins to fail, giving hope that the ETA
Hessian will remain appropriate in strongly correlated systems where this
occurs as well.
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7. Energy derivatives on a quantum computer

Figure 7.4.: Estimated polarizability of the hydrogen molecule as a function
of the bond distance, in atomic units (1 a.u. = 0.14818471 Å3).

7.6. Polarizability estimation

A key property to model in quantum chemistry is the polarizability, which
describes the tendency of an atom or molecule to acquire an induced dipole
moment due to a change in an external electric field ~F . The polarizability

tensor may be calculated as αi,j = ∂E(~F )
∂Fi∂Fj

∣∣∣
~F=0

1. In Fig. 7.4, we calculate

the z-component of the polarizability tensor of H2 in the ETA, and com-
pare it to FCI and HF polarizability calculations on a classical computer.
We observe good agreement to the target FCI result at low RH−H, finding
a 0.060 a.u. (2.1%) error at the equilibrium bond distance (including the
inaccuracy in estimating this distance). However our predictions deviate
from the exact result significantly at large bond distance (RH−H & 1.2 Å).
We attribute this deviation to the transformation used to reduce the de-
scription of H2 to a two-qubit device (see Sec. 7.B), which is no longer
valid when adding the dipole moment operator to the Hamiltonian. To
confirm this, we classically compute the FCI polarizability following the
same transformation (which corresponds to projecting the larger operator
onto a 2-qubit Hilbert space). We find excellent agreement between this
and the result from the quantum device across the entire bond dissocia-

1The first-order derivative ∂E/∂Fi gives the dipole moment, which is also of interest,
but is zero for the hydrogen molecule.
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7.7. Conclusion

tion curve. This implies that simulations of H2 on a 4-qubit device should
match the FCI result within experimental error.

7.7. Conclusion

In this chapter, we have designed a new method for estimating energy
gradients on a near-term quantum computer that we named eigenstate
truncation approximation. We have demonstrated the use of this method
on a small-scale quantum computing experiment, obtaining the equilib-
rium bond length of the H2 molecule to 0.014Å (2%) of the target Full-CI
value, and estimating the polarizability at this bond length to within 0.060
a.u. (2.1%) of the same target.

Our method do not particularly target the ground state over any other
eigenstate of the system, and so can be used out-of-the-box for gradi-
ent estimation for excited state chemistry. Further investigation is also
required to improve some of the results drawn upon for this work, in
particular reducing the number of measurements required during a VQE.
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Appendix

7.A. Appendix: Classical computation

The one- and two-electron integrals defining the fermionic Hamiltonian in
Eq. 7.3 are obtained from a preliminary HF calculation that is assumed
to be easily feasible on a classical computer. In non-relativistic theory the
one-electron integrals are given by

hpq =

∫
drφ∗p(r)

(
−1

2
∇r + V (r)

)
φq(r),

(7.15)

where V (r) is the electron-nuclear attraction potential from fixed nuclei
at positions Ri. The two-electron integrals are given by,

gpqrs =

∫∫
dr1dr2

φ∗p(r1)φq(r1)φ∗r(r2)φs(r2)

r12
. (7.16)

For simplicity we used a finite difference technique to compute the ma-
trix representations of perturbations corresponding to a change in nuclear
coordinates and an external electric field

∂Ĥ

∂λ
≈ Ĥ(λ+ δλ/2)− Ĥ(λ− δλ/2)

δλ
, (7.17)

and

∂2Ĥ

∂λ2
≈ Ĥ(λ+ δλ) + Ĥ(λ− δλ)− 2Ĥ(λ)

δλ2
, (7.18)

where δλ = 0.001 corresponds to a small change in λ. The above (per-
turbed) quantum chemical Hamiltonians have been determined within
the Dirac program [219] and transformed into qubit Hamiltonians using
the OpenFermion [90] package. This uses the newly-developed, freely-
available [220] OpenFermion-Dirac interface, allowing for the simulation
of relativistic quantum chemistry calculations on a quantum computer.
While a finite difference technique was sufficient for the present purpose,
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7. Energy derivatives on a quantum computer

such schemes are sensitive to numerical noise and have a high compu-
tational cost when applied to larger molecular systems. A consideration
of the analytical calculation of energy derivatives can be found in the
Supplementary Materials.

7.B. Appendix: Experimental methods

The experimental implementation of the geometry optimization algorithm
was performed using two of three transmon qubits in a circuit QED quan-
tum processor. This is the same device used in Ref. [44] (raw data is the
same as in Fig.1(e) of this paper, but with heavy subsequent processing).
The two qubits have individual microwave lines for single-qubit gating
and flux-bias lines for frequency control, and dedicated readout resonators
with a common feedline. Individual qubits are addressed in readout via
frequency multiplexing. The two qubits are connected via a common bus
resonator that is used to achieve an exchange gate,

1 0 0 0
0 cos(θ) i sin(θ) 0
0 i sin(θ) cos(θ) 0
0 0 0 1

, (7.19)

via a flux pulse on the high-frequency qubit, with an uncontrolled addi-
tional single-qubit phase that was cancelled out in post-processing. The
exchange angle θ may be fixed to a π/6000 resolution by using the pulse
duration (with a 1 ns duration) as a rough knob and fine-tuning with
the pulse amplitude. Repeat preparation and measurement of the state
generated by exciting to |01〉 and exchanging through one of 41 different
choices of θ resulted in the estimation of 41 two-qubit density matrices ρi
via linear inversion tomography of 104 single-shot measurements per pre-
rotation [111]. All circuits were executed in eQASM [221] code compiled
with the QuTech OpenQL compiler, with measurements performed using
the qCoDeS [222] and PycQED [223] packages.

To use the experimental data to perform geometry optimization for
H2, the ground state was estimated via a VQE [39, 87]. The Hamilto-
nian at a given H-H bond distance RH−H was calculated in the STO-
3G basis using the Dirac package [219], and converted to a qubit rep-
resentation using the Bravyi-Kitaev transformation, and reduced to two
qubits via exact block-diagonalization [41] using the Openfermion pack-
age [90] and the Openfermion-Dirac interface [220]. With the Hamiltonian
Ĥ(RH−H) fixed, the ground state was chosen variationally: ρ(RH−H) =
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minρi Trace[Ĥ(RH−H)ρi]. The gradient and Hessian were then calculated
from ρ(RH−H) using the Hellmann–Feynman theorem and ETA respec-
tively. For the ETA, we generated eigenstates using the QSE, with the
Pauli operator XY as a single excitation. This acts within the number
conserving subspace of the two-qubit Hilbert space, and, being imaginary,
will not have the real-valued H2 ground state as an eigenstate. (This in
turn guarantees the generated excited state is linearly independent of the
ground state.) For future work, one would want to optimize the choice
of θ at each distance RH−H, however this was not performed due to time
constraints. We have also not implemented the error mitigation strategies
studied in Ref. [44] for the sake of simplicity.

7.C. Appendix: Simulation methods

Classical simulations of the quantum device were performed in the full-
density-matrix simulator ( quantumsim) [92]. A realistic error model of
the device was built using experimentally calibrated parameters to ac-
count for qubit decay (T1), pure dephasing (T ∗2 ), residual excitations of
both qubits, and additional dephasing of qubits fluxed away from the
sweet spot (which reduces T ∗2 to T ∗,red2 for the duration of the flux pulse).
This error model further accounted for differences in the observed noise
model on the individual qubits, as well as fluctuations in coherence times
and residual excitation numbers. Further details of the error model may
be found in Ref. [44] (with device parameters in Tab.S1 of this reference).

With the error model given, 100 simulated experiments were performed
at each of the 41 experimental angles given. Each experiment used unique
coherence time and residual excitation values (drawn from a distribution
of the observed experimental fluctuations), and had appropriate levels of
sampling noise added. These density matrices were then resampled 100
times for each simulation.

7.D. Appendix: Numerical optimization and
approximate Hessian calculations

Numerous numerical methods for geometry optimization exist, some gradient-
free, some requiring only gradient calculations, and some making use of
both gradients and Hessian data [155, 195]. As sampling noise from a
quantum computer is typically far larger than the fixed point error on
a classical computer, optimization techniques are required to be stable
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7. Energy derivatives on a quantum computer

in the presence of this noise. In particular, common implementations of
algorithms that numerically estimate gradients tend to construct approx-
imate derivatives by difference approximations, which (as we investigated
above) dramatically enhance sampling noise unless care is taken. The
Nelder–Mead gradient-free algorithm [224] is a common choice for opti-
mization in quantum algorithms for this reason; as it does not rely on
such an approximation, and implementations in scipy [159] prove rela-
tively stable. Gradient- and Hessian-requiring algorithms do not tend to
suffer from such instability as gradient-free methods.

In this work, our geometry optimization was reduced to a one-dimensional
problem, removing some of the complexity of the task. With more atoms,
one need to choose both the direction and the distance to step towards
the minima of the energy landscape. Both the CG and Newton’s meth-
ods are adjustments to the steepest descent algorithm (which aims to
go solely in the direction of the derivative) to account for local curva-
ture. In the absence of any higher order derivatives to assist adjustment,
the non-linear CG algorithm weights each direction against traveling in
previously-explored directions, and then performs a line-search in this di-
rection (absent additional information that allows an estimation of how
far to initially travel). Newton’s method, by comparison, benefits from
access to the Hessian, allowing us to choose

δR =

[
∂2E0

∂R2

]−1
∂E0

∂R
, (7.20)

for the direction. One must compensate here for the fact that we wish to
minimize, and not maximise, the energy. For our one-dimensional problem
this is achieved by taking the absolute value of ∂2E0/∂R

2
H−H; for a higher-

dimensional problem this is slightly more involved [155]. Regardless, such
modified Newton’s methods tend to provide a far more optimal method for
estimating higher dimensional functions than Hessian-free methods [155,
195]. We are further able to bound the minimum bond length in our
geometry optimization (in particular to RH−H > 0.3 Å), which can be of
importance for stability as classical methods tend to fail when atoms are
unrealistically close together.

For large systems when low accuracy is needed (e.g. at the start of a
geometry optimization calculation), one may consider calculating the Hes-
sian via the HF Hamiltonian for the same geometry as a low-cost alterna-
tive to explicit calculation on the quantum computer. This is a standard
technique for geometry optimization in computational chemistry [225]. As
the Hessian is not used to determine convergence (which depends instead
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on the size of the gradient), the approximation only affects the conver-
gence rate and stability, rather than the final result. This is even more so
for quasi-Newton methods, as the Hessian is updated during the geometry
optimization by the estimated gradients, which are more accurate. Cal-
culating the HF Hessian is a standard procedure in most computational
programs; for further mathematical information, we refer the reader to
Ref. [226].
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