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4. Nearly-optimal
measurement scheduling for
partial tomography of
quantum states

4.1. Introduction

The advent of variational methods, most notably the variational quantum
eigensolver [39, 87], inspires hope that useful contributions to our un-
derstanding of strongly-correlated physical and chemical systems might
be achievable in pre-error corrected quantum devices [41]. Following
this initial work, much progress has gone into lowering the coherence
requirements of variational methods [115], calculating system properties
beyond ground state energies [82, 116, 117], and experimental implemen-
tation [42, 83, 98, 118]. However, extracting data from an exponentially
complex quantum state is a critical bottleneck for such applications. Ini-
tial estimates for the number of measurements required to accurately ap-
proximate the energy of a variationally generated quantum state were
astronomically large, with bounds for quantum chemistry applications as
high as 1013 for a system of 112 spin-orbitals in minimal basis [119]. Al-
though improving these results is critical for the scalability of variational
approaches, until recently, little effort has been devoted to lowering the
number of measurements needed.

A common way to estimate the energy of a quantum state during a
variational quantum algorithm is to perform partial tomography [87] on
a set of observables which comprise a k-body reduced density matrix (k-
RDM)1 [108]. For instance, the fermionic 2-RDM allows one to calculate
such properties as energy [108], energy gradients [117, 120], and multipole

1While k-body qubit RDMs catalogue correlations between k qubits, k-body fermion
RDMs catalogue correlations between k fermions, and thus involve 2k fermionic
modes; e.g., the elements of the fermionic 2-RDM are the expectation values

〈c†pc†qcrcs〉.
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4. Nearly-optimal measurement scheduling of quantum states

moments [121] of electronic systems in quantum chemistry and condensed
matter problems, and further enables techniques for relaxing orbitals to
reduce basis error [82, 122]. By contrast, the qubit 2-RDM plays a vi-
tal role in spin systems, as it contains static spin correlation functions
that can be used to predict phases and phase transitions [123], and sep-
arately contains information to characterize the entanglement generated
on a quantum device [124]. Reduced density matrices thus offer a useful
and tractable description of an otherwise complex quantum state.

Partial tomography to estimate a reduced density matrix may be per-
formed by separating the observables to be tomographed into sets of
mutually-commuting operators. By virtue of their commutation, a unique
measurement scheme may be found to measure all operators in a single
set simultaneously. Subsequent measurement of non-commuting operators
requires re-preparation of the quantum state, so the time required to esti-
mate a target RDM is proportional to the number of unique measurement
circuits. Minimizing this number is crucial for the scalibility of variational
algorithms, as a naive approach requires O(N4) unique measurement cir-
cuits, which is impractical. Recent work has focused on mapping this
problem to that of clique finding or colouring of a graph [125], and ap-
plying approximate algorithms to these known NP-hard problems [126].
This achieves constant or empirically determined linear scaling improve-
ments over an approach that measures each term individually [125, 127–
130]. However, the commutation relations between local qubit or local
fermionic operators has significant regularity not utilised in naive graph-
theoretic algorithms. Leveraging this regularity is critical to optimizing
and proving bounds on the difficulty of tomography of quantum states.
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4. Nearly-optimal measurement scheduling of quantum states

In this chapter, we provide schemes for the estimation of fermionic and
qubit k-RDMs that minimize the number of unique measurement circuits
required, significantly decreasing the time required for partial state tomog-
raphy over prior art. We demonstrate a scheme to estimate qubit k-RDMs
in an N -qubit system in time O(3k logk−1N)2, achieving an exponential
increase over prior art. We then prove a lower bound of Ω(Nk) on the num-
ber of state preparations required to estimate fermionic k-RDMs (such as
those of interest in the electronic structure problem) using Clifford cir-
cuits (including the addition of ancilla qubits prepared in the |0〉 state)
and measurement in the computational basis. We describe protocols to
achieve this bound for k ≤ 2. We detail measurement circuits for these
protocols with circuit depths of O(N) and gate counts of O(N2) (requir-
ing only linear connectivity), that additionally allow for error mitigation
by symmetry verification [52, 53]. Finally, we detail an alternative scheme
to measure arbitrary linear combinations of fermionic k-RDM elements,
based on finding large sets of anti-commuting operators. This requires
O(N4/ω) measurements, but has a measurement circuit gate count of
only O(ω) on a linear array, for a free parameter ω < N .

In Tab. 4.1, we provide a history of previous art in optimizing measure-
ment schemes for the electronic structure problem, and include the new
results found in this work. We further include the lower bounds for the
number of partitions required for anti-commuting and commuting clique
cover approaches that were presented in this chapter.

4.2. Background

Physical systems are characterized by local observables. However, the
notion of locality depends on the exchange statistics of the system in
question. In an N -qubit system, data about all k-local operators within a
state ρ is given by the (qubit) k-reduced density matrices, or k-RDMs [108]

kρi1,...,ik = Tracej 6=i1,...,ik [ρ]. (4.1)

Here, the trace is over all other qubits in the system. To estimate kρ, we
need to estimate expectation values of all tensor products of k single-qubit
Pauli operators Pi ∈ {X,Y, Z}; we call such tensor products ’k-qubit’
operators. In an N -fermion system, data about all k-body operators is
contained in the (fermionic) k-body reduced density matrices, which are

2Here and throughout this chapter all logarithms are base two.
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4.3. Near-optimal measurement schemes

obtained from ρ by integrating out all but the first k particles [108]

kD = Tracek+1,...,N [ρ]. (4.2)

Estimating kD requires estimating the expectation values of all products
of k fermionic creation operators c†j with k fermionic annihilation opera-
tors cj . For instance, the 2-RDM catalogues all 4-index expectation values
of the form 〈c†pc†qcrcs〉. One can equivalently describe fermionic systems
in the Majorana basis,

γ2j = cj + c†j , γ2j+1 = i(c†j − cj), (4.3)

in which case the fermionic k-RDM may be computed from the expecta-
tion values of 2k Majorana terms γj (e.g. the 2-RDM is computed from
expectation of Majorana operators of the form 〈γiγjγkγl〉). We call such
products 2k-Majorana operators for short.

The expectation values of the above operators may be estimated with
standard error ε by O(ε−∈) repeated preparation of ρ and direct measure-
ment of the operator. This estimation may be performed in parallel for
any number of k-qubit operators P̂i or 2k-Majorana operators Ĝi, as long
as all operators to be measured in parallel commute. This suggests that
the speed of a ‘partial state tomography’ protocol that estimates expec-
tation values of all k-qubit or 2k-Majorana operators by splitting them
into a set of ‘commuting cliques’ (sets where all elements commute) is
proportional to the number of cliques required. In this chapter we focus
on optimizing partial state tomography schemes by minimizing this num-
ber. Necessarily, our approach will be different for qubit systems (where
two spatially separated operators always commute) compared to fermionic
systems (where this is often not the case).

4.3. Near-optimal measurement schemes for
local qubit and fermion operators

Partial state tomography of qubit k-RDMs can be efficiently performed
by rotating individual qubits into the X, Y , or Z basis and reading them
out. These rotations define a ‘Pauli word’ W ∈ {X,Y, Z}N , where Wi

is the choice of basis for the ith qubit. Repeated sampling of W allows
for the estimation of expectation values of any Pauli operator P that is a
tensor product of some of the Wi — we say these operators are contained
within the word. (The set of all such P is the clique corresponding to W
with the property that each P is qubit-wise commuting with the rest of
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4. Nearly-optimal measurement scheduling of quantum states

operators in the word W .) To estimate the k-qubit RDM in this manner,
we need to construct a set of words that contain all k-local operators.
For k = 2, it is sufficient to find a set of words W ∈ {A0, A1}N such
that each pair of qubits differ in their choice of letter in at least one
word. Then, permuting over A0 = X,Y, Z, and separately A1 = X,Y, Z,
extends the set to contain all 2-qubit operators. Such a set can be found
via a binary partitioning scheme, for a total of 6dlogNe + 3 cliques (see
App. 4.A for details). This scheme may be further extended to arbitrary
k > 2 with a complexity O(3k logk−1(N)). The (classical) computational
complexity to generate each word is at most O(log(N)), and O(N) to
assign each qubit, making the classical computational cost to generate
the set of measurements O(ekN logkN), which is acceptably small for
even tens of thousands of qubits. We have added code to generate the full
measurement protocol to the Openfermion software package [90].

Fermionic k-RDMs require significantly more measurements to tomo-
graph than their qubit counterparts, as many more operators anti-commute.
In a N -fermion system, the total number of 2k-Majorana operators is(

2N
2k

)
, while the size of a commuting clique of 2k-Majorana operators

may be upper-bounded by
(
N
k

)
in the N >> k limit (see App. 4.B). As

fermionic k-RDMs contain expectation values of 2k-Majorana operators,
the number of cliques required to estimate all elements in the fermionic
k-RDM scales as (

2N

2k

)
/

(
N

k

)
∼ Nk. (4.4)

In terms of the resources requirement to estimate a fermionic k-RDM,
this directly implies

Theorem 1. The number of preparations of an arbitrary N-fermion quan-
tum state ρ required to estimate all terms in the fermionic k-RDM to
within an error ε, via Clifford operations (including addition of ancilla
qubits prepared in the |0〉 state), and measurement in the computational
basis, is bounded below in the worst case as Ω(ε−2Nk).

Proof details may be found in App. 4.H. In particular, estimating
the fermionic 1-RDM requires repeated preparation of ρ and measure-
ment over at least 2N − 1 unique commuting cliques, and estimating the
fermionic 2-RDM requires repeat preparation and measurement over a
number of cliques at least

4

3
N2 − 8

3
N + 1. (4.5)

66



4.3. Near-optimal measurement schemes

Maximally-sized cliques of commuting 2k-Majorana operators may be
achieved via a pairing scheme. If we pair the 2N individual 1-Majorana
operators into N pairs {γiγj}, the corresponding set of operators iγiγj
forms a commuting set. Any product of k of these pairs will also commute,
so the set of all combinations of k pairs is a commuting clique of exactly(
N
k

)
2k-Majoranas. We say that the 2k-Majorana operators are contained

within the pairing. Curiously, each pairing saturates the bounds found in
App. 4.B for the number of mutually commuting 2k-Majorana operators
in a N -fermion system, and thus this scheme is optimal in the number
of 2k-Majorana operators targeted per measurement circuit. However,
as one 2k-Majorana operator may be contained in multiple pairings, it
remains to find a scheme to contain all 2k-Majorana operators in the
minimum number of pairings. For the 1-RDM, it is possible to reach
the lower bound of 2N −1 cliques by a binary partition scheme, which we
detail in App. 4.C. In the 2-RDM case, we have been able to achieve 10

3 N
2

cliques (also detailed in App. 4.C) by a divide and conquer approach. It
remains an open question whether the factor 5/2 between our scheme and
the lower bound (Eq. 4.5) can be improved, either by better bounding or
a different scheme.

Simultaneous estimation of the expectation value of each observable
may be achieved by repeatedly preparing and measuring states in the
iγiγj basis for all paired γi, γj in the clique. Measuring the system in this
basis is non-trivial and depends on the encoding of the fermionic Hamil-
tonian onto the quantum device. However, for almost all encodings this
requires simply permuting the Majorana labels, which may be achieved
by a single-particle basis rotation using Clifford gates (see App. 4.F). This
implies that the circuit depth should be no worse that O(N), and will not
require T-gates in a fault-tolerant setting. Furthermore, in many cases
the measurement circuit should be able to be compiled into the state
preparation circuit, reducing its cost further.

Symmetry constraints on a system (i.e. unitary or antiunitary operators
S that commute with the Hamiltonian H) force certain RDM terms to be
0 for any eigenstates of the system. For example, when a real Hamiltonian
is written in terms of Majorana operators (using Eq. 4.3), it must con-
tain an even number of odd-index 1-Majorana operators, and expectation
values of terms not satisfying this constraint on eigenstates will be set to
0. More generally, if a symmetry is a Pauli word Wsymmetry such that
W 2
symmetry = 1, then it will divide the set of all Majorana terms into those

which commute with Wsymmetry and those which anti-commute; products
of odd numbers of anti-commuting terms will have zero expectation value
on eigenstates of the system. Given n such independent symmetries, each
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4. Nearly-optimal measurement scheduling of quantum states

Figure 4.1.: Scaling of our Majorana partitioning scheme in the presence of
between 0 and 4 symmetry constraints on the system. Dashed lines are from
Eq. 4.6

of which commute with half of all 1-Majorana operators (which is typical),
we are able to contain all elements of the fermionic 2-RDM in a number
of cliques scaling to first order as

N2

(
10

3
4−Nsym + 21−Nsym

)
. (4.6)

(See App. 4.D for details.) In Fig. 4.1, we show the result of an imple-
mentation of our scheme for different numbers of symmetries at small N ,
and see quick convergence to this leading-order approximation for up to
4 symmetries (typical numbers for quantum chemistry problems). Code
to generate this measurement scheme has been added to the Openfermion
package [90].
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4.4. Measuring anti-commuting linear combinations

4.4. Measuring anti-commuting linear
combinations of local fermionic
operators

Products of Majorana and Pauli operators have the special property that
any two either strictly commute or strictly anti-commute. This raises the
question of whether there is any use in finding cliques of mutually anti-
commuting Pauli operators. Such cliques may be found in abundance
when working with Majoranas — e.g. for fixed 0 ≤ j, k, l ≤ 2N , the set
Aj,k,l = {γiγjγkγl} is a clique of 2N − 3 mutually anti-commuting oper-
ators. Curiously, it turns out that asymptotically larger anti-commuting
cliques are not possible - the largest set of mutually anti-commuting Pauli
or Majorana operators contains at most 2N + 1 terms (see App. 4.G for
a proof). The number of anti-commuting cliques required to contain all
4-Majorana operators is thus bounded below by Ω(N3), matching the
numerical observations of [130].

Although sampling each term in an anti-commuting clique A of size
L requires O(L) state preparations, it is possible to measure a (real)

linear combination O =
∑L
i=1 ciPi of clique elements in a single shot.

Since all elements of Aj,k,l share three of the same four indices, here we
can associated each Pi in the sum over the elements of Aj,k,l with the

Majorana Pi = γiγjγkγl. Given that Õ = (
∑L
i=1 c

2
i )
−1/2O looks like a

Pauli operator (Õ† = Õ, Trace[Õ] = 0), and smells like a Pauli operator
(Õ2 = 1), it can be unitarily transformed to a Pauli operator of our
choosing. In App. 4.F, we show that for systems encoded via the Jordan-
Wigner transformation, this unitary transformation may be achieved with
a circuit depth of only N −2+O(1) 2-qubit gates. It is possible to reduce
the depth further by removing Majoranas from the set — if we restrict
ourselves to subsets of ω elements of Aj,k,l, the measurement circuit will
have ω gates and be depth ω, but O(N4/ω) such sets will be needed
to estimate arbitrary linear combinations of 4-Majorana operators. This
makes this scheme very attractive in the near-term, where complicated
measurement circuits may be prohibited by low coherence times in NISQ
devices.

4.5. Conclusion

Experimental quantum devices are already reaching the stage where the
time required for partial state tomography is prohibitive without opti-
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mized scheduling of measurements. This makes work developing new and
more-optimal schemes for partial tomography of quantum states exceed-
ingly timely. In this chapter, we have shown that a binary partition strat-
egy allows one to sample all k-local qubit operators in a N -qubit system
in poly-log(N) time, reaching an exponential improvement over previous
art. By contrast, in fermionic systems we have found a lower bound on
the number of unique measurement circuits required to directly sample
all k-local operators of Ω(Ndk/2e), an exponential separation. We have
developed schemes to achieve this lower bound for k = 2 and k = 4, allow-
ing estimation of the entire fermionic 2-RDM to constant error in O(N2)
time. Additionally, we have demonstrated that one can leverage the anti-
commuting structure of fermionic systems by constructing such sets of
size 1 ≤ ω ≤ N to measure all 4-Majorana operators in O(N4/ω) time
with a gate count and circuit depth of only ω, allowing one to trade off
an decrease in coherence time requirements for an increase in the number
of measurements required.
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Appendix

4.A. Appendix: Schemes for partial state
tomography of qubit k-RDMs

In this section, we develop methods to minimize the measurement cost
for partial state tomography of qubit k-RDMs by minimizing the number
of commuting cliques needed to contain all k-qubit operators. To do so,
we associate a ‘Pauli word’ W ∈ {X,Y, Z}N to each clique: by measuring
the ith qubit in the Wi basis, we measure every tensor product of the
individual Pauli operators Wi. Thus, the clique associated to W contains
all k-qubit operators that are tensor products of the Wi — we say these
operators are ‘contained’ within the word. We then wish to find the
smallest possible set of words such that every k-qubit operator is contained
within at least one word.

We construct such a set through a k-ary partitioning scheme, which we
first demonstrate for k = 2. As motivation, consider that the set of 9
words (with A,B = X,Y, Z)

W
(A,B)
i =

{
A if i < N/2

B if i ≥ N/2 , (4.7)

contains all 2-qubit operators that act on qubits j < N/2 and k ≥ N/2.
We may generalize this to obtain all other 2-qubit operators by finding
a set of binary partitions Sn,0 ∪ Sn,1 = {1, . . . , N} such that for any
pair 0 ≤ i 6= j ≤ N there exists n, a such that i ∈ Sn,a, j ∈ Sn,1−a.
Let us define L = dlogNe, and write each qubit index i in a binary
representation, i = [i]L−1[i]L−2 . . . [i]1[i]0. Then, for n = 0, . . . , L − 1 we
define

i ∈ Sn,a if [i]n = a. (4.8)

All 0 ≤ i 6= j ≤ N differ by at least one of their first L binary digits (as

shown in Fig. 4.2(a)), so the set of words W
(A,B)
n , constructed as

[W (A,B)
n ], i =

{
A if i ∈ Sn,a
B if i ∈ Sn,1−a,

(4.9)
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4. Nearly-optimal measurement scheduling of quantum states

Figure 4.2.: Schematics of the binary partition strategy described in text. (a)
Scheme to construct O(logN) cliques that contain all 2-qubit operators. (b)
Extension of the top scheme to a set of O(log2N) cliques that contain all 3-qubit
operators.

defines a set of cliques that contain all 2-qubit operators. As W
(A,A)
n,i is

the same word for every n we need only choose this word once and so the
number of cliques may be reduced to 6L+ 3.

To see how the above may be extended to k > 2, let us consider k = 3.
We wish to find 3-ary partitions ∪3

a=1Sn,a = {1, . . . , N} that, given any
set i1, i2, i3, we can find some index n for which ia ∈ Sn,a (allowing for
permutation of the ia). Then, by running over all combinations of X,Y, Z
on the three parts of each partition, we will obtain a set of words that
contain all 3-qubit operators. We illustrate a scheme that achieves this
Fig. 4.2(b). We iterate first over n = 1, . . . , L, and find the largest n such
that i1, i2 and i3 are split into two subsets by a binary partition. (i.e.
where Sn,a ∩ {i1, i2, i3} is non-empty for a = 0 and a = 1). This implies
that two of the indices lie in one part, and one in the other. Without loss
of generality, let us assume i1 ∈ Sn,1 and i2, i3 ∈ Sn,0 (following Fig. 4.2).
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It now suffices to find a set of partitions for Sn,0 so that we guarantee
i2 and i3 are split in one such partition. We could imagine repeating
the binary partition scheme over all Sn,0; i.e. generating the logN sets
Sn,0 ∩ Sn′,a. However, we can do better than this. As i1, i2 and i3 are
not split in any binary partition Sn′,0, Sn′,1 with n′ > n, i2 and i3 must
be in a contiguous block of length 1/2n within Sn,0. This means that we
need only iterate over n′ = 0, . . . , n − 1. We must also iterate over the
same number of partitions of Sn,1, and so the total number of partitions
we require is

2

L−1∑
n=0

n = (L− 1)(L− 2). (4.10)

The above generalizes relatively easily to k > 2. Given a set I =
{i1, . . . , ik}, we find the binary partition Sn,0, Sn,1 with the largest n that
splits I into non-empty sets I0 = I ∩ Sn,0 and I1 = I ∩ Sn,1. Then, we
iterate over |I0|-ary partitions of the contiguous blocks of Sn,0 and the
|I1|-ary blocks of Sn,1. In total there are k − 1 possible ways of dividing
I (up to permutations of the elements). This implies that at each n we
have to iterate over k − 1 different sub-partitioning possibilities, making
the leading-order contribution to the number of cliques

(k − 1)

L−1∑
n=0

nk−2 ∼ L(k−1), (4.11)

and the total number of cliques O(3k logk−1N).

4.B. Appendix: Upper bounds on the size of
commuting cliques of Majorana
operators

In this appendix, we detail the bounds on the size of commuting cliques
of Majorana operators. Let us call the largest number of mutually-
commuting k-Majoranas that are a product of l unique terms (i.e. l
unique 1-Majoranas) Mk

l . (For an N -fermion system, we will eventually
be interested in the case where l = 2N .) We wish to bound this number
Mk
l by induction. All 1-Majorana operators anti-commute, so Mk

l = 1.
Then, let us consider the situation where k is even and when k is odd
separately. Suppose we have a clique of Mk

l k-Majorana operators with
k even. As there are only l unique terms, and these k-Majoranas contain
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kMk
l individual terms each, there must be a clique of dkMk

l /le of these
operators that share a single term γ0. We may write each such operator in
the form ±γ0Γi, where Γi. As [γ0Γi, γ0Γj ] = 0 if and only if [Γi,Γj ] = 0,
this gives a clique of kMk

l /l commuting (k − 1)-Majorana operators on
l − 1 unique terms, so we must have⌈

kMk
l

l

⌉
≤Mk−1

l−1 , k even. (4.12)

Now, consider the case where k is odd, let us again assume we have a clique
of M (k) commuting k-Majoranas. Two products of Majorana operators
anticommute unless they share at least one term in common, so let us
choose one k-Majorana Γ in our set; each k-Majorana must have at least
one of the k terms in Γ, so at least one such term is shared between
dM (k)/ke Majoranas in our set. Removing this term gives a clique of
dM (k)/ke (k − 1)-Majorana operators on l − 1 unique terms, and so we
have ⌈

Mk

k

⌉
≤Mk−1

l−1 , k odd. (4.13)

These equations may be solved inductively to lowest-order in k to obtain

Mk
l ∼ lbk/2c. (4.14)

This bound can be strengthened in the l >> k limit, as here the largest
commuting cliques of odd-k-Majoranas must share a single term γ0. This
can be seen as when k is odd, large sets of commuting (k− 1)-Majoranas
contain many operators that do not share any terms — a set of k −
1 commuting operators that share a single term can be no larger than
approximately l(k−3)/2. Formally, let us consider a set C of commuting
k-Majoranas, choose Γ ∈ C, and write Γ = γ1 . . . γk. Then, we may write
C = ∪iCi, where Ci is the subset of operators in C that contain γi as
a term. If there exists Γ′ ∈ C/Ci, (i.e. Γ′ commutes with all operators
in Ci but does not itself contain γi), we may divide Ci into k subsets of
Majoranas that share the individual terms in Γ′, and so |Ci| ≤ kl(k−3)/2.
If is true for all such Ci, we have then |C| ≤ ∑i |Ci| ≤ k2l(k−3)/2. As
this scales suboptimally in the large-l limit 3, we must have that C/Ci is
empty for some Ci. Then, Ci = C, and we can bound

Mk
l ≤Mk−1

l−1 , k odd. (4.15)

3For example, we can achieve better scaling in l via our pairing scheme.
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This leads to the tighter bound (assuming l even)

Mk
l ≤

l!!

(l − k)!! k!!
, (4.16)

where the double factorial implies we multiple only the even integers ≤ k.
Then, when l = 2N , for even k = 2n we see

M2n
2N ≤

2N !!

(2N − 2n)!! 2n!!

=
2NN !

2N−n(N − n)!2nn!
=

(
N

n

)
. (4.17)

This is precisely the size of the cliques obtained by pairing, proving this
scheme optimal in the large-N limit.

In practice, we observe that Eq. 4.15 is true for k = 3 whenever
l ≥ lcrit,315 (i.e. for > 8-fermion systems). This is because the largest set
of commuting 3-Majoranas that do not share a single common element can
be found to be (up to relabeling) {γ0γ1γ2, γ0γ3γ4, γ0γ5γ6, γ1γ3γ5, γ1γ4γ6, γ2γ3γ6, γ2γ4γ5},
which contains 7 terms. The above argument implies that lcrit,k scales at
worst as k2, however the bounds obtained here are rather loose, and we
expect it to do far better.

4.C. Appendix: Details of measurement
schemes for fermionic systems

We now construct asymptotically minimal sets of cliques that contain
all 2-Majorana and 4-Majorana operators. 2-Majorana operators that
share any term do not commute, so our commuting cliques of 2-Majorana
operators must contain only non-overlapping pairs of Majorana terms.
Equivalently, we need to find a set of pairings of {0, . . . , 2N} such that
each pair (i, j) appears in at least one pairing. This may be achieved
optimally for N a power of 2 via the partitioning scheme outlined in
Fig. 4.3(a). We first split {1, . . . , 2N} into a set of N2−n contiguous
blocks for n = 0, . . . , log(2N)

Bnm = {m× 2n ≤ i < (m+ 1)× 2n}. (4.18)

Then, our cliques may be constructed by pairing the ith element of Bn2m
with the (i+a)th element ofBn2m+1 (modulo 2n), as n runs over 0, . . . , log(N)
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and a runs over 0, . . . , 2n − 1. Formally, this gives the set of cliques

Ca,n := {γαγβ , α = (m2n+1 + i),

β = ((2m+ 1)2n + [(i+ a) mod 2n]),

m = (0, . . . , N2−n − 1), i = (0, . . . , 2n − 1)}, (4.19)

with a total number
logN∑
n=0

2n = 2N − 1, (4.20)

matching exactly the lower bound calculated in the main text. The above
technique needs slight modification when N is not a power of 2 to make
sure that when |Bn2m| 6= |Bn2m+1|, unpaired elements are properly ac-
counted for, but the above optimal scaling may be retained. Code to gen-
erate an appropriate set of pairings has been added to the Openfermion
package [90].

As all operators in one of the above cliques Ca,n commute, their prod-
ucts commute, and the set

{γiγjγkγl; γiγj , γkγl ∈ Ca,n}, (4.21)

is clearly a clique of commuting 4-Majorana operators. However, each 2-
Majorana operator is guaranteed to be in only one of the cliques Ca,n, so
this will not yet contain all 4-Majorana operators. To fix this, we aim to
construct a larger set {Cα} of cliques of commuting 2-Majorana operators,
such that for every set γi1 , γi2 , γi3 , γi4 there exists one Cα containing both
γiaγib and γicγid (for some permutation of a, b, c, d = 1, 2, 3, 4). This
may be achieved by the strategy illustrated in Fig. 4.3(b). For each I =
i1, i2, i3, i4, choose the smallest n such that I ⊂ Bnm for some m. This
implies that the {Bnm} split I into two parts - Ia = I∩Bn−1

2m+a, for a = 0, 1,
and |I0| = 1, 2 or 3. Suppose first |I0| = 2, (case 1 in Fig. 4.3(b)). In this
case, by iterating over all pairs of elements in Bn−1

2m and subsequently all
pairs of elements in Bn−1

2m+1, we will at some point simultaneously pair the
elements of I0 and the elements of I1, as required. This may be performed
in parallel for each m, making the total number of cliques generated at
each n |Bn−1

2m |2 = 4n−1. Now, suppose |I0| = 3 (case 2 in Fig. 4.3) — or
|I0| = 1 as the two situations are equivalent. Let n′ < n be the smallest
number such that I0 ⊂ Bn

′

m′ for some m′, and we may split I0 into two

sets I0,a = I0 ∩ Bn
′−1

2m′+a for a = 0, 1. Of the three elements in I0, two of
them must either lie in I0,0 or I0,1 - suppose without loss of generality

that |I0,0| = 2. Then, by iterating over all pairs within Bn
′−1

2m′ , and all
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Figure 4.3.: Schematic of the fermionic partition strategy for generating cliques
that contain all local fermionic operators. (a) a scheme to pair all indices in
{1, . . . , N} in O(N) timesteps. (b) The two cases to consider in our strategy to
contain all 4-Majorana operators in only O(N2) cliques.
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pairs between elements of Bn
′−1

2m′+1 and Bn−1
2m+1, we will at some point pair

both elements in I0,0 and both elements in I0,1 ∪ I1.

This pairing needs to occur for all n > n′, which implies we need to

iterate over all combinations of pairs between elements of Bn
′−1

2m′+1 and

{1, . . . , 2N}/Bn′−1
2m′ (while iterating over pairs within Bn

′−1
2m′ ). This may be

performed in parallel for each m′ at each n′. First, iterate over all possible
pairings of Bn

′

m0
and Bn

′

m1
(which requires O(N2−n

′
) iterations). Then,

iterate over all pairs between Bn
′−1

2m0+a0
and Bn

′−1
2m1+a1

for all combinations

of a0, a1 = 0, 1 (requiring 4 × 2n
′−1 iterations). Simultaneously, iterate

over all pairs within Bn
′−1

2m0+1−a0 and Bn
′−1

2m1+1−a1 (requiring again 2n
′−1

iterations). This generates 4×4n
′−1 cliques at each n′. The total number

of cliques we then require to contain all 4-Majorana operators using this
scheme is then

dlogNe∑
n′=1

N2n
′
+

dlogNe+1∑
n=1

4n−1 ∼ 10

3
N2. (4.22)

4.D. Appendix: Reducing operator
estimation over symmetries

Given a set {Si} ⊂ PN of Nsym mutually-commuting Pauli operators that
are symmetries ([Si, H] = 0), we can simultaneously diagonalize both the
Hamiltonian and the symmetries, implying that we can find a ground
state ρ such that Trace[ρP ] = 0 for each P that does not commute with
Si. In the case of a degenerate ground state eigenspace, not all states
will necessarily have this property (as symmetries may be spontaneously
broken). However, any such P will not appear in the Pauli decomposition
of the Hamiltonian, and so estimation of this RDM term is not necessary
to calculate the energy of the state. The commutation of a k-Majorana
operator Γ with a Pauli operator symmetry Si may be seen immediately
by counting how many of the k individual terms anti-commute with Si
— if this number is even, then [Γ, Si] = 0. This implies that we can
separate individual 1-Majorana operators into bins B~s with ~s ∈ {0, 1}Nsym

a commutation label:

γj ∈ B~s →
{
γjSi = Siγj iff si = 0

γjSi = −Siγj iff si = 1.
(4.23)
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Let ~s(γj) denote the label of the bin γj may be found in, and we may

generalize to all k-Majorana operators Γ =
∏k
l=1 γjl :

si

(
k∏
l=1

γjl

)
=
∑
l

si(γjl) mod 2. (4.24)

To estimate the symmetry-conserved sector of the 2-RDM, we are then
interested in constructing a set of cliques of 4-Majorana operators in B~0.

These take the form γj1γj2γj3γj4 where ~s(γj1) = ~s, ~s(γj2) = ~s+~δ, ~s(γj3) =

~s+~α, and ~s(γj4) = ~s+~α+~δ. (Recall here that in binary vector arithmetic,

~a+~a mod 2 = ~0.) We construct cliques for the above in two steps. First,
we iterate over all quadruples within each bin B~s (using the methods

in App. 4.C). This covers all of the above operators where ~δ = ~α = 0,
and may be done simultaneously with cost 10

3 B
2, where B is the size

of the largest bin. Then, we iterate between bins B~s and B~s+~β for all

β ∈ {0, 1}Nsym with β0 = 0. Such iteration achieves all pairs above —
either α0 = 0 (and we pair bins B~s with B~s+~α when we pair B~s+~δ with
B~s+~δ+~α), or δ0 = 0 (and we pair bins B~s with B~s+~δ when we pair B~s+~α

with B~s+~δ+~α), or (~δ+~α)0 = 0 (and we pair B~s with B~s+~δ+~α when we pair
B~s+~α with B~s+~δ). We must perform this pairing in parallel - i.e. construct

a set of 2Nsym−1-tuples by drawing one element from each B~s×B~s+δ such
that every two elements appear in at least one tuple. In App. 4.E we
describe how this may be achieved The total cost of the above is then
2Nsym−1(B2 + 2B ln(B) + ln(B)2). It is common for most symmetries to
divide the set of Majoranas in two, in which case B = 2N × 2−Nsym , and
our clique cover size is

N2

(
10

3
4−Nsym + 21−Nsym

)
+O(N ln(N)). (4.25)

We summarize our method in algorithm 1 (where we use h(~s) as the
Hamming weight of a binary vector ~s).
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Algorithm 1 Iterate over symmetry-conserved 2-RDM elements. Here,
iterQuad and pairBetween are described in App. 4.C, and parallelIterate
in Alg. 2

Construct bins B~s.
quadIter = {}
for ~s in {0, 1}Nsym do

quadIter[~s] = iterQuad(B~s)
end for
while any iterator in quadIter is not stopped do yield (next(iterator)
for iterator in quadIter if iterator is not stopped)
end while
seriesIterate(quadIter)

for ~β in {0, 1}Nsym−1, β 6= ~0 do
Left-append 0 to beta (i.e. β = (0, ) + β)
quadIter = {}
for ~s in {0, 1}Nsym , h(~s+ ~β) ≥ h(~s) do

quadIter[~s] = pairBetween(B~s., B~s+~β).
end for
parallelIterate(quadIter)

end for

4.E. Appendix: Parallel iteration over
pairings

If we wish to iterate over all pairs of two lists of L elements each, clearly we
must perform at least L2 total iterations, and the optimal strategy is triv-
ial (two loops). However, if we wish to iterate over all pairs between K = 3
or more lists of L elements (i.e. generate a set of K-tuples such that each
pair appears as a subset of one tuple), such an optimal strategy is not so
obvious. When K is less than the smallest factor of L, a simple algorithm
works as described in Algorithm 2. We can see that this algorithm works,
for suppose jk1 + l = a mod L and jk2 + l = b mod L for two separate
values of j, l - i.e. j1k1 + l1 = j2k1 + l2 mod L and j1k2 + l1 = j2k2 + l2
mod L. Then, we have j1(k1 − k2) = j2(k1 − k2) mod L, and as k1, k2

are smaller than the lowest factor of L, gcd(k1 − k2, L) = 1, implying
j1 = j2. This scheme achieves the optimal L2 total iterations, although
the reliance on K being smaller than the lowest factor of L is somewhat
unsavoury. We hypothesize that the asymptotic L2 is indeed achievable
for all K ≤ L, but have not been unsuccessful in our search for a construc-
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tion. Instead, for composite L, we suggest padding each list to have length
L′, being the first number above L that achieves this requirement. The
prime number theorem implies that L′−L ∼ log(L) if K ≤ L (as then we
require at worst to find the next prime number). This gives the scheme
runtime L2 + 2L log(L) + log(L)2, which is a relatively small subleading
correction.

Algorithm 2 parallelIterate: Iterate over K lists
dataArray[0], ..., dataArray[K − 1] of L elements, generating all
pairs between elements in separate lists. Assumes K less than the
smallest factor of L.

for j = 0 to L− 1 do
for k = 0 to L− 1 do

thisTuple = [dataArray[k][jk + l mod L] for k = 0 to K − 1]
yield thisTuple

end for
end for

4.F. Appendix: Measurement circuitry for
fermionic RDMs

Direct measurement of products of Majorana operators is a more com-
plicated matter than measurement of Pauli words (which require only
single-qubit rotations). However, when the fermionic system is encoded
on a quantum device via the Jordan-Wigner transformation [34], a rela-
tively easy measurement scheme exists. Within this encoding, we have

iγ2nγ2n+1 = Zn, (4.26)

so if we can permute all Majorana operators such that each pair (γi, γj)
of Majoranas within a given clique is mapped to the form (γ2n, γ2n+1),
they may be easily read off. To achieve such a permutation, we note that
the Majorana swap gate Ui,j = e

π
4 γiγj satisfies

U†i,jγkUi,j =


γk if i, j 6= k

γj if k = i

−γi if k = j.

(4.27)

And so repeated iteration of these unitary rotations may be used to ’sort’
the Majorana operators into the desired pattern. This may be performed
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in an odd-even search format [135] - at each step t = 1, . . . , N we decide
for each n = 1, . . . N whether to swap Majoranas 2n and 2n+ 1, and then
whether to swap Majoranas 2n and 2n − 1. Within the Jordan-Wigner
transformation these gates are local:

U2n,2n+1 = e−i
π
4 Zn , U2n−1,2n = e−i

π
4 Yn−1Yn , (4.28)

and so each timestep is depth 3, for a total maximum circuit depth of
3N and total maximum gate depth 3N2. (To see that only N timesteps
are necessary, note that each Majorana can travel up to 2 positions per
timestep.) Following the Majorana swap circuit, all pairs of Majoranas
that we desire to measure will be rotated to neighbouring positions and
may then be locally read out. As each Majorana swap gate commutes with
the global parity

∏2N
i=1 γi, this will be measurable alongside the clique as

the total qubit parity
∏N
i=1 Zi, allowing for error mitigation by symmetry

verification [52, 53]. As the above circuit corresponds just to a basis
change, for many VQEs it may be pre-compiled into the preparation itself,
negating the additional circuit depth entirely.

As an alternative to the above ideas, it is possible to extend the parti-
tioning scheme for measuring all k-qubit operators to a scheme to sample
all fermionic 2-RDM elements via the Bravyi-Kitaev transformation [35,
36]. This transformation maps local fermion operators to k = O(logN)
qubit operators, and so using our approach the resulting scheme would re-
quire O(3k logk−1N) = (3 logN)O(logN) unique measurement. Although
this is superpolynomial, it is a slowly growing function for small N and
also has the advantage that the measurement circuits themselves are just
single qubit rotations. Furthermore, as the set of fermion operators is very
sparse in the sense that it has only O(N4) terms rather than NO(logN)

terms, the scheme may be able to be further sparsified.
The measurement scheme to transform a sum of anti-commuting Majo-

rana operators to a single Majorana operator follows a similar scheme to
the Majorana swap network, but with the swap gates replaced by partial
swap rotations. Let A be a set of anti-commuting Majorana (or Pauli)
operators, and then for Pi, Pj ∈ A the (anti-Hermitian) product PiPj
commutes with every element in A but Pi and Pj itself. This implies
that the unitary rotation eθPiPj may be used to rotate between Pi and Pj
without affecting the rest of A:

e−θPiPjPke
θPiPj =


Pk if k 6= i, j

cos(θ)Pi + sin(θ)Pj if k = i

cos(θ)Pj − sin(θ)Pj if k = j

. (4.29)
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This rotation may be applied to remove the support of O on individual
Pi. For example, if θ1 = tan−1( c1c2 )

e−θ1P1P2Oeθ1P1P2 =
√
c21 + c22P2 +

L∑
i=3

ciPi. (4.30)

We extend this to remove support of O on each Pi in turn by choosing

θi =
√∑

j<i c
2
i /ci+1, and then

(
L−1∏
i=1

e−θiPiPi+1

)
O

(
L−1∏
i=1

eθiPiPi+1

)
=

√∑
i

c2iPL. (4.31)

Following this measurement circuit, O may be measured by reading all
qubits in the basis of the final Pauli PL. Intriguingly, for Pi, Pi+1 ∈ Aj,k,l,
we have that PiPi+1 = γiγi+1, which maps to a 2-qubit operator under
the Jordan-Wigner transformation (as noted previously). This implies a
measurement circuit for these sets may be achieved with only linear gate
count and depth, linear connectivity, and no additional ancillas. We can
slightly reduce the depth by simultaneously removing the Pi from the
“top” and ”bottom”; i.e., we remove P2N−3 by rotating with P2N−4 at
the same time as removing P1 by rotating with P2, until after exactly
N − 2 layers, we have only the term PN remaining. All generators in
this unitary transformation commute with the parity

∏2N
i=1 γi, implying

that it remains invariant under the transformation and may be read out
alongside PN . (This may require an additional O(1) gates if PN is not
mapped to products of Zi via the Jordan-Wigner transformation.)

4.G. Appendix: Proof that the maximum
size of an anti-commuting clique of
Pauli or Majorana operators is 2N + 1

We prove this result in general for the Pauli group PN , and note that
as the Jordan-Wigner transformation maps Majorana operators to single
elements of PN , the same is true of this. We first note that elements
within an anti-commuting clique S ⊂ PN may not generate each other
- let

∏n
i=1 Pi = Pj ∈ S, and if n is odd [Pi, Pj ] = 0 for any Pi in the

product, while if n is even [Pk, Pj ] = 0 for any Pk not in the product.
(The one exception to this rule is if one cannot find any such Pk, i.e. when
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Pj =
∏
i 6=j,Pi∈S Pi). Then, note that each element P ∈ PN commutes

with precisely half of PN , and anticommutes with the other half. This
can be seen because a Clifford operation C exists such that C†PC = Z1,
which commutes with all operators of the form I1P

′ and Z1P
′ and anti-

commutes with all operators of the form X1P
′ and Y1P

′, and these will
be mapped to other Pauli operators when the transformation is un-done.

We may extend this result: a set S = {P1, . . . , Pn} of n non-generating

anti-commuting elements in PN splits PN into 2n subsets P~b (with~b ∈ Zn2 ),
where Q ∈ P~b commutes with Pi if bi = 0 (and anticommutes if bi = 1).
To see that all P~b must be the same, note that given an operator Q ∈ P~b,
PiPjQ ∈ P~b⊕~δi⊕~δj (as PiPj anti-commutes with Pi and Pj but commutes

with all other elements in S), so |P~b| and P~b⊕~δi⊕~δj are the same size.

Similarly, if Q ∈ P~b, PiQ ∈ P~b⊕~1⊕~δi . If n is even, this is sufficient to
connect each element in P~b to an element in P~b′ , forcing all to be the same
size. However, if n is odd the above will not connect P~b and P~b′ unless

|~b| = |~b′| mod 2. We note that
⋃
~b,|~b| mod 2=0 P~b is the set of elements

that commute with
∏
Pi∈S Pi, and thus must be precisely half of PN .

This proves that the set of operators in PN that anticommute with all
elements in S is of size 4N/2|S|. This must be an integer, so n ≤ 2N .
Then, when n = 2N there is precisely one element that anticommutes
with all operators in S -

∏
Pi∈S Pi, and we may add this to S to get the

largest possible set of operators. Such a set is unitarily equivalent to the
set of 2N Majorana operators γi and the global parity

∏2N
i=1 γi.

4.H. Appendix: Proof of theorem 1

To bound the number of preparations of a state ρ required to estimate a
fermionic k-RDM, we first establish a correspondence between the allowed
measurement protocols and measurement of a set of commuting Pauli
operators on the original state ρ. As 2k-Majorana operators are Pauli
operators, this implies that an estimate of the expectation value 〈Γi〉 of
each 2k-Majorana operator Γi converges with variance

Var(〈Γi〉) ≤
(1− 〈Γi〉)(1 + 〈Γi〉)

4Mi
, (4.32)

where Mi is the number of preparations and measurements of ρ in a basis
containing Γi. We then show the existence of a worst-case state for which
this upper bound is tight, which implies that to estimate 〈Γi〉 with error
ε we require Mi ∼ ε−2 preparations and measurements of ρ in a basis
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containing Γi. To estimate expectation values of all
(

2N
2k

)
2k-Majorana

operators to error ε, we need for each operator Mi measurements in a
basis containing this operator. As we have established that our measure-
ment scheme only allows such measurements in parallel if the operators
commute, the bound derived in App. 4.B directly bounds the number of
operators that may be estimated per preparation of ρ to

(
N
k

)
, and the

result follows by Eq. 4.4.

We now show that our measurement protocol allows only for estimation
of commuting Pauli operators. By definition, Clifford operators map Pauli
operators to Pauli operators, so any measurement of a state ρ that consists
of a Clifford circuit UCl and subsequent readout in the computational
basis is equivalent to a measurement of the commuting Pauli operators
{U†ClZjUCl}. (The same is true of any tensor products {U†Cl ⊗j ZjUCl} =

{∏j U
†
ClZjUCl} on ρ — where the ⊗j is taken over any set of qubits —

and the following arguments remain true if Zj is replaced by ⊗jZj). It
remains to show that the number of preparations is unaffected by the
addition of Na ancilla qubits in the |0〉 state. Under such an addition, we

may still invert the measurement U†ClZjUCl = Pj,ρ⊗Pj,a, where Pj,rho and
Pj,a are Pauli operators on the system and the ancilla qubits respectively.
By construction, the state is separable across the bipartition into system
and ancilla qubits, so 〈Pj,ρ ⊗ Pj,a〉 = 〈Pj,ρ〉〈Pj,a〉. Then, as we require
our ancilla qubits to be prepared in the |0〉 state, 〈Pj,a〉 = 0 unless Pj,a
is a tensor product of I and Z, in which case 〈Pj,a〉 = 1. If 〈Pj,a〉 = 0, a
measurement of Zj does not yield any information about 〈Pj,ρ〉, while if
〈Pj,a〉 = 1, a measurement of Zj yields exactly the same information as

a direct measurement of Pj,ρ. Then, consider two operators U†ClZjUCl =

Pj,a⊗Pj,ρ and U†ClZkUCl = Pk,a⊗Pk,ρ. We have that [Pj,a⊗Pj,ρ, Pk,a⊗
Pk,ρ] commute, and if 〈Pj,a〉 = 1 and 〈Pk,a〉 = 1, Pj,a and Pk,a commute on
a term-wise basis (as they are tensor products if I and Z), which implies
[Pj,ρ, Pk,ρ] = 0. This shows that the addition of ancilla qubits in the
|0〉 state cannot be used to simultaneously measure non-commuting Pauli
operators via Clifford circuits, and our allowed measurements correspond
to simultaneous measurement of a set of commuting Pauli operators on
ρ, as required.

Finally, we argue for the existence of a state for which Eq. 4.32 is
tight. This may not always be the case - by constraining a fermionic
k-RDM to the positive cone of N -representable states, Pauli operators
with expectation values close to ±1 (and thus small variance) constrain
the expectation values of anti-commuting operators near 0 below this
limit. This beneficial covariance is of particular importance when taking
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4. Nearly-optimal measurement scheduling of quantum states

linear combinations of RDM elements e.g. to calculate energies [132],
however it requires a state have highly non-regular structure which in
general will not be the case (nor known a priori). The simplest example
of an unstructured state is the maximally-mixed state on N fermions; by
definition all measurements of this state are uncorrelated, and the variance
on estimation of all terms is Var(〈Γi〉) = 1

4Mi
, which achieves the upper

bound in Eq. 4.32.
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