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2. Low-cost error mitigation
by symmetry verification

2.1. Introduction

Noisy, intermediate scale quantum (NISQ) devices have begun to appear
in laboratories around the world. These devices have performance rates
around or just below the quantum error correction threshold [69–73], but
are lacking the number of qubits required for full fault-tolerant quantum
computing. This raises the open question of whether the upcoming gener-
ation of quantum computers will provide a quantum advantage over clas-
sical computers, and in which fields this might be achieved [47, 74, 75].
In particular, for the area of digital quantum simulation, it has been
suggested that variational quantum eigensolvers [39] may be sufficiently
low-cost to be performed on ∼ 50 qubits [76–79]. Around this point, solv-
ing the many-body problem exactly becomes too challenging for classical
computers, and a slight quantum edge might be available above current
approximations.

In lieu of full error correction techniques, much attention is being turned
to error mitigation techniques, which, although non-scalable, promise
modest improvements at low cost. Previous work has focused on ac-
tive error minimization, whereby data is obtained at artificially increased
error rates and then extrapolated to zero [49, 50, 80, 81], and on proba-
bilistic error cancellation, where an ensemble of noisy circuits is applied
such that they average to the target error-free circuit [50, 51]. More
specific techniques have been developed for quantum simulation, and in
particular for variational quantum eigensolvers. A technique developed
for exploring the low-energy excited subspace of a quantum system, the
quantum subspace expansion, has been shown to have error mitigation as
a side-effect [82, 83].

In this chapter we investigate error mitigation via verification of sym-
metries found in quantum circuits, in particular those in physical systems.
This is a low-cost version of the stabilizer parity checks ubiquitous in quan-
tum error correction [84, 85]. We develop multiple protocols to perform
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2. Low-cost error mitigation by symmetry verification

symmetry verification, both repeatedly throughout a quantum circuit and
as a single post-processing step. The latter can be related to a variant of
the quantum subspace expansion [82]. We study the sensitivity of sym-
metry verification to different noise channels, and demonstrate how it can
be optimized by adding new symmetries and rotating existing symmetries
to be more sensitive to local noise.

2.2. Symmetry verification

Our study is motivated by the presence of symmetries in quantum mechan-
ical systems. In such systems, one has a Hamiltonian Ĥ, and is usually
interested in studying the properties of ground or low-lying eigenstates of
the system. A (unitary) symmetry of a system is a unitary operator Ŝ
that commutes with the Hamiltonian - [Ĥ, Ŝ] = 0. When this is true, Ĥ
may be block diagonalized within the eigenspaces of Ŝ. Then, if one were
to study eigenstates of Ĥ on a quantum computer, one may perform such
a study entirely within a single target eigenspace S of Ŝ. In real-world
quantum computers, noise may shift the state of the computer outside of
the target eigenspace S. By verifying during or at the end of a calcula-
tion that the system remains in S, and throwing away results where this
is not the case, it is thus possible to make our quantum computation less
sensitive to these types of noise.

Verification of a symmetry is performed by measurement and post-
selection which is typically performed in the computational basis (the
eigenstates |0〉 and |1〉 of a single qubit). The Pauli operators PN may be
rotated into this basis relatively easily (see Sec. 2.2.1), and as such are
a good class from which to draw symmetry operators. If Ŝ /∈ PN , but
the target eigenspace S lies within the eigenspace of a Pauli operator P̂ ,
then measuring P̂ presents a low-cost alternative to measuring Ŝ, though
this may provide less error mitigation in the case where the eigenspace of
P̂ is strictly larger than S. In general, symmetry verification will work
with any construction of a projector valued measurement {M̂i} where one
projector M̂S projects onto the target eigenspace S. We note that phase
estimation [86] provides a generic construction for such a measurement, al-
though this is a rather high cost circuit (in particular requiring the ability
to apply the symmetry Û on the quantum computer). This requirement
for measurement implies that symmetry verification cannot be extended
to antiunitary symmetries (nor to symmetries that anticommute with the
Hamiltonian), as these do not lead to eigenspaces that can be projected
into.
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2.2. Symmetry verification

The projector valued measurement {M̂i} is the more general object for
symmetry verification than the symmetry Ŝ. In an arbitrary quantum
circuit at an arbitrary time, if we know by any means that the state |ψ〉
in the absence of error satisfies M̂s|ψ〉 = |ψ〉, measuring {M̂i} on the noisy
state ρ and post-selecting will project to the state

ρs =
M̂sρM̂s

Trace[M̂sρ]
. (2.1)

Then, we have

Trace[ρs|ψ〉〈ψ|] =
Trace[ρ|ψ〉〈ψ|]

Trace[M̂sρ]
≥ Trace[ρ|ψ〉〈ψ|], (2.2)

and our new state ρs has strictly greater overlap with the target |ψ〉 than
the pre-selection ρ (unless M̂sρM̂s = ρ, in which case ρs = ρ). Such a
procedure can be immediately extended to multiple operators Ŝ1, Ŝ2, . . .,
as long as [Ŝi, Ŝj ] = 0. (If this is not the case, sequential symmetry
verification projects between different eigenspaces, which is inefficient and
greatly increases the number of experiments that must be thrown away.)
Symmetry verification may also be repeated at multiple points during a
quantum circuit, by inserting measurement of Ŝ in between gates, as long
as we expect the state 〈ψ(t)| to be an eigenstate of Ŝ at time t during the
circuit. We call such protocols ‘bulk’ symmetry verification, as opposed
to ‘final’ symmetry verification at the end of the an experiment.

2.2.1. Ancilla and in-line symmetry verification

The simplest form of the symmetry verification involves the use of an an-
cilla qubit to measure the Pauli symmetry Ŝ. Let us write Ŝ ∈ PN in
terms of its tensor factors; Ŝ = ⊗iŜi, and let NS be the number of non-
trivial Ŝi = {X,Y, Z}. To each such Ŝi, we can associate a corresponding
rotation R̂i = {exp(iπ2Y ), exp(−iπ2X),1} (such that R̂i|Ŝi = 1〉 = |0〉).
The verification circuit is then shown in Fig. 2.1(a). For each non-trivial
Ŝi, the corresponding qubit is rotated by R̂i, then performs a controlled-
NOT gate on the ancilla qubit, and finally is rotated by R̂−1

i . This requires
that the ancilla qubit be coupled to each qubit in the system register that
it measures, which is in general not possible in a quantum circuit. As a
low-cost alternative (Fig. 2.1(b)), the ancilla qubit may be shuffled along
the system register via SWAP gates as it performs the controlled phase
gate. In either case, as the ancilla qubit must interact with each register
qubit individually, the circuit depth must be O(NS).
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2. Low-cost error mitigation by symmetry verification

It is possible to forego the ancilla qubit in symmetry verification, by
instead encrypting the symmetry Ŝ onto the computational degree of
freedom of a qubit within the system itself, which is then read out. In
Fig. 2.2(a) we give an example circuit for this in-line symmetry verifica-
tion, with circuit depth only O(log(NS)). This logarithmic depth requires
qubits to be coupled as a binary tree, which is not possible in systems
which allow only local couplings. In general, for such a d-dimensional lo-

cal coupling, the depth of the circuit must be at least O(N
1/d
S ), being the

minimum depth of a light-cone encompassing NS qubits. In Fig. 2.2(b)
we give such a circuit for a system with linear connectivity. Even when
all-to-all coupling is available, the O(log(NS))-depth circuit (Fig. 2.2(a))
may not be preferable, as the duty cycle for each qubit (i.e. the period
of time between the first and last gate each qubit is involved in) is length
O(log(NS)). By contrast, the duty cycle of an individual qubit during the
circuit in Fig. 2.1(b) is O(1). A short duty cycle implies that qubits can
be used to perform other operations while the symmetry verification is
ongoing, reducing the time cost when this circuit is performed as a small
block of a larger computation.

2.2.2. Variational quantum eigensolvers

As an example target algorithm for symmetry verification, we consider
ground state preparation for a Hamiltonian Ĥ via a variational quantum
eigensolver [39, 87].

Variational quantum eigensolvers (VQE) are natural candidates for fi-
nal symmetry verification, and common classes of VQEs are also natural
candidates for bulk symmetry verification. In particular, for fermionic
systems (such as the electronic structure problem), global fermion parity
is conserved, making it a prime target for symmetry verification. (At low
energy, for non-superconducting systems, the particle number is often con-
served as well, but this is not a Pauli operator, and is much more difficult
to measure.) Using the Jordan-Wigner transformation on an N -fermion
Hamiltonian, this symmetry takes the form Z⊗N . Most VQEs consist of
creating an approximate starting state (such as the Hartree-Fock state)
that respects this symmetry, and then performing multiple local rotations
that continue to respect this symmetry. This is true of both the unitary
coupled cluster (UCC) ansatz [39], and the quantum approximate opti-
mization algorithm (QAOA) [88]. In the former, the ansatz is taken as
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2.2. Symmetry verification

Figure 2.1.: Quantum circuit for ancilla symmetry verification of a symmetry
Ŝ. (a) A simple circuit entangling all qubits with a single ancilla qubit. The
rotations R̂i depend on the tensor components Ŝi on each qubit i (relationship
given in text). (b) A circuit making an identical measurement to that in (a),
but with only local CNOT and SWAP two-qubit gates. A SWAP between
qubit 0 and the ancilla is not required because the Bell state prepared after the
first CNOT is symmetric between the two qubits (this is not the case for the
remaining qubits).
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2. Low-cost error mitigation by symmetry verification

Figure 2.2.: Quantum circuits for in-line symmetry verification. (a) The
optimal verification circuit has O(log(NS)) depth, but requires long-range con-
nectivity between qubits, which is not available on many architectures. (b)
In the presence of linear connectivity, an O(NS) depth verification circuit is
optimal.
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2.2. Symmetry verification

the expansion of the cluster operator eT̂−T̂
†

T̂ =
∑
n

T̂ (n), (2.3)

T̂ (n) =
∑

i1,...,in;j1,...,jn

θi1,...,inj1,...,jn
(

n∏
m=1

ĉ†im)(

n∏
m=1

ĉjm) (2.4)

where the θ parameters are taken as the free parameters to be optimized,
and the sum is a sum over empty molecular orbitals to the left of the
semi-colon, and filled molecular orbitals to the right. This exponentiation
is typically performed by the Trotter-Suzuki expansion, leaving a series of
unitaries ∏

i;j

eθ
i
j(ĉ
†
i ĉj−ĉ

†
j ĉi)

∏
i,j;k,l

eθ
i,j
k,l(ĉ

†
i ĉ
†
j ĉk ĉl−ĉ

†
l ĉ
†
k ĉj ĉi) . . . (2.5)

each of which respects fermion parity. QAOA for the electronic structure
problem consists of performing steps of time evolution alternating between
the Hartree-Fock Hamiltonian and the electronic-structure Hamiltonian,
both of which respect fermion parity. Thus, for both ansatz, bulk symme-
try verification could be performed between individual steps of the time
evolution.

Although symmetry verification promises a final state with greater over-
lap with the ground state, it does not promise a necessarily lower energy.
Let us write the (un-normalized) symmetry-accepted state ρs, and the
symmetry-rejected state ρr. If our measurement was perfect, we would
have

ρs = M̂sρM̂s, ρr = (I− M̂s)ρ(I− M̂s). (2.6)

Then, Trace[Ĥρ] = Trace[Ĥρr] + Trace[Ĥρs]. Now, suppose the rejected
state ρr has lower energy than the accepted state ρs;

Trace[Ĥρr]

Trace[ρr]
<

Trace[Ĥρs]

Trace[ρs]
. (2.7)

We can calculate

Trace[Ĥρ] = Trace[ρr]
Trace[Ĥρr]

Trace[ρr]
+ Trace[ρs]

Trace[Ĥρs]

Trace[ρs]

< (Trace[ρr] + Trace[ρs])
Trace[Ĥρs]

Trace[ρs]
=

Trace[Ĥρs]

Trace[ρs]
,

and our symmetry-verified state would be higher in energy than the initial
state as well. As the energy of ρr lies strictly above the ground state, fail-
ure of symmetry verification must imply ρs has sufficiently large overlap
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2. Low-cost error mitigation by symmetry verification

with high-energy states. As such, we would suggest that such a failure
implies the energy of ρ itself is not to be trusted.

2.2.3. Post-selected symmetry verification and S-QSE

Conveniently, when a quantum computation requires calculating the ex-
pectation values of a set of Pauli operators, symmetry verification may be
performed via post-processing of the expectation values themselves (with
possibly some additional measurements), rather than requiring additional
quantum circuitry. Suppose we want to calculate the expectation value
of P̂ ∈ PN on our state ρ following projection onto the Ŝ = s(= ±1)
subspace of our symmetry Ŝ ∈ PN . The projector onto this subspace may
be written M̂s = 1

2 (1+sŜ). Then, the expectation value of P̂ on the state
ρs targeted by the symmetry verification can be expanded using Eq. 2.1

Trace[P̂ ρs] = Trace

[
P̂

M̂sρM̂s

Trace[M̂sρ]

]

=
Trace[P̂ ρ] + sTrace[P̂ Ŝρ]

1 + sTrace[Ŝρ]
, (2.8)

where we have used the cyclic property of the trace and the fact that
[P̂ , M̂s] = 0 to write Trace[P̂ M̂sρM̂s] = Trace[P̂ M̂sρ], and expanded
our definition of M̂S . The expectation values Trace[Ŝρ], Trace[P̂ ρ], and
Trace[P̂ Ŝρ] may be then calculated using the unverified state ρ, and sub-
stituted into Eq. 2.8 to obtain the verified result. By avoiding additional
quantum circuitry, we expect this method to outperform both ancilla and
in-line symmetry verification. However, we note that post-selection can-
not be used for bulk symmetry verification (as we cannot measure these
expectation values during the circuit). Furthermore, it cannot be used in
algorithms where the output is not an expectation value Trace[P̂ ρ].

Post-selected symmetry verification can be observed to be identical to a
form of the quantum subspace expansion (QSE) [82]. Originally designed
to investigate the low-energy excited states around the ground space found
by a variational quantum eigensolver, QSE works by taking a set of exci-
tation operators {Êi}, which can be applied to the approximated ground

state |ψ(~θ)〉 to obtain a set of states |φi〉 = Êi|ψ(~θ)〉. The spectrum
of the Hamiltonian within the manifold spanned by these states can be
calculated as the solution to the generalized eigenvalue problem

ĤQSE|ξ〉 = λB̂QSE|ξ〉. (2.9)
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2.2. Symmetry verification

Here, ĤQSE is the Hamiltonian matrix projected into the spanned mani-
fold

[ĤQSE]i,j = Trace[Ĥ|φi〉〈φj |], (2.10)

and B̂QSE is the overlap matrix,

[B̂QSE]i,j = Trace[|φi〉〈φj |], (2.11)

to account for the fact that |φi〉 and |φj〉 are in general not orthogonal.
In the presence of noise, although the state |φi〉 is not well defined (as our

noisy state ρ is not a pure state), the operators |φi〉〈φj | = ÊiρÊ
†
j remain

well-defined, and the expectation values in Eqs. 2.10 and 2.11 are still able
to be measured in an experiment.

The set {Êi} is usually taken to be the set of low-order polynomials in
qubit or fermion operators [82, 83]. However, if the set {I, Ŝ} is chosen as
excitation operators, the solution to the generalized eigenvalue problem
is the same as that obtained by post-selection. To show this, we expand

Trace[Ĥρs] =
∑
i

hiTrace[P̂iρs]

=
∑
i

Trace[hiP̂iρ] + sTrace[hiP̂iŜρ]

1 + sTrace[Ŝρ]

=
Trace[Ĥρ] + sTrace[ĤŜρ]

1 + sTrace[Ŝρ]
. (2.12)

Next, we calculate the QSE matrices (using the commutation of Ĥ and
Ŝ)

ĤQSE =

[
Trace[Ĥρ] Trace[ĤŜρ]

Trace[ĤŜρ] Trace[Ĥρ]

]
, (2.13)

B̂QSE =

[
1 Trace[Ŝρ]

Trace[Ŝρ] 1

]
. (2.14)

Assuming that Trace[Ŝρ] 6= 1, B̂QSE is invertible, the problem reduces to
finding the (regular) eigenvalues of

B̂−1
QSEĤQSE =

1

1− Trace[Ŝρ]2

[
α β
β α

]
, (2.15)

where

α = Trace[Ĥρ]− Trace[Ŝρ]Trace[ĤŜρ], (2.16)

β = Trace[ĤŜρ]− Trace[Ĥρ]Trace[Ŝρ]. (2.17)
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2. Low-cost error mitigation by symmetry verification

The eigenvalues of this matrix take the form

λ =
1

1− Trace[Ŝρ]2
(α± β) (2.18)

=
Trace[Ĥρ]± Trace[ĤŜρ]

1± Trace[Ŝρ]
, (2.19)

which can be seen to be equal to those found in Eq. 2.12. We call this
version of the quantum subspace expansion symmetry-QSE, or S-QSE for
short.

This result is not surprising; it was suggested in [82] to account for
symmetries during QSE by projecting ĤQSE and B̂QSE into the symme-
try subspace, which achieves the same result as in the above. However,
this demonstrates that one may account for symmetries via a version of
QSE without calculating the full linear response. Moreover, this implies
that S-QSE corrects for both coherent and incoherent errors that project
out of the Ŝ = s subspace. By contrast, QSE with an operator that an-
ticommutes with the Hamiltonian can only correct coherent errors (see
appendix). S-QSE may be immediately combined with other forms of
QSE, for example linear response QSE, by including both sets of opera-
tors as excitations.

2.3. Simulation of symmetry verification on
the hydrogen molecule

To first investigate symmetry verification in a simple setting, we use a
VQE to find the ground-state energy of H2 on two qubits. This follows
previous experimental demonstrations [39, 41, 42, 83]. We take the STO-
3G basis for H2, which has four spin-orbitals, and convert this into a qubit
Hamiltonian via the Bravyi-Kitaev transformation. The four spin-orbitals
require four qubits to represent them on, but in this representation the
Hamiltonian is diagonal on two of the qubits, which may be removed. The
remaining two-qubit Hamiltonian takes the form

Ĥ = h0II + h1IZ + h2ZI + h3XX + h4Y Y + h5ZZ, (2.20)

where hi are sums of integrated two and four-body terms from the origi-
nal electronic structure problem. The calculation of these terms, and the
Bravyi-Kitaev transformation itself, were performed using the psi4 [89]
and OpenFermion [90] packages. The Hamiltonian can be seen to com-
mute with the symmetry Ŝ = ZZ. Our ground state wavefunction has
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2.3. Simulation of symmetry verification on the hydrogen molecule

non-trivial overlap with the Hartree-Fock wavefunction, which is in the
ZZ = −1 subspace; this is then our target subspace. We follow the uni-
tary coupled cluster ansatz of [41], which consists of exciting our system
to the |01〉 state, and performing the unitary rotation

Û(θ) = e−iθX0Y1 . (2.21)

This unitary rotation may be decomposed using standard methods [31].
As described previously, the VQE procedure consists of fixing θ, repeat-
edly preparing |ψ(θ)〉 and measuring collections of terms in the Pauli
decomposition of Ĥ until a good estimate of the energy E(θ) is found.
This is then repeated at varying θ as demanded by a classical optimizer
until a minimum E(θ) is found [39].

We compare the performance of the three symmetry verification proto-
cols described previously as a final symmetry verification step. The ancilla
symmetry verification is performed in the same manner as Fig. 2.1(a).
The in-line symmetry verification is performed in a manner similar to
Fig. 2.2(a), but as this is final symmetry verification, we have no need to
undo the symmetry measurement. Instead, to measure the expectation
value of a Pauli operator Trace[ρP̂ ], we can propagate P̂ through the sym-
metry verification circuit [91] and measure the corresponding Pauli term.
It is then sufficient to rotate the control qubit to recover the expectation
values 〈IZ〉 and 〈XX〉. From this we may calculate all other expecta-
tion values in Eq. 2.20 using the fact that ZZ = −1. For this problem,
S-QSE not only requires no additional circuitry, but also no additional
measurements (all required terms are in the Pauli decomposition of the
Hamiltonian).

To test symmetry verification in the presence of realistic noise, we sim-
ulate our chosen experiment using the quantumsim density matrix simu-
lator [92]. We take gate error models and parameters similar to previous
simulation work based on experimental data of state-of-the-art supercon-
ducting transmon qubits [92]. Errors in transmon qubits are dominated
by decoherence times, which we take at a base level to be T1 = T2 = 20 µs.
This should be compared to single and two-qubit gate times of 20 ns (giv-
ing a total circuit length without symmetry verification of 220 ns). Single
and two-qubit gates suffer from additional dephasing noise of 0.01 and
1% respectively. We assume that single-shot measurement (for verifica-
tion purposes) has a read-out error of 1%, and that error in tomographic
measurements and pre-rotations (used to calculate the expectation values
themselves) can be cancelled by linear inversion tomography [93, 94].

Using the above error model, we observe (Fig. 2.3) that the un-mitigated
VQE (blue points) achieves an error in the energy of approximately 0.01−
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2. Low-cost error mitigation by symmetry verification

0.04 hartree across the bond dissociation curve. This error is improved
upon by all symmetry verification techniques. S-QSE (red diamonds) pro-
vides the largest improvement of all symmetry verification protocols, as
no additional errors are introduced. The S-QSE circuit is observed to give
approximately a five-fold improvement over the unmitigated circuit, while
ancilla (orange crosses) and in-line (green squares) symmetry verification
show an approximately two-fold and three-fold improvement respectively.
The differences between S-QSE and other forms of symmetry verifica-
tion emphasize the importance of minimizing the verification cost in bulk
symmetry verification (where S-QSE is no longer available).

We now investigate the effect of different noise channels on the per-
formance of symmetry verification. Any noise channel that commutes
with the symmetry operators evolves the system state within the target
subspace, which symmetry verification explicitly does not mitigate. The
analysis of which channels have this property can be reduced to an anal-
ysis over PN , as if we mitigate Pauli errors P̂i ∈ PN , we also mitigate any
linear combination of them [84]. In the above circuit, the ZZ symmetry
commutes with any single-qubit Z errors, making the protocol prone to
the Tφ (pure dephasing) channel, but it anticommutes with single-qubit
X-errors, making the protocol resilient against the T1 (amplitude decay)
channel. To investigate this, in Fig. 2.4 we calculate the error in deter-
mining the ground state energy near the minima of the bond dissociation
curve (0.75Å bond distance) using S-QSE, as we vary T1 and Tφ. We turn
all other error sources off, and vary T1 (Tφ) with Tφ = 20 µs (T1 = 20 µs)
fixed. In the absence of error mitigation, the two decoherence sources have
almost identical effect (deviation approximately 10−2 hartree). However,
in the presence of error mitigation, the susceptibility of the VQE to T1

noise is noticeably smaller than to Tφ noise - up to a factor of two over the
range of decoherence times plotted. We note that S-QSE does not make
our circuit second-order sensitive to T1 noise. This can be understood as
X-errors at some points during our VQE circuit are rotated to Z-errors
by later gates in the circuit, preventing their mitigation.

2.4. Inserting and rotating symmetries

As observed in the previous section, verifying single symmetries has a
marked effect on the performance of a quantum circuit, but will not catch
and remove all sources of noise. In this section we suggest how one may
improve upon this by adding additional symmetries to the quantum algo-
rithm, and by rotating existing symmetries to make them more sensitive
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2.4. Inserting and rotating symmetries

Figure 2.3.: (Color online) Accuracy of the VQE over the entire bond dissoci-
ation curve using the different symmetry verification methods mentioned in the
text (labelled in legend). (top) The target curve of H2, compared to the exact
result (black line). (bottom) Log plot of the difference between the black lines
and points in the above plot.
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Figure 2.4.: (Color online) Effect of varying decoherence times on the VQE
accuracy. With all other error sources turned off, T1 is varied with Tφ = 20 µs
fixed (red-dashed curves), and Tφ is varied with T1 = 20 µs fixed (blue-solid
curves). We plot the error in estimating the ground-state energy for the un-
mitigated experiment (squares), and the circuit mitigated with S-QSE (circles).
Data points for the blue and red curves are identical at T1 = Tφ = 20 µs, as
can be seen from the complete overlap.
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2.4. Inserting and rotating symmetries

to errors on the underlying quantum hardware. In the language of quan-
tum error correction, this is a low-cost attempt to increase the distance
of the detection code.

We first suggest a method to extend an N -qubit Hamiltonian Ĥ, given
a Pauli operator P̂ ∈ PN , to an N + 1-qubit Hamiltonian Ĥext

Ĥext =

[
Ĥ 0

0 P̂ ĤP̂

]
. (2.22)

Both blocks of Ĥext can be seen to have the same eigenspectrum (as this
is unaffected by the unitary rotation of P̂ ), and Ĥext commutes with the
operator [

0 P̂

P̂ 0

]
= XP̂ , (2.23)

which is then the new symmetry operator. This mapping corresponds to
mapping Pauli operators Q̂ ∈ PN in the original problem to

Q̂ext =

{
IQ̂ if [Q̂, P̂ ] = 0

XQ̂ if {Q̂, P̂} = 0
. (2.24)

To implement this in the algorithm itself, we note that every circuit can
be decomposed into a product of unitary rotations∏

j

eiθjQ̂j , Q̂j ∈ PN , (2.25)

where a single Q̂ ∈ PN may be repeated in the product. Adding the
symmetry then consists of replacing these rotations by rotations around
the transformed operator Q̂ext (as per Eq. 2.24), and re-decomposing the
operations into a circuit (using e.g. the methods of [31, 95]). If Ĥ had a
previous set of symmetries Ŝi, these are transformed to a new set Ŝi,ext

(following Eq. 2.24), that commute with both Ĥext and the additional
symmetry XP̂ . This extension method is particularly suitable for dig-
ital quantum simulation, as circuits are often generated in the form of
Eq. 2.25. This is the case for traditional Hamiltonian simulation [96],
quantum phase estimation [31], and the UCC QSE discussed previously,
all of which require exponentiating an operator via the Suzuki-Trotter
expansion [97].

Beyond choosing the number of symmetries in a problem, one may
wish to choose how these symmetries appear in the problem. In partic-
ular, sets of symmetries may be found that anticommute with all local
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2. Low-cost error mitigation by symmetry verification

operators, which should increase the mitigation power of the verification
protocol against local sources of noise. (For example, the N -qubit opera-
tors X⊗N and Z⊗N with even N .) Any two groups of M Pauli operators
are unitarily equivalent as long as they satisfy the same commutation and
multiplication rules (e.g. IZ, ZI, and ZZ are equivalent to XX, Y Y and
ZZ, but not to IX, IY and IZ). To find such unitary transformations, we

suggest decomposing them into rotations of the form R̂ = ei
π
2 Q̂ for Q̂ ∈ P,

which transforms

P̂ ∈ P→ R̂†P̂ R̂ =

{
P̂ if [P̂ , Q̂] = 0

iP̂ Q̂ if {P̂ , Q̂} = 0
. (2.26)

Rotations of this form have a few desirable properties. Their effect is
easy to calculate classically, and they transform Pauli operators to Pauli
operators. Furthermore, each R̂ leaves half of the Pauli group unchanged.
This allows for some choice of rotations to leave desired symmetries (or
other operators) already present in the problem invariant, while other
terms are rotated.

2.5. Extending the symmetry verification of
the hydrogen molecule

We now demonstrate the verification of multiple symmetries by extending
the previous VQE simulation of H2. We transform the electronic structure
Hamiltonian onto a qubit representation this time via the Jordan-Wigner
transformation. This gives the four-qubit Hamiltonian

Ĥ =hI I +
∑
i

hiZi +
1

2

∑
i 6=j

hi,jZiZj

+ hs(X0Y1Y2X3 + Y0X1X2Y3

−X0X1Y2Y3 − Y0Y1X2X3), (2.27)

which has symmetries Ŝ0 = Z0Z1, Ŝ1 = Z0Z2, and Ŝ2 = Z0Z1Z2Z3. In
the Bravyi-Kitaev transformation these symmetries were the additional
qubits that were thrown away. We choose again the unitary coupled
cluster ansatz for the VQE, which can be reduced to the operator1

Û(θ) = eiθY0X1X2X3 . (2.28)

1The cluster operator for this system is a sum of 8 four-qubit terms, however the
action of each term on the Hartree-Fock starting state is identical, so only one is
needed.
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As in the two-qubit case, the VQE circuit consists of preparing the sys-
tem in the Hartree-Fock state |1100〉, applying U(θ) and measuring the
variational energy, for a total circuit time of 400 ns.

The above set of symmetries still commute with all single-qubit Z errors,
so we rotate our problem to increase the mitigation power of symmetry
verification. We choose the rotation

R̂ = ei
π
2 Y0X2ei

π
2 Y1X3 . (2.29)

This transforms the symmetry Ŝ0 → X0X1X2X3, whilst leaving Ŝ1 and
Ŝ2 unchanged. The resulting set of symmetries do not commute with
any single-qubit X or Z operator, as required. To create the transformed
circuit, we need to transform both our starting state |1100〉 → R̂|1100〉,
and the UCC unitary ansatz

Û(θ)→ R̂ÛR̂† = eiθY0Z1X2 . (2.30)

The transformed circuit incurs an additional cost from this initial appli-
cation of R̂, but this is balanced by the reduced weight of the transformed
cluster operator, resulting in a total circuit time of 440 ns.

In Fig. 2.5, we compare the performance of the two different circuits
above to the two-qubit circuit of Fig. 2.3, with and without the addition of
S-QSE. At small bond distance (. 0.75Å), the target ground state (in the
absence of rotation by R̂) is roughly a computational basis state, which is
immune to dephasing errors. At this point, all three verification protocols
perform roughly similarly, despite the unmitigated four-qubit simulations
performing significantly worse than the unmitigated two-qubit simulation.
At large bond distance (& 0.75Å), the ground state is prone to T2 noise,
at which point we see the rotated 4-qubit S-QSE simulation significantly
outperforming its counterparts. At the largest distance studied, this sim-
ulation achieves a two-fold reduction in error compared to the two-qubit
S-QSE simulation, despite using twice as many qubits and a twice as long
circuit. By comparison, unrotated S-QSE on four qubits cannot protect
against the T2 noise accumulated over the simulation, and performs a
factor of two worse than the two-qubit S-QSE simulation. This clearly
demonstrates the need to optimize symmetry verification protocols to ac-
count for errors present in the system as this technique is scaled up to
larger computations. Over the entire bond-dissociation curve, the rotated
four-qubit S-QSE simulation outperforms its unmitigated counterpart by
over an order of magnitude.
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2. Low-cost error mitigation by symmetry verification

Figure 2.5.: (Color online) Adding and adjusting symmetries to optimize sym-
metry verification. The blue (dots) and red (diamonds) curves correspond to
their coloured (shaped) counterparts in Fig. 2.3, whilst the purple (squares) and
brown (crosses) curves come from a four-qubit simulation of H2 using the two
protocols described in the text. The dashed lines represent the S-QSE versions
of their solid counterpars. Error parameters on all qubits are the same for all
simulations (parameters given in the text).
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2.6. Conclusion

In this paper we have presented a new low-cost strategy for error miti-
gation, which we call symmetry verification. We have discussed various
ways in which it can be applied to different algorithms, and various meth-
ods to optimize the mitigation power against common sources of error.
We have demonstrated these protocols on a simulated VQE experiment
of H2, and observed that they outperform the unmitigated result over the
entire bond-dissociation curve by around an order of magnitude.

Although the above techniques are very promising for small experi-
ments, much work needs to be done optimizing symmetry verification for
mid-range experiments in the NISQ era. The addition and choice of sym-
metries needs to be investigated further to minimize the resulting circuit
depth. Further study is also needed on the optimal number of symmetry
verifications to be added to a circuit, both to maximise mitigation and
minimize run-time (which increases exponentially in the number of verifi-
cations made). Finally, given the obvious connection between symmetry
verification and the stabilizer formalism of quantum error correction, it is
natural to ask whether one can mix the two to transform slowly between
mid-size NISQ circuits and large-scale fault-tolerant ones.
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Appendix

2.A. Appendix: Error mitigation of QSE
with anticommuting operators

In this appendix we repeat the analysis of QSE from the text, but with an
operator Â that anti-commutes with the Hamiltonian Ĥ. Let us assume
to begin that Â is unitary. Such an operator cannot be simultaneously
diagonalized with Ĥ, and so we have no result from symmetry verifica-
tion to compare with. Given an eigenstate Ĥ|ψ〉 = E|ψ〉, we have that
ĤÂ|ψ〉 = −ÂĤ|ψ〉 = −EÂ|ψ〉, and so the presence of an anticommut-
ing operator splits the eigenstates of Ĥ into pairs of equal magnitude
but opposite sign energies (known as eigenstates of different chirality). If
Â = Â†, the eigenstates of Â itself are the equal superpositions

|±〉 =
1√
2

(|ψ〉 ± Â|ψ〉). (2.31)

For QSE, we must calculate the operators ĤQSE and B̂QSE.

B̂QSE =

[
1 Trace[Âρ]

Trace[Â†ρ] 1

]
. (2.32)

ĤQSE =

[
Trace[Ĥρ] Trace[ĤÂρ]

Trace[−ĤÂ†ρ] −Trace[Ĥρ]

]
. (2.33)

Again assuming |Trace[Âρ]|2 6= 1, we can invert B̂QSE and calculate

B̂−1
QSEĤQSE =

1

1− |Trace[Âρ]|2

[
α β
−β∗ −α∗

]
, (2.34)

where

α = Trace[Ĥρ] + Trace[Âρ]Trace[ĤÂρ] (2.35)

β = Trace[ĤÂρ] + Trace[Ĥρ]Trace[Âρ]. (2.36)
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2. Low-cost error mitigation by symmetry verification

The solution to the equation is

E2
QSE =

|α|2 + |β|2
(1− |Trace[Âρ]|2)2

(2.37)

=
Trace[Ĥρ]2 + |Trace[ĤÂρ]|2

1− |Trace[Âρ]|2
. (2.38)

To understand the gain in energy, |Trace[ĤÂρ]|2, let us first consider a
single set of opposite chirality states |ψ〉 and Â|ψ〉 (with energy ±E). We
first note that if ρ is an incoherent superposition of the eigenstates,

ρ = |a|2|ψ〉〈ψ|+ |b|2Â|ψ〉〈ψ|Â, (2.39)

Trace[ĤÂρ] = Trace[Âρ] = 0 (as 〈ψ|A|ψ〉 = 0), and QSE strictly does not
improve on the estimate of the ground state energy. We next consider the
opposite situation, where ρ is a coherent superposition of eigenstates:

ρ =(cos(θ)|ψ〉+ sin(θ)eiφÂ|ψ〉)
× (cos(θ)〈ψ|+ sin(θ)e−iφ〈ψ|Â†). (2.40)

We can calculate

Trace[Ĥρ] = E cos(2θ), (2.41)

Trace[Âρ] = sin(2θ)(1 +Aeiφ), (2.42)

Trace[ĤÂρ] = E sin(2θ)(Aeiφ − 1), (2.43)

where A = 〈ψ|Â2|ψ〉 (so |A| ≤ 1, and for Â ∈ PN , A = 1). This gives

E2
QSE = E2 cos2(2θ) + sin2(2θ)χ+

1− sin2(2θ)χ−
, (2.44)

χ± = (1±Aeiφ)(1±Ae−iφ). (2.45)

We see that if A = 1, φ = π
2 , QSE corrects the coherent error entirely,

whilst if A = 1, φ = 0 it has no effect. This implies that QSE cannot
correct coherent rotations of ρ from |ψ〉 towards an eigenstate of Â. This
is in keeping with the general observations in [82] for the performance of
QSE as an error mitigation strategy.

If Â is not unitary, then Â†Â is a Hermitian operator that commutes
with Ĥ. Importantly, if {Â, Ĥ} = 0, {ÂĤ, Ĥ} = 0 as well, giving a second
anticommuting operator that is in general non-unitary. This could be
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used directly in QSE, although the analysis of Sec. 2.2.3 no longer holds
unless Â†Â ∈ P2. For symmetry verification, we require the form of the
projector M̂a onto the correct Â†Â|ψ〉 = a|ψ〉 subspace. This is a difficult
task in general to construct (for ÂĤ, it is equivalent to diagonalizing
the Hamiltonian). We have been unable to construct any further bounds
on the performance of QSE as an error mitigation strategy for a general
Hermitian operator, nor for an operator which neither commutes nor anti-
commutes with Ĥ. This is, however, an interesting direction for future
research.
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