
Optimization of quantum algorithms for near-term
quantum computers
Bonet Monroig, X.

Citation
Bonet Monroig, X. (2022, November 2). Optimization of quantum algorithms
for near-term quantum computers. Casimir PhD Series. Retrieved from
https://hdl.handle.net/1887/3485163

Version: Publisher's Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/3485163

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3485163

5. Performance comparison of
optimization methods for
variational quantum
algorithms

5.1. Introduction

Recently we have witnessed an explosion of quantum computer prototypes
accessible to researchers in academic and industrial laboratories. Existing
quantum hardware has already demonstrated the ability to outperform
classical computers in specific mathematically contrived tasks [136, 137].
However, it is still unclear whether noisy intermediate-scale quantum
(NISQ) [47] hardware can outperform classical computers on practically
useful tasks. Here, variational quantum algorithms (VQA) [39, 40, 87]
were introduced as a means of preparing classically-hard quantum states
by tuning parameters of a quantum circuit to optimize a cost function by
utilising a classical optimizer.

The overall performance of VQAs depends on the performance of the
classical optimization algorithm. Finding the limitations of these opti-
mization methods for different VQA tasks is critical if they are to impact
research and industry. For this, researchers have proposed new classical
optimization algorithms that exploit periodic properties of parametrized
quantum circuits [138, 139]. Other works have focused on using machine
learning techniques to optimize VQAs [140, 141]. These articles bench-
mark new optimization techniques relative to standard classical optimizers
on a wide variety of systems. However, to the best of our knowledge, no
extensive comparison of the most common optimization methods for these
tasks has been reported yet.

In this chapter we study three aspects that affect the optimization per-
formance in VQAs. We focus on four off-the-shelf optimizers (SLSQP,
COBYLA, CMA-ES and SPSA) for the task of finding an approximate
ground-state energy of few physical systems. We first look at two dif-

87

5. Performance comparison of optimization methods

ferent sampling strategies and how they affect the optimization perfor-
mance with default optimizer hyper-parameters. Then we focus on hyper-
parameter tuning of CMA-ES and SPSA; finding a comparable perfor-
mance between them given optimal hyper-parameters, with the winner
depending on the details of the problem. Finally, we investigate the ac-
curacy of the solutions in the presence of stochastic sampling noise. We
define a ‘sampling noise floor’: a bound on the accuracy that an optimizer
can reach when the optimal parameters are those of the best-ever function
evaluation. Additionally, we show that CMA-ES algorithm can outper-
form this ‘sampling noise floor’ when the optimal parameters are selected
from an internal estimate of the optimal candidate. Our main contribu-
tion is strong numerical evidence that the optimal parameters of a VQA
should not be taken from the best-ever measured function evaluation.

5.2. Background

A variational quantum algorithm attempts to find approximate ground
states of an N -qubit quantum system as the output of a circuit U(~θ) with

tunable parameters ~θ. This generates a variational ansatz,

|Ψ(~θ)〉 = U(~θ)|Φ〉, (5.1)

where the parameters ~θ ∈ [0, 2π]d control the rotations of single and two-
qubit gates in a quantum circuit implementation of U applied to an initial
state |Φ〉 (i.e., U(~θ) = Uk(θk)Uk−1(θk−1) . . . U0(θ0)|Φ〉). During a VQA

run, these parameters are tuned to optimize a cost function C(~θ), which
in our case is the expectation value of a Hermitian observable Ô relative
to the state |Ψ(~θ)〉,

C(~θ) = 〈Ô〉 = 〈Ψ(~θ)|Ô|Ψ(~θ)〉. (5.2)

To measure the expectation value of Ô without additional quantum cir-
cuitry, it is typical to write Ô as a linear combination of easy-to-measure
operators, i.e., Pauli operators P̂i ∈ {I, X, Y, Z}⊗N

Ô =
∑
i

ciP̂i → C(~θ) = 〈Ô〉 =
∑
i

ci〈P̂i〉. (5.3)

A VQA then passes the estimation of the cost function C(~θ) to some

classical optimization routine to find the values of ~θ minimizing C. This
optimization loop and the optimizer choices are the focus of this chapter.

88

5.2. Background

To get an estimate of the expectation value 〈P̂i〉, one prepares and
measures the state multiple times in the P̂i basis and calculates the mean
of the eigenvalues observed. This approximates the cost function C by an
estimator C̄, whose distribution is dependent on the number of repetitions
M used to calculate 〈P̂i〉,

C̄(~θ,M) =
∑
i

ci
[
〈P̂i〉+ εi(M)

]
. (5.4)

Here, εi is a random variable drawn from a binomial distribution with
variance σ2

i ∼ 1/M that is used to simulate the experimental shot or sam-
pling noise. Assuming that Pauli operators are measured independently,
the variance of the estimator C̄ may be propagated directly,

Var[C̄] =
∑
i

c2iσ
2
i . (5.5)

In general, the assumption of independence is violated. One may mea-
sure mutually commuting operators in parallel [124, 125, 132–134, 142].
Then the resulting measurement has non-zero covariance [108, 115], which
should be accounted for. However, this only introduces a constant fac-
tor to the estimation cost, and will not significantly impact the relative
optimzer performance. Here, we will use M , defined in Eq. (5.4), as the

overall cost for the quantum subroutine which takes ~θ and M as inputs,
and outputs C̄(~θ,M).

To optimize within a VQA, an access to C(~θ) is provided to a classical

optimizer, which then minimizes the sampled cost function C̄(~θ,M) as a

function of the classical parameters ~θ. One can additionally provide esti-
mates of gradients ∇θC (or higher order derivatives) in order to perform
gradient-based (or Newton-like) optimization. To avoid a comparison of
the runtime of gradient estimation to that of estimating the raw cost func-
tion C̄(~θ,M), we only compare four gradient-free optimization algorithms.
Moreover, it has been shown that gradient-based optimization strategies
suffer given noisy function evaluations with simple noise structures [143]
(e.g., stationary and isotropic noisy covariance) in the sense that 1) the
convergence rate to local optima is hampered [144] and 2) such simple
noise does not help in escaping from local optima [145]. We select the
following optimizers (see Appendices for further details):

1. SLSQP determines a local search direction by solving the second-
order local approximation of the cost function that satisfies the con-
strains,

89

5. Performance comparison of optimization methods

2. COBYLA uses linear approximations of the target and constrains
function to optimize a simplex within a trust region of the parameter
space,

3. CMA-ES is a population-based optimization algorithm where the
points are drawn from a multivariate Gaussian distribution, whose
parameters (covariance matrix and location) are adapted online,

4. SPSA employs a stochastic perturbation vector to compute simul-
taneously an approximate gradient of the objective.

We compare these algorithms across multiple systems of different sizes
and number of parameters considered.

5.3. Three-stage sampling adaptation

Existing state-of-the-art quantum hardware is limited by the stability of
the devices, which need to be tuned within time-scales of hours up to
a day. This influences a hard limit on the total number of samples we
can measure before the devices changes, of the order of ∼109. This shot
budget becomes the limiting factor in VQAs. One must carefully balance
between exploring the parameter space and accurately measuring the cost
function. In this spirit, Cade et al. [146] introduced a sampling procedure
for SPSA that splits the total shot budget between three stages, resulting
in improved performance of VQAs.

Naively, one can fix the total number of shots per Pauli operator and
run the optimization until the budget is spent (i.e., if one used 1000 shots
per Pauli per function call and allocated a total shot budget of 107 per
Pauli, this would allow for a total of 10000 evaluations). We refer to
this approach as one-stage optimization. Alternatively, one could think
of an optimization strategy where the number of shots is increased as the
optimization progresses towards better parameters as introduced by Cade
et al. We perform a three-stage optimization procedure where the number
of samples per Pauli operator increases per phase, reducing the number
of total function calls. In our three-stage optimization, we fix the number
of shots per Pauli for each stage (i.e., 100-1000-10000 shots for a total
budget of 107). The number of function evaluations is then computed
from a ratio 10:3:1. For every 10 function calls at the first stage, we use
3 function calls in the second stage and 1 function call in the third stage
(i.e., 7150-2145-715 evaluations for a total budget of 107 shots per Pauli).

We compare the one- and three-stage protocols for the four optimization
algorithms previously introduced, aimed at assessing if the three-stage

90

5.3. Three-stage sampling adaptation

protocol has any evident advantage over standard sampling strategy. For
this comparison we use the relative energy error,

∆rE =

∣∣∣∣∣C(~θopt)− E0

E0 − c0

∣∣∣∣∣, (5.6)

where C(~θopt) is the noiseless cost function evaluated at the optimized

parameters ~θopt obtained from a noisy optimization. E0 is the lowest
eigenvalue of the problem. c0 is the coefficient of the identity operator,
which is the largest Hamiltonian term. This is the relevant figure of
merit to capture the performance of the optimizer as it measures the
relative error in estimating the traceless part of the Hamiltonian H −
c0I, requiring the quantum computer. Our numerical experiments are
performed under sampling noise with a total shot budget of 107, 108

and 109 per Pauli operator. In the one-stage method we fix the total
number of function evaluations to 104 and use 103, 104 and 105 shots
per Pauli operator per function call. In the three-stage procedure the
function calls are also fixed at 7150-2145-715 for all budgets, and the
shots per Pauli operator at every stage are 102-103-104, 103-104-105, and
104-105-106, respectively. The optimization stops when the shot budget
is reached. However, the SLSQP and COBYLA optimization algorithms
have a termination criterion that in most cases results in exiting early and
not utilizing their full shot budget.

We benchmark the algorithms for three different systems on 8-qubits:
H4 in a chain and square configuration and the 2x2 Hubbard model. The
results are shown in figure 5.1. For every problem we run experiments for
one-stage (blue, pink and green dots) and three-stage (red, brown, and
purple dots) protocols for each optimization. Both SLSQP and COBYLA
have a consistent improvement when the three-stage sampling is applied,
but are inferior to the performance of CMA-ES and SPSA in all cases.
Conversely, for CMA-ES the one-stage sampling has better performance
than the three-stage protocol in all three test systems. Finally, SPSA
behaves differently with respect to the sampling procedure depending on
the system. For the square configuration of H4 the three-stage sampling
has a slightly better energy. In the case of the chain configuration, the
one-stage method shows almost a 4-fold improvement over the three-stage
method. For the 2x2 Hubbard model the three-stage methods has an order
of magnitude improvement in performance. Overall, the best performance
across all problems is achieved by SPSA in both one- and three-stage
methods (indicated by green and orange ticks on the top of the panel).

91

5. Performance comparison of optimization methods

✔✔
✔✔

✔✔
✔

✔
✔✔

✔✔
✔
✔✔

✔
✔

✔

F
ig
u
re

5
.1
.:

C
o
m

p
a
ri

so
n

o
f

o
p
ti

m
iz

er
s

w
it

h
d
ef

a
u
lt

h
y
p

er
-p

a
ra

m
et

er
s

a
n
d

fo
r

th
e

o
n
e-

st
a
g
e

(b
lu

e,
p
in

k
a
n
d

g
re

en
)

a
n
d

th
re

e-
st

a
g
e

(r
ed

,
b
ro

w
n

a
n
d

p
u
rp

le
)

m
et

h
o
d
.

B
la

ck
cr

o
ss

es
d
ep

ic
t

th
e

m
ea

n
va

lu
e,

th
e

er
ro

r
b
a
rs

a
re

th
e

9
5
%

co
n
fi
d
en

ce
in

te
rv

a
l

o
f

1
5

in
d
ep

en
d
en

t
ru

n
s.

G
re

en
ti

ck
s

m
a
rk

th
e

ov
er

a
ll

w
in

n
er

o
p
ti

m
iz

a
ti

o
n

in
m

ea
n

a
n
d

st
a
n
d
a
rd

er
ro

r.
O

ra
n
g
e

ti
ck

s
m

a
rk

th
e

ov
er

a
ll

w
in

n
er

o
p
ti

m
iz

a
ti

o
n

in
m

ea
n

w
it

h
ov

er
la

p
p
in

g
er

ro
r

b
a
rs

to
o
th

er
o
p
ti

m
iz

er
s.

92

5.4. Hyperparameter tuning

5.4. Hyperparameter tuning

Most optimization algorithms come with default (hyper-)parameters de-
tailing the optimization. These (hyper)-parameters are either derived
under idealized theoretical assumptions, or evaluated from numerical ex-
periments on standard benchmarks. It is common to tune the hyper-
parameters of the optimizers when used on a function that has not been
previously studied [147, 148]. Similarly, when performing a VQA one
should consider hyper-parameter-tuning the optimizer.

Finding optimal hyper-parameters of an optimizatizer can be costly
and generally problem-dependent. A sub-field of classical optimization
has been devoted to automatizing such hyper-parameter tuning. Here
we use the iterated racing for automatic algorithm configuration [149],
IRACE (see Appendix 5.Cfor a description of the procedure), to tune the
SPSA and CMA-ES settings for four molecular systems, H4 square and
chain and H2O at equilibrium and stretched geometries (corresponding
to weakly- and strongly-correlated regimes, respectively). Additionally
we perform hyper-parameter tuning of CMA-ES for the Hubbard model
on three different configurations; 1x6, 2x2 and 2x3. For SPSA, however,
we take the results of ref. [146] where the hyper-parameters were tuned.
The hyper-parameters used for the numerical experiments can be found
in Tables I and II in Appendix 5.C.

With the tuned hyper-parameters we performed a new set of experi-
ments including new systems: H2O in its equilibrium and stretched ge-
ometries with 10 qubits and Hubbard models on 1x6 and 2x3 lattices
requiring 12 qubits. The results of these simulations are shown in fig-
ure 5.2. A first observation is that CMA-ES improves on the problems
tested without tuning. The overall performance between CMA-ES and
SPSA is roughly similar, with SPSA doing better in weakly-correlated
problems (H4 chain, H2O equilibrium and 2x2 Hubbard model). For
strongly-correlated systems, CMA-ES has a slightly better performance
with the mean values mostly within error bars (orange ticks in fig. 5.2).
Supporting our idea that hyper-parameter tuning is crucial to ensure a
good VQA performance is the 5-fold improvement of SPSA on the H4

chain problem. For the H4 square only a mild improvement is observed
for both SPSA and CMA-ES, both reaching an almost equal relative en-
ergy error. A reason of this can be that both optimizers find the optimal
parameters accessible by the ansatz, better result requiring a larger cir-
cuit.

With regards to the Hubbard model, SPSA performs clearly better on
the 2x2 configurations. However CMA-ES is capable of finding much lower

93

5. Performance comparison of optimization methods

Figure 5.2.: Comparison of optimized hyper-parameters of CMA-ES (red,
brown and purple dots) and SPSA (grey, orange and blue dots). Black crosses
and error bars depict the mean and 95% confidence interval of 15 independent
runs. Green and orange represent the same as in fig. 5.1.

points in with 108 and 109 optimization, suggesting that the optimization
landscape is not trivial, and that better results can be found. The 1x6
and 2x3 Hubbard models yield a comparable performance between the
optimizers. Again, a possible explanation for this is that they reach the
actual optimum.

Finally, we observe a that CMA-ES starts to outperform SPSA as the
system size and number of parameters increases. This might be an indi-
cation that SPSA is not as well-suited for large problems.

94

5.5. The sampling noise floor

5.5. The sampling noise floor

A successful VQA requires the optimization algorithm to return the opti-
mal parameters of C̄. It is common to assign as the optimal candidate the
one with the best-ever measured C̄. However, in VQAs, the optimization
is performed using a proxy cost function C̄ – a sampled version of the real
objective C. So, it is possible that C̄(~θ) returns a value that is lower than

its corresponding noiseless evaluation C(~θ) due to statistical fluctuations.
Any optimizer that assigns the optimal candidate to the point with the
best-ever function evaluation of C̄ will, with large probability, return a
candidate worse than the global minimum (assuming its existence). The
region of points in parameter space that can return the best-ever measured
C̄ we refer to as the sampling noise floor, discussed in the following.

Given a cost function C(~θ), we attempt to optimize its sampled version

C̄ with variance Var[C̄]. Let us assume C(~θ) has a global minimum ~θg with

noiseless value Cg, and that we evaluate C(~θ) at multiple ~θ including one

evaluation at ~θg. Under sampling noise, the value of the cost function

evaluated at ~θg is drawn with some probability 1 − p from a confidence
interval

∆p = [Cg +m(p)
√

Var[C̄],−∞), (5.7)

where m(p) ∼ log(p) is the size of the relevant confidence interval for
our distribution of C̄. Assuming this distribution is symmetric, whenever
~ω 6= ~θg satisfies C(~ω) − m(p)

√
Var[C̄] /∈ ∆p, with probability > (1 − p)

an evaluation of the noisy cost function will lie above this confidence
region, C̄(~ω) > ∆p. Then, with confidence > (1− p)2, ~θg will be correctly
identified (between these two candidates) as the optimal set of parameters.

However, when this is not the case and C(~ω) − m(p)
√

Var[C̄] ∈ ∆p, we

can no longer be confident that the true minimum ~θg will be identified.
This defines a (potentially disconnected) region in parameter space,

Ω(p) = {~ω : C(~ω) < C(~θg) + 2m(p)
√

Var[C̄]}, (5.8)

from where alternative candidates can be drawn with probability p. This
corresponds to a region of possible cost function values,

Cp =
[
C(~θg), C(~θg) + 2m(p)

√
Var[C̄]

]
, (5.9)

that an optimizer returning the best-ever measured C̄ may achieve. We
define the width of this region, 2m(p)

√
Var[C̄], as the sampling noise floor.

95

5. Performance comparison of optimization methods

This region is not completely defined, as we have not set a value for p.
In practice, the value of p depends upon the rate at which the optimizer
can converge; an optimizer that converges slowly will encounter more
parameter sets ~ω near the true minimum, increasing the probability that
one of these parameter sets might generate a false optimum. We do not
have direct access to an estimate for the width of Cp, but we can still
demonstrate the phenomenon numerically.

SPSA and CMA-ES have been designed not to rely on the best-ever
function evaluation. In particular, CMA-ES returns two different candi-
dates; the best-ever measured and a so-called favourite. The favourite
is computed by the algorithm’s update function at the end of the op-
timization process and includes all accumulated prior information. As
this information includes many more shots than a single function call,
in principle it can average out the sampling noise over the optimization
landscape, and beat the sampling noise floor. We investigate the effect of
sampling noise on these two candidates returned by CMA-ES.

Figure 5.3, shows the results of the sampling noise floor in the optimiza-
tion performance. For every system we computed the following energy
values: C̄(~θbest), C(~θbest) and C(~θfav). For each estimated energy we com-

pute the relative energy error ∆E =
C(~θopt)−E0

|E0−c0| . Note that the best-ever

function evaluation (orange points) is often below the true energy, break-
ing the variational principle. This is due to the effect of sampling noise,
and for a fair comparison we should compare C(~θbest) (red points) and

C(~θfav) (purple points), where the true cost function is evaluated. The

mean value of C(~θbest) gives an estimate for the width of the sampling
noise floor. We observe that in all cases, the mean of the favourite candi-
date is below the mean of the best candidate, showing that the optimizer
has beaten the sampling noise floor. For the Hubbard model and the H4

systems, this is not significant (up to a 95% confidence interval), but for
the two geometries of the water molecule, the difference is much larger.
Choosing the favourite over the best yields up to a 3-fold reduction of
error. We believe the difference in performance comes from the different
optimization landscapes of the different problems; studying this in detail
is a target for future work.

5.6. Conclusion

Variational quantum algorithms have recently prompted significant inter-
est as candidates amenable to near-term hardware. However, the per-

96

5.6. Conclusion

Figure 5.3.: Best-ever versus favourite candidate from CMA-ES under noisy
optimization. The optimization uses 107 shots per Pauli over the course of the
experiment with individual estimations of C̄(~θ) are made using only 104 shots per
Pauli. From left to right: (orange) best-ever measured function evaluation, (red)
the best-ever candidate evaluated noiseless, and (purple) favourite candidate
evaluted noiseless.

97

5. Performance comparison of optimization methods

formance of these quantum algorithms relies on a classical optimization
of a difficult cost function. This task is in general intractable to solve
optimally. It is, therefore, important to benchmark the available opti-
mizers for this purpose. We study the performance of four off-the-shelf
optimization algorithms under the effect of sampling noise for the task of
finding the ground-state energies. We perform a comparison using default
hyper-parameters, and then extend the analysis using a three-stage sam-
pling method from Ref. [146] and by adding hyperparameter tuning. First
find that SPSA performs best in both standard and three-stage samplings
without tuning. Next, we focus on the performance of SPSA and CMA-
ES in the three-stage procedure. We then hyper-parameter-optimize these
two methods. With these new parameter settings, SPSA and CMA-ES
have a comparable performance on the strongly-correlated systems and a
small advantage for SPSA on the weakly-correlated ones. We notice that
the advantages of SPSA seem to vanish as problem sizes grow.

Finally, we study the effect of sampling noise on the optimization perfor-
mance using CMA-ES. We observe that the best-ever function evaluation
is may not be a feasible optimal candidate, contrary to the common ap-
proach in classical optimization. Specifically, we show that the best-ever
result suffers from a sampling noise floor problem that makes any of the
parameters within it a potential best-ever result. In contrast, the so-
called CMA-ES favourite candidate obtained from its update rule at the
end of the optimization shows an overall better mean and standard devi-
ation than its best-ever counter-part, indicating the sampling noise floor
can be overcome. We expect that our analytical and numerical results of
the sampling noise floor opens a new line of inquiry about optimization
methods for VQAs.

98

Appendix

5.A. Appendix: Details on optimization
algorithms

In this appendix, we provide a more detailed description of the optimiza-
tion algorithms used in this chapter.

� Simultaneous perturbation stochastic approximation algorithm [150,
151] (SPSA) is designed for noisy evaluations of a cost function,
where a stochastic perturbation vector (for instance, a vector whose
components are independently sampled from the Rademacher dis-
tribution) is used to simultaneously estimate all partial derivatives
at given a point. Compared to the well-known finite difference
method to estimate the gradient, which requires 2d evaluations of
the cost function defined over Rd, the stochastic approximation al-
ways consumes two evaluations, hence saving many function evalu-
ations when the search dimension is high. However, this algorithm
does not follow exactly the gradient direction due to the use of
stochastic perturbation.

� Constrained Optimization BY Linear Approximations (COBYLA)
[152] is designed for constrained derivative-free optimization. It em-
ploys linear approximations to the objective and constraint functions
via a linear interpolation given M + 1 points (or simplex). These
approximations are then optimized within a trust region at each
step.

� Sequential Least Squares Quadratic Programming (SLSQP) [153,
154] is an implementation1 of the more general Sequential Quadratic
Programming (SQP) approach [155] for solving constrained opti-
mization problems. Loosely speaking, in each iteration, SQP pro-
poses a local search direction by solving a sub-problem defined at

1We took the implementation from the scipy package, which is based on the original
software as described in [153].

99

5. Performance comparison of optimization methods

the current search point in which the nonlinear cost function is re-
placed by its local second-order approximation and the constraints
are approximated by their affine approximation. When there is no
constraint, this method degenerates to Newton’s method.

� Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES)
[156] is the state-of-the-art direct search algorithm for continuous
black-box optimization problem, which distinguishes itself from other
algorithms in self-adaptation of its internal variables to the energy
landscape. Briefly, this algorithm iteratively draws a number of can-
didate solutions from a multivariate Gaussian distribution, in which
the shape of this distribution (e.g., covariance matrix and location)
is adapted online based on the evaluated points in its trajectory.

5.B. Appendix: Numerical experiments

In this appendix, we describe the numerical experiments used to generate
the data for the figures of the chapter. The code and data to reproduce
these figures can be found in [157].

To generate the target problems we use the open-source electronic struc-
ture package OpenFermion [90]. In addition, we generate the molecu-
lar systems with the computational chemistry software Psi4 through the
OpenFermion plug-in. The classical numerical simulations are performed
using the open-source quantum circuit simulator package Cirq [158]. Re-
garding the optimization methods we use the Scipy [159] sofware for
COBYLA and SLSQP, PyCMA [160] for CMA-ES and an in-house version
of SPSA based on the code in [161].

As described in the main text, we focus on the performance of the
optimization methods for VQAs under sampling noise conditions. In order
to include the sampling noise in our experiments we compute a noisy
expectation value for every Pauli operator in the Hamiltonian with a fixed
number of shots, as follows:

1. Prepare the ideal quantum state, measure 〈Pi〉 and p = 1−〈Pi〉
2 ,

2. sample p̃ = B(p,M) from a binomial distribution with M shots,

3. compute a noise expectation value 〈P̃i〉 = 1− 2p̃,

4. calculate the noisy Hamiltonian expectation value as

〈H̃〉 =
∑
i

ci〈P̃i〉. (5.10)

100

5.B. Appendix: Numerical experiments

H2O Equilibrium Stretched
O (0.0, 0.0, 0.1173) (0.0, 0.0, 0.0)
H (0.0, 0.7572, -0.4692) (0.0, 1.8186, 1.4081)
H (0.0, -0.7572, -0.4692) (0.0, -1.8186, 1.4081)

Table 5.1.: Table describing the configurations of the atoms for the two water
molecule problems used in this chapter.

This is a good approximation to the sampling noise generated by mea-
suring the expectation values of Pauli operators in real hardware, when
the number of shots is large enough. Moreover, we avoid the bottleneck
of preparing and measuring the same state multiple times.

In the Fermi-Hubbard model experiments (see app. 5.E for further de-
tails), we set the parameters of the Hamiltonian to t = 1.0 and U = 2.0.
The ansatz circuit for these problems is constructed using the Variational
Hamiltonian Ansatze (VHA) with 5 layer for the 1x6, 2 layer for the 2x2
and 4 layers for the 2x3 Hubbard model. These are the minimum number
of layers needed to achieve a ground-state fidelity of 0.99 in ref. [146].

For the H4 in the chain configuration, the first hydrogen atom is lo-
cated at 0.0 in all coordinates, then every atom is separated in the x-
direction by 1.5Å. In the square configuration, we fix the hydrogen
atoms in 2-dimensions. The positions of the atoms are parametrized
by their polar coordinates with R = 1.5Å and θ = π

4 , and we locate
them at (x, y, 0), (x,−y, 0), (−x, y, 0), (−x,−y, 0) with x = R cos(θ) and
y = R sin(θ). For the water molecule problems, the (x, y, z)-coordinates
of the atoms given in Table 5.1. Additionally, in both of the problems
we reduce the active space by freezing the lowest two lowest orbitals,
thus reducing the problem from 14 qubits to 10 qubits (or from 7 to 5
spin-orbitals). As a trial state to approximate the ground-state of the
molecular systems, we use the so-called Unitary Couple-Cluster ansatze.
A detailed description on how we construct the UCC ansatze can be found
in a separate appendix 5.D.

Finally, the total number of parameters to be optimized for each target
problem can be found in table 5.2.

101

5. Performance comparison of optimization methods

System # Parameters
H4 chain 14
H4 square 10
H2O eq. 26
H2O stret. 26
Hub. 1x6 15
Hub. 2x2 6
Hub. 2x3 16

Table 5.2.: Number of parameters of the ansatze for each target problem.

5.C. Optimization algorithms
hyper-parameters

Prior to applying the aforementioned optimizers on VQAs, we also op-
timize the hyper-parameters of those optimizers. Such an extra tuning
task aims at bringing up the performance of each optimizer to the max-
imum, hence facilitating a fair comparison on each problem. To achieve
this task efficiently, we utilize the well-known IRACE algorithm f for
the hyperparameter tuning. Irace has been extensively applied in auto-
mated machine learning researches for configuring machine learning mod-
els/optimizers [162, 163].

Built upon a so-called iterated racing procedure, this algorithm em-
ploy a statistical test (usually the Wilcoxon ranked-sum test) to obtain
a robust (with respect to the sampling noise in measured energy values)
ranking of hyper-parameter settings, thereby serving as a suitable choos-
ing for our task. The tuning process with IRACE initiates by fixing the
subset of optimizer hyper-parameters to be modified, including bounds
and potential constrains. Then, a ’race’ between randomly sampled val-
ues begins. These configurations are evaluated a fixed number of times,
and the less favourable configurations are disregarded based on a statisti-
cal test. The configurations that survived are then raced again until the
budget of evaluations is depleted or the number of configurations is below
a threshold. Next, IRACE updates the candidate generation model based
on the survival configurations, and generates a set of new configurations
to race against the elites. The racing procedure is repeated until the total
budget is depleted. The surviving configurations are returned as the opti-
mal configurations of the algorithm. The final hyper-parameters used for
the experiments are the average of the survivors are shown in Table 5.3

102

5.D. Appendix: Unitary Coupled-cluster ansatz

SPSA a α c γ
default 0.15 0.602 0.2 0.101
H4 chain 1.556 0.809 0.106 0.097
H4 square 0.867 0.593 0.133 0.113
H2O eq. 0.103 0.878 0.149 0.131
H2O stret. 0.660 0.743 0.253 0.108
Hubbard 0.15 0.602 0.2 0.101

Table 5.3.: List of values for SPSA hyper-parameters used in Fig. 5.2 after
tuning using IRACE. We perform hyper-parameter optimization only with H4

chain and H2O equilibrium and use the same values for the respective square
and stretched configurations. For the Hubbard models we take the default
values as ref. [146] suggest their optimality.

and 5.4.
In detail, the hyper-parameters we tuned are as follows:

� For SPSA, we use the following ranges for each hyper-parameter:
a ∈ [0.01, 2], α ∈ [0, 1], c ∈ [0.01, 2], and γ ∈ [0, 1/6].

� For CMA-ES, we use the following ones: population size ∈ [30, 130],
c mean ∈ [0, 1], µ ∈ [0, 0.5], Damp. factor ∈ [0, 1], and σ0 ∈ [0.25, 1.1].

For running the irace algorithm, we allocated 500 evaluations of the hyper-
parameters as the total budget, as well as a maximum total running time
of 7 days, and used two evaluations of each hyper-parameter in the begin-
ning of each race. Also, we used the F-test for eliminating worse config-
urations in the racing procedure. The finally suggested configurations in
Table 5.3 and 5.4 are the best elites from four independent runs of irace.

As for COBYLA and SLSQP, we took their default hyper-parameter
settings, i.e., ρinitial = 0.1 and Tolerance= 10−8 for COBYLA and ε =
0.055 and Tolerance= 10−8.

5.D. Appendix: Unitary Coupled-Cluster
ansatz based on coupled-cluster
amplitudes

Several classes of systems remain challenging to solve, even for the coupled
cluster methods considered as the golden standard in quantum chemistry.

103

5. Performance comparison of optimization methods

CMA-ES2 σ0 Population µ c mean Damp. Factor
default 0.15 d4 + 3 log(m)e 0.5 1.0 1.0
H4 chain 0.20 149 0.383 0.293 0.665
H4 square 0.309 99 0.409 0.561 0.852
H2O eq. 0.344 99 0.460 0.192 0.770
H2O stret. 0.310 104 0.380 0.802 0.819
Hub. 1x6 0.9131 51 0.3814 0.3614 0.6006
Hub. 2x2 0.8561 113 0.2741 0.6317 0.6771
Hub. 2x3 0.897 128 0.1898 0.988 0.8391

Table 5.4.: List of values for CMA-ES hyper-parameters used in Fig. 5.2 after
tuning using IRACE. Here, m indicates the number of free parameters of the
ansatz in each problem.

Those systems are usually plagues by “quasidegeneracy”, meaning that
the wavefunction cannot be decomposed into a single leading component.
This leads to an important deterioration of methods relying on the sin-
gle determinant assumption (also said to be mono-reference) [164]. This
issue can be partially solved by developing multi-reference coupled clus-
ter approaches (see Refs. [165, 166] for a review). Owing to the recent
developments of quantum algorithms in the NISQ-era, there has been a re-
newed interest in the unitary formulation of coupled cluster (UCC) which
is naturally suited for quantum computation and naturally extendable to
generate multi-reference wavefunctions [39, 167], while being intractable
on classical computers [115]. Several formulations of UCC have been inves-
tigated to go beyond the standard UCCSD method where only fermionic
excitations from occupied to virtual orbitals (with respect to the reference
determinant, usually the Hartree–Fock one) are considered [115, 168–172].
However, the number of operators (and thus the number of parameters)
can rapidly become problematic if implemented naively. A powerful ap-
proach is provided by the Adaptive Derivative-Assembled Pseudo-Trotter
(ADAPT) types of ansatz [172–178], which allows to adaptively increase
the number of operators in the ansatz one by one until reaching a given
accuracy. In this chapter, we employ a different strategy by taking ad-
vantage of the amplitudes extracted from the traditional coupled cluster
method performed on a classical computer. In coupled cluster, the expo-
nential ansatz reads as follows

|Ψ(~t)〉 = eT̂ |Φ0〉, (5.11)

104

5.D. Appendix: Unitary Coupled-cluster ansatz

where |Φ0〉 denotes the reference determinant (like the Hartree–Fock wave-
function) and

T̂ =

η∑
i=1

T̂i =
∑
µ

tµτ̂µ (5.12)

(η denotes the total number of electrons) is usually truncated to singles
and doubles only:

T̂1 =
∑
i∈occ
a∈virt

tiaâ
†
aai, (5.13)

T̂2 =
∑

i>j∈occ

a>b∈virt

tijabâ
†
aâ
†
baiaj .

One could think of determining the CC amplitudes t variationally, but
this is not convenient in practice because the Baker–Campbell–Hausdorff
(BCH) expansion cannot be used (because T̂ † 6= −T̂). Tractable im-
plementations rely on a non-variational optimization using the “Linked”
formulation:

e−T̂ ĤeT̂ |Φ0〉 = E(~t)|Φ0〉. (5.14)

The amplitudes are then determined by solving a set of non-linear equa-
tions defined by projecting Eq. (5.14) against a set of excited configu-
rations {|µ〉} (configurations obtained from the excitation operators in
T̂):

〈µ|e−T̂ ĤeT̂ |Φ0〉 = 0, (5.15)

for which the BCH expansion can be used, as it can be naturally truncated
to fourth order.

In this chapter, we computed the coupled cluster amplitudes of all
our molecular systems (H4 chain, H4 square and H2O) and defined our
UCC ansatz according to these amplitudes. Instead of implementing UCC
naively by considering all possible excitations, we only keep the excitation
operators for which the corresponding CC amplitude is non-zero. This re-
duces already the total number of operators (and thus the total number of
parameters) significantly. In practice, we use the trotterized-UCC ansatz,

|Ψ(~θ)〉 =
∏
µ

eθµ(τ̂µ−τ̂†µ)|Φ0〉. (5.16)

105

5. Performance comparison of optimization methods

This trotterized form is an approximation (though it may be mitigated
by the classical optimization [179]) which depends on the ordering of the
operators. We decided to order the operators with respect to the value of
the CC amplitudes in descending order, meaning that the first operator
to be applied to the reference state within the UCC ansatz will be the
operator with the highest associated CC amplitude. We figured out that
the operators in our ansatz were also the ones picked by the ADAPT-
VQE ansatz [172], although the ordering might not different. However,
ADAPT-VQE can add new operators (or select and repeat an already
present operator) to reach a higher accuracy. To avoid performing the
(somewhat costly) first ADAPT-VQE steps, one could think about using
our strategy first and then apply ADAPT-VQE for few more steps to
increase the pool of operators slightly. Note that a stochastic classical
UCC can also be employed as a pre-processing step to determine the
important excitation operators of the UCC ansatz, as shown in the recent
work of Filip et al. [180].

In our numerical experiments the initial state is always the Hartree–
Fock state corresponding to the number of electrons in the system. The
parameters of the circuit are initialized at 0.0.

5.E. Appendix: Variational Hamiltonian
ansatz for the Hubbard model

In this section, we provide the details on the variational Hamiltonian
ansatze (VHA) used for the Hubbard model problems.

The Fermi-Hubbard Hamiltonian describes the behaviour of fermions
on a lattice of nx x ny sites. Fermions can hope to nearest-neighbour
sites with some strength t, and observe a repulsion or Coulomb term of
strength U to move to the same site with the same spin,

HHubbard = Ht +HU =

−t
∑

(i,j),σ

(
a†iσajσ + a†jσaiσ

)
+ U

∑
i

ni↑ni↓.

One can further split the hopping term with respect to the vertical and
horizontal hopping terms Ht = Hv +Hh.

The VHA were introduced in ref. [119] as a means of constructing
parametrized quantum states motivated by time-evolution by Troterriza-
tion for the Hubbard model. However, in our numerical experiments we

106

5.E. Appendix: Variational Hamiltonian ansatz for the Hubbard model

use the VHA introduced by Cade et al. [146] where the horizontal and ver-
tical terms can be implemented in parallel (see eq.[2] in reference). The
parametrized quantum state is constructed as

|Ψ(~θ)〉 = U(~θ)|Φ〉 = ΠL
l=1e

iθv2,lHv2 eiθh2,lHh2 (5.17)

eiθv1,lHv1 eiθh1,lHh1 eiθU,lHU . (5.18)

The initial state |Φ〉 is the Gaussian state of the non-interacting part of
the Hamiltonian, and the parameters of the circuit are set to 0.0.

The Fermi-Hubbard Hamiltonian are generated with the open-source
package OpenFermion [90].

107

