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3. Experimental error
mitigation via symmetry
verification in a variational
quantum eigensolver

3.1. Introduction

oisy intermediate-scale quantum (NISQ) devices [47], despite lacking lay-
ers of quantum error correction (QEC), may already be able to demon-
strate quantum advantage over classical computers for select problems [18,
19]. In particular, the hybrid quantum-classical variational quantum
eigensolver (VQE) [39, 87] may have sufficiently low experimental require-
ments to allow estimation of ground-state energies of quantum systems
that are difficult to simulate purely classically [76–79]. To date, VQEs
have been used to study small examples of the electronic structure prob-
lem, such as H2 [41, 42, 45, 80, 83, 98], HeH+ [39, 99], LiH [42, 80, 98], and
BeH2 [42], as well as exciton systems [100], strongly correlated magnetic
models [80], and the Schwinger model [101]. Although these experimen-
tal efforts have achieved impressive coherent control of up to 20 qubits,
the error in the resulting estimations has remained relatively high due
to performance limitations in the NISQ hardware. Consequently, much
focus has recently been placed on developing error mitigation techiques
that offer order-of-magnitude accuracy improvement without the costly
overhead of full QEC. This may be achieved by using known properties
of the target state, e.g., by checking known symmetries in a manner in-
spired by QEC stabilizer measurements [52, 53], or by expanding around
the experimentally-obtained state via a linear (or higher-order) response
framework [82]. The former, termed symmetry verification (SV), is of
particular interest because it is comparatively low-cost in terms of re-
quired hardware and additional measurements. Other mitigation tech-
niques require understanding the underlying error models of the quantum
device, allowing for an extrapolation of the calculation to the zero-error
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3. Experimental error mitigation via symmetry verification

limit [49, 50, 81], or the summing of multiple calculations to probabilisti-
cally cancel errors [50, 51, 102].

We experimentally demonstrate the use of SV to reduce the error of
a VQE estimating the ground-state energy and the ground state of the
H2 molecule by one order of magnitude on average across the bond-
dissociation curve. Using two qubits in a circuit QED processor, we pre-
pare a variational ansatz state via an exchange gate that finely controls
the transfer of population within the single-excitation subspace while re-
specting the underlying symmetry of the problem (odd two-qubit parity).
We show that SV improves the energy and state estimates by mitigat-
ing the effect of processes changing total excitation number, specifically
qubit relaxation and residual qubit excitation. We do this through a full
density-matrix simulation that matches the experimental energy and state
errors with and without SV, and then using this simulation to dissect the
contribution of each error source. Finally, we explore the limitations of
SV arising from statistical measurement noise, and find that enforcing the
positivity of the fermionic 2-reduced density matrix ties the improvement
in energy estimation from SV to the improvement in ground-state fidelity
(which was previously not the case).

3.2. Variational quantum eigensolvers for
the Hydrogen molecule

A VQE algorithm [39, 87] approximates the ground state ρ(0) of a Hamil-

tonian Ĥ by a variational state ρ(raw)(~θ), with ~θ a set of parameters
that control the operation of a quantum device. These parameters are
tuned by a classical optimization routine to minimize the variational en-
ergy E(~θ) = Tr[ρ(raw)(~θ)Ĥ]. In practice, this is calculated by expanding

ρ(raw)(~θ) and Ĥ over the N -qubit Pauli basis PN := {I,X, Y, Z}⊗N ,

ρ(raw)(~θ) =
1

2N

∑
P̂∈PN

ρ
(raw)

P̂
(~θ)P̂ , Ĥ =

∑
P̂∈PN

hP̂ P̂ , (3.1)

where the Pauli coefficients are given by ρ
(raw)

P̂
(~θ) = Tr[P̂ ρ(raw)]. The

variational energy may then be calculated as

E(raw)(~θ) =
∑
P̂∈PN

ρ
(raw)

P̂
(~θ)hP̂ . (3.2)

For example, consider the H2 molecule studied in this chapter. Mapping
the Hamiltonian of this system (in the STO-3G basis) onto four qubits
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3.2. Variational quantum eigensolvers for the Hydrogen molecule

via the Bravyi-Kitaev transformation [35] and then further reducing di-
mensions by projecting out two non-interacting qubits [41] gives

ĤH2 =hIIII + hZIZI + hIZIZ

+ hXXXX + hY Y Y Y + hZZZZ, (3.3)

where coefficients hP̂ depend on the interatomic distance R. These co-
efficients may be determined classically using the OpenFermion [90] and

psi4 [89] packages. The Pauli coefficients ρ
(raw)

P̂
of the density matrix

ρ(raw) are extracted by repeated preparation and (partial) tomographic
measurements of the ansatz state. As one only needs those Pauli coef-

ficients ρ
(raw)

P̂
with non-zero corresponding Hamiltonian coefficients hP̂ ,

one need not perform full tomography of ρ(raw). However, in a small-scale
experiment, full state tomography of ρ(raw) may still be feasible, and may
provide useful information for the purposes of benchmarking. In particu-
lar, the fidelity of ρ(raw) to ρ(0),

F (raw) = Tr[ρ(raw)ρ(0)], (3.4)

is a more rigorous measure of the ability to prepare the ground state than
the energy error,

∆E(raw) = Tr
[(
ρ(raw) − ρ(0)

)
Ĥ
]
. (3.5)

Error mechanisms such as decoherence pull ρ(raw) away from ρ(0), decreas-
ing F and increasing ∆E.

These errors may be mitigated by using internal symmetries Ŝ ∈ PN 1

of the target problem, such as parity checks [52, 53]. These checks project
ρ(raw) to a symmetry verified matrix ρ(SV) that lies in the 〈Ŝ〉 = s sub-
space of the symmetry. This projection could be performed via direct
measurement of Ŝ on the quantum device, but one may instead extract
the relevant terms of the density matrix ρ(SV) in post-processing:

ρ
(SV)

P̂
=
ρ

(raw)

P̂
+ sρ

(raw)

ŜP̂

1 + sρ
(raw)

Ŝ

, (3.6)

The right-hand side may be obtained by partial tomographic measurement
of the ansatz state, with at most twice the number of Pauli coefficients

1As described in Refs. [52, 53], one does not require Ŝ to be a Pauli operator, however
this makes the SV procedure significantly simpler.
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3. Experimental error mitigation via symmetry verification

that need to be measured. This upper bound is not always achieved. For
example, the ĤH2 Hamiltonian has a Ŝ = ZZ symmetry, which maps
the non-zero Pauli terms in ĤH2 to other non-zero Pauli terms in ĤH2.
Symmetry verification in this problem then does not require any addi-
tional measurements to estimate E(SV) beyond those already required to
estimate E(raw). Even when it does require additional measurements, SV
remains attractive because it does not require additional quantum hard-
ware or knowledge of the underlying error model. One can show that the
SV state ρ(SV) may be equivalently obtained via a variant of the quan-
tum subspace expansion (QSE) [82], suggesting an alternative name of
S-QSE [52].

One may further minimize the error in a quantum algorithm by tai-
loring the quantum circuit or the gates within. In a VQE, one wishes to
choose a variational ansatz motivated by the problem itself [41, 103] while
minimizing the required quantum hardware [42]. To balance these consid-
erations, we suggest constructing an ansatz from an initial gate-set that
is relevant to the problem at hand. For example, in the electronic struc-
ture problem, the quantum state is generally an eigenstate of the fermion
number. When mapped onto qubits, this often corresponds to a conser-
vation of the total qubit excitation number. Gates such as single-qubit Z
rotations, two-qubit C-Phase [104], and two-qubit iSWAP [105] gates pre-
serve this number, making these gates a good universal gate set (within
the target subspace [106]) for quantum simulation of electronic structure.
In the example of H2, the total two-qubit parity (ZZ) is indeed conserved
and the ground state at any R may be generated by applying to |01〉 or
|10〉 an exchange gate

Uθ =


1 0 0 0
0 cos θ i sin θ 0
0 i sin θ cos θ 0
0 0 0 1

 (3.7)

with R-dependent optimal exchange angle θ and a follow-up phase cor-
rection on one qubit.

3.3. Experimental error mitigation via
symmetry verification

We now experimentally investigate the benefits of SV in the VQE of H2

using two of three transmon qubits in a circuit QED quantum processor
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3.3. Experimental error mitigation via symmetry verification
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Figure 3.1.: Quantum circuit and energy landscape of the variational eigen-
solver. (a) Quantum circuit for generating and measuring the variational ansatz
state. (b) Coherent excitation exchange, produced as Q0 is fluxed into resonance
with Q1 by a square flux pulse. Pulse amplitude (x axis) parametrizes the fre-
quency to which Q0 is flux pulsed (∼ 1.428 V bringing it on resonance with
Q1). (c) Zoom-in of (b) into the region used in the experiment to control the
exchange of population between Q0 and Q1. Colored lines illustrate the hy-
brid path in pulse duration and amplitude that maps out a finely-adjustable
θ̃ range. (d) Excitation of Q0 along the hybrid path, showing the matching
of the experimentally-defined θ̃ to the target θ defined in Eq. (3.7) (black
dashed curve). Colors [matching (c)] illustrate different pulse durations used
in each segment. (e) Landscape of energies E(raw)(θ̃, R) as function of the
experimentally-defined θ̃ angle and the interatomic distance R.

47



3. Experimental error mitigation via symmetry verification

(see details in [44]). The two qubits (Q0 and Q1) are coupled by a com-
mon bus resonator, and have dedicated microwave lines for single-qubit
gating, flux bias lines for local and ns-scale control of their frequency,
and dedicated readout resonators coupling to a common feedline for inde-
pendent readout by frequency multiplexing. We prepare the ansatz state
with an efficient circuit [Fig. 3.1(a)] that first excites Q1 with a π pulse to
produce the state |10〉, and then flux pulses Q0 into resonance with Q1 to
coherently exchange the excitation population. A sweep of flux-pulse am-
plitude and duration [Fig. 3.1(b)] reveals the expected chevron pattern
that is the hallmark of coherent population exchange between the two
qubits, albeit with some asymmetry arising from imperfect compensation
of linear distortion in the flux-bias line. To finely control population ex-
change without being limited by the 1 ns resolution in pulse duration,
we stitch together a hybrid path in pulse duration and amplitude. This
results in a fine experimental knob θ̃ (1500 possible settings) that con-
trols population exchange like θ in Eq. (3.7) [Fig. 3.1(c)], although with
additional single-qubit phases. The circuit concludes with simultaneous
pre-rotation gates on both qubits followed by simultaneous measurement
of both qubits, in order to perform tomography of the prepared ansatz
state. To fully reconstruct the state, we use an overcomplete set of 36
pre-rotation pairs and extract estimates of the average measurement for
each qubit as well as their shot-to-shot correlation using Nmeas measure-
ments per pre-rotation. Note that single-qubit phase corrections are not
required immediately following the exchange gate, as phase rotations can
be performed virtually from the fully-reconstructed state.

We now optimize the VQE to approximate the ground-state energy and
ground state of H2. At each chosen R, we employ the covariance matrix
adaptation evolution strategy (CMA-ES) optimization algorithm [107],
using E(raw) as cost function and θ̃ as single variational parameter. The
evolutionary strategy optimizes θ̃ over repeated generations of Npop = 10

samples of E(raw)(θ̃), each calculated from a raw density matrix ρ(raw)

using linear inversion of Nmeas = 103. A typical optimization [Fig. 3.2(a)
inset] converges after ∼ 20 generations (∼ 2 hours). The converged state
is finally reconstructed with greater precision, using Nmeas = 105. Fig-
ure 2 shows the resulting energy estimate for twelve values of R and the
reconstructed optimized state at three such distances. These tomographs
show that the optimal solutions are concentrated in the single-excitation
subspace of the two qubits, with two-qubit entanglement increasing as a
function of R.

Performing the described symmetry verification procedure on the con-
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3.3. Experimental error mitigation via symmetry verification

Figure 3.2.: Convergence of the VQE algorithm. (a) Experimental VQE esti-
mate of H2 ground-state energy as a function of interatomic distance R. At each
chosen R, we minimize the raw energy E(raw) (blue data points) over the varia-
tional parameter θ̃ using the CMA-ES evolutionary algorithm [107]. Applying
SV to the converged solution (orange data points) lowers the energy estimate
towards the exact solution (dashed curve). Inset: A typical optimization trace
for the convergence of the energy estimate. (b-d) The reconstructed density
matrices of the converged states at (b) R = 0.25 Å, (c) R = 0.80 Å, and (d)
R = 2.00 Å, showing that the converged states lie mostly in the single-excitation
subspace, and that entanglement increases with the interatomic distance R.
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3. Experimental error mitigation via symmetry verification

verged states shows improvement across the entire bond-dissociation curve.
To quantify the improvement, we focus on the energy error ∆E and the
infidelity 1−F to the true ground state, with and without SV (Fig. 3.3).
SV reduces the energy error by an average factor ∼ 10 and reduces the
infidelity by an average factor ∼ 9. In order to quantitatively understand
the limits of the VQE optimization, and to clearly pinpoint the origin of
the SV improvement, we simulate the experiment via the density-matrix
simulator quantumsim [92], using an error model built from independently
measured experimental parameters [44]. We build the error model incre-
mentally, progressively adding: optimization inaccuracy (the difference
between the state ideally produced by the converged θ and the true ground
state); dephasing on both qubits (quantified by the measured Ramsey de-
phasing times T ∗2 ); relaxation on both qubits (quantified by the measured
relaxation times T1); residual qubit excitations (measured from single-shot
histograms with each qubit prepared in |0〉); and increased dephasing of
Q0 during the exchange gate (quantified by its reduced T ∗2 when tuned into
the exchange interaction zone). By plotting the errors from each incre-
ment of the model, we are able to dissect the observed experimental error
into its separate components without [Fig. 3.3(c)] and with [Fig. 3.3(b)]
SV. Measured temporal fluctuations of dephasing, relaxation and residual
excitation are used to obtain simulation error bars.

The simulation using the full error model shows fairly good matching
with experiment for both the ground-state energy error [Figs. 3.3(a,b)]
and the state infidelity [Fig. 3.3(c)], without and with SV. The error
model dissection shows that the energy error when not using SV is dom-
inated by residual qubit excitations. This is remarkable as the calibrated
residual excitations are only 0.25% for Q0 and 1.34% for Q1 [44]. The
improvement from SV results from the mitigation of errors arising from
these residual excitations and from qubit relaxation. This is precisely as
expected: these error mechanisms change total qubit excitation number
and violate the underlying ZZ symmetry. Using SV changes the dominant
error mechanism to optimization inaccuracy. This error could be reduced
experimentally by increasing Nmeas during the optimization, at the cost
of increased convergence time. The improvement in state infidelity by
SV can be explained along similar lines. We observe some increased de-
viations between the observed and simulated state infidelity at large R.
We attribute these to limitations in our to modeling of error during the
exchange gate (whose duration increases with R).
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Figure 3.3.: Impact of SV in ground-state energy and state fidelity, and dis-
sected error budget. (a) Experimental (solid circles) energy error ∆E without
and with SV compared to the result (empty circles) of a full density-matrix sim-
ulation using the full error model. The contributions from optimizer inaccuracy,
qubit dephasing, qubit relaxation, residual qubit excitations and increased Q0

dephasing during the exchange gate are shown as shaded regions for the case
of no SV applied. Without SV, ∆E is clearly dominated by residual qubit
excitation. (b) Zoom-in on experimental and simulated ∆E with SV and cor-
responding error budget. With SV, the effects of residual excitation and qubit
relaxation are successfully mitigated, as predicted in Ref. 52. The remaining
energy error is dominated by optimizer inaccuracy. Simulation error bars are
obtained by modelling measured fluctuations of T1, T ∗2 , and residual excitation.
(c) Experimental (solid circles) infidelity to the true ground state without and
with SV compared to simulation using the full error model (empty circles).
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3. Experimental error mitigation via symmetry verification

Figure 3.4.: Constraining positivity with symmetry verification to mitigate
the effect of sampling noise. The experimental data from Fig. 3.3 is split into
100 sample simulations for each R, increasing the sampling noise by a factor of
10 and making it comparable to other sources of experimental error. For each
sample, we plot (red) the relative energy error and infidelity [Eq. (3.9)]. Values
below 1 (dashed lines) indicate that SV has not provided an improvement, as
may be the case when the density matrix has negative eigenvalues. We restore
the improvement from SV by constraining the positivity of the 2-reduced density
matrix [108] (green). Histograms on the top and right axes show the marginal
distribution of the two scatter plots. When the density matrices are constrained
to be positive, we observe the points fall along the line y = x (blue dashed line),
indicating that SV improves both metrics by the same amount.
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3.4. Effect of symmetry verification on
positivity constrains

VQEs rely on variational bounding to ensure that the obtained approxi-
mation to the ground-state energy is accurate, but this is only guaranteed
when the experimental results correspond to a physical state. Our method
for calculating the ground-state energy [Eq. (3.1)] independently estimates

each Pauli coefficient of the density matrix with error ∝ N−1/2
meas . Such es-

timation cannot guarantee a set of Pauli coefficients that could have come
from a positive density matrix. This in turn breaks the variational lower
bound on the energy estimate, and increases the error in estimates of
other properties of the true ground state [108, 109]. As experimental er-
ror is reduced, ρ(raw) tends towards a rank-1 density matrix, increasing its
chance of being unphysical [109]. Moreover, ρ(SV) is a lower-rank density
matrix than ρ(raw) (being projected onto a subspace of the Hilbert space),
which implies that unphysicality may be enhanced by SV. The variance
in a given term ρP̂ post-SV can be calculated as

Var[ρ
(SV)

P̂
] ≈ 3Nmeas

Nmeas(1 + Tr[ρ(raw)Ŝ])
. (3.8)

SV has maximal impact on the quantum state precisely when this denom-
inator is small, so this represents a natural bound for the power of SV as
an error mitigation strategy.

The effect of sampling noise may be mitigated somewhat by restrict-
ing the fermionic 2-reduced density matrix to be positive (which may be
completed in polynomial time) [108]. To investigate the effect of such mit-
igation, we bin the data used for final tomography of converged states to
construct 100 density matrices with Nmeas = 103 at each R, thus increas-
ing the sampling noise by a factor of 10. We wish to study the relative
improvement of SV in the two figures of merit, which we quantify as

ηE =
|∆E(raw)|
|∆E(SV)| and ηF =

|1− F (raw)|
|1− F (SV)| , (3.9)

when physicality of the raw density matrices is enforced and not. To
enforce physicality, we employ a convex optimization routine to find the
closest positive semidefinite matrix to the experimentally measured ρ(raw)

(closest in the L2 norm sense on the space induced by the the Pauli basis).
We then apply symmetry verification to the post-processed density ma-
trix. Figure 3.4 shows a scatter plot of ηE and ηF, and relative histograms
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3. Experimental error mitigation via symmetry verification

of each. Without enforcing physicality, SV makes no significant improve-
ment to the state fidelity, although it almost always improves the energy
error. However, when positivity is enforced, SV greatly improves the over-
lap with the true ground state. We also find that the improvement in the
energy from SV is equal to the improvement in fidelity when the starting
state is physical, but is relatively uncorrelated when the starting state is
not. This makes sense, as the energy gain from SV given a physical matrix
comes directly from substituting higher energy states with density on the
ground state. It is unclear whether such a strong trend will continue in
larger systems without requiring too stringent a positivity constraint. As
this is a four-orbital two-electron system, enforcing the positivity of the
2-reduced density matrix enforces positivity on the entire density matrix
(which is exponentially difficult in the system size [110]). Testing this
scalability is a clear direction for future research 2.

3.5. Conclusion

In summary, we have experimentally demonstrated the use of SV to miti-
gate errors in the VQE of H2 with two transmon qubits. We implemented
an efficient variational ansatz based on an exchange gate producing finely
adjustable population transfer in the single-excitation subspace, respect-
ing the ZZ symmetry of the H2 Hamiltonian. Verification of this sym-
metry reduced the error of the estimated ground-state energy and the
ground state by one order of magnitude on average over the full dissoci-
ation curve. A full density-matrix simulation of our system allowed us to
budget the contributions from known experimental error mechanisms. We
observe that SV mitigates the effect of processes that affect total qubit
excitation number, specifically qubit relaxation and residual excitation.
Finally, we have investigated the effect of reconstructing density matrices
via linear tomographic inversion in the presence of sampling, which voids
the guarantee of positivity and in turn the guarantee that SV improves
estimation of the ground state. Intriguingly, we observe that when physi-
cality is enforced, the reduction in energy error from SV is directly linked
to the increase in fidelity to the ground state. If this observation extends
to larger systems, a user can be confident that symmetry-verified Pauli
coefficients are accurate for calculations beyond the ground-state energy.

2Note that, for this system, enforcing positivity of the 1-reduced density matrix cor-
responds to ensuring that all expectation values are bounded between −1 and 1,
and so this does not provide any additional data.
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3.A. Appendix: Tomographic reconstruction
and limitations

Tomographic reconstruction was performed with the same technique de-
scribed in [111]. We provide a brief description here for completeness.
For each measurement channel (measurement of Q1, measurement of
Q0, and their correlation), the average measurement outcome is given
by 〈mi〉 = Tr(M̂iρ), with operator

M̂i = βiII ÎI + βiIZ ˆIZ + βiZI ẐI + βiZZẐZ, (3.10)

and real-valued coefficients βij . Single-shot measurements of Q0 and Q1

are 1-bit digitized before correlation and before averaging each of the three
channels.

The simultaneously applied measurement pre-rotations R0 and R1 con-
sist of the 36 pairs created by drawing each rotation separately from the
set {I,Xπ, Xπ/2, Yπ/2, X−π/2, Y−π/2}. These measurement pre-rotations
effectively change the measurement operator to

Mk,l
i = Tr

(
Rk,l,†M̂iR

k,l
)
.

There are thus 108 linear equations (36 per channel) linking the aver-
aged measurement to the 15 nontrivial 2-qubit Pauli coefficients (we force
〈ÎI〉 = 1). We then extract the Pauli coefficients by performing least-
squares linear inversion. Prior to the linear inversion, the measurements
are scaled to approximately match the noise in the three channels.

The coefficients βij are obtained from standard calibration measure-
ments. The two qubits are nominally prepared in the four computational
states and measured. In total, we perform 7 × Nmeas measurements per
computational state. The matrix relating the four measurement averages
of a channel to the coefficients has elements of the form 〈ÎI〉, ±〈 ˆIZ〉,
±〈ẐI〉 and ±〈ẐZ〉. By taking into account the calibrated residual qubit
excitations, which reduce the magnitude of 〈 ˆIZ〉, 〈ẐI〉, and 〈ẐZ〉 from
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Figure 3.5.: Minimal eigenvalue of density matrices obtained from linear to-
mographic reconstruction with different Nmeas. Here, the state preparation
targets a Bell state using our variational ansatz (inset) with θ = π/4 (produc-
ing a

√
iSWAP gate). Physicality constraints on density matrices restrict their

eigenvalues to be non-negative. We observe negative minimum eigenvalues over
the entire range of Nmeas. A quantumsim simulation produces a similar trend,
asymptotically approaching a physical state by Nmeas ∼ 50, 000.

unity, we ensure that the coefficients βij and thus also the operator Mi are
not corrupted by residual excitation [112].

Tomography by linear inversion does not ensure physicality of the re-
constructed density matrix. We investigate this effect by performing to-
mography with variable Nmeas on the state produced by our ansatz with
θ = π/4 and extracting the minimum eigenvalue of the reconstructed
density matrix (Fig. 3.5). A negative minimum eigenvalue manifests un-
physicality over the Nmeas range covered. Our quantumsim simulation
produces a similar trend, asymptotically approaching a physical state by
Nmeas = 5×104. These observations led us to choose Nmeas = 105 for the
final state tomography post VQE convergence in Fig. 3, and to further
investigate (in Fig. 4) how unphysicality can violate the variational prin-
ciple, producing reductions in energy from imprecise state reconstruction
rather than algorithmic precision.
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3.B. Appendix: Constraining the positivity
of reduced density matrices

Testing whether a N -qubit density matrix ρ is positive is in general
QMA-hard [110]. However, if we trace out all but a polynomial number of
degrees of freedom of ρ, testing positivity of the resulting reduced density
matrix ρ(red) is tractable on classical hardware, and obtaining the closest
nearby positive matrix is similarly so. This gives a set of necessary but
insufficient physicality conditions for ρ, but enforcing k-local constraints
(on a density matrix from a VQE) tends to be sufficient to variationally
bound the resulting energies [108]. Following the reduction, we write ρ(red)

as a vector over the Pauli basis,

ρ(red) =
∑
P̂

ρ
(red)

P̂
P̂ . (3.11)

Then, we attempt to find the density matrix ρ̃(red) closest to ρ(red) in the
L2-norm ∑

P̂

(
ρ

(red)

P̂
− ρ̃(red)

P̂

)2

, (3.12)

subject to the conditions ρ̃(red) � 0, and ρ̃
(red)
I = 1. This gives a quadratic

minimization problem with cone inequality and linear equality constraints,
which we solve using interior point methods.

3.C. Appendix: Theoretical modeling of the
experiment

We use our full-density-matrix simulator quantumsim to model the exper-
iment. The error model takes as input parameters the measured values
of T1, T ∗2 and residual excitation for both qubits, and T ∗,red

2 for Q0. We
also include the effect of fluctuations on the device parameters by Monte
Carlo sampling.

3.C.1. Numerical simulations

The simulations are performed by extracting the full-density-matrix ρ(sim)

at the end of the circuit. We use the converged value of θ̃ at each R to

generate the quantum state and extract the Pauli coefficients ρ
(sim)

P̂
(θ̃) =
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3. Experimental error mitigation via symmetry verification

Tr[P̂ ρ(sim)]. We add sampling noise to each coefficient, drawn from a zero-

mean Gaussian distribution with variance (1 + ρ
(sim)

P̂
)(1 − ρ(sim)

P̂
)/Nmeas,

where Nmeas = 4×105. Note that this is greater than the number of mea-
surements per tomographic prerotation in the experiment, as data from
multiple tomographic prerotations is used to estimate each Pauli coeffi-
cient. To account for fluctuations on the device parameters T1, T ∗2 , and
residual excitations, we average over 104 simulations for every R. For
each simulation, we draw parameters from independent normal distribu-
tions using values in Table I of the supplementary material of Ref. [44].
As the dephasing noise T ∗2 depends on T1,

1

T ∗2
=

1

Tφ
+

1

2T1
, (3.13)

it is more appropriate to sample the pure dephasing rate Tφ independently.
We calculate the Tφ mean and variance (T̄φ, Var[T̄φ]) from T ∗2 ,

T̄φ =
1

1
T∗2
− 1

2T1

,

Var[T̄φ] = T̄ 2
φ(T ∗2 )−2

[
Var[T ∗2 ]− Var[T1]

2T 2
1 (T ∗2 )−2

]
.

(3.14)

From the 104 simulations we obtain 95%-confidence error bars for ∆E
and F as twice the population standard deviation.

3.C.2. Exchange gate

Due to quasi-static flux noise, the angle of the unitary exchange gate
(Eq. 7) differs between subsequent applications. Assuming that these
fluctuations are fast on the scale of the 2 hour optimization, this may
be simulated by integrating over the range of applied gates, resulting in
an incoherent noise model. As the gate is not repeatedly applied during
a single-shot experiment, this incoherent approximation does not lead to
an error in the final result. To perform the integration, we convert our
unitary Uθ into a Pauli Transfer Matrix representation (PTM) [113, 114]:

[Rθ]i,j =
1

2
Tr[P̂iUθP̂jU

†
θ], P̂i, P̂j ∈ PN , (3.15)

which may then be integrated over a probability distribution in the devi-
ation δ from the target angle θ:

[R̃]i,j =

∫
dδ p(δ) [Rθ+δ]i,j . (3.16)
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3.C. Appendix: Theoretical modeling of the experiment

We choose for p(δ) a Gaussian distribution: p(δ) = e−
δ2

2σ2 . In order to
obtain the distribution width σ2, we note that the same effect causes
single-qubit dephasing of Q0 when fluxed to the exchange point when Q1

is fluxed away. We may thus estimate σ as

σ2 = 1− e
− tint

T
∗,red
2 , (3.17)

were tint is the exchange gate duration and T ∗,red
2 the dephasing time of Q0

at the exchange point (with Q1 fluxed away). The final gate simulation
also includes the effect of amplitude damping on both qubits, and the
dephasing of Q1 at the sweet spot as discrete error channels of duration
tint
2 on either side of the gate R̃.
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