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1. Introduction

1.1. Preface

Quantum computation is a paradigm of computation and information
processing in which the laws of quantum mechanics are used to perform
calculations. The basic unit of information storage is called a quantum bit
or qubit, and it has properties beyond those of its classical counter-part,
the bit. The most notable of which is the fact that information on a qubit
can be stored in a superposition of the 0 and 1 states,

|ψ〉 = α0|0〉+ α1|1〉, αi ∈ C (1.1)

|α0|2 + |α1|2 = 1. (1.2)

The complexity to describe a (pure) N-qubit quantum state grows expo-
nentially with the system size. This is because a complete description of
such quantum state has 2N − 1 αi (complex) coefficients or amplitudes

|ψ〉 = α0|00 . . . 0〉+ α1|00 . . . 1〉+ · · ·+ α2N−1|11 . . . 1〉. (1.3)

A quantum computer is a collection of qubits, and thus a quantum compu-
tation is the use of such device to perform a calculation. As a specialized
machine, quantum computers require dedicated algorithms that take ad-
vantage of quantum mechanical features to solve problems. In the early
90s, Deutsch and Josza [1, 2] showed that a quantum algorithm imple-
mented on a quantum computer could solve a specific classical problem
exponentially faster in time compared to the best-known classical algo-
rithm for the same task. In 1997 a ground-breaking development by Peter
Shor demonstrated the first quantum algorithm that had an exponential
run-time advantage with respect to its classical counterpart for finding the
prime factors of an integer [3]. Since then, the interest on quantum com-
putation increased and mostly focused on developing quantum algorithms
that show quantum speed-up in solving classically hard problems [5]. In
recent years, research in quantum algorithms has gone beyond the search
for speed-ups to a wider range of topics such as understanding what makes
quantum computers powerful [4], studying quantum states that cannot be
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1. Introduction

accessed with a classical computer [6, 7] or designing fine-controlled quan-
tum sensing protocols [8].

In the past two decades ground-breaking developments in experimental
quantum physics has opened the door to study the power of quantum
computation. Academic and industry laboratories world-wide have been
devoted to manufacture prototypical quantum hardware, using a vari-
ety of platforms. In the process, researchers have observed that realistic
quantum computers are highly sensitive to noise. The large number of
imperfect and unwanted operations of current quantum hardware makes
it unrealistic to run the originally proposed quantum algorithms. A solu-
tion to these problem is to design quantum error correction schemes such
that with bigger devices and better control one can approach a noise-
free quantum computer. Unfortunately, with the current state-of-the-art
quantum hardware, a useful, fault-tolerant quantum computer will require
millions of qubits [9, 10]. Until million-qubit devices are achieved we re-
main in an intermediate era, where the potential for application remains,
but where low-cost error mitigation must replace provable error correction
techniques.

This thesis studies various aspects of near-term quantum computing;
from noise characterization and error mitigation schemes to information
extraction of quantum states, as well as classical optimization methods
for circuits. The results of this work cover a series of topics that are
necessary to demonstrate beyond-classical computational advantage in
noisy quantum hardware.

1.2. Basics of quantum algorithms

A quantum algorithm is a set of instructions given to a quantum computer
to perform a task. It involves preparing a quantum state |ψ〉, evolving
the state |ψ〉 → U |ψ〉 via unitary operations (UU† = U†U = I), and
measure observables. A classical post-processing step is generally used
to interpret the extracted information and/or to continue with a new
algorithm iteration.

Typically, quantum registers are initialize in their 0 state, such that

|ψinitial〉 = |0〉⊗N . (1.4)

This state is evolved applying a sequence of quantum (unitary) gates that
transform the quantum state

|ψfinal〉 = UkUk−1 . . . U0|0〉⊗N . (1.5)
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1.2. Basics of quantum algorithms

Q0 |0〉 H • H

Q1 |0〉 H Z × H

Q2 |0〉 H Z × H

Q3 |0〉 H • H

Figure 1.1.: An example of a 4-qubit quantum circuit. The initial state
|ψ0〉 = |0000〉 is transformed by the use of one- and two-qubit gates to a different
state. The boxes at the end of the circuit represent a measurement apparatus,
where information about |ψ1〉 is extracted.

The information is extracted from the quantum device by measuring mea-
suring one or more qubits. From the 2N bits of information encoded in the
quantum state, only a maximum of N bits of information can be obtained
after a measurements operation. This is a huge bottleneck when using a
quantum computer.

The system is projected through the Born’s rule [11] to the compu-
tational state described by these measurements, and the rest of the in-
formation is lost. An example of a quantum circuit with single-qubit
(Hadamard, Z-gate) and two-qubit (CNOT, SWAP) gates is depicted in
Figure 1.1. In this figure the time goes from left to right, sequentially
applying unitary operations, the Uk in eq. 1.5, at each time-step. The left
side of the figure indicates the initial state |ψ0〉 = |0000〉. After the evolu-
tion the quantum state is measured, action depicted by the measurements
apparatus at the end of the figure.

1.2.1. Quantum state tomography

In the preface of this thesis we stated that a (pure) N-qubit quantum state
is described by 2N − 1 complex coefficients. Quantum state tomography
is the process of obtaining the full description of a given quantum state
|ψ〉 as described in eq. 1.3. One can describe a pure quantum state by its
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density matrix representation,

ρ = |ψ〉〈ψ| =
2N−1∑
i,j=0

βi,j |i〉〈j|. (1.6)

The density matrix formalism of quantum states is strictly more descrip-
tive as one can also represent non-pure (mixed) quantum state,

ρmixed =
1

2
[|0〉〈0|+ |1〉〈1|]. (1.7)

One might think that the equal superposition state,

|ψ〉 =
1√
2

[|0〉+ |1〉], (1.8)

also has a probability 1
2 of returning 0 or 1. By writing its density matrix

representation

ρsuperposition = |ψ〉〈ψ| = 1

2
[|0〉〈0|+ |0〉〈1|+ |1〉〈0|+ |1〉〈1|], (1.9)

and comparing eq. 1.7 with respect to eq. 1.9 one can see that the mixed
state is not the same as the equal superposition state. The density matrix
ρ is a complex 2N × 2N matrix in the same Hilbert space of the qubit
states [43] with entries βi,j = αi · αj . ρ can be expressed as a linear

combination of Pauli operators, P̂i ∈ {I,X, Y, Z}⊗N , as they form a basis
of the Hilbert space of the qubits,

ρ =
1

2N

4N−1∑
i=0

ciP̂i. (1.10)

In this form, quantum state tomography is reduced to simply estimate
the coefficients

ci =
Trace[ρPi]

2N
. (1.11)

On a quantum computer, eq. 1.11 cannot be exactly computed. After
every measurement of an N-qubit quantum state ρ only a maximum of N
bits of information can be retrieved. This is formalized by the so-called
Holevo bound [20], and is one of the greatest bottlenecks when performing
quantum computations. One can only obtain an estimate of ci by using
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M copies of ρ and performing a projective measurement on the basis of
the operator Pi (see Fig. 1.2). The estimator of ci

E[ci] = 〈Pi〉, (1.12)

with variance

Var[E[ci]] =
1− 〈Pi〉2

M
. (1.13)

The probability of E[ci] being ε > 0 close to the true value ci is given by
the Chebyshev’s inequality

P[|E[ci]− ci| ≥ ε] ≤
Var[ci]

Mε2
. (1.14)

This equation provides a bound on the number of copies of ρ needed to
estimate a given coefficient to a certain precision

M ∼ 1

ε2
. (1.15)

A full characterization of an N-qubit quantum state requires one to
estimate each of the 4N ci coefficients. With the method described here
the time complexity of running quantum state tomography will scale as

Time = O(ε2 · 4N ). (1.16)

Newer quantum state tomography methods [21] have been able to reduce
the time-complexity to

Time = ε · expN . (1.17)

thus making quantum state tomography unfeasible even for a small-sized
quantum computers.

In practice, we don’t need to estimate every expectation value of a
quantum state. Given an operator

Ô =
∑
i

oiPi, (1.18)

where Pi are Pauli operators, we need only measure those 〈Pi〉 that have
non-zero oi coefficients. For instance, the electronic structure problem,
a central problem in quantum chemistry, only requires one to character-
ize the state on O(N4) operators where N refers to the number of spin-
orbitals. This is an exponential reduction in the number of measurements
with respect to characterizing the full quantum state [108, 119].
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|ψ0〉 U0 . . . Un

Mi,j

Mi,j

...
...

...

Mi,j

Mi,j

Figure 1.2.: Quantum state tomography is done by measuring the state in
different basis rotations before extracting the information the qubits, Mi,j gate
in the figure. The boxed gates in the figure are the tomography rotations that
allow to extract the information from the quantum state in different bases.
In general, there are 4 possible basis rotations, namely the Pauli matrices I,
X, Y and Z. Recover the full quantum state requires to prepare all possible
combinations of the Pauli matrices in all possible qubits. However, typically we
are only interested in a subset of these Mi,j combinations to extract the most
important information of the quantum state.

1.2.2. Variational quantum algorithms

Variational quantum algorithms are a family of quantum algorithms in
which a set of classical parameters are used to control the quantum state
of a device [39–41, 87]. These parameters are included during the evo-
lution step of the algorithm such that some of the quantum gates are
parametrized. Therefore, the parametrized quantum state is |ψ(~θ)〉 =

U(~θ)|0〉⊗N . Figure 1.3 shows an example of a parametrized quantum
circuit, where single-qubit rotation gates can be modified based on the
classical parameters ~θ = θ0 . . . θn.

Variational quantum algorithms require an additional element, namely
a real-valued cost function C(~θ) to optimize the parameters of the quantum
state. C is typically the expectation value of a quantum observable Ô, a
Hermitian operator in the Hilbert space of the qubits. On a quantum
computer Hermitian observables can be measured by expressing them as
a sum of Pauli operators, e.g. P̂i ∈ {I,X, Y, Z}⊗N ,

Ô =
∑
i

ciP̂i → C(~θ) = 〈Ô〉 =
∑
i

ci〈P̂i〉, (1.19)

with ci ∈ R. In Sec. 1.2.1 we described how to characterize a N-qubit
quantum state through its Pauli decomposition (eq. 1.10). We can use
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|0〉 X • Rx(θ0) × H

|0〉 Rz(θ1) × Rx(θn) H
...

...
...

...

|0〉 Ry(θ3) • H

|0〉 X • Rx(θ2) Rx(θ4) H

Figure 1.3.: A parametrized quantum circuit is formed by combining fixed
and variable gates. In this example we show fixed gates Hadamard (H), X,
CNOT or SWAP gates and variable rotation gates around specified axes (X,
Y or Z). Although here every parametrized gate has its own parameter, it is
possible that multiple gates share the same parameter.

(partial) quantum state tomography can be used to estimate the cost
function C of a variational quantum algorithm. However, the number of
operators to estimate now need not be exponential in the system size.
In fact, most of the problems of interest only need poly(N) operators.
While the Pauli decomposition is a widely use strategy to measure any
quantum observable Ô on a quantum computer there exist other methods
to estimate Ô such as low-rank factorization [132] or classical shadows of
quantum states [65–68].

An evaluation of the cost function involves preparing and measuring
the quantum state multiple times to build statistics. Therefore, we only
have access to a sampled cost function that depends on the parameters ~θ
and the number of measurements M

C̄(~θ,Mi) =
∑
i

ci
[
〈P̂i〉+ εi(Mi)

]
. (1.20)

The sampling noise manifests in the form of a random variable εi drawn
from a binomial distribution with variance σ2

i ∼ 1
Mi

(see eq. 1.13).
In a variational quantum algorithm one attempts at finding the set of

parameters ~θ of a fixed parametrized quantum circuit that minimize C(~θ).
Thus, a classical optimization algorithm is used to update ~θ after every
evaluation of C. The optimization loop continues until some convergence
or hard-stop criteria have been met. At the end of the algorithm we are
left with a set of parameters ~θopt that minimize C̄. The state generated

by the parametrized quantum circuit with ~θopt is an approximation to the
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Figure 1.4.: A schematic representation of a variational quantum algorithm.
First the quantum device is initialized in a known quantum state |000〉, followed
by a sequence of parametrized quantum operations that prepare a final quantum
state |Ψ(~θ)〉 (red box). The quantum state is then measured to obtain the

observable Ô(~θ) (blue box), which is fed into a classical optimization loop.

A new set of angles ~θk+1 is given by the optimizer (green box). The new
parameters are then used in the red box step, and the process is repeated until
some convergence criteria is met. Figure taken with permission from ref. [19]

ground-state of the observable used as a cost function Ô. An schematic
representation of a variational quantum algorithm is depicted in fig. 1.4.

1.2.3. Classical optimization of variational quantum
algorithms

Quantum computers promise to solve problems that are out-of-reach for
the largest and fastest existing supercomputers. However such quantum
advantage does not imply that quantum computers will replace their clas-
sical counter-parts. In fact, classical computers are a crucial part of a
quantum computer architecture for its control [30]. Similarly, in varia-
tional quantum algorithms a classical optimization method is used to find
the optimal values of the parametrized quantum circuit with respect to
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the cost function (Sec. 1.2.2). An optimization algorithm is a piece of soft-
ware that attempts to find the parameters ~x that minimize (or maximize)
some cost function F(~x). To find such optimal parameters, an optimizer
suggests candidates ~x1...n to be evaluated on the cost function F(~x1...n)
sequentially. From those evaluations the optimizer updates a set of rules
such that a new candidate with a lower (or higher) F(~xn+1) is found. The
search for candidate parameters continues until some convergence crite-
rion is met (e.g. no improvement in F(~x), changes in parameters smaller
than some threshold, etc.) or some hard stop criterion is reached (e.g.
total number of function evaluations, maximum time allowed, etc.). It is
clear that a successful implementation of a variational quantum algorithm
strongly depends on the ability of the classical computer to optimize the
given cost function.

Quantum devices need the assistance of a classical optimization method
for their characterization and calibration [26–30]. However, the question
of how optimal these methods for quantum-optimal control tasks is un-
certain and currently a very active research field. Similarly, the optimiza-
tion of variational quantum algorithms has largely been with off-the-shelf
optimizers. Typically optimizers assume that the cost function is deter-
ministic, but in variational quantum algorithms we only have access to a
probabilistic output of it, C̄. For this reason, the results in the literature
do not show a clear trends, thus making difficult to asses the optimality
of commonly used optimizers for variational quantum algorithms.

For decades, computer scientists have been developing strategies to sys-
tematically compare and benchmark optimization algorithms for classical
cost functions [22–25]. From the field of classical optimization algorithms
we have learnt that there is not a universal optimizer: every problem is
better optimized with a particular method and for every instance there
are optimal hyper-parameters of the optimizer. This reflects the heuristic
nature of the optimization algorithms. Progress in variational quantum
algorithms requires us to extend these systematic analysis to the newly ac-
cessible cost functions through optimizer benchmark and landscape anal-
ysis. Recently, some work has been put into the design of optimizers
specifically for variational quantum algorithm specific optimizers [138–
141] but many questions remain unknown about their capabilities to op-
timize larger problems.
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1.2.4. Applications to quantum chemistry and
material science

Quantum computers have been marked as a tool to study problems in
the domain of quantum chemistry and material science. Typically, we
are interested in calculated the spectrum and/or some properties (e.g.
energy-gradients, polarization, magnetization) of the physical systems de-
scribed by a Hamiltonian. One of such problems in quantum chemistry
the electronic structure problem, which describes the behaviour of the
electrons around the nuclei, under the Born-Oppenheimer approximation
which assumes that the nuclei are fixed particles. The Hamiltonian that
describes this systems is

Ĥ =
∑
pq

hpqâ
†
pâq +

1

2

∑
pqrs

hpqrsâ
†
pâ
†
qârâs, (1.21)

where â and â† are the fermion creation and annihilation operators acting
on the fermionic modes p, q, r, s. The coefficients hpq and hpqrs are the
set of one- and two-electron integrals evaluated classically using a fixed
basis set functions [31]. The Fermi-Hubbard model is another example of
a system of interest for material science [32, 33],

HHubbard = Ht+HU = −t
∑

(i,j),σ

(
a†iσajσ + a†jσaiσ

)
+U

∑
i

ni↑ni↓. (1.22)

It describes the interaction between particles on a lattice of nx x ny sites.
Particles can tunnel to the nearest-neighbor site hopping strength t but
they are prevented to tunnel to an occupied site of the same spin σ with
on-site potential strength U .

In quantum chemistry and material science most of the relevant prop-
erties of the systems are described by the eigenvalues and eigenstates of
the Hamiltonian (e.g. the ground- and low-lying energy states of the sys-
tem). Therefore, the goal is to accurately compute these energies. Within
the variational paradigm, this can be achieved by preparing approximate
ground states via variational circuits (Sec. 1.2.2), and extracting energies
or other expectation values using the techniques described in Sec. 1.2.1.

Particles in nature are observed to be of two types: fermions or bosons.
Bosonic systems have a symmetric wave-function

Ψboson(~x2, ~x1) = Ψboson(~x1, ~x2), (1.23)

and thus the exchange of two bosons leaves the system invariant. The
symmetric nature of bosons implies that multiple particles can occupy
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1.2. Basics of quantum algorithms

the same space. In contrast, fermionic systems have an anti-symmetric
wave-function

Ψfermion(~x2, ~x1) = (−1)Ψfermion(~x1, ~x2), (1.24)

and an exchange of two fermions changes the sign of the wave-function [12].
Typically, many-body quantum systems are studied through the creation
(a†) and annihilation (a†) or second-quantization formalism. The action
of these operators on the vacuum state |0〉 is as follows:

ai|~0〉 = 0 (1.25)

a†i |~0〉 = |00100〉, (1.26)

where a particle at the i-th position has been created. The creation and
annihilation operators of a bosonic system obeys the commutation relation

[ai, a
†
j ] = aia

†
j − a†jai = δij . (1.27)

However a fermionic system follows the anti-commutation relation

{ai, a†j} = aia
†
j + a†jai = δij . (1.28)

The anti-symmetric nature of interacting fermionic systems can pose
a problem when studying them via e.g. classical Monte-Carlo methods.
The so-called fermionic sign problem appears because one must track all
fermionic exchanges to account for the correct sign in the wave-function.
This sign problem has been proven NP-hard [13], which is strong evidence
that calculating ground states of interacting fermionic systems scales ex-
ponentially in the system size. On the contrary a qubit can store the in-
formation of a fermionic site in a one-to-one correspondence. Polynomial-
time quantum algorithms under fair assumptions to solve systems of inter-
acting fermions have been discovered [14–17, 31, 76, 78, 79, 95, 187]. This
translates into an exponential speed-up in computing ground states of in-
teracting fermions using a quantum computers with respect to classical
methods.

Variational quantum algorithms are suited to approximate the energy
spectrum of such fermionic interacting problems in the near-term [18, 19].
However, a fermionic representation is non-native on a quantum computer;
the native operations are in terms of qubit (Pauli) operators. Luckily
there exist methods to transform fermionic operators onto a polynomial
number of Pauli operators. The so-called fermion-to-qubit mappings [34–
38] ensure that the anti-commutation relations of the fermionic operators
is respected by the Pauli operators.
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In the past decade we have seen a large number of experimental demon-
stration of variational quantum algorithms for quantum chemistry and
material science problems. Variational quantum eigensolvers were orig-
inally proposed for the task of approximating the ground-state of the
Hydrogen molecule in a photonic quantum device [39, 40]. Many more ex-
periments in a wide variety of platforms have followed [41, 42, 44, 45]. The
largest variational quantum algorithm for chemistry was run in 2021 with
12 qubits to compute the Hartree-Fock energy of several molecules [46].

1.3. Noisy intermediate-scale quantum
computers

In the roadmap towards error-free quantum computers based on quantum
error correction schemes there will exist error prone intermediate-scale
hardware sufficiently large to challenge the limits of classical computers.
This idea led to the definition of noisy intermediate-scale quantum (NISQ)
computation by Preskill [47] to explore the capabilities of quantum hard-
ware pre-quantum error correction. As a newly introduced form of quan-
tum computation, NISQ era needs tailored quantum algorithms that take
into account the noise limitations of the hardware. A whole new research
field has opened to understand, improve and develop quantum hardware
and algorithms for noisy intermediate-scale quantum computers [48].

Quantum computation with NISQ devices requires tailored software
and hardware to minimize the noise effects. The first necessary step is
to understand as accurately as possible the limitations of the hardware.
Only then it is possible to explore algorithms and problems that are suited
to them. An alternative solution is to construct hardware which is specif-
ically design for a task or problem, namely building analog quantum com-
puters. In this way, the capabilities of the hardware are maximized (for
the specific problem) but their usability is largely constrained.

Regardless of the approach, it is likely that NISQ computing will be best
suited for highly specialized problems in the field of quantum mechan-
ics. The simplest approach is to use the quantum hardware to prepare a
quantum state |ψ〉, and extract relevant information using quantum state
tomography described in Sec. 1.2.1. Ideally, the quantum state is not
accessible with a classical computer, and thus we can obtain information
which is otherwise impossible to get.
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1.3. Noisy intermediate-scale quantum computers

1.3.1. Noise in quantum hardware

A quantum computation involves storing and transforming quantum in-
formation on a quantum system. Unfortunately quantum information is
fragile and extremely sensitive to interactions between the quantum sys-
tem and its surroundings. Some level of noise in any quantum processing
unit will be unavoidable because we need to interact with it to perform
a computation. Therefore, it is important to study which errors occur
during the execution and which physical process might have caused such
error. By understanding these effects we can construct noise models that
reproduce the errors of a quantum device accurately and reliably, allowing
us to benchmark the quality of the quantum hardware.

The simplest noise models that reliably describe errors on a quantum
processing unit are the so-called bit- and phase-flip errors. A bit-flip error
is the process by which the state of a single qubit |ψ〉 changes from |ψ〉 =
|0〉 → |1〉 (or vice-versa) with probability pbit and remains unchanged with
probability 1 − pbit. Similarly, a phase-flip error describes the change in
the relative phase of the quantum state |ψ〉 = |0〉+ |1〉 → |ψ〉 = |0〉−|1〉 of
a single qubit with probability pphase. The bit- and phase-flip error models
can be combined to a single noise model such that with probability pbp a
single qubit undergoes a bit and phase flip error, and with 1−pbp the qubit
remains unchanged. Although these noise models describe the errors at a
single-qubit level one can use them to approximate the errors of a multi-
qubit device by extending the error model to all qubits of the system with
the same probability. It is possible to make the bit-phase flip model more
accurate by assigning different probabilities of error to each individual
qubit. Despite its simplicity the bit- and phase-flip errors are a good
approximation to the errors occurring to a quantum device. These noise
models are particularly relevant for quantum error correction [60, 85],
where repeated measurement of a system projects coherent sources of
error to discrete events.

Another important source of error in quantum hardware is the depo-
larizing noise channel. It describes the process by which a quantum state
becomes a maximally mixed state with probability pdep. This process can
be seen as the quantum state losing its “quantumness” because the max-
imally mixed state is a classical state with equal probability of measuring
0 or 1 in a single qubit in the computational basis 1.7.

In reality, noise in a quantum device is not discrete, and its quantum
state is continuously modified in time by the action of the environment.
Noise models that account for the time-dependent nature of these inter-
actions are needed to describe the errors that occur during the execution
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of a quantum algorithm in a noisy device more accurately. An example
of such time-dependent interaction is the loss of energy of the quantum
device to the environment also known as amplitude damping. The rate
at which the energy (or amplitude) of the quantum state is dissipated
to the surroundings is given by T1; after time t, the probability that a
system prepared in the excited state has decayed to the ground state is

1− e
−t
T1 . Another source of error in a quantum processing unit is the loss

of information without energy dissipation. This is the phase-flip channel,
and it is characterized by the pure dephasing rate Tφ; the rate at which
the phase decays for a given time t. It is common to use the total loss
of phase information rate T2 instead of the pure dephasing rate. T2 is
the rate at which the phase of a quantum state is damped. It defines the
time-scale at which the probability of the phase damping happening is

given by pphase(t) = 1 − e
−t
T2 . It can be shown that the coherence times

T1 and T2 are related such that [43]

T1 ≥ 2T2. (1.29)

The T1 and T2 coherence times are relevant figures to characterize a quan-
tum processing unit. First, they set an upper bound on the number of
operations that can be performed on the device before a quantum com-
putation breaks down due to errors. Secondly, they are a standard metric
to compare across different qubit platforms. Beyond the errors models
introduced in this section, many more error sources are known to affect
quantum hardware (see ref. [30] for an overview of noise sources in super-
conducting qubits): leakage to higher-energy states, idle cross-talk, pulse
cross-talk, measurement cross-talk.

Depending on the level of accuracy desired to assess the quality of a
quantum program on a specific device we can build highly accurate noise
models by running characterization experiments. Such experiments pro-
vide researchers with information about coherent over-rotations, thermal
fluctuations or leakage to spurious states. All of them can be combined
in a device-specific noise model that can reproduce the experimental data
to high accuracy. In this thesis we develop one of such errors models in a
two-qubit superconducting quantum device, modelling all known sources
of noise.

1.3.2. Quantum error correction

Since early in the development of quantum computation it was known that
quantum states are fragile, and that a successful quantum algorithm will
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1.3. Noisy intermediate-scale quantum computers

require the quantum states to be stable for long periods of time. Quantum
error correction was developed to overcome such a challenge. Building
upon knowledge from classical error correction where additional bits of
information are used to store redundant information used to detect errors,
quantum error correction codes use additional qubits with the same goal.
The first quantum error correction scheme was proposed independently
by Shor [57] and Steane [58]. Subsequently, the stabilizer formalism was
developed by Gottesman [59, 60] to investigate properties of quantum
error correcting codes.

Outstanding progress has been done in the domain of quantum error
correction in the past decade. In particular, several experimental real-
izations of the surface code [61] have been done with superconducting
quantum processors [62, 63] and the largest surface code experiment to
date [64]. Quantum error correction is a very active research field, con-
stantly making progress towards efficient implementations of quantum
error correcting codes for fault-tolerant universal quantum computers.
Unfortunately at the time of this thesis the theoretical predictions on the
error rates and/or number of qubits required to implement fault-tolerant
quantum algorithms are orders of magnitude away from existing state-of-
the-art quantum devices. Therefore, it is expected that fully-fledged quan-
tum error corrected machines will be available in the upcoming decades.

1.3.3. Quantum error mitigation

Quantum error mitigation defines a family of techniques that aim at re-
ducing the error on a noisy quantum computation by detecting errors
by adding qubits and/or measurements without the ability to correct
them. In order to develop a successful quantum error mitigation method
one must consider the capabilities of the hardware such that the cost
of running the error mitigation does not worsen the unmitigated quan-
tum computation. Recently much progress has been done in developing
and improving the performance of noisy quantum algorithm with low-
cost overhead error mitigation strategies. Despite the effort in reducing
the computational overhead of quantum error mitigation strategies they
all require some steps that will take large polynomial or even exponential
computational resources with the system size. Therefore, these strate-
gies are thought to be used in computational tasks involving a moderate
number of qubits where the cost will still be within the capabilities of the
hardware.

A broad range of quantum error mitigation strategies have been pro-
posed following developments of variational quantum algorithm for near-
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term quantum hardware. Quantum error mitigation protocols can be
split into two groups depending on which errors they target. The first
class involves reducing errors at the hardware-level, for example:

� Zero-noise (Richardson) extrapolation [49, 50]: a zero-noise extrap-
olated observable is found by artificially increasing the noise level
of the gates and calculating the value of the observable. Then, its
zeroth order value is computed by fitting a polynomial function to
the measured points.

� Quasi-probabilistic gate decomposition [50, 51]: gate-level noise is
averaged-out by randomly adding noisy gates to the target circuit
such that some of the errors are cancelled. The observables are
measured from different random circuits, thus finding an average
value of all of them.

Alternatively one can remove errors at the problem-level by exploiting
previous knowledge of the target system. Two of the main quantum error
mitigation of this type are

� Symmetry verification [52–54]: the quantum state at the end of a
noisy quantum circuit is checked to verify if it respects the sym-
metries of the target problem. The state is then projected to the
correct sub-space that respects these symmetries.

� Virtual state distillation [55, 56]: M copies of the noisy quantum
state are used to approximate the pure state by distillation of the
leading eigenvalues of the noisy copies. As M increases the quantum
state approaches the pure state exponentially fast.

In the upcoming years it is expected that the quantity and quality of
the qubits on quantum hardware will be significantly larger. At that point
we hope to achieve quantum advantage in specific problems by carefully
designing algorithms that reduce the noise on these devices together with
powerful quantum error mitigation protocols.

1.4. Outline of this thesis

In the rest of the introduction we provide an overview of this thesis where
a brief description of every chapter is presented.
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Chapter 2

In this chapter of this thesis we cover the topic of quantum error mitigation
to improve the results of faulty quantum computations. We developed a
quantum error mitigation strategy that uses the inherent symmetries of
a target problem as a way to detect errors during a variational quantum
algorithm run. To perform the symmetry-verification step we design shal-
low quantum circuits that signal if an error occurred by measuring one
or more qubits. However such a process incurs on a cost in terms of ad-
ditional gates and qubits, and might lead to less error mitigation power.
To overcome the additional cost we develop a cost-free approach in which
symmetry-verification can be done as a post-processing step, and only
requires a polynomial number of additional observables.

Chapter 3

This chapter covers the work done in collaboration with an experimental
laboratory to demonstrate the power of symmetry-verification on a two
superconducting qubit experiment. First we perform an in-depth study of
the noise sources affecting the experiment and provide a theoretical predic-
tion of the experiment. Then we study the power of symmetry-verification
for the experiment, with a theoretical prediction of the experiment after
symmetry-verification. Finally, we compare our predictions with the ex-
perimental data finding an outstanding agreement between them.

Chapter 4

The next part of the thesis continues in the domain of near-term quantum
algorithms. We focus on how to extract the necessary relevant information
of a quantum state without reaching exponentially large times for the
task. First we find analytical lower-bounds on the number of independent
measurement circuits required to extract elements of k-reduced density
matrices in both spin- 1

2 and fermions. Then, we find a binary partition
scheme strategy to design the measurement circuits that is asymptotically
optimal for spin- 1

2 up to logarithmic factors, and matches the best-ever
strategy. A similar method is then used to devise measurement scheduling
of fermionic 1-, and 2-RDMs, finding an exact solution for the former and
an asymptotically optimal solutions for the latter (up to a constant factor).
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Chapter 5

In this chapter we focus our attention on the third part of any computa-
tion using noisy intermediate-scale quantum hardware, the optimization
of variational quantum algorithms. The goal of this chapter is to assess
the limitation of existing classical optimization algorithms for the task
of optimization a variational quantum algorithm under noise. First, we
devise a set of numerical experiments that allow us to compare between
several off-the-shelf optimizers across multiple target problems, showing
that only two of these methods are able to find accurate results under
sampling noise conditions. These two methods are then compared with
their best hyper-parameters, finding a comparable performance among
them. Our final result is the formal definition of the sampling noise floor:
any value within a region defined by the sampling level can be measured
as the best-ever result. The sampling noise floor is an artifact that can
lead to erroneous parameters during an optimization, greatly affecting the
final result of the computation.

Chapter 6

In this chapter we describe a user case test on the Dutch quantum com-
puting facilities Quantum Inspire. The goal of this research is to assess
the limitations of the current infrastructure to perform NISQ computa-
tions. Our results and conclusion are currently being used to develop the
new generation of Quantum Inspire.

Chapter 7

In the last chapter of this thesis we develop quantum algorithms to cal-
culate energy derivatives for quantum chemistry. The theory of this
work covers a large amount of resource estimates for several quantum
algorithms in both noisy intermediate-scale quantum and fault-tolerance
regime. A small test example of how to calculate gradients using New-
ton’s method is shown using simulated and experimental data with an
outstanding agreement.
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