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1. Introduction

1.1. Preface

Quantum computation is a paradigm of computation and information
processing in which the laws of quantum mechanics are used to perform
calculations. The basic unit of information storage is called a quantum bit
or qubit, and it has properties beyond those of its classical counter-part,
the bit. The most notable of which is the fact that information on a qubit
can be stored in a superposition of the 0 and 1 states,

|ψ〉 = α0|0〉+ α1|1〉, αi ∈ C (1.1)

|α0|2 + |α1|2 = 1. (1.2)

The complexity to describe a (pure) N-qubit quantum state grows expo-
nentially with the system size. This is because a complete description of
such quantum state has 2N − 1 αi (complex) coefficients or amplitudes

|ψ〉 = α0|00 . . . 0〉+ α1|00 . . . 1〉+ · · ·+ α2N−1|11 . . . 1〉. (1.3)

A quantum computer is a collection of qubits, and thus a quantum compu-
tation is the use of such device to perform a calculation. As a specialized
machine, quantum computers require dedicated algorithms that take ad-
vantage of quantum mechanical features to solve problems. In the early
90s, Deutsch and Josza [1, 2] showed that a quantum algorithm imple-
mented on a quantum computer could solve a specific classical problem
exponentially faster in time compared to the best-known classical algo-
rithm for the same task. In 1997 a ground-breaking development by Peter
Shor demonstrated the first quantum algorithm that had an exponential
run-time advantage with respect to its classical counterpart for finding the
prime factors of an integer [3]. Since then, the interest on quantum com-
putation increased and mostly focused on developing quantum algorithms
that show quantum speed-up in solving classically hard problems [5]. In
recent years, research in quantum algorithms has gone beyond the search
for speed-ups to a wider range of topics such as understanding what makes
quantum computers powerful [4], studying quantum states that cannot be
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1. Introduction

accessed with a classical computer [6, 7] or designing fine-controlled quan-
tum sensing protocols [8].

In the past two decades ground-breaking developments in experimental
quantum physics has opened the door to study the power of quantum
computation. Academic and industry laboratories world-wide have been
devoted to manufacture prototypical quantum hardware, using a vari-
ety of platforms. In the process, researchers have observed that realistic
quantum computers are highly sensitive to noise. The large number of
imperfect and unwanted operations of current quantum hardware makes
it unrealistic to run the originally proposed quantum algorithms. A solu-
tion to these problem is to design quantum error correction schemes such
that with bigger devices and better control one can approach a noise-
free quantum computer. Unfortunately, with the current state-of-the-art
quantum hardware, a useful, fault-tolerant quantum computer will require
millions of qubits [9, 10]. Until million-qubit devices are achieved we re-
main in an intermediate era, where the potential for application remains,
but where low-cost error mitigation must replace provable error correction
techniques.

This thesis studies various aspects of near-term quantum computing;
from noise characterization and error mitigation schemes to information
extraction of quantum states, as well as classical optimization methods
for circuits. The results of this work cover a series of topics that are
necessary to demonstrate beyond-classical computational advantage in
noisy quantum hardware.

1.2. Basics of quantum algorithms

A quantum algorithm is a set of instructions given to a quantum computer
to perform a task. It involves preparing a quantum state |ψ〉, evolving
the state |ψ〉 → U |ψ〉 via unitary operations (UU† = U†U = I), and
measure observables. A classical post-processing step is generally used
to interpret the extracted information and/or to continue with a new
algorithm iteration.

Typically, quantum registers are initialize in their 0 state, such that

|ψinitial〉 = |0〉⊗N . (1.4)

This state is evolved applying a sequence of quantum (unitary) gates that
transform the quantum state

|ψfinal〉 = UkUk−1 . . . U0|0〉⊗N . (1.5)

2



1.2. Basics of quantum algorithms

Q0 |0〉 H • H

Q1 |0〉 H Z × H

Q2 |0〉 H Z × H

Q3 |0〉 H • H

Figure 1.1.: An example of a 4-qubit quantum circuit. The initial state
|ψ0〉 = |0000〉 is transformed by the use of one- and two-qubit gates to a different
state. The boxes at the end of the circuit represent a measurement apparatus,
where information about |ψ1〉 is extracted.

The information is extracted from the quantum device by measuring mea-
suring one or more qubits. From the 2N bits of information encoded in the
quantum state, only a maximum of N bits of information can be obtained
after a measurements operation. This is a huge bottleneck when using a
quantum computer.

The system is projected through the Born’s rule [11] to the compu-
tational state described by these measurements, and the rest of the in-
formation is lost. An example of a quantum circuit with single-qubit
(Hadamard, Z-gate) and two-qubit (CNOT, SWAP) gates is depicted in
Figure 1.1. In this figure the time goes from left to right, sequentially
applying unitary operations, the Uk in eq. 1.5, at each time-step. The left
side of the figure indicates the initial state |ψ0〉 = |0000〉. After the evolu-
tion the quantum state is measured, action depicted by the measurements
apparatus at the end of the figure.

1.2.1. Quantum state tomography

In the preface of this thesis we stated that a (pure) N-qubit quantum state
is described by 2N − 1 complex coefficients. Quantum state tomography
is the process of obtaining the full description of a given quantum state
|ψ〉 as described in eq. 1.3. One can describe a pure quantum state by its

3



1. Introduction

density matrix representation,

ρ = |ψ〉〈ψ| =
2N−1∑
i,j=0

βi,j |i〉〈j|. (1.6)

The density matrix formalism of quantum states is strictly more descrip-
tive as one can also represent non-pure (mixed) quantum state,

ρmixed =
1

2
[|0〉〈0|+ |1〉〈1|]. (1.7)

One might think that the equal superposition state,

|ψ〉 =
1√
2

[|0〉+ |1〉], (1.8)

also has a probability 1
2 of returning 0 or 1. By writing its density matrix

representation

ρsuperposition = |ψ〉〈ψ| = 1

2
[|0〉〈0|+ |0〉〈1|+ |1〉〈0|+ |1〉〈1|], (1.9)

and comparing eq. 1.7 with respect to eq. 1.9 one can see that the mixed
state is not the same as the equal superposition state. The density matrix
ρ is a complex 2N × 2N matrix in the same Hilbert space of the qubit
states [43] with entries βi,j = αi · αj . ρ can be expressed as a linear

combination of Pauli operators, P̂i ∈ {I,X, Y, Z}⊗N , as they form a basis
of the Hilbert space of the qubits,

ρ =
1

2N

4N−1∑
i=0

ciP̂i. (1.10)

In this form, quantum state tomography is reduced to simply estimate
the coefficients

ci =
Trace[ρPi]

2N
. (1.11)

On a quantum computer, eq. 1.11 cannot be exactly computed. After
every measurement of an N-qubit quantum state ρ only a maximum of N
bits of information can be retrieved. This is formalized by the so-called
Holevo bound [20], and is one of the greatest bottlenecks when performing
quantum computations. One can only obtain an estimate of ci by using

4



1.2. Basics of quantum algorithms

M copies of ρ and performing a projective measurement on the basis of
the operator Pi (see Fig. 1.2). The estimator of ci

E[ci] = 〈Pi〉, (1.12)

with variance

Var[E[ci]] =
1− 〈Pi〉2

M
. (1.13)

The probability of E[ci] being ε > 0 close to the true value ci is given by
the Chebyshev’s inequality

P[|E[ci]− ci| ≥ ε] ≤
Var[ci]

Mε2
. (1.14)

This equation provides a bound on the number of copies of ρ needed to
estimate a given coefficient to a certain precision

M ∼ 1

ε2
. (1.15)

A full characterization of an N-qubit quantum state requires one to
estimate each of the 4N ci coefficients. With the method described here
the time complexity of running quantum state tomography will scale as

Time = O(ε2 · 4N ). (1.16)

Newer quantum state tomography methods [21] have been able to reduce
the time-complexity to

Time = ε · expN . (1.17)

thus making quantum state tomography unfeasible even for a small-sized
quantum computers.

In practice, we don’t need to estimate every expectation value of a
quantum state. Given an operator

Ô =
∑
i

oiPi, (1.18)

where Pi are Pauli operators, we need only measure those 〈Pi〉 that have
non-zero oi coefficients. For instance, the electronic structure problem,
a central problem in quantum chemistry, only requires one to character-
ize the state on O(N4) operators where N refers to the number of spin-
orbitals. This is an exponential reduction in the number of measurements
with respect to characterizing the full quantum state [108, 119].
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1. Introduction

|ψ0〉 U0 . . . Un

Mi,j

Mi,j

...
...

...

Mi,j

Mi,j

Figure 1.2.: Quantum state tomography is done by measuring the state in
different basis rotations before extracting the information the qubits, Mi,j gate
in the figure. The boxed gates in the figure are the tomography rotations that
allow to extract the information from the quantum state in different bases.
In general, there are 4 possible basis rotations, namely the Pauli matrices I,
X, Y and Z. Recover the full quantum state requires to prepare all possible
combinations of the Pauli matrices in all possible qubits. However, typically we
are only interested in a subset of these Mi,j combinations to extract the most
important information of the quantum state.

1.2.2. Variational quantum algorithms

Variational quantum algorithms are a family of quantum algorithms in
which a set of classical parameters are used to control the quantum state
of a device [39–41, 87]. These parameters are included during the evo-
lution step of the algorithm such that some of the quantum gates are
parametrized. Therefore, the parametrized quantum state is |ψ(~θ)〉 =

U(~θ)|0〉⊗N . Figure 1.3 shows an example of a parametrized quantum
circuit, where single-qubit rotation gates can be modified based on the
classical parameters ~θ = θ0 . . . θn.

Variational quantum algorithms require an additional element, namely
a real-valued cost function C(~θ) to optimize the parameters of the quantum
state. C is typically the expectation value of a quantum observable Ô, a
Hermitian operator in the Hilbert space of the qubits. On a quantum
computer Hermitian observables can be measured by expressing them as
a sum of Pauli operators, e.g. P̂i ∈ {I,X, Y, Z}⊗N ,

Ô =
∑
i

ciP̂i → C(~θ) = 〈Ô〉 =
∑
i

ci〈P̂i〉, (1.19)

with ci ∈ R. In Sec. 1.2.1 we described how to characterize a N-qubit
quantum state through its Pauli decomposition (eq. 1.10). We can use

6



1.2. Basics of quantum algorithms

|0〉 X • Rx(θ0) × H

|0〉 Rz(θ1) × Rx(θn) H
...

...
...

...

|0〉 Ry(θ3) • H

|0〉 X • Rx(θ2) Rx(θ4) H

Figure 1.3.: A parametrized quantum circuit is formed by combining fixed
and variable gates. In this example we show fixed gates Hadamard (H), X,
CNOT or SWAP gates and variable rotation gates around specified axes (X,
Y or Z). Although here every parametrized gate has its own parameter, it is
possible that multiple gates share the same parameter.

(partial) quantum state tomography can be used to estimate the cost
function C of a variational quantum algorithm. However, the number of
operators to estimate now need not be exponential in the system size.
In fact, most of the problems of interest only need poly(N) operators.
While the Pauli decomposition is a widely use strategy to measure any
quantum observable Ô on a quantum computer there exist other methods
to estimate Ô such as low-rank factorization [132] or classical shadows of
quantum states [65–68].

An evaluation of the cost function involves preparing and measuring
the quantum state multiple times to build statistics. Therefore, we only
have access to a sampled cost function that depends on the parameters ~θ
and the number of measurements M

C̄(~θ,Mi) =
∑
i

ci
[
〈P̂i〉+ εi(Mi)

]
. (1.20)

The sampling noise manifests in the form of a random variable εi drawn
from a binomial distribution with variance σ2

i ∼ 1
Mi

(see eq. 1.13).
In a variational quantum algorithm one attempts at finding the set of

parameters ~θ of a fixed parametrized quantum circuit that minimize C(~θ).
Thus, a classical optimization algorithm is used to update ~θ after every
evaluation of C. The optimization loop continues until some convergence
or hard-stop criteria have been met. At the end of the algorithm we are
left with a set of parameters ~θopt that minimize C̄. The state generated

by the parametrized quantum circuit with ~θopt is an approximation to the

7
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|0⟩

|0⟩

|0⟩

𝜃%&

𝑈(�⃗�)|000⟩ = |Ψ(�⃗�)⟩

𝜃,&

𝜃-&

𝜃.&
𝜃/&

𝜃0&

𝜃%& → 𝜃%&2%

𝜃0& → 𝜃0&2%

…

M
E
A
S
U
R
E

𝑂(𝜃)

Figure 1.4.: A schematic representation of a variational quantum algorithm.
First the quantum device is initialized in a known quantum state |000〉, followed
by a sequence of parametrized quantum operations that prepare a final quantum
state |Ψ(~θ)〉 (red box). The quantum state is then measured to obtain the

observable Ô(~θ) (blue box), which is fed into a classical optimization loop.

A new set of angles ~θk+1 is given by the optimizer (green box). The new
parameters are then used in the red box step, and the process is repeated until
some convergence criteria is met. Figure taken with permission from ref. [19]

ground-state of the observable used as a cost function Ô. An schematic
representation of a variational quantum algorithm is depicted in fig. 1.4.

1.2.3. Classical optimization of variational quantum
algorithms

Quantum computers promise to solve problems that are out-of-reach for
the largest and fastest existing supercomputers. However such quantum
advantage does not imply that quantum computers will replace their clas-
sical counter-parts. In fact, classical computers are a crucial part of a
quantum computer architecture for its control [30]. Similarly, in varia-
tional quantum algorithms a classical optimization method is used to find
the optimal values of the parametrized quantum circuit with respect to

8



1.2. Basics of quantum algorithms

the cost function (Sec. 1.2.2). An optimization algorithm is a piece of soft-
ware that attempts to find the parameters ~x that minimize (or maximize)
some cost function F(~x). To find such optimal parameters, an optimizer
suggests candidates ~x1...n to be evaluated on the cost function F(~x1...n)
sequentially. From those evaluations the optimizer updates a set of rules
such that a new candidate with a lower (or higher) F(~xn+1) is found. The
search for candidate parameters continues until some convergence crite-
rion is met (e.g. no improvement in F(~x), changes in parameters smaller
than some threshold, etc.) or some hard stop criterion is reached (e.g.
total number of function evaluations, maximum time allowed, etc.). It is
clear that a successful implementation of a variational quantum algorithm
strongly depends on the ability of the classical computer to optimize the
given cost function.

Quantum devices need the assistance of a classical optimization method
for their characterization and calibration [26–30]. However, the question
of how optimal these methods for quantum-optimal control tasks is un-
certain and currently a very active research field. Similarly, the optimiza-
tion of variational quantum algorithms has largely been with off-the-shelf
optimizers. Typically optimizers assume that the cost function is deter-
ministic, but in variational quantum algorithms we only have access to a
probabilistic output of it, C̄. For this reason, the results in the literature
do not show a clear trends, thus making difficult to asses the optimality
of commonly used optimizers for variational quantum algorithms.

For decades, computer scientists have been developing strategies to sys-
tematically compare and benchmark optimization algorithms for classical
cost functions [22–25]. From the field of classical optimization algorithms
we have learnt that there is not a universal optimizer: every problem is
better optimized with a particular method and for every instance there
are optimal hyper-parameters of the optimizer. This reflects the heuristic
nature of the optimization algorithms. Progress in variational quantum
algorithms requires us to extend these systematic analysis to the newly ac-
cessible cost functions through optimizer benchmark and landscape anal-
ysis. Recently, some work has been put into the design of optimizers
specifically for variational quantum algorithm specific optimizers [138–
141] but many questions remain unknown about their capabilities to op-
timize larger problems.

9



1. Introduction

1.2.4. Applications to quantum chemistry and
material science

Quantum computers have been marked as a tool to study problems in
the domain of quantum chemistry and material science. Typically, we
are interested in calculated the spectrum and/or some properties (e.g.
energy-gradients, polarization, magnetization) of the physical systems de-
scribed by a Hamiltonian. One of such problems in quantum chemistry
the electronic structure problem, which describes the behaviour of the
electrons around the nuclei, under the Born-Oppenheimer approximation
which assumes that the nuclei are fixed particles. The Hamiltonian that
describes this systems is

Ĥ =
∑
pq

hpqâ
†
pâq +

1

2

∑
pqrs

hpqrsâ
†
pâ
†
qârâs, (1.21)

where â and â† are the fermion creation and annihilation operators acting
on the fermionic modes p, q, r, s. The coefficients hpq and hpqrs are the
set of one- and two-electron integrals evaluated classically using a fixed
basis set functions [31]. The Fermi-Hubbard model is another example of
a system of interest for material science [32, 33],

HHubbard = Ht+HU = −t
∑

(i,j),σ

(
a†iσajσ + a†jσaiσ

)
+U

∑
i

ni↑ni↓. (1.22)

It describes the interaction between particles on a lattice of nx x ny sites.
Particles can tunnel to the nearest-neighbor site hopping strength t but
they are prevented to tunnel to an occupied site of the same spin σ with
on-site potential strength U .

In quantum chemistry and material science most of the relevant prop-
erties of the systems are described by the eigenvalues and eigenstates of
the Hamiltonian (e.g. the ground- and low-lying energy states of the sys-
tem). Therefore, the goal is to accurately compute these energies. Within
the variational paradigm, this can be achieved by preparing approximate
ground states via variational circuits (Sec. 1.2.2), and extracting energies
or other expectation values using the techniques described in Sec. 1.2.1.

Particles in nature are observed to be of two types: fermions or bosons.
Bosonic systems have a symmetric wave-function

Ψboson(~x2, ~x1) = Ψboson(~x1, ~x2), (1.23)

and thus the exchange of two bosons leaves the system invariant. The
symmetric nature of bosons implies that multiple particles can occupy
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1.2. Basics of quantum algorithms

the same space. In contrast, fermionic systems have an anti-symmetric
wave-function

Ψfermion(~x2, ~x1) = (−1)Ψfermion(~x1, ~x2), (1.24)

and an exchange of two fermions changes the sign of the wave-function [12].
Typically, many-body quantum systems are studied through the creation
(a†) and annihilation (a†) or second-quantization formalism. The action
of these operators on the vacuum state |0〉 is as follows:

ai|~0〉 = 0 (1.25)

a†i |~0〉 = |00100〉, (1.26)

where a particle at the i-th position has been created. The creation and
annihilation operators of a bosonic system obeys the commutation relation

[ai, a
†
j ] = aia

†
j − a†jai = δij . (1.27)

However a fermionic system follows the anti-commutation relation

{ai, a†j} = aia
†
j + a†jai = δij . (1.28)

The anti-symmetric nature of interacting fermionic systems can pose
a problem when studying them via e.g. classical Monte-Carlo methods.
The so-called fermionic sign problem appears because one must track all
fermionic exchanges to account for the correct sign in the wave-function.
This sign problem has been proven NP-hard [13], which is strong evidence
that calculating ground states of interacting fermionic systems scales ex-
ponentially in the system size. On the contrary a qubit can store the in-
formation of a fermionic site in a one-to-one correspondence. Polynomial-
time quantum algorithms under fair assumptions to solve systems of inter-
acting fermions have been discovered [14–17, 31, 76, 78, 79, 95, 187]. This
translates into an exponential speed-up in computing ground states of in-
teracting fermions using a quantum computers with respect to classical
methods.

Variational quantum algorithms are suited to approximate the energy
spectrum of such fermionic interacting problems in the near-term [18, 19].
However, a fermionic representation is non-native on a quantum computer;
the native operations are in terms of qubit (Pauli) operators. Luckily
there exist methods to transform fermionic operators onto a polynomial
number of Pauli operators. The so-called fermion-to-qubit mappings [34–
38] ensure that the anti-commutation relations of the fermionic operators
is respected by the Pauli operators.

11
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In the past decade we have seen a large number of experimental demon-
stration of variational quantum algorithms for quantum chemistry and
material science problems. Variational quantum eigensolvers were orig-
inally proposed for the task of approximating the ground-state of the
Hydrogen molecule in a photonic quantum device [39, 40]. Many more ex-
periments in a wide variety of platforms have followed [41, 42, 44, 45]. The
largest variational quantum algorithm for chemistry was run in 2021 with
12 qubits to compute the Hartree-Fock energy of several molecules [46].

1.3. Noisy intermediate-scale quantum
computers

In the roadmap towards error-free quantum computers based on quantum
error correction schemes there will exist error prone intermediate-scale
hardware sufficiently large to challenge the limits of classical computers.
This idea led to the definition of noisy intermediate-scale quantum (NISQ)
computation by Preskill [47] to explore the capabilities of quantum hard-
ware pre-quantum error correction. As a newly introduced form of quan-
tum computation, NISQ era needs tailored quantum algorithms that take
into account the noise limitations of the hardware. A whole new research
field has opened to understand, improve and develop quantum hardware
and algorithms for noisy intermediate-scale quantum computers [48].

Quantum computation with NISQ devices requires tailored software
and hardware to minimize the noise effects. The first necessary step is
to understand as accurately as possible the limitations of the hardware.
Only then it is possible to explore algorithms and problems that are suited
to them. An alternative solution is to construct hardware which is specif-
ically design for a task or problem, namely building analog quantum com-
puters. In this way, the capabilities of the hardware are maximized (for
the specific problem) but their usability is largely constrained.

Regardless of the approach, it is likely that NISQ computing will be best
suited for highly specialized problems in the field of quantum mechan-
ics. The simplest approach is to use the quantum hardware to prepare a
quantum state |ψ〉, and extract relevant information using quantum state
tomography described in Sec. 1.2.1. Ideally, the quantum state is not
accessible with a classical computer, and thus we can obtain information
which is otherwise impossible to get.
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1.3. Noisy intermediate-scale quantum computers

1.3.1. Noise in quantum hardware

A quantum computation involves storing and transforming quantum in-
formation on a quantum system. Unfortunately quantum information is
fragile and extremely sensitive to interactions between the quantum sys-
tem and its surroundings. Some level of noise in any quantum processing
unit will be unavoidable because we need to interact with it to perform
a computation. Therefore, it is important to study which errors occur
during the execution and which physical process might have caused such
error. By understanding these effects we can construct noise models that
reproduce the errors of a quantum device accurately and reliably, allowing
us to benchmark the quality of the quantum hardware.

The simplest noise models that reliably describe errors on a quantum
processing unit are the so-called bit- and phase-flip errors. A bit-flip error
is the process by which the state of a single qubit |ψ〉 changes from |ψ〉 =
|0〉 → |1〉 (or vice-versa) with probability pbit and remains unchanged with
probability 1 − pbit. Similarly, a phase-flip error describes the change in
the relative phase of the quantum state |ψ〉 = |0〉+ |1〉 → |ψ〉 = |0〉−|1〉 of
a single qubit with probability pphase. The bit- and phase-flip error models
can be combined to a single noise model such that with probability pbp a
single qubit undergoes a bit and phase flip error, and with 1−pbp the qubit
remains unchanged. Although these noise models describe the errors at a
single-qubit level one can use them to approximate the errors of a multi-
qubit device by extending the error model to all qubits of the system with
the same probability. It is possible to make the bit-phase flip model more
accurate by assigning different probabilities of error to each individual
qubit. Despite its simplicity the bit- and phase-flip errors are a good
approximation to the errors occurring to a quantum device. These noise
models are particularly relevant for quantum error correction [60, 85],
where repeated measurement of a system projects coherent sources of
error to discrete events.

Another important source of error in quantum hardware is the depo-
larizing noise channel. It describes the process by which a quantum state
becomes a maximally mixed state with probability pdep. This process can
be seen as the quantum state losing its “quantumness” because the max-
imally mixed state is a classical state with equal probability of measuring
0 or 1 in a single qubit in the computational basis 1.7.

In reality, noise in a quantum device is not discrete, and its quantum
state is continuously modified in time by the action of the environment.
Noise models that account for the time-dependent nature of these inter-
actions are needed to describe the errors that occur during the execution
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1. Introduction

of a quantum algorithm in a noisy device more accurately. An example
of such time-dependent interaction is the loss of energy of the quantum
device to the environment also known as amplitude damping. The rate
at which the energy (or amplitude) of the quantum state is dissipated
to the surroundings is given by T1; after time t, the probability that a
system prepared in the excited state has decayed to the ground state is

1− e
−t
T1 . Another source of error in a quantum processing unit is the loss

of information without energy dissipation. This is the phase-flip channel,
and it is characterized by the pure dephasing rate Tφ; the rate at which
the phase decays for a given time t. It is common to use the total loss
of phase information rate T2 instead of the pure dephasing rate. T2 is
the rate at which the phase of a quantum state is damped. It defines the
time-scale at which the probability of the phase damping happening is

given by pphase(t) = 1 − e
−t
T2 . It can be shown that the coherence times

T1 and T2 are related such that [43]

T1 ≥ 2T2. (1.29)

The T1 and T2 coherence times are relevant figures to characterize a quan-
tum processing unit. First, they set an upper bound on the number of
operations that can be performed on the device before a quantum com-
putation breaks down due to errors. Secondly, they are a standard metric
to compare across different qubit platforms. Beyond the errors models
introduced in this section, many more error sources are known to affect
quantum hardware (see ref. [30] for an overview of noise sources in super-
conducting qubits): leakage to higher-energy states, idle cross-talk, pulse
cross-talk, measurement cross-talk.

Depending on the level of accuracy desired to assess the quality of a
quantum program on a specific device we can build highly accurate noise
models by running characterization experiments. Such experiments pro-
vide researchers with information about coherent over-rotations, thermal
fluctuations or leakage to spurious states. All of them can be combined
in a device-specific noise model that can reproduce the experimental data
to high accuracy. In this thesis we develop one of such errors models in a
two-qubit superconducting quantum device, modelling all known sources
of noise.

1.3.2. Quantum error correction

Since early in the development of quantum computation it was known that
quantum states are fragile, and that a successful quantum algorithm will
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1.3. Noisy intermediate-scale quantum computers

require the quantum states to be stable for long periods of time. Quantum
error correction was developed to overcome such a challenge. Building
upon knowledge from classical error correction where additional bits of
information are used to store redundant information used to detect errors,
quantum error correction codes use additional qubits with the same goal.
The first quantum error correction scheme was proposed independently
by Shor [57] and Steane [58]. Subsequently, the stabilizer formalism was
developed by Gottesman [59, 60] to investigate properties of quantum
error correcting codes.

Outstanding progress has been done in the domain of quantum error
correction in the past decade. In particular, several experimental real-
izations of the surface code [61] have been done with superconducting
quantum processors [62, 63] and the largest surface code experiment to
date [64]. Quantum error correction is a very active research field, con-
stantly making progress towards efficient implementations of quantum
error correcting codes for fault-tolerant universal quantum computers.
Unfortunately at the time of this thesis the theoretical predictions on the
error rates and/or number of qubits required to implement fault-tolerant
quantum algorithms are orders of magnitude away from existing state-of-
the-art quantum devices. Therefore, it is expected that fully-fledged quan-
tum error corrected machines will be available in the upcoming decades.

1.3.3. Quantum error mitigation

Quantum error mitigation defines a family of techniques that aim at re-
ducing the error on a noisy quantum computation by detecting errors
by adding qubits and/or measurements without the ability to correct
them. In order to develop a successful quantum error mitigation method
one must consider the capabilities of the hardware such that the cost
of running the error mitigation does not worsen the unmitigated quan-
tum computation. Recently much progress has been done in developing
and improving the performance of noisy quantum algorithm with low-
cost overhead error mitigation strategies. Despite the effort in reducing
the computational overhead of quantum error mitigation strategies they
all require some steps that will take large polynomial or even exponential
computational resources with the system size. Therefore, these strate-
gies are thought to be used in computational tasks involving a moderate
number of qubits where the cost will still be within the capabilities of the
hardware.

A broad range of quantum error mitigation strategies have been pro-
posed following developments of variational quantum algorithm for near-

15



1. Introduction

term quantum hardware. Quantum error mitigation protocols can be
split into two groups depending on which errors they target. The first
class involves reducing errors at the hardware-level, for example:

� Zero-noise (Richardson) extrapolation [49, 50]: a zero-noise extrap-
olated observable is found by artificially increasing the noise level
of the gates and calculating the value of the observable. Then, its
zeroth order value is computed by fitting a polynomial function to
the measured points.

� Quasi-probabilistic gate decomposition [50, 51]: gate-level noise is
averaged-out by randomly adding noisy gates to the target circuit
such that some of the errors are cancelled. The observables are
measured from different random circuits, thus finding an average
value of all of them.

Alternatively one can remove errors at the problem-level by exploiting
previous knowledge of the target system. Two of the main quantum error
mitigation of this type are

� Symmetry verification [52–54]: the quantum state at the end of a
noisy quantum circuit is checked to verify if it respects the sym-
metries of the target problem. The state is then projected to the
correct sub-space that respects these symmetries.

� Virtual state distillation [55, 56]: M copies of the noisy quantum
state are used to approximate the pure state by distillation of the
leading eigenvalues of the noisy copies. As M increases the quantum
state approaches the pure state exponentially fast.

In the upcoming years it is expected that the quantity and quality of
the qubits on quantum hardware will be significantly larger. At that point
we hope to achieve quantum advantage in specific problems by carefully
designing algorithms that reduce the noise on these devices together with
powerful quantum error mitigation protocols.

1.4. Outline of this thesis

In the rest of the introduction we provide an overview of this thesis where
a brief description of every chapter is presented.
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Chapter 2

In this chapter of this thesis we cover the topic of quantum error mitigation
to improve the results of faulty quantum computations. We developed a
quantum error mitigation strategy that uses the inherent symmetries of
a target problem as a way to detect errors during a variational quantum
algorithm run. To perform the symmetry-verification step we design shal-
low quantum circuits that signal if an error occurred by measuring one
or more qubits. However such a process incurs on a cost in terms of ad-
ditional gates and qubits, and might lead to less error mitigation power.
To overcome the additional cost we develop a cost-free approach in which
symmetry-verification can be done as a post-processing step, and only
requires a polynomial number of additional observables.

Chapter 3

This chapter covers the work done in collaboration with an experimental
laboratory to demonstrate the power of symmetry-verification on a two
superconducting qubit experiment. First we perform an in-depth study of
the noise sources affecting the experiment and provide a theoretical predic-
tion of the experiment. Then we study the power of symmetry-verification
for the experiment, with a theoretical prediction of the experiment after
symmetry-verification. Finally, we compare our predictions with the ex-
perimental data finding an outstanding agreement between them.

Chapter 4

The next part of the thesis continues in the domain of near-term quantum
algorithms. We focus on how to extract the necessary relevant information
of a quantum state without reaching exponentially large times for the
task. First we find analytical lower-bounds on the number of independent
measurement circuits required to extract elements of k-reduced density
matrices in both spin- 1

2 and fermions. Then, we find a binary partition
scheme strategy to design the measurement circuits that is asymptotically
optimal for spin- 1

2 up to logarithmic factors, and matches the best-ever
strategy. A similar method is then used to devise measurement scheduling
of fermionic 1-, and 2-RDMs, finding an exact solution for the former and
an asymptotically optimal solutions for the latter (up to a constant factor).

17



1. Introduction

Chapter 5

In this chapter we focus our attention on the third part of any computa-
tion using noisy intermediate-scale quantum hardware, the optimization
of variational quantum algorithms. The goal of this chapter is to assess
the limitation of existing classical optimization algorithms for the task
of optimization a variational quantum algorithm under noise. First, we
devise a set of numerical experiments that allow us to compare between
several off-the-shelf optimizers across multiple target problems, showing
that only two of these methods are able to find accurate results under
sampling noise conditions. These two methods are then compared with
their best hyper-parameters, finding a comparable performance among
them. Our final result is the formal definition of the sampling noise floor:
any value within a region defined by the sampling level can be measured
as the best-ever result. The sampling noise floor is an artifact that can
lead to erroneous parameters during an optimization, greatly affecting the
final result of the computation.

Chapter 6

In this chapter we describe a user case test on the Dutch quantum com-
puting facilities Quantum Inspire. The goal of this research is to assess
the limitations of the current infrastructure to perform NISQ computa-
tions. Our results and conclusion are currently being used to develop the
new generation of Quantum Inspire.

Chapter 7

In the last chapter of this thesis we develop quantum algorithms to cal-
culate energy derivatives for quantum chemistry. The theory of this
work covers a large amount of resource estimates for several quantum
algorithms in both noisy intermediate-scale quantum and fault-tolerance
regime. A small test example of how to calculate gradients using New-
ton’s method is shown using simulated and experimental data with an
outstanding agreement.
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2. Low-cost error mitigation
by symmetry verification

2.1. Introduction

Noisy, intermediate scale quantum (NISQ) devices have begun to appear
in laboratories around the world. These devices have performance rates
around or just below the quantum error correction threshold [69–73], but
are lacking the number of qubits required for full fault-tolerant quantum
computing. This raises the open question of whether the upcoming gener-
ation of quantum computers will provide a quantum advantage over clas-
sical computers, and in which fields this might be achieved [47, 74, 75].
In particular, for the area of digital quantum simulation, it has been
suggested that variational quantum eigensolvers [39] may be sufficiently
low-cost to be performed on ∼ 50 qubits [76–79]. Around this point, solv-
ing the many-body problem exactly becomes too challenging for classical
computers, and a slight quantum edge might be available above current
approximations.

In lieu of full error correction techniques, much attention is being turned
to error mitigation techniques, which, although non-scalable, promise
modest improvements at low cost. Previous work has focused on ac-
tive error minimization, whereby data is obtained at artificially increased
error rates and then extrapolated to zero [49, 50, 80, 81], and on proba-
bilistic error cancellation, where an ensemble of noisy circuits is applied
such that they average to the target error-free circuit [50, 51]. More
specific techniques have been developed for quantum simulation, and in
particular for variational quantum eigensolvers. A technique developed
for exploring the low-energy excited subspace of a quantum system, the
quantum subspace expansion, has been shown to have error mitigation as
a side-effect [82, 83].

In this chapter we investigate error mitigation via verification of sym-
metries found in quantum circuits, in particular those in physical systems.
This is a low-cost version of the stabilizer parity checks ubiquitous in quan-
tum error correction [84, 85]. We develop multiple protocols to perform
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symmetry verification, both repeatedly throughout a quantum circuit and
as a single post-processing step. The latter can be related to a variant of
the quantum subspace expansion [82]. We study the sensitivity of sym-
metry verification to different noise channels, and demonstrate how it can
be optimized by adding new symmetries and rotating existing symmetries
to be more sensitive to local noise.

2.2. Symmetry verification

Our study is motivated by the presence of symmetries in quantum mechan-
ical systems. In such systems, one has a Hamiltonian Ĥ, and is usually
interested in studying the properties of ground or low-lying eigenstates of
the system. A (unitary) symmetry of a system is a unitary operator Ŝ
that commutes with the Hamiltonian - [Ĥ, Ŝ] = 0. When this is true, Ĥ
may be block diagonalized within the eigenspaces of Ŝ. Then, if one were
to study eigenstates of Ĥ on a quantum computer, one may perform such
a study entirely within a single target eigenspace S of Ŝ. In real-world
quantum computers, noise may shift the state of the computer outside of
the target eigenspace S. By verifying during or at the end of a calcula-
tion that the system remains in S, and throwing away results where this
is not the case, it is thus possible to make our quantum computation less
sensitive to these types of noise.

Verification of a symmetry is performed by measurement and post-
selection which is typically performed in the computational basis (the
eigenstates |0〉 and |1〉 of a single qubit). The Pauli operators PN may be
rotated into this basis relatively easily (see Sec. 2.2.1), and as such are
a good class from which to draw symmetry operators. If Ŝ /∈ PN , but
the target eigenspace S lies within the eigenspace of a Pauli operator P̂ ,
then measuring P̂ presents a low-cost alternative to measuring Ŝ, though
this may provide less error mitigation in the case where the eigenspace of
P̂ is strictly larger than S. In general, symmetry verification will work
with any construction of a projector valued measurement {M̂i} where one
projector M̂S projects onto the target eigenspace S. We note that phase
estimation [86] provides a generic construction for such a measurement, al-
though this is a rather high cost circuit (in particular requiring the ability
to apply the symmetry Û on the quantum computer). This requirement
for measurement implies that symmetry verification cannot be extended
to antiunitary symmetries (nor to symmetries that anticommute with the
Hamiltonian), as these do not lead to eigenspaces that can be projected
into.
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The projector valued measurement {M̂i} is the more general object for
symmetry verification than the symmetry Ŝ. In an arbitrary quantum
circuit at an arbitrary time, if we know by any means that the state |ψ〉
in the absence of error satisfies M̂s|ψ〉 = |ψ〉, measuring {M̂i} on the noisy
state ρ and post-selecting will project to the state

ρs =
M̂sρM̂s

Trace[M̂sρ]
. (2.1)

Then, we have

Trace[ρs|ψ〉〈ψ|] =
Trace[ρ|ψ〉〈ψ|]

Trace[M̂sρ]
≥ Trace[ρ|ψ〉〈ψ|], (2.2)

and our new state ρs has strictly greater overlap with the target |ψ〉 than
the pre-selection ρ (unless M̂sρM̂s = ρ, in which case ρs = ρ). Such a
procedure can be immediately extended to multiple operators Ŝ1, Ŝ2, . . .,
as long as [Ŝi, Ŝj ] = 0. (If this is not the case, sequential symmetry
verification projects between different eigenspaces, which is inefficient and
greatly increases the number of experiments that must be thrown away.)
Symmetry verification may also be repeated at multiple points during a
quantum circuit, by inserting measurement of Ŝ in between gates, as long
as we expect the state 〈ψ(t)| to be an eigenstate of Ŝ at time t during the
circuit. We call such protocols ‘bulk’ symmetry verification, as opposed
to ‘final’ symmetry verification at the end of the an experiment.

2.2.1. Ancilla and in-line symmetry verification

The simplest form of the symmetry verification involves the use of an an-
cilla qubit to measure the Pauli symmetry Ŝ. Let us write Ŝ ∈ PN in
terms of its tensor factors; Ŝ = ⊗iŜi, and let NS be the number of non-
trivial Ŝi = {X,Y, Z}. To each such Ŝi, we can associate a corresponding
rotation R̂i = {exp(iπ2Y ), exp(−iπ2X),1} (such that R̂i|Ŝi = 1〉 = |0〉).
The verification circuit is then shown in Fig. 2.1(a). For each non-trivial
Ŝi, the corresponding qubit is rotated by R̂i, then performs a controlled-
NOT gate on the ancilla qubit, and finally is rotated by R̂−1

i . This requires
that the ancilla qubit be coupled to each qubit in the system register that
it measures, which is in general not possible in a quantum circuit. As a
low-cost alternative (Fig. 2.1(b)), the ancilla qubit may be shuffled along
the system register via SWAP gates as it performs the controlled phase
gate. In either case, as the ancilla qubit must interact with each register
qubit individually, the circuit depth must be O(NS).
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It is possible to forego the ancilla qubit in symmetry verification, by
instead encrypting the symmetry Ŝ onto the computational degree of
freedom of a qubit within the system itself, which is then read out. In
Fig. 2.2(a) we give an example circuit for this in-line symmetry verifica-
tion, with circuit depth only O(log(NS)). This logarithmic depth requires
qubits to be coupled as a binary tree, which is not possible in systems
which allow only local couplings. In general, for such a d-dimensional lo-

cal coupling, the depth of the circuit must be at least O(N
1/d
S ), being the

minimum depth of a light-cone encompassing NS qubits. In Fig. 2.2(b)
we give such a circuit for a system with linear connectivity. Even when
all-to-all coupling is available, the O(log(NS))-depth circuit (Fig. 2.2(a))
may not be preferable, as the duty cycle for each qubit (i.e. the period
of time between the first and last gate each qubit is involved in) is length
O(log(NS)). By contrast, the duty cycle of an individual qubit during the
circuit in Fig. 2.1(b) is O(1). A short duty cycle implies that qubits can
be used to perform other operations while the symmetry verification is
ongoing, reducing the time cost when this circuit is performed as a small
block of a larger computation.

2.2.2. Variational quantum eigensolvers

As an example target algorithm for symmetry verification, we consider
ground state preparation for a Hamiltonian Ĥ via a variational quantum
eigensolver [39, 87].

Variational quantum eigensolvers (VQE) are natural candidates for fi-
nal symmetry verification, and common classes of VQEs are also natural
candidates for bulk symmetry verification. In particular, for fermionic
systems (such as the electronic structure problem), global fermion parity
is conserved, making it a prime target for symmetry verification. (At low
energy, for non-superconducting systems, the particle number is often con-
served as well, but this is not a Pauli operator, and is much more difficult
to measure.) Using the Jordan-Wigner transformation on an N -fermion
Hamiltonian, this symmetry takes the form Z⊗N . Most VQEs consist of
creating an approximate starting state (such as the Hartree-Fock state)
that respects this symmetry, and then performing multiple local rotations
that continue to respect this symmetry. This is true of both the unitary
coupled cluster (UCC) ansatz [39], and the quantum approximate opti-
mization algorithm (QAOA) [88]. In the former, the ansatz is taken as
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2.2. Symmetry verification

Figure 2.1.: Quantum circuit for ancilla symmetry verification of a symmetry
Ŝ. (a) A simple circuit entangling all qubits with a single ancilla qubit. The
rotations R̂i depend on the tensor components Ŝi on each qubit i (relationship
given in text). (b) A circuit making an identical measurement to that in (a),
but with only local CNOT and SWAP two-qubit gates. A SWAP between
qubit 0 and the ancilla is not required because the Bell state prepared after the
first CNOT is symmetric between the two qubits (this is not the case for the
remaining qubits).
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2. Low-cost error mitigation by symmetry verification

Figure 2.2.: Quantum circuits for in-line symmetry verification. (a) The
optimal verification circuit has O(log(NS)) depth, but requires long-range con-
nectivity between qubits, which is not available on many architectures. (b)
In the presence of linear connectivity, an O(NS) depth verification circuit is
optimal.
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the expansion of the cluster operator eT̂−T̂
†

T̂ =
∑
n

T̂ (n), (2.3)

T̂ (n) =
∑

i1,...,in;j1,...,jn

θi1,...,inj1,...,jn
(

n∏
m=1

ĉ†im)(

n∏
m=1

ĉjm) (2.4)

where the θ parameters are taken as the free parameters to be optimized,
and the sum is a sum over empty molecular orbitals to the left of the
semi-colon, and filled molecular orbitals to the right. This exponentiation
is typically performed by the Trotter-Suzuki expansion, leaving a series of
unitaries ∏

i;j

eθ
i
j(ĉ
†
i ĉj−ĉ

†
j ĉi)

∏
i,j;k,l

eθ
i,j
k,l(ĉ

†
i ĉ
†
j ĉk ĉl−ĉ

†
l ĉ
†
k ĉj ĉi) . . . (2.5)

each of which respects fermion parity. QAOA for the electronic structure
problem consists of performing steps of time evolution alternating between
the Hartree-Fock Hamiltonian and the electronic-structure Hamiltonian,
both of which respect fermion parity. Thus, for both ansatz, bulk symme-
try verification could be performed between individual steps of the time
evolution.

Although symmetry verification promises a final state with greater over-
lap with the ground state, it does not promise a necessarily lower energy.
Let us write the (un-normalized) symmetry-accepted state ρs, and the
symmetry-rejected state ρr. If our measurement was perfect, we would
have

ρs = M̂sρM̂s, ρr = (I− M̂s)ρ(I− M̂s). (2.6)

Then, Trace[Ĥρ] = Trace[Ĥρr] + Trace[Ĥρs]. Now, suppose the rejected
state ρr has lower energy than the accepted state ρs;

Trace[Ĥρr]

Trace[ρr]
<

Trace[Ĥρs]

Trace[ρs]
. (2.7)

We can calculate

Trace[Ĥρ] = Trace[ρr]
Trace[Ĥρr]

Trace[ρr]
+ Trace[ρs]

Trace[Ĥρs]

Trace[ρs]

< (Trace[ρr] + Trace[ρs])
Trace[Ĥρs]

Trace[ρs]
=

Trace[Ĥρs]

Trace[ρs]
,

and our symmetry-verified state would be higher in energy than the initial
state as well. As the energy of ρr lies strictly above the ground state, fail-
ure of symmetry verification must imply ρs has sufficiently large overlap
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with high-energy states. As such, we would suggest that such a failure
implies the energy of ρ itself is not to be trusted.

2.2.3. Post-selected symmetry verification and S-QSE

Conveniently, when a quantum computation requires calculating the ex-
pectation values of a set of Pauli operators, symmetry verification may be
performed via post-processing of the expectation values themselves (with
possibly some additional measurements), rather than requiring additional
quantum circuitry. Suppose we want to calculate the expectation value
of P̂ ∈ PN on our state ρ following projection onto the Ŝ = s(= ±1)
subspace of our symmetry Ŝ ∈ PN . The projector onto this subspace may
be written M̂s = 1

2 (1+sŜ). Then, the expectation value of P̂ on the state
ρs targeted by the symmetry verification can be expanded using Eq. 2.1

Trace[P̂ ρs] = Trace

[
P̂

M̂sρM̂s

Trace[M̂sρ]

]

=
Trace[P̂ ρ] + sTrace[P̂ Ŝρ]

1 + sTrace[Ŝρ]
, (2.8)

where we have used the cyclic property of the trace and the fact that
[P̂ , M̂s] = 0 to write Trace[P̂ M̂sρM̂s] = Trace[P̂ M̂sρ], and expanded
our definition of M̂S . The expectation values Trace[Ŝρ], Trace[P̂ ρ], and
Trace[P̂ Ŝρ] may be then calculated using the unverified state ρ, and sub-
stituted into Eq. 2.8 to obtain the verified result. By avoiding additional
quantum circuitry, we expect this method to outperform both ancilla and
in-line symmetry verification. However, we note that post-selection can-
not be used for bulk symmetry verification (as we cannot measure these
expectation values during the circuit). Furthermore, it cannot be used in
algorithms where the output is not an expectation value Trace[P̂ ρ].

Post-selected symmetry verification can be observed to be identical to a
form of the quantum subspace expansion (QSE) [82]. Originally designed
to investigate the low-energy excited states around the ground space found
by a variational quantum eigensolver, QSE works by taking a set of exci-
tation operators {Êi}, which can be applied to the approximated ground

state |ψ(~θ)〉 to obtain a set of states |φi〉 = Êi|ψ(~θ)〉. The spectrum
of the Hamiltonian within the manifold spanned by these states can be
calculated as the solution to the generalized eigenvalue problem

ĤQSE|ξ〉 = λB̂QSE|ξ〉. (2.9)
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Here, ĤQSE is the Hamiltonian matrix projected into the spanned mani-
fold

[ĤQSE]i,j = Trace[Ĥ|φi〉〈φj |], (2.10)

and B̂QSE is the overlap matrix,

[B̂QSE]i,j = Trace[|φi〉〈φj |], (2.11)

to account for the fact that |φi〉 and |φj〉 are in general not orthogonal.
In the presence of noise, although the state |φi〉 is not well defined (as our

noisy state ρ is not a pure state), the operators |φi〉〈φj | = ÊiρÊ
†
j remain

well-defined, and the expectation values in Eqs. 2.10 and 2.11 are still able
to be measured in an experiment.

The set {Êi} is usually taken to be the set of low-order polynomials in
qubit or fermion operators [82, 83]. However, if the set {I, Ŝ} is chosen as
excitation operators, the solution to the generalized eigenvalue problem
is the same as that obtained by post-selection. To show this, we expand

Trace[Ĥρs] =
∑
i

hiTrace[P̂iρs]

=
∑
i

Trace[hiP̂iρ] + sTrace[hiP̂iŜρ]

1 + sTrace[Ŝρ]

=
Trace[Ĥρ] + sTrace[ĤŜρ]

1 + sTrace[Ŝρ]
. (2.12)

Next, we calculate the QSE matrices (using the commutation of Ĥ and
Ŝ)

ĤQSE =

[
Trace[Ĥρ] Trace[ĤŜρ]

Trace[ĤŜρ] Trace[Ĥρ]

]
, (2.13)

B̂QSE =

[
1 Trace[Ŝρ]

Trace[Ŝρ] 1

]
. (2.14)

Assuming that Trace[Ŝρ] 6= 1, B̂QSE is invertible, the problem reduces to
finding the (regular) eigenvalues of

B̂−1
QSEĤQSE =

1

1− Trace[Ŝρ]2

[
α β
β α

]
, (2.15)

where

α = Trace[Ĥρ]− Trace[Ŝρ]Trace[ĤŜρ], (2.16)

β = Trace[ĤŜρ]− Trace[Ĥρ]Trace[Ŝρ]. (2.17)
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The eigenvalues of this matrix take the form

λ =
1

1− Trace[Ŝρ]2
(α± β) (2.18)

=
Trace[Ĥρ]± Trace[ĤŜρ]

1± Trace[Ŝρ]
, (2.19)

which can be seen to be equal to those found in Eq. 2.12. We call this
version of the quantum subspace expansion symmetry-QSE, or S-QSE for
short.

This result is not surprising; it was suggested in [82] to account for
symmetries during QSE by projecting ĤQSE and B̂QSE into the symme-
try subspace, which achieves the same result as in the above. However,
this demonstrates that one may account for symmetries via a version of
QSE without calculating the full linear response. Moreover, this implies
that S-QSE corrects for both coherent and incoherent errors that project
out of the Ŝ = s subspace. By contrast, QSE with an operator that an-
ticommutes with the Hamiltonian can only correct coherent errors (see
appendix). S-QSE may be immediately combined with other forms of
QSE, for example linear response QSE, by including both sets of opera-
tors as excitations.

2.3. Simulation of symmetry verification on
the hydrogen molecule

To first investigate symmetry verification in a simple setting, we use a
VQE to find the ground-state energy of H2 on two qubits. This follows
previous experimental demonstrations [39, 41, 42, 83]. We take the STO-
3G basis for H2, which has four spin-orbitals, and convert this into a qubit
Hamiltonian via the Bravyi-Kitaev transformation. The four spin-orbitals
require four qubits to represent them on, but in this representation the
Hamiltonian is diagonal on two of the qubits, which may be removed. The
remaining two-qubit Hamiltonian takes the form

Ĥ = h0II + h1IZ + h2ZI + h3XX + h4Y Y + h5ZZ, (2.20)

where hi are sums of integrated two and four-body terms from the origi-
nal electronic structure problem. The calculation of these terms, and the
Bravyi-Kitaev transformation itself, were performed using the psi4 [89]
and OpenFermion [90] packages. The Hamiltonian can be seen to com-
mute with the symmetry Ŝ = ZZ. Our ground state wavefunction has
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2.3. Simulation of symmetry verification on the hydrogen molecule

non-trivial overlap with the Hartree-Fock wavefunction, which is in the
ZZ = −1 subspace; this is then our target subspace. We follow the uni-
tary coupled cluster ansatz of [41], which consists of exciting our system
to the |01〉 state, and performing the unitary rotation

Û(θ) = e−iθX0Y1 . (2.21)

This unitary rotation may be decomposed using standard methods [31].
As described previously, the VQE procedure consists of fixing θ, repeat-
edly preparing |ψ(θ)〉 and measuring collections of terms in the Pauli
decomposition of Ĥ until a good estimate of the energy E(θ) is found.
This is then repeated at varying θ as demanded by a classical optimizer
until a minimum E(θ) is found [39].

We compare the performance of the three symmetry verification proto-
cols described previously as a final symmetry verification step. The ancilla
symmetry verification is performed in the same manner as Fig. 2.1(a).
The in-line symmetry verification is performed in a manner similar to
Fig. 2.2(a), but as this is final symmetry verification, we have no need to
undo the symmetry measurement. Instead, to measure the expectation
value of a Pauli operator Trace[ρP̂ ], we can propagate P̂ through the sym-
metry verification circuit [91] and measure the corresponding Pauli term.
It is then sufficient to rotate the control qubit to recover the expectation
values 〈IZ〉 and 〈XX〉. From this we may calculate all other expecta-
tion values in Eq. 2.20 using the fact that ZZ = −1. For this problem,
S-QSE not only requires no additional circuitry, but also no additional
measurements (all required terms are in the Pauli decomposition of the
Hamiltonian).

To test symmetry verification in the presence of realistic noise, we sim-
ulate our chosen experiment using the quantumsim density matrix simu-
lator [92]. We take gate error models and parameters similar to previous
simulation work based on experimental data of state-of-the-art supercon-
ducting transmon qubits [92]. Errors in transmon qubits are dominated
by decoherence times, which we take at a base level to be T1 = T2 = 20 µs.
This should be compared to single and two-qubit gate times of 20 ns (giv-
ing a total circuit length without symmetry verification of 220 ns). Single
and two-qubit gates suffer from additional dephasing noise of 0.01 and
1% respectively. We assume that single-shot measurement (for verifica-
tion purposes) has a read-out error of 1%, and that error in tomographic
measurements and pre-rotations (used to calculate the expectation values
themselves) can be cancelled by linear inversion tomography [93, 94].

Using the above error model, we observe (Fig. 2.3) that the un-mitigated
VQE (blue points) achieves an error in the energy of approximately 0.01−
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2. Low-cost error mitigation by symmetry verification

0.04 hartree across the bond dissociation curve. This error is improved
upon by all symmetry verification techniques. S-QSE (red diamonds) pro-
vides the largest improvement of all symmetry verification protocols, as
no additional errors are introduced. The S-QSE circuit is observed to give
approximately a five-fold improvement over the unmitigated circuit, while
ancilla (orange crosses) and in-line (green squares) symmetry verification
show an approximately two-fold and three-fold improvement respectively.
The differences between S-QSE and other forms of symmetry verifica-
tion emphasize the importance of minimizing the verification cost in bulk
symmetry verification (where S-QSE is no longer available).

We now investigate the effect of different noise channels on the per-
formance of symmetry verification. Any noise channel that commutes
with the symmetry operators evolves the system state within the target
subspace, which symmetry verification explicitly does not mitigate. The
analysis of which channels have this property can be reduced to an anal-
ysis over PN , as if we mitigate Pauli errors P̂i ∈ PN , we also mitigate any
linear combination of them [84]. In the above circuit, the ZZ symmetry
commutes with any single-qubit Z errors, making the protocol prone to
the Tφ (pure dephasing) channel, but it anticommutes with single-qubit
X-errors, making the protocol resilient against the T1 (amplitude decay)
channel. To investigate this, in Fig. 2.4 we calculate the error in deter-
mining the ground state energy near the minima of the bond dissociation
curve (0.75Å bond distance) using S-QSE, as we vary T1 and Tφ. We turn
all other error sources off, and vary T1 (Tφ) with Tφ = 20 µs (T1 = 20 µs)
fixed. In the absence of error mitigation, the two decoherence sources have
almost identical effect (deviation approximately 10−2 hartree). However,
in the presence of error mitigation, the susceptibility of the VQE to T1

noise is noticeably smaller than to Tφ noise - up to a factor of two over the
range of decoherence times plotted. We note that S-QSE does not make
our circuit second-order sensitive to T1 noise. This can be understood as
X-errors at some points during our VQE circuit are rotated to Z-errors
by later gates in the circuit, preventing their mitigation.

2.4. Inserting and rotating symmetries

As observed in the previous section, verifying single symmetries has a
marked effect on the performance of a quantum circuit, but will not catch
and remove all sources of noise. In this section we suggest how one may
improve upon this by adding additional symmetries to the quantum algo-
rithm, and by rotating existing symmetries to make them more sensitive
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2.4. Inserting and rotating symmetries

Figure 2.3.: (Color online) Accuracy of the VQE over the entire bond dissoci-
ation curve using the different symmetry verification methods mentioned in the
text (labelled in legend). (top) The target curve of H2, compared to the exact
result (black line). (bottom) Log plot of the difference between the black lines
and points in the above plot.
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Figure 2.4.: (Color online) Effect of varying decoherence times on the VQE
accuracy. With all other error sources turned off, T1 is varied with Tφ = 20 µs
fixed (red-dashed curves), and Tφ is varied with T1 = 20 µs fixed (blue-solid
curves). We plot the error in estimating the ground-state energy for the un-
mitigated experiment (squares), and the circuit mitigated with S-QSE (circles).
Data points for the blue and red curves are identical at T1 = Tφ = 20 µs, as
can be seen from the complete overlap.
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2.4. Inserting and rotating symmetries

to errors on the underlying quantum hardware. In the language of quan-
tum error correction, this is a low-cost attempt to increase the distance
of the detection code.

We first suggest a method to extend an N -qubit Hamiltonian Ĥ, given
a Pauli operator P̂ ∈ PN , to an N + 1-qubit Hamiltonian Ĥext

Ĥext =

[
Ĥ 0

0 P̂ ĤP̂

]
. (2.22)

Both blocks of Ĥext can be seen to have the same eigenspectrum (as this
is unaffected by the unitary rotation of P̂ ), and Ĥext commutes with the
operator [

0 P̂

P̂ 0

]
= XP̂ , (2.23)

which is then the new symmetry operator. This mapping corresponds to
mapping Pauli operators Q̂ ∈ PN in the original problem to

Q̂ext =

{
IQ̂ if [Q̂, P̂ ] = 0

XQ̂ if {Q̂, P̂} = 0
. (2.24)

To implement this in the algorithm itself, we note that every circuit can
be decomposed into a product of unitary rotations∏

j

eiθjQ̂j , Q̂j ∈ PN , (2.25)

where a single Q̂ ∈ PN may be repeated in the product. Adding the
symmetry then consists of replacing these rotations by rotations around
the transformed operator Q̂ext (as per Eq. 2.24), and re-decomposing the
operations into a circuit (using e.g. the methods of [31, 95]). If Ĥ had a
previous set of symmetries Ŝi, these are transformed to a new set Ŝi,ext

(following Eq. 2.24), that commute with both Ĥext and the additional
symmetry XP̂ . This extension method is particularly suitable for dig-
ital quantum simulation, as circuits are often generated in the form of
Eq. 2.25. This is the case for traditional Hamiltonian simulation [96],
quantum phase estimation [31], and the UCC QSE discussed previously,
all of which require exponentiating an operator via the Suzuki-Trotter
expansion [97].

Beyond choosing the number of symmetries in a problem, one may
wish to choose how these symmetries appear in the problem. In partic-
ular, sets of symmetries may be found that anticommute with all local
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2. Low-cost error mitigation by symmetry verification

operators, which should increase the mitigation power of the verification
protocol against local sources of noise. (For example, the N -qubit opera-
tors X⊗N and Z⊗N with even N .) Any two groups of M Pauli operators
are unitarily equivalent as long as they satisfy the same commutation and
multiplication rules (e.g. IZ, ZI, and ZZ are equivalent to XX, Y Y and
ZZ, but not to IX, IY and IZ). To find such unitary transformations, we

suggest decomposing them into rotations of the form R̂ = ei
π
2 Q̂ for Q̂ ∈ P,

which transforms

P̂ ∈ P→ R̂†P̂ R̂ =

{
P̂ if [P̂ , Q̂] = 0

iP̂ Q̂ if {P̂ , Q̂} = 0
. (2.26)

Rotations of this form have a few desirable properties. Their effect is
easy to calculate classically, and they transform Pauli operators to Pauli
operators. Furthermore, each R̂ leaves half of the Pauli group unchanged.
This allows for some choice of rotations to leave desired symmetries (or
other operators) already present in the problem invariant, while other
terms are rotated.

2.5. Extending the symmetry verification of
the hydrogen molecule

We now demonstrate the verification of multiple symmetries by extending
the previous VQE simulation of H2. We transform the electronic structure
Hamiltonian onto a qubit representation this time via the Jordan-Wigner
transformation. This gives the four-qubit Hamiltonian

Ĥ =hI I +
∑
i

hiZi +
1

2

∑
i 6=j

hi,jZiZj

+ hs(X0Y1Y2X3 + Y0X1X2Y3

−X0X1Y2Y3 − Y0Y1X2X3), (2.27)

which has symmetries Ŝ0 = Z0Z1, Ŝ1 = Z0Z2, and Ŝ2 = Z0Z1Z2Z3. In
the Bravyi-Kitaev transformation these symmetries were the additional
qubits that were thrown away. We choose again the unitary coupled
cluster ansatz for the VQE, which can be reduced to the operator1

Û(θ) = eiθY0X1X2X3 . (2.28)

1The cluster operator for this system is a sum of 8 four-qubit terms, however the
action of each term on the Hartree-Fock starting state is identical, so only one is
needed.
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2.5. Extending the symmetry verification of the hydrogen molecule

As in the two-qubit case, the VQE circuit consists of preparing the sys-
tem in the Hartree-Fock state |1100〉, applying U(θ) and measuring the
variational energy, for a total circuit time of 400 ns.

The above set of symmetries still commute with all single-qubit Z errors,
so we rotate our problem to increase the mitigation power of symmetry
verification. We choose the rotation

R̂ = ei
π
2 Y0X2ei

π
2 Y1X3 . (2.29)

This transforms the symmetry Ŝ0 → X0X1X2X3, whilst leaving Ŝ1 and
Ŝ2 unchanged. The resulting set of symmetries do not commute with
any single-qubit X or Z operator, as required. To create the transformed
circuit, we need to transform both our starting state |1100〉 → R̂|1100〉,
and the UCC unitary ansatz

Û(θ)→ R̂ÛR̂† = eiθY0Z1X2 . (2.30)

The transformed circuit incurs an additional cost from this initial appli-
cation of R̂, but this is balanced by the reduced weight of the transformed
cluster operator, resulting in a total circuit time of 440 ns.

In Fig. 2.5, we compare the performance of the two different circuits
above to the two-qubit circuit of Fig. 2.3, with and without the addition of
S-QSE. At small bond distance (. 0.75Å), the target ground state (in the
absence of rotation by R̂) is roughly a computational basis state, which is
immune to dephasing errors. At this point, all three verification protocols
perform roughly similarly, despite the unmitigated four-qubit simulations
performing significantly worse than the unmitigated two-qubit simulation.
At large bond distance (& 0.75Å), the ground state is prone to T2 noise,
at which point we see the rotated 4-qubit S-QSE simulation significantly
outperforming its counterparts. At the largest distance studied, this sim-
ulation achieves a two-fold reduction in error compared to the two-qubit
S-QSE simulation, despite using twice as many qubits and a twice as long
circuit. By comparison, unrotated S-QSE on four qubits cannot protect
against the T2 noise accumulated over the simulation, and performs a
factor of two worse than the two-qubit S-QSE simulation. This clearly
demonstrates the need to optimize symmetry verification protocols to ac-
count for errors present in the system as this technique is scaled up to
larger computations. Over the entire bond-dissociation curve, the rotated
four-qubit S-QSE simulation outperforms its unmitigated counterpart by
over an order of magnitude.
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2. Low-cost error mitigation by symmetry verification

Figure 2.5.: (Color online) Adding and adjusting symmetries to optimize sym-
metry verification. The blue (dots) and red (diamonds) curves correspond to
their coloured (shaped) counterparts in Fig. 2.3, whilst the purple (squares) and
brown (crosses) curves come from a four-qubit simulation of H2 using the two
protocols described in the text. The dashed lines represent the S-QSE versions
of their solid counterpars. Error parameters on all qubits are the same for all
simulations (parameters given in the text).
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2.6. Conclusion

In this paper we have presented a new low-cost strategy for error miti-
gation, which we call symmetry verification. We have discussed various
ways in which it can be applied to different algorithms, and various meth-
ods to optimize the mitigation power against common sources of error.
We have demonstrated these protocols on a simulated VQE experiment
of H2, and observed that they outperform the unmitigated result over the
entire bond-dissociation curve by around an order of magnitude.

Although the above techniques are very promising for small experi-
ments, much work needs to be done optimizing symmetry verification for
mid-range experiments in the NISQ era. The addition and choice of sym-
metries needs to be investigated further to minimize the resulting circuit
depth. Further study is also needed on the optimal number of symmetry
verifications to be added to a circuit, both to maximise mitigation and
minimize run-time (which increases exponentially in the number of verifi-
cations made). Finally, given the obvious connection between symmetry
verification and the stabilizer formalism of quantum error correction, it is
natural to ask whether one can mix the two to transform slowly between
mid-size NISQ circuits and large-scale fault-tolerant ones.
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Appendix

2.A. Appendix: Error mitigation of QSE
with anticommuting operators

In this appendix we repeat the analysis of QSE from the text, but with an
operator Â that anti-commutes with the Hamiltonian Ĥ. Let us assume
to begin that Â is unitary. Such an operator cannot be simultaneously
diagonalized with Ĥ, and so we have no result from symmetry verifica-
tion to compare with. Given an eigenstate Ĥ|ψ〉 = E|ψ〉, we have that
ĤÂ|ψ〉 = −ÂĤ|ψ〉 = −EÂ|ψ〉, and so the presence of an anticommut-
ing operator splits the eigenstates of Ĥ into pairs of equal magnitude
but opposite sign energies (known as eigenstates of different chirality). If
Â = Â†, the eigenstates of Â itself are the equal superpositions

|±〉 =
1√
2

(|ψ〉 ± Â|ψ〉). (2.31)

For QSE, we must calculate the operators ĤQSE and B̂QSE.

B̂QSE =

[
1 Trace[Âρ]

Trace[Â†ρ] 1

]
. (2.32)

ĤQSE =

[
Trace[Ĥρ] Trace[ĤÂρ]

Trace[−ĤÂ†ρ] −Trace[Ĥρ]

]
. (2.33)

Again assuming |Trace[Âρ]|2 6= 1, we can invert B̂QSE and calculate

B̂−1
QSEĤQSE =

1

1− |Trace[Âρ]|2

[
α β
−β∗ −α∗

]
, (2.34)

where

α = Trace[Ĥρ] + Trace[Âρ]Trace[ĤÂρ] (2.35)

β = Trace[ĤÂρ] + Trace[Ĥρ]Trace[Âρ]. (2.36)
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The solution to the equation is

E2
QSE =

|α|2 + |β|2
(1− |Trace[Âρ]|2)2

(2.37)

=
Trace[Ĥρ]2 + |Trace[ĤÂρ]|2

1− |Trace[Âρ]|2
. (2.38)

To understand the gain in energy, |Trace[ĤÂρ]|2, let us first consider a
single set of opposite chirality states |ψ〉 and Â|ψ〉 (with energy ±E). We
first note that if ρ is an incoherent superposition of the eigenstates,

ρ = |a|2|ψ〉〈ψ|+ |b|2Â|ψ〉〈ψ|Â, (2.39)

Trace[ĤÂρ] = Trace[Âρ] = 0 (as 〈ψ|A|ψ〉 = 0), and QSE strictly does not
improve on the estimate of the ground state energy. We next consider the
opposite situation, where ρ is a coherent superposition of eigenstates:

ρ =(cos(θ)|ψ〉+ sin(θ)eiφÂ|ψ〉)
× (cos(θ)〈ψ|+ sin(θ)e−iφ〈ψ|Â†). (2.40)

We can calculate

Trace[Ĥρ] = E cos(2θ), (2.41)

Trace[Âρ] = sin(2θ)(1 +Aeiφ), (2.42)

Trace[ĤÂρ] = E sin(2θ)(Aeiφ − 1), (2.43)

where A = 〈ψ|Â2|ψ〉 (so |A| ≤ 1, and for Â ∈ PN , A = 1). This gives

E2
QSE = E2 cos2(2θ) + sin2(2θ)χ+

1− sin2(2θ)χ−
, (2.44)

χ± = (1±Aeiφ)(1±Ae−iφ). (2.45)

We see that if A = 1, φ = π
2 , QSE corrects the coherent error entirely,

whilst if A = 1, φ = 0 it has no effect. This implies that QSE cannot
correct coherent rotations of ρ from |ψ〉 towards an eigenstate of Â. This
is in keeping with the general observations in [82] for the performance of
QSE as an error mitigation strategy.

If Â is not unitary, then Â†Â is a Hermitian operator that commutes
with Ĥ. Importantly, if {Â, Ĥ} = 0, {ÂĤ, Ĥ} = 0 as well, giving a second
anticommuting operator that is in general non-unitary. This could be
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used directly in QSE, although the analysis of Sec. 2.2.3 no longer holds
unless Â†Â ∈ P2. For symmetry verification, we require the form of the
projector M̂a onto the correct Â†Â|ψ〉 = a|ψ〉 subspace. This is a difficult
task in general to construct (for ÂĤ, it is equivalent to diagonalizing
the Hamiltonian). We have been unable to construct any further bounds
on the performance of QSE as an error mitigation strategy for a general
Hermitian operator, nor for an operator which neither commutes nor anti-
commutes with Ĥ. This is, however, an interesting direction for future
research.
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3. Experimental error
mitigation via symmetry
verification in a variational
quantum eigensolver

3.1. Introduction

oisy intermediate-scale quantum (NISQ) devices [47], despite lacking lay-
ers of quantum error correction (QEC), may already be able to demon-
strate quantum advantage over classical computers for select problems [18,
19]. In particular, the hybrid quantum-classical variational quantum
eigensolver (VQE) [39, 87] may have sufficiently low experimental require-
ments to allow estimation of ground-state energies of quantum systems
that are difficult to simulate purely classically [76–79]. To date, VQEs
have been used to study small examples of the electronic structure prob-
lem, such as H2 [41, 42, 45, 80, 83, 98], HeH+ [39, 99], LiH [42, 80, 98], and
BeH2 [42], as well as exciton systems [100], strongly correlated magnetic
models [80], and the Schwinger model [101]. Although these experimen-
tal efforts have achieved impressive coherent control of up to 20 qubits,
the error in the resulting estimations has remained relatively high due
to performance limitations in the NISQ hardware. Consequently, much
focus has recently been placed on developing error mitigation techiques
that offer order-of-magnitude accuracy improvement without the costly
overhead of full QEC. This may be achieved by using known properties
of the target state, e.g., by checking known symmetries in a manner in-
spired by QEC stabilizer measurements [52, 53], or by expanding around
the experimentally-obtained state via a linear (or higher-order) response
framework [82]. The former, termed symmetry verification (SV), is of
particular interest because it is comparatively low-cost in terms of re-
quired hardware and additional measurements. Other mitigation tech-
niques require understanding the underlying error models of the quantum
device, allowing for an extrapolation of the calculation to the zero-error
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limit [49, 50, 81], or the summing of multiple calculations to probabilisti-
cally cancel errors [50, 51, 102].

We experimentally demonstrate the use of SV to reduce the error of
a VQE estimating the ground-state energy and the ground state of the
H2 molecule by one order of magnitude on average across the bond-
dissociation curve. Using two qubits in a circuit QED processor, we pre-
pare a variational ansatz state via an exchange gate that finely controls
the transfer of population within the single-excitation subspace while re-
specting the underlying symmetry of the problem (odd two-qubit parity).
We show that SV improves the energy and state estimates by mitigat-
ing the effect of processes changing total excitation number, specifically
qubit relaxation and residual qubit excitation. We do this through a full
density-matrix simulation that matches the experimental energy and state
errors with and without SV, and then using this simulation to dissect the
contribution of each error source. Finally, we explore the limitations of
SV arising from statistical measurement noise, and find that enforcing the
positivity of the fermionic 2-reduced density matrix ties the improvement
in energy estimation from SV to the improvement in ground-state fidelity
(which was previously not the case).

3.2. Variational quantum eigensolvers for
the Hydrogen molecule

A VQE algorithm [39, 87] approximates the ground state ρ(0) of a Hamil-

tonian Ĥ by a variational state ρ(raw)(~θ), with ~θ a set of parameters
that control the operation of a quantum device. These parameters are
tuned by a classical optimization routine to minimize the variational en-
ergy E(~θ) = Tr[ρ(raw)(~θ)Ĥ]. In practice, this is calculated by expanding

ρ(raw)(~θ) and Ĥ over the N -qubit Pauli basis PN := {I,X, Y, Z}⊗N ,

ρ(raw)(~θ) =
1

2N

∑
P̂∈PN

ρ
(raw)

P̂
(~θ)P̂ , Ĥ =

∑
P̂∈PN

hP̂ P̂ , (3.1)

where the Pauli coefficients are given by ρ
(raw)

P̂
(~θ) = Tr[P̂ ρ(raw)]. The

variational energy may then be calculated as

E(raw)(~θ) =
∑
P̂∈PN

ρ
(raw)

P̂
(~θ)hP̂ . (3.2)

For example, consider the H2 molecule studied in this chapter. Mapping
the Hamiltonian of this system (in the STO-3G basis) onto four qubits
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3.2. Variational quantum eigensolvers for the Hydrogen molecule

via the Bravyi-Kitaev transformation [35] and then further reducing di-
mensions by projecting out two non-interacting qubits [41] gives

ĤH2 =hIIII + hZIZI + hIZIZ

+ hXXXX + hY Y Y Y + hZZZZ, (3.3)

where coefficients hP̂ depend on the interatomic distance R. These co-
efficients may be determined classically using the OpenFermion [90] and

psi4 [89] packages. The Pauli coefficients ρ
(raw)

P̂
of the density matrix

ρ(raw) are extracted by repeated preparation and (partial) tomographic
measurements of the ansatz state. As one only needs those Pauli coef-

ficients ρ
(raw)

P̂
with non-zero corresponding Hamiltonian coefficients hP̂ ,

one need not perform full tomography of ρ(raw). However, in a small-scale
experiment, full state tomography of ρ(raw) may still be feasible, and may
provide useful information for the purposes of benchmarking. In particu-
lar, the fidelity of ρ(raw) to ρ(0),

F (raw) = Tr[ρ(raw)ρ(0)], (3.4)

is a more rigorous measure of the ability to prepare the ground state than
the energy error,

∆E(raw) = Tr
[(
ρ(raw) − ρ(0)

)
Ĥ
]
. (3.5)

Error mechanisms such as decoherence pull ρ(raw) away from ρ(0), decreas-
ing F and increasing ∆E.

These errors may be mitigated by using internal symmetries Ŝ ∈ PN 1

of the target problem, such as parity checks [52, 53]. These checks project
ρ(raw) to a symmetry verified matrix ρ(SV) that lies in the 〈Ŝ〉 = s sub-
space of the symmetry. This projection could be performed via direct
measurement of Ŝ on the quantum device, but one may instead extract
the relevant terms of the density matrix ρ(SV) in post-processing:

ρ
(SV)

P̂
=
ρ

(raw)

P̂
+ sρ

(raw)

ŜP̂

1 + sρ
(raw)

Ŝ

, (3.6)

The right-hand side may be obtained by partial tomographic measurement
of the ansatz state, with at most twice the number of Pauli coefficients

1As described in Refs. [52, 53], one does not require Ŝ to be a Pauli operator, however
this makes the SV procedure significantly simpler.
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3. Experimental error mitigation via symmetry verification

that need to be measured. This upper bound is not always achieved. For
example, the ĤH2 Hamiltonian has a Ŝ = ZZ symmetry, which maps
the non-zero Pauli terms in ĤH2 to other non-zero Pauli terms in ĤH2.
Symmetry verification in this problem then does not require any addi-
tional measurements to estimate E(SV) beyond those already required to
estimate E(raw). Even when it does require additional measurements, SV
remains attractive because it does not require additional quantum hard-
ware or knowledge of the underlying error model. One can show that the
SV state ρ(SV) may be equivalently obtained via a variant of the quan-
tum subspace expansion (QSE) [82], suggesting an alternative name of
S-QSE [52].

One may further minimize the error in a quantum algorithm by tai-
loring the quantum circuit or the gates within. In a VQE, one wishes to
choose a variational ansatz motivated by the problem itself [41, 103] while
minimizing the required quantum hardware [42]. To balance these consid-
erations, we suggest constructing an ansatz from an initial gate-set that
is relevant to the problem at hand. For example, in the electronic struc-
ture problem, the quantum state is generally an eigenstate of the fermion
number. When mapped onto qubits, this often corresponds to a conser-
vation of the total qubit excitation number. Gates such as single-qubit Z
rotations, two-qubit C-Phase [104], and two-qubit iSWAP [105] gates pre-
serve this number, making these gates a good universal gate set (within
the target subspace [106]) for quantum simulation of electronic structure.
In the example of H2, the total two-qubit parity (ZZ) is indeed conserved
and the ground state at any R may be generated by applying to |01〉 or
|10〉 an exchange gate

Uθ =


1 0 0 0
0 cos θ i sin θ 0
0 i sin θ cos θ 0
0 0 0 1

 (3.7)

with R-dependent optimal exchange angle θ and a follow-up phase cor-
rection on one qubit.

3.3. Experimental error mitigation via
symmetry verification

We now experimentally investigate the benefits of SV in the VQE of H2

using two of three transmon qubits in a circuit QED quantum processor
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3.3. Experimental error mitigation via symmetry verification
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Figure 3.1.: Quantum circuit and energy landscape of the variational eigen-
solver. (a) Quantum circuit for generating and measuring the variational ansatz
state. (b) Coherent excitation exchange, produced as Q0 is fluxed into resonance
with Q1 by a square flux pulse. Pulse amplitude (x axis) parametrizes the fre-
quency to which Q0 is flux pulsed (∼ 1.428 V bringing it on resonance with
Q1). (c) Zoom-in of (b) into the region used in the experiment to control the
exchange of population between Q0 and Q1. Colored lines illustrate the hy-
brid path in pulse duration and amplitude that maps out a finely-adjustable
θ̃ range. (d) Excitation of Q0 along the hybrid path, showing the matching
of the experimentally-defined θ̃ to the target θ defined in Eq. (3.7) (black
dashed curve). Colors [matching (c)] illustrate different pulse durations used
in each segment. (e) Landscape of energies E(raw)(θ̃, R) as function of the
experimentally-defined θ̃ angle and the interatomic distance R.
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3. Experimental error mitigation via symmetry verification

(see details in [44]). The two qubits (Q0 and Q1) are coupled by a com-
mon bus resonator, and have dedicated microwave lines for single-qubit
gating, flux bias lines for local and ns-scale control of their frequency,
and dedicated readout resonators coupling to a common feedline for inde-
pendent readout by frequency multiplexing. We prepare the ansatz state
with an efficient circuit [Fig. 3.1(a)] that first excites Q1 with a π pulse to
produce the state |10〉, and then flux pulses Q0 into resonance with Q1 to
coherently exchange the excitation population. A sweep of flux-pulse am-
plitude and duration [Fig. 3.1(b)] reveals the expected chevron pattern
that is the hallmark of coherent population exchange between the two
qubits, albeit with some asymmetry arising from imperfect compensation
of linear distortion in the flux-bias line. To finely control population ex-
change without being limited by the 1 ns resolution in pulse duration,
we stitch together a hybrid path in pulse duration and amplitude. This
results in a fine experimental knob θ̃ (1500 possible settings) that con-
trols population exchange like θ in Eq. (3.7) [Fig. 3.1(c)], although with
additional single-qubit phases. The circuit concludes with simultaneous
pre-rotation gates on both qubits followed by simultaneous measurement
of both qubits, in order to perform tomography of the prepared ansatz
state. To fully reconstruct the state, we use an overcomplete set of 36
pre-rotation pairs and extract estimates of the average measurement for
each qubit as well as their shot-to-shot correlation using Nmeas measure-
ments per pre-rotation. Note that single-qubit phase corrections are not
required immediately following the exchange gate, as phase rotations can
be performed virtually from the fully-reconstructed state.

We now optimize the VQE to approximate the ground-state energy and
ground state of H2. At each chosen R, we employ the covariance matrix
adaptation evolution strategy (CMA-ES) optimization algorithm [107],
using E(raw) as cost function and θ̃ as single variational parameter. The
evolutionary strategy optimizes θ̃ over repeated generations of Npop = 10

samples of E(raw)(θ̃), each calculated from a raw density matrix ρ(raw)

using linear inversion of Nmeas = 103. A typical optimization [Fig. 3.2(a)
inset] converges after ∼ 20 generations (∼ 2 hours). The converged state
is finally reconstructed with greater precision, using Nmeas = 105. Fig-
ure 2 shows the resulting energy estimate for twelve values of R and the
reconstructed optimized state at three such distances. These tomographs
show that the optimal solutions are concentrated in the single-excitation
subspace of the two qubits, with two-qubit entanglement increasing as a
function of R.

Performing the described symmetry verification procedure on the con-
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3.3. Experimental error mitigation via symmetry verification

Figure 3.2.: Convergence of the VQE algorithm. (a) Experimental VQE esti-
mate of H2 ground-state energy as a function of interatomic distance R. At each
chosen R, we minimize the raw energy E(raw) (blue data points) over the varia-
tional parameter θ̃ using the CMA-ES evolutionary algorithm [107]. Applying
SV to the converged solution (orange data points) lowers the energy estimate
towards the exact solution (dashed curve). Inset: A typical optimization trace
for the convergence of the energy estimate. (b-d) The reconstructed density
matrices of the converged states at (b) R = 0.25 Å, (c) R = 0.80 Å, and (d)
R = 2.00 Å, showing that the converged states lie mostly in the single-excitation
subspace, and that entanglement increases with the interatomic distance R.
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3. Experimental error mitigation via symmetry verification

verged states shows improvement across the entire bond-dissociation curve.
To quantify the improvement, we focus on the energy error ∆E and the
infidelity 1−F to the true ground state, with and without SV (Fig. 3.3).
SV reduces the energy error by an average factor ∼ 10 and reduces the
infidelity by an average factor ∼ 9. In order to quantitatively understand
the limits of the VQE optimization, and to clearly pinpoint the origin of
the SV improvement, we simulate the experiment via the density-matrix
simulator quantumsim [92], using an error model built from independently
measured experimental parameters [44]. We build the error model incre-
mentally, progressively adding: optimization inaccuracy (the difference
between the state ideally produced by the converged θ and the true ground
state); dephasing on both qubits (quantified by the measured Ramsey de-
phasing times T ∗2 ); relaxation on both qubits (quantified by the measured
relaxation times T1); residual qubit excitations (measured from single-shot
histograms with each qubit prepared in |0〉); and increased dephasing of
Q0 during the exchange gate (quantified by its reduced T ∗2 when tuned into
the exchange interaction zone). By plotting the errors from each incre-
ment of the model, we are able to dissect the observed experimental error
into its separate components without [Fig. 3.3(c)] and with [Fig. 3.3(b)]
SV. Measured temporal fluctuations of dephasing, relaxation and residual
excitation are used to obtain simulation error bars.

The simulation using the full error model shows fairly good matching
with experiment for both the ground-state energy error [Figs. 3.3(a,b)]
and the state infidelity [Fig. 3.3(c)], without and with SV. The error
model dissection shows that the energy error when not using SV is dom-
inated by residual qubit excitations. This is remarkable as the calibrated
residual excitations are only 0.25% for Q0 and 1.34% for Q1 [44]. The
improvement from SV results from the mitigation of errors arising from
these residual excitations and from qubit relaxation. This is precisely as
expected: these error mechanisms change total qubit excitation number
and violate the underlying ZZ symmetry. Using SV changes the dominant
error mechanism to optimization inaccuracy. This error could be reduced
experimentally by increasing Nmeas during the optimization, at the cost
of increased convergence time. The improvement in state infidelity by
SV can be explained along similar lines. We observe some increased de-
viations between the observed and simulated state infidelity at large R.
We attribute these to limitations in our to modeling of error during the
exchange gate (whose duration increases with R).
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Figure 3.3.: Impact of SV in ground-state energy and state fidelity, and dis-
sected error budget. (a) Experimental (solid circles) energy error ∆E without
and with SV compared to the result (empty circles) of a full density-matrix sim-
ulation using the full error model. The contributions from optimizer inaccuracy,
qubit dephasing, qubit relaxation, residual qubit excitations and increased Q0

dephasing during the exchange gate are shown as shaded regions for the case
of no SV applied. Without SV, ∆E is clearly dominated by residual qubit
excitation. (b) Zoom-in on experimental and simulated ∆E with SV and cor-
responding error budget. With SV, the effects of residual excitation and qubit
relaxation are successfully mitigated, as predicted in Ref. 52. The remaining
energy error is dominated by optimizer inaccuracy. Simulation error bars are
obtained by modelling measured fluctuations of T1, T ∗2 , and residual excitation.
(c) Experimental (solid circles) infidelity to the true ground state without and
with SV compared to simulation using the full error model (empty circles).
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3. Experimental error mitigation via symmetry verification

Figure 3.4.: Constraining positivity with symmetry verification to mitigate
the effect of sampling noise. The experimental data from Fig. 3.3 is split into
100 sample simulations for each R, increasing the sampling noise by a factor of
10 and making it comparable to other sources of experimental error. For each
sample, we plot (red) the relative energy error and infidelity [Eq. (3.9)]. Values
below 1 (dashed lines) indicate that SV has not provided an improvement, as
may be the case when the density matrix has negative eigenvalues. We restore
the improvement from SV by constraining the positivity of the 2-reduced density
matrix [108] (green). Histograms on the top and right axes show the marginal
distribution of the two scatter plots. When the density matrices are constrained
to be positive, we observe the points fall along the line y = x (blue dashed line),
indicating that SV improves both metrics by the same amount.
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3.4. Effect of symmetry verification on
positivity constrains

VQEs rely on variational bounding to ensure that the obtained approxi-
mation to the ground-state energy is accurate, but this is only guaranteed
when the experimental results correspond to a physical state. Our method
for calculating the ground-state energy [Eq. (3.1)] independently estimates

each Pauli coefficient of the density matrix with error ∝ N−1/2
meas . Such es-

timation cannot guarantee a set of Pauli coefficients that could have come
from a positive density matrix. This in turn breaks the variational lower
bound on the energy estimate, and increases the error in estimates of
other properties of the true ground state [108, 109]. As experimental er-
ror is reduced, ρ(raw) tends towards a rank-1 density matrix, increasing its
chance of being unphysical [109]. Moreover, ρ(SV) is a lower-rank density
matrix than ρ(raw) (being projected onto a subspace of the Hilbert space),
which implies that unphysicality may be enhanced by SV. The variance
in a given term ρP̂ post-SV can be calculated as

Var[ρ
(SV)

P̂
] ≈ 3Nmeas

Nmeas(1 + Tr[ρ(raw)Ŝ])
. (3.8)

SV has maximal impact on the quantum state precisely when this denom-
inator is small, so this represents a natural bound for the power of SV as
an error mitigation strategy.

The effect of sampling noise may be mitigated somewhat by restrict-
ing the fermionic 2-reduced density matrix to be positive (which may be
completed in polynomial time) [108]. To investigate the effect of such mit-
igation, we bin the data used for final tomography of converged states to
construct 100 density matrices with Nmeas = 103 at each R, thus increas-
ing the sampling noise by a factor of 10. We wish to study the relative
improvement of SV in the two figures of merit, which we quantify as

ηE =
|∆E(raw)|
|∆E(SV)| and ηF =

|1− F (raw)|
|1− F (SV)| , (3.9)

when physicality of the raw density matrices is enforced and not. To
enforce physicality, we employ a convex optimization routine to find the
closest positive semidefinite matrix to the experimentally measured ρ(raw)

(closest in the L2 norm sense on the space induced by the the Pauli basis).
We then apply symmetry verification to the post-processed density ma-
trix. Figure 3.4 shows a scatter plot of ηE and ηF, and relative histograms
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3. Experimental error mitigation via symmetry verification

of each. Without enforcing physicality, SV makes no significant improve-
ment to the state fidelity, although it almost always improves the energy
error. However, when positivity is enforced, SV greatly improves the over-
lap with the true ground state. We also find that the improvement in the
energy from SV is equal to the improvement in fidelity when the starting
state is physical, but is relatively uncorrelated when the starting state is
not. This makes sense, as the energy gain from SV given a physical matrix
comes directly from substituting higher energy states with density on the
ground state. It is unclear whether such a strong trend will continue in
larger systems without requiring too stringent a positivity constraint. As
this is a four-orbital two-electron system, enforcing the positivity of the
2-reduced density matrix enforces positivity on the entire density matrix
(which is exponentially difficult in the system size [110]). Testing this
scalability is a clear direction for future research 2.

3.5. Conclusion

In summary, we have experimentally demonstrated the use of SV to miti-
gate errors in the VQE of H2 with two transmon qubits. We implemented
an efficient variational ansatz based on an exchange gate producing finely
adjustable population transfer in the single-excitation subspace, respect-
ing the ZZ symmetry of the H2 Hamiltonian. Verification of this sym-
metry reduced the error of the estimated ground-state energy and the
ground state by one order of magnitude on average over the full dissoci-
ation curve. A full density-matrix simulation of our system allowed us to
budget the contributions from known experimental error mechanisms. We
observe that SV mitigates the effect of processes that affect total qubit
excitation number, specifically qubit relaxation and residual excitation.
Finally, we have investigated the effect of reconstructing density matrices
via linear tomographic inversion in the presence of sampling, which voids
the guarantee of positivity and in turn the guarantee that SV improves
estimation of the ground state. Intriguingly, we observe that when physi-
cality is enforced, the reduction in energy error from SV is directly linked
to the increase in fidelity to the ground state. If this observation extends
to larger systems, a user can be confident that symmetry-verified Pauli
coefficients are accurate for calculations beyond the ground-state energy.

2Note that, for this system, enforcing positivity of the 1-reduced density matrix cor-
responds to ensuring that all expectation values are bounded between −1 and 1,
and so this does not provide any additional data.
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Appendix

3.A. Appendix: Tomographic reconstruction
and limitations

Tomographic reconstruction was performed with the same technique de-
scribed in [111]. We provide a brief description here for completeness.
For each measurement channel (measurement of Q1, measurement of
Q0, and their correlation), the average measurement outcome is given
by 〈mi〉 = Tr(M̂iρ), with operator

M̂i = βiII ÎI + βiIZ ˆIZ + βiZI ẐI + βiZZẐZ, (3.10)

and real-valued coefficients βij . Single-shot measurements of Q0 and Q1

are 1-bit digitized before correlation and before averaging each of the three
channels.

The simultaneously applied measurement pre-rotations R0 and R1 con-
sist of the 36 pairs created by drawing each rotation separately from the
set {I,Xπ, Xπ/2, Yπ/2, X−π/2, Y−π/2}. These measurement pre-rotations
effectively change the measurement operator to

Mk,l
i = Tr

(
Rk,l,†M̂iR

k,l
)
.

There are thus 108 linear equations (36 per channel) linking the aver-
aged measurement to the 15 nontrivial 2-qubit Pauli coefficients (we force
〈ÎI〉 = 1). We then extract the Pauli coefficients by performing least-
squares linear inversion. Prior to the linear inversion, the measurements
are scaled to approximately match the noise in the three channels.

The coefficients βij are obtained from standard calibration measure-
ments. The two qubits are nominally prepared in the four computational
states and measured. In total, we perform 7 × Nmeas measurements per
computational state. The matrix relating the four measurement averages
of a channel to the coefficients has elements of the form 〈ÎI〉, ±〈 ˆIZ〉,
±〈ẐI〉 and ±〈ẐZ〉. By taking into account the calibrated residual qubit
excitations, which reduce the magnitude of 〈 ˆIZ〉, 〈ẐI〉, and 〈ẐZ〉 from
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Figure 3.5.: Minimal eigenvalue of density matrices obtained from linear to-
mographic reconstruction with different Nmeas. Here, the state preparation
targets a Bell state using our variational ansatz (inset) with θ = π/4 (produc-
ing a

√
iSWAP gate). Physicality constraints on density matrices restrict their

eigenvalues to be non-negative. We observe negative minimum eigenvalues over
the entire range of Nmeas. A quantumsim simulation produces a similar trend,
asymptotically approaching a physical state by Nmeas ∼ 50, 000.

unity, we ensure that the coefficients βij and thus also the operator Mi are
not corrupted by residual excitation [112].

Tomography by linear inversion does not ensure physicality of the re-
constructed density matrix. We investigate this effect by performing to-
mography with variable Nmeas on the state produced by our ansatz with
θ = π/4 and extracting the minimum eigenvalue of the reconstructed
density matrix (Fig. 3.5). A negative minimum eigenvalue manifests un-
physicality over the Nmeas range covered. Our quantumsim simulation
produces a similar trend, asymptotically approaching a physical state by
Nmeas = 5×104. These observations led us to choose Nmeas = 105 for the
final state tomography post VQE convergence in Fig. 3, and to further
investigate (in Fig. 4) how unphysicality can violate the variational prin-
ciple, producing reductions in energy from imprecise state reconstruction
rather than algorithmic precision.
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3.B. Appendix: Constraining the positivity
of reduced density matrices

Testing whether a N -qubit density matrix ρ is positive is in general
QMA-hard [110]. However, if we trace out all but a polynomial number of
degrees of freedom of ρ, testing positivity of the resulting reduced density
matrix ρ(red) is tractable on classical hardware, and obtaining the closest
nearby positive matrix is similarly so. This gives a set of necessary but
insufficient physicality conditions for ρ, but enforcing k-local constraints
(on a density matrix from a VQE) tends to be sufficient to variationally
bound the resulting energies [108]. Following the reduction, we write ρ(red)

as a vector over the Pauli basis,

ρ(red) =
∑
P̂

ρ
(red)

P̂
P̂ . (3.11)

Then, we attempt to find the density matrix ρ̃(red) closest to ρ(red) in the
L2-norm ∑

P̂

(
ρ

(red)

P̂
− ρ̃(red)

P̂

)2

, (3.12)

subject to the conditions ρ̃(red) � 0, and ρ̃
(red)
I = 1. This gives a quadratic

minimization problem with cone inequality and linear equality constraints,
which we solve using interior point methods.

3.C. Appendix: Theoretical modeling of the
experiment

We use our full-density-matrix simulator quantumsim to model the exper-
iment. The error model takes as input parameters the measured values
of T1, T ∗2 and residual excitation for both qubits, and T ∗,red

2 for Q0. We
also include the effect of fluctuations on the device parameters by Monte
Carlo sampling.

3.C.1. Numerical simulations

The simulations are performed by extracting the full-density-matrix ρ(sim)

at the end of the circuit. We use the converged value of θ̃ at each R to

generate the quantum state and extract the Pauli coefficients ρ
(sim)

P̂
(θ̃) =
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Tr[P̂ ρ(sim)]. We add sampling noise to each coefficient, drawn from a zero-

mean Gaussian distribution with variance (1 + ρ
(sim)

P̂
)(1 − ρ(sim)

P̂
)/Nmeas,

where Nmeas = 4×105. Note that this is greater than the number of mea-
surements per tomographic prerotation in the experiment, as data from
multiple tomographic prerotations is used to estimate each Pauli coeffi-
cient. To account for fluctuations on the device parameters T1, T ∗2 , and
residual excitations, we average over 104 simulations for every R. For
each simulation, we draw parameters from independent normal distribu-
tions using values in Table I of the supplementary material of Ref. [44].
As the dephasing noise T ∗2 depends on T1,

1

T ∗2
=

1

Tφ
+

1

2T1
, (3.13)

it is more appropriate to sample the pure dephasing rate Tφ independently.
We calculate the Tφ mean and variance (T̄φ, Var[T̄φ]) from T ∗2 ,

T̄φ =
1

1
T∗2
− 1

2T1

,

Var[T̄φ] = T̄ 2
φ(T ∗2 )−2

[
Var[T ∗2 ]− Var[T1]

2T 2
1 (T ∗2 )−2

]
.

(3.14)

From the 104 simulations we obtain 95%-confidence error bars for ∆E
and F as twice the population standard deviation.

3.C.2. Exchange gate

Due to quasi-static flux noise, the angle of the unitary exchange gate
(Eq. 7) differs between subsequent applications. Assuming that these
fluctuations are fast on the scale of the 2 hour optimization, this may
be simulated by integrating over the range of applied gates, resulting in
an incoherent noise model. As the gate is not repeatedly applied during
a single-shot experiment, this incoherent approximation does not lead to
an error in the final result. To perform the integration, we convert our
unitary Uθ into a Pauli Transfer Matrix representation (PTM) [113, 114]:

[Rθ]i,j =
1

2
Tr[P̂iUθP̂jU

†
θ], P̂i, P̂j ∈ PN , (3.15)

which may then be integrated over a probability distribution in the devi-
ation δ from the target angle θ:

[R̃]i,j =

∫
dδ p(δ) [Rθ+δ]i,j . (3.16)
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We choose for p(δ) a Gaussian distribution: p(δ) = e−
δ2

2σ2 . In order to
obtain the distribution width σ2, we note that the same effect causes
single-qubit dephasing of Q0 when fluxed to the exchange point when Q1

is fluxed away. We may thus estimate σ as

σ2 = 1− e
− tint

T
∗,red
2 , (3.17)

were tint is the exchange gate duration and T ∗,red
2 the dephasing time of Q0

at the exchange point (with Q1 fluxed away). The final gate simulation
also includes the effect of amplitude damping on both qubits, and the
dephasing of Q1 at the sweet spot as discrete error channels of duration
tint
2 on either side of the gate R̃.
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4. Nearly-optimal
measurement scheduling for
partial tomography of
quantum states

4.1. Introduction

The advent of variational methods, most notably the variational quantum
eigensolver [39, 87], inspires hope that useful contributions to our un-
derstanding of strongly-correlated physical and chemical systems might
be achievable in pre-error corrected quantum devices [41]. Following
this initial work, much progress has gone into lowering the coherence
requirements of variational methods [115], calculating system properties
beyond ground state energies [82, 116, 117], and experimental implemen-
tation [42, 83, 98, 118]. However, extracting data from an exponentially
complex quantum state is a critical bottleneck for such applications. Ini-
tial estimates for the number of measurements required to accurately ap-
proximate the energy of a variationally generated quantum state were
astronomically large, with bounds for quantum chemistry applications as
high as 1013 for a system of 112 spin-orbitals in minimal basis [119]. Al-
though improving these results is critical for the scalability of variational
approaches, until recently, little effort has been devoted to lowering the
number of measurements needed.

A common way to estimate the energy of a quantum state during a
variational quantum algorithm is to perform partial tomography [87] on
a set of observables which comprise a k-body reduced density matrix (k-
RDM)1 [108]. For instance, the fermionic 2-RDM allows one to calculate
such properties as energy [108], energy gradients [117, 120], and multipole

1While k-body qubit RDMs catalogue correlations between k qubits, k-body fermion
RDMs catalogue correlations between k fermions, and thus involve 2k fermionic
modes; e.g., the elements of the fermionic 2-RDM are the expectation values

〈c†pc†qcrcs〉.
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4. Nearly-optimal measurement scheduling of quantum states

moments [121] of electronic systems in quantum chemistry and condensed
matter problems, and further enables techniques for relaxing orbitals to
reduce basis error [82, 122]. By contrast, the qubit 2-RDM plays a vi-
tal role in spin systems, as it contains static spin correlation functions
that can be used to predict phases and phase transitions [123], and sep-
arately contains information to characterize the entanglement generated
on a quantum device [124]. Reduced density matrices thus offer a useful
and tractable description of an otherwise complex quantum state.

Partial tomography to estimate a reduced density matrix may be per-
formed by separating the observables to be tomographed into sets of
mutually-commuting operators. By virtue of their commutation, a unique
measurement scheme may be found to measure all operators in a single
set simultaneously. Subsequent measurement of non-commuting operators
requires re-preparation of the quantum state, so the time required to esti-
mate a target RDM is proportional to the number of unique measurement
circuits. Minimizing this number is crucial for the scalibility of variational
algorithms, as a naive approach requires O(N4) unique measurement cir-
cuits, which is impractical. Recent work has focused on mapping this
problem to that of clique finding or colouring of a graph [125], and ap-
plying approximate algorithms to these known NP-hard problems [126].
This achieves constant or empirically determined linear scaling improve-
ments over an approach that measures each term individually [125, 127–
130]. However, the commutation relations between local qubit or local
fermionic operators has significant regularity not utilised in naive graph-
theoretic algorithms. Leveraging this regularity is critical to optimizing
and proving bounds on the difficulty of tomography of quantum states.
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4. Nearly-optimal measurement scheduling of quantum states

In this chapter, we provide schemes for the estimation of fermionic and
qubit k-RDMs that minimize the number of unique measurement circuits
required, significantly decreasing the time required for partial state tomog-
raphy over prior art. We demonstrate a scheme to estimate qubit k-RDMs
in an N -qubit system in time O(3k logk−1N)2, achieving an exponential
increase over prior art. We then prove a lower bound of Ω(Nk) on the num-
ber of state preparations required to estimate fermionic k-RDMs (such as
those of interest in the electronic structure problem) using Clifford cir-
cuits (including the addition of ancilla qubits prepared in the |0〉 state)
and measurement in the computational basis. We describe protocols to
achieve this bound for k ≤ 2. We detail measurement circuits for these
protocols with circuit depths of O(N) and gate counts of O(N2) (requir-
ing only linear connectivity), that additionally allow for error mitigation
by symmetry verification [52, 53]. Finally, we detail an alternative scheme
to measure arbitrary linear combinations of fermionic k-RDM elements,
based on finding large sets of anti-commuting operators. This requires
O(N4/ω) measurements, but has a measurement circuit gate count of
only O(ω) on a linear array, for a free parameter ω < N .

In Tab. 4.1, we provide a history of previous art in optimizing measure-
ment schemes for the electronic structure problem, and include the new
results found in this work. We further include the lower bounds for the
number of partitions required for anti-commuting and commuting clique
cover approaches that were presented in this chapter.

4.2. Background

Physical systems are characterized by local observables. However, the
notion of locality depends on the exchange statistics of the system in
question. In an N -qubit system, data about all k-local operators within a
state ρ is given by the (qubit) k-reduced density matrices, or k-RDMs [108]

kρi1,...,ik = Tracej 6=i1,...,ik [ρ]. (4.1)

Here, the trace is over all other qubits in the system. To estimate kρ, we
need to estimate expectation values of all tensor products of k single-qubit
Pauli operators Pi ∈ {X,Y, Z}; we call such tensor products ’k-qubit’
operators. In an N -fermion system, data about all k-body operators is
contained in the (fermionic) k-body reduced density matrices, which are

2Here and throughout this chapter all logarithms are base two.

64



4.3. Near-optimal measurement schemes

obtained from ρ by integrating out all but the first k particles [108]

kD = Tracek+1,...,N [ρ]. (4.2)

Estimating kD requires estimating the expectation values of all products
of k fermionic creation operators c†j with k fermionic annihilation opera-
tors cj . For instance, the 2-RDM catalogues all 4-index expectation values
of the form 〈c†pc†qcrcs〉. One can equivalently describe fermionic systems
in the Majorana basis,

γ2j = cj + c†j , γ2j+1 = i(c†j − cj), (4.3)

in which case the fermionic k-RDM may be computed from the expecta-
tion values of 2k Majorana terms γj (e.g. the 2-RDM is computed from
expectation of Majorana operators of the form 〈γiγjγkγl〉). We call such
products 2k-Majorana operators for short.

The expectation values of the above operators may be estimated with
standard error ε by O(ε−∈) repeated preparation of ρ and direct measure-
ment of the operator. This estimation may be performed in parallel for
any number of k-qubit operators P̂i or 2k-Majorana operators Ĝi, as long
as all operators to be measured in parallel commute. This suggests that
the speed of a ‘partial state tomography’ protocol that estimates expec-
tation values of all k-qubit or 2k-Majorana operators by splitting them
into a set of ‘commuting cliques’ (sets where all elements commute) is
proportional to the number of cliques required. In this chapter we focus
on optimizing partial state tomography schemes by minimizing this num-
ber. Necessarily, our approach will be different for qubit systems (where
two spatially separated operators always commute) compared to fermionic
systems (where this is often not the case).

4.3. Near-optimal measurement schemes for
local qubit and fermion operators

Partial state tomography of qubit k-RDMs can be efficiently performed
by rotating individual qubits into the X, Y , or Z basis and reading them
out. These rotations define a ‘Pauli word’ W ∈ {X,Y, Z}N , where Wi

is the choice of basis for the ith qubit. Repeated sampling of W allows
for the estimation of expectation values of any Pauli operator P that is a
tensor product of some of the Wi — we say these operators are contained
within the word. (The set of all such P is the clique corresponding to W
with the property that each P is qubit-wise commuting with the rest of
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4. Nearly-optimal measurement scheduling of quantum states

operators in the word W .) To estimate the k-qubit RDM in this manner,
we need to construct a set of words that contain all k-local operators.
For k = 2, it is sufficient to find a set of words W ∈ {A0, A1}N such
that each pair of qubits differ in their choice of letter in at least one
word. Then, permuting over A0 = X,Y, Z, and separately A1 = X,Y, Z,
extends the set to contain all 2-qubit operators. Such a set can be found
via a binary partitioning scheme, for a total of 6dlogNe + 3 cliques (see
App. 4.A for details). This scheme may be further extended to arbitrary
k > 2 with a complexity O(3k logk−1(N)). The (classical) computational
complexity to generate each word is at most O(log(N)), and O(N) to
assign each qubit, making the classical computational cost to generate
the set of measurements O(ekN logkN), which is acceptably small for
even tens of thousands of qubits. We have added code to generate the full
measurement protocol to the Openfermion software package [90].

Fermionic k-RDMs require significantly more measurements to tomo-
graph than their qubit counterparts, as many more operators anti-commute.
In a N -fermion system, the total number of 2k-Majorana operators is(

2N
2k

)
, while the size of a commuting clique of 2k-Majorana operators

may be upper-bounded by
(
N
k

)
in the N >> k limit (see App. 4.B). As

fermionic k-RDMs contain expectation values of 2k-Majorana operators,
the number of cliques required to estimate all elements in the fermionic
k-RDM scales as (

2N

2k

)
/

(
N

k

)
∼ Nk. (4.4)

In terms of the resources requirement to estimate a fermionic k-RDM,
this directly implies

Theorem 1. The number of preparations of an arbitrary N-fermion quan-
tum state ρ required to estimate all terms in the fermionic k-RDM to
within an error ε, via Clifford operations (including addition of ancilla
qubits prepared in the |0〉 state), and measurement in the computational
basis, is bounded below in the worst case as Ω(ε−2Nk).

Proof details may be found in App. 4.H. In particular, estimating
the fermionic 1-RDM requires repeated preparation of ρ and measure-
ment over at least 2N − 1 unique commuting cliques, and estimating the
fermionic 2-RDM requires repeat preparation and measurement over a
number of cliques at least

4

3
N2 − 8

3
N + 1. (4.5)
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4.3. Near-optimal measurement schemes

Maximally-sized cliques of commuting 2k-Majorana operators may be
achieved via a pairing scheme. If we pair the 2N individual 1-Majorana
operators into N pairs {γiγj}, the corresponding set of operators iγiγj
forms a commuting set. Any product of k of these pairs will also commute,
so the set of all combinations of k pairs is a commuting clique of exactly(
N
k

)
2k-Majoranas. We say that the 2k-Majorana operators are contained

within the pairing. Curiously, each pairing saturates the bounds found in
App. 4.B for the number of mutually commuting 2k-Majorana operators
in a N -fermion system, and thus this scheme is optimal in the number
of 2k-Majorana operators targeted per measurement circuit. However,
as one 2k-Majorana operator may be contained in multiple pairings, it
remains to find a scheme to contain all 2k-Majorana operators in the
minimum number of pairings. For the 1-RDM, it is possible to reach
the lower bound of 2N −1 cliques by a binary partition scheme, which we
detail in App. 4.C. In the 2-RDM case, we have been able to achieve 10

3 N
2

cliques (also detailed in App. 4.C) by a divide and conquer approach. It
remains an open question whether the factor 5/2 between our scheme and
the lower bound (Eq. 4.5) can be improved, either by better bounding or
a different scheme.

Simultaneous estimation of the expectation value of each observable
may be achieved by repeatedly preparing and measuring states in the
iγiγj basis for all paired γi, γj in the clique. Measuring the system in this
basis is non-trivial and depends on the encoding of the fermionic Hamil-
tonian onto the quantum device. However, for almost all encodings this
requires simply permuting the Majorana labels, which may be achieved
by a single-particle basis rotation using Clifford gates (see App. 4.F). This
implies that the circuit depth should be no worse that O(N), and will not
require T-gates in a fault-tolerant setting. Furthermore, in many cases
the measurement circuit should be able to be compiled into the state
preparation circuit, reducing its cost further.

Symmetry constraints on a system (i.e. unitary or antiunitary operators
S that commute with the Hamiltonian H) force certain RDM terms to be
0 for any eigenstates of the system. For example, when a real Hamiltonian
is written in terms of Majorana operators (using Eq. 4.3), it must con-
tain an even number of odd-index 1-Majorana operators, and expectation
values of terms not satisfying this constraint on eigenstates will be set to
0. More generally, if a symmetry is a Pauli word Wsymmetry such that
W 2
symmetry = 1, then it will divide the set of all Majorana terms into those

which commute with Wsymmetry and those which anti-commute; products
of odd numbers of anti-commuting terms will have zero expectation value
on eigenstates of the system. Given n such independent symmetries, each
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4. Nearly-optimal measurement scheduling of quantum states

Figure 4.1.: Scaling of our Majorana partitioning scheme in the presence of
between 0 and 4 symmetry constraints on the system. Dashed lines are from
Eq. 4.6

of which commute with half of all 1-Majorana operators (which is typical),
we are able to contain all elements of the fermionic 2-RDM in a number
of cliques scaling to first order as

N2

(
10

3
4−Nsym + 21−Nsym

)
. (4.6)

(See App. 4.D for details.) In Fig. 4.1, we show the result of an imple-
mentation of our scheme for different numbers of symmetries at small N ,
and see quick convergence to this leading-order approximation for up to
4 symmetries (typical numbers for quantum chemistry problems). Code
to generate this measurement scheme has been added to the Openfermion
package [90].
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4.4. Measuring anti-commuting linear combinations

4.4. Measuring anti-commuting linear
combinations of local fermionic
operators

Products of Majorana and Pauli operators have the special property that
any two either strictly commute or strictly anti-commute. This raises the
question of whether there is any use in finding cliques of mutually anti-
commuting Pauli operators. Such cliques may be found in abundance
when working with Majoranas — e.g. for fixed 0 ≤ j, k, l ≤ 2N , the set
Aj,k,l = {γiγjγkγl} is a clique of 2N − 3 mutually anti-commuting oper-
ators. Curiously, it turns out that asymptotically larger anti-commuting
cliques are not possible - the largest set of mutually anti-commuting Pauli
or Majorana operators contains at most 2N + 1 terms (see App. 4.G for
a proof). The number of anti-commuting cliques required to contain all
4-Majorana operators is thus bounded below by Ω(N3), matching the
numerical observations of [130].

Although sampling each term in an anti-commuting clique A of size
L requires O(L) state preparations, it is possible to measure a (real)

linear combination O =
∑L
i=1 ciPi of clique elements in a single shot.

Since all elements of Aj,k,l share three of the same four indices, here we
can associated each Pi in the sum over the elements of Aj,k,l with the

Majorana Pi = γiγjγkγl. Given that Õ = (
∑L
i=1 c

2
i )
−1/2O looks like a

Pauli operator (Õ† = Õ, Trace[Õ] = 0), and smells like a Pauli operator
(Õ2 = 1), it can be unitarily transformed to a Pauli operator of our
choosing. In App. 4.F, we show that for systems encoded via the Jordan-
Wigner transformation, this unitary transformation may be achieved with
a circuit depth of only N −2+O(1) 2-qubit gates. It is possible to reduce
the depth further by removing Majoranas from the set — if we restrict
ourselves to subsets of ω elements of Aj,k,l, the measurement circuit will
have ω gates and be depth ω, but O(N4/ω) such sets will be needed
to estimate arbitrary linear combinations of 4-Majorana operators. This
makes this scheme very attractive in the near-term, where complicated
measurement circuits may be prohibited by low coherence times in NISQ
devices.

4.5. Conclusion

Experimental quantum devices are already reaching the stage where the
time required for partial state tomography is prohibitive without opti-
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mized scheduling of measurements. This makes work developing new and
more-optimal schemes for partial tomography of quantum states exceed-
ingly timely. In this chapter, we have shown that a binary partition strat-
egy allows one to sample all k-local qubit operators in a N -qubit system
in poly-log(N) time, reaching an exponential improvement over previous
art. By contrast, in fermionic systems we have found a lower bound on
the number of unique measurement circuits required to directly sample
all k-local operators of Ω(Ndk/2e), an exponential separation. We have
developed schemes to achieve this lower bound for k = 2 and k = 4, allow-
ing estimation of the entire fermionic 2-RDM to constant error in O(N2)
time. Additionally, we have demonstrated that one can leverage the anti-
commuting structure of fermionic systems by constructing such sets of
size 1 ≤ ω ≤ N to measure all 4-Majorana operators in O(N4/ω) time
with a gate count and circuit depth of only ω, allowing one to trade off
an decrease in coherence time requirements for an increase in the number
of measurements required.
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Appendix

4.A. Appendix: Schemes for partial state
tomography of qubit k-RDMs

In this section, we develop methods to minimize the measurement cost
for partial state tomography of qubit k-RDMs by minimizing the number
of commuting cliques needed to contain all k-qubit operators. To do so,
we associate a ‘Pauli word’ W ∈ {X,Y, Z}N to each clique: by measuring
the ith qubit in the Wi basis, we measure every tensor product of the
individual Pauli operators Wi. Thus, the clique associated to W contains
all k-qubit operators that are tensor products of the Wi — we say these
operators are ‘contained’ within the word. We then wish to find the
smallest possible set of words such that every k-qubit operator is contained
within at least one word.

We construct such a set through a k-ary partitioning scheme, which we
first demonstrate for k = 2. As motivation, consider that the set of 9
words (with A,B = X,Y, Z)

W
(A,B)
i =

{
A if i < N/2

B if i ≥ N/2 , (4.7)

contains all 2-qubit operators that act on qubits j < N/2 and k ≥ N/2.
We may generalize this to obtain all other 2-qubit operators by finding
a set of binary partitions Sn,0 ∪ Sn,1 = {1, . . . , N} such that for any
pair 0 ≤ i 6= j ≤ N there exists n, a such that i ∈ Sn,a, j ∈ Sn,1−a.
Let us define L = dlogNe, and write each qubit index i in a binary
representation, i = [i]L−1[i]L−2 . . . [i]1[i]0. Then, for n = 0, . . . , L − 1 we
define

i ∈ Sn,a if [i]n = a. (4.8)

All 0 ≤ i 6= j ≤ N differ by at least one of their first L binary digits (as

shown in Fig. 4.2(a)), so the set of words W
(A,B)
n , constructed as

[W (A,B)
n ], i =

{
A if i ∈ Sn,a
B if i ∈ Sn,1−a,

(4.9)
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4. Nearly-optimal measurement scheduling of quantum states

Figure 4.2.: Schematics of the binary partition strategy described in text. (a)
Scheme to construct O(logN) cliques that contain all 2-qubit operators. (b)
Extension of the top scheme to a set of O(log2N) cliques that contain all 3-qubit
operators.

defines a set of cliques that contain all 2-qubit operators. As W
(A,A)
n,i is

the same word for every n we need only choose this word once and so the
number of cliques may be reduced to 6L+ 3.

To see how the above may be extended to k > 2, let us consider k = 3.
We wish to find 3-ary partitions ∪3

a=1Sn,a = {1, . . . , N} that, given any
set i1, i2, i3, we can find some index n for which ia ∈ Sn,a (allowing for
permutation of the ia). Then, by running over all combinations of X,Y, Z
on the three parts of each partition, we will obtain a set of words that
contain all 3-qubit operators. We illustrate a scheme that achieves this
Fig. 4.2(b). We iterate first over n = 1, . . . , L, and find the largest n such
that i1, i2 and i3 are split into two subsets by a binary partition. (i.e.
where Sn,a ∩ {i1, i2, i3} is non-empty for a = 0 and a = 1). This implies
that two of the indices lie in one part, and one in the other. Without loss
of generality, let us assume i1 ∈ Sn,1 and i2, i3 ∈ Sn,0 (following Fig. 4.2).
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It now suffices to find a set of partitions for Sn,0 so that we guarantee
i2 and i3 are split in one such partition. We could imagine repeating
the binary partition scheme over all Sn,0; i.e. generating the logN sets
Sn,0 ∩ Sn′,a. However, we can do better than this. As i1, i2 and i3 are
not split in any binary partition Sn′,0, Sn′,1 with n′ > n, i2 and i3 must
be in a contiguous block of length 1/2n within Sn,0. This means that we
need only iterate over n′ = 0, . . . , n − 1. We must also iterate over the
same number of partitions of Sn,1, and so the total number of partitions
we require is

2

L−1∑
n=0

n = (L− 1)(L− 2). (4.10)

The above generalizes relatively easily to k > 2. Given a set I =
{i1, . . . , ik}, we find the binary partition Sn,0, Sn,1 with the largest n that
splits I into non-empty sets I0 = I ∩ Sn,0 and I1 = I ∩ Sn,1. Then, we
iterate over |I0|-ary partitions of the contiguous blocks of Sn,0 and the
|I1|-ary blocks of Sn,1. In total there are k − 1 possible ways of dividing
I (up to permutations of the elements). This implies that at each n we
have to iterate over k − 1 different sub-partitioning possibilities, making
the leading-order contribution to the number of cliques

(k − 1)

L−1∑
n=0

nk−2 ∼ L(k−1), (4.11)

and the total number of cliques O(3k logk−1N).

4.B. Appendix: Upper bounds on the size of
commuting cliques of Majorana
operators

In this appendix, we detail the bounds on the size of commuting cliques
of Majorana operators. Let us call the largest number of mutually-
commuting k-Majoranas that are a product of l unique terms (i.e. l
unique 1-Majoranas) Mk

l . (For an N -fermion system, we will eventually
be interested in the case where l = 2N .) We wish to bound this number
Mk
l by induction. All 1-Majorana operators anti-commute, so Mk

l = 1.
Then, let us consider the situation where k is even and when k is odd
separately. Suppose we have a clique of Mk

l k-Majorana operators with
k even. As there are only l unique terms, and these k-Majoranas contain
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kMk
l individual terms each, there must be a clique of dkMk

l /le of these
operators that share a single term γ0. We may write each such operator in
the form ±γ0Γi, where Γi. As [γ0Γi, γ0Γj ] = 0 if and only if [Γi,Γj ] = 0,
this gives a clique of kMk

l /l commuting (k − 1)-Majorana operators on
l − 1 unique terms, so we must have⌈

kMk
l

l

⌉
≤Mk−1

l−1 , k even. (4.12)

Now, consider the case where k is odd, let us again assume we have a clique
of M (k) commuting k-Majoranas. Two products of Majorana operators
anticommute unless they share at least one term in common, so let us
choose one k-Majorana Γ in our set; each k-Majorana must have at least
one of the k terms in Γ, so at least one such term is shared between
dM (k)/ke Majoranas in our set. Removing this term gives a clique of
dM (k)/ke (k − 1)-Majorana operators on l − 1 unique terms, and so we
have ⌈

Mk

k

⌉
≤Mk−1

l−1 , k odd. (4.13)

These equations may be solved inductively to lowest-order in k to obtain

Mk
l ∼ lbk/2c. (4.14)

This bound can be strengthened in the l >> k limit, as here the largest
commuting cliques of odd-k-Majoranas must share a single term γ0. This
can be seen as when k is odd, large sets of commuting (k− 1)-Majoranas
contain many operators that do not share any terms — a set of k −
1 commuting operators that share a single term can be no larger than
approximately l(k−3)/2. Formally, let us consider a set C of commuting
k-Majoranas, choose Γ ∈ C, and write Γ = γ1 . . . γk. Then, we may write
C = ∪iCi, where Ci is the subset of operators in C that contain γi as
a term. If there exists Γ′ ∈ C/Ci, (i.e. Γ′ commutes with all operators
in Ci but does not itself contain γi), we may divide Ci into k subsets of
Majoranas that share the individual terms in Γ′, and so |Ci| ≤ kl(k−3)/2.
If is true for all such Ci, we have then |C| ≤ ∑i |Ci| ≤ k2l(k−3)/2. As
this scales suboptimally in the large-l limit 3, we must have that C/Ci is
empty for some Ci. Then, Ci = C, and we can bound

Mk
l ≤Mk−1

l−1 , k odd. (4.15)

3For example, we can achieve better scaling in l via our pairing scheme.

74



4.C. Appendix: Details of measurement schemes for fermionic systems

This leads to the tighter bound (assuming l even)

Mk
l ≤

l!!

(l − k)!! k!!
, (4.16)

where the double factorial implies we multiple only the even integers ≤ k.
Then, when l = 2N , for even k = 2n we see

M2n
2N ≤

2N !!

(2N − 2n)!! 2n!!

=
2NN !

2N−n(N − n)!2nn!
=

(
N

n

)
. (4.17)

This is precisely the size of the cliques obtained by pairing, proving this
scheme optimal in the large-N limit.

In practice, we observe that Eq. 4.15 is true for k = 3 whenever
l ≥ lcrit,315 (i.e. for > 8-fermion systems). This is because the largest set
of commuting 3-Majoranas that do not share a single common element can
be found to be (up to relabeling) {γ0γ1γ2, γ0γ3γ4, γ0γ5γ6, γ1γ3γ5, γ1γ4γ6, γ2γ3γ6, γ2γ4γ5},
which contains 7 terms. The above argument implies that lcrit,k scales at
worst as k2, however the bounds obtained here are rather loose, and we
expect it to do far better.

4.C. Appendix: Details of measurement
schemes for fermionic systems

We now construct asymptotically minimal sets of cliques that contain
all 2-Majorana and 4-Majorana operators. 2-Majorana operators that
share any term do not commute, so our commuting cliques of 2-Majorana
operators must contain only non-overlapping pairs of Majorana terms.
Equivalently, we need to find a set of pairings of {0, . . . , 2N} such that
each pair (i, j) appears in at least one pairing. This may be achieved
optimally for N a power of 2 via the partitioning scheme outlined in
Fig. 4.3(a). We first split {1, . . . , 2N} into a set of N2−n contiguous
blocks for n = 0, . . . , log(2N)

Bnm = {m× 2n ≤ i < (m+ 1)× 2n}. (4.18)

Then, our cliques may be constructed by pairing the ith element of Bn2m
with the (i+a)th element ofBn2m+1 (modulo 2n), as n runs over 0, . . . , log(N)
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and a runs over 0, . . . , 2n − 1. Formally, this gives the set of cliques

Ca,n := {γαγβ , α = (m2n+1 + i),

β = ((2m+ 1)2n + [(i+ a) mod 2n]),

m = (0, . . . , N2−n − 1), i = (0, . . . , 2n − 1)}, (4.19)

with a total number
logN∑
n=0

2n = 2N − 1, (4.20)

matching exactly the lower bound calculated in the main text. The above
technique needs slight modification when N is not a power of 2 to make
sure that when |Bn2m| 6= |Bn2m+1|, unpaired elements are properly ac-
counted for, but the above optimal scaling may be retained. Code to gen-
erate an appropriate set of pairings has been added to the Openfermion
package [90].

As all operators in one of the above cliques Ca,n commute, their prod-
ucts commute, and the set

{γiγjγkγl; γiγj , γkγl ∈ Ca,n}, (4.21)

is clearly a clique of commuting 4-Majorana operators. However, each 2-
Majorana operator is guaranteed to be in only one of the cliques Ca,n, so
this will not yet contain all 4-Majorana operators. To fix this, we aim to
construct a larger set {Cα} of cliques of commuting 2-Majorana operators,
such that for every set γi1 , γi2 , γi3 , γi4 there exists one Cα containing both
γiaγib and γicγid (for some permutation of a, b, c, d = 1, 2, 3, 4). This
may be achieved by the strategy illustrated in Fig. 4.3(b). For each I =
i1, i2, i3, i4, choose the smallest n such that I ⊂ Bnm for some m. This
implies that the {Bnm} split I into two parts - Ia = I∩Bn−1

2m+a, for a = 0, 1,
and |I0| = 1, 2 or 3. Suppose first |I0| = 2, (case 1 in Fig. 4.3(b)). In this
case, by iterating over all pairs of elements in Bn−1

2m and subsequently all
pairs of elements in Bn−1

2m+1, we will at some point simultaneously pair the
elements of I0 and the elements of I1, as required. This may be performed
in parallel for each m, making the total number of cliques generated at
each n |Bn−1

2m |2 = 4n−1. Now, suppose |I0| = 3 (case 2 in Fig. 4.3) — or
|I0| = 1 as the two situations are equivalent. Let n′ < n be the smallest
number such that I0 ⊂ Bn

′

m′ for some m′, and we may split I0 into two

sets I0,a = I0 ∩ Bn
′−1

2m′+a for a = 0, 1. Of the three elements in I0, two of
them must either lie in I0,0 or I0,1 - suppose without loss of generality

that |I0,0| = 2. Then, by iterating over all pairs within Bn
′−1

2m′ , and all
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Figure 4.3.: Schematic of the fermionic partition strategy for generating cliques
that contain all local fermionic operators. (a) a scheme to pair all indices in
{1, . . . , N} in O(N) timesteps. (b) The two cases to consider in our strategy to
contain all 4-Majorana operators in only O(N2) cliques.
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pairs between elements of Bn
′−1

2m′+1 and Bn−1
2m+1, we will at some point pair

both elements in I0,0 and both elements in I0,1 ∪ I1.

This pairing needs to occur for all n > n′, which implies we need to

iterate over all combinations of pairs between elements of Bn
′−1

2m′+1 and

{1, . . . , 2N}/Bn′−1
2m′ (while iterating over pairs within Bn

′−1
2m′ ). This may be

performed in parallel for each m′ at each n′. First, iterate over all possible
pairings of Bn

′

m0
and Bn

′

m1
(which requires O(N2−n

′
) iterations). Then,

iterate over all pairs between Bn
′−1

2m0+a0
and Bn

′−1
2m1+a1

for all combinations

of a0, a1 = 0, 1 (requiring 4 × 2n
′−1 iterations). Simultaneously, iterate

over all pairs within Bn
′−1

2m0+1−a0 and Bn
′−1

2m1+1−a1 (requiring again 2n
′−1

iterations). This generates 4×4n
′−1 cliques at each n′. The total number

of cliques we then require to contain all 4-Majorana operators using this
scheme is then

dlogNe∑
n′=1

N2n
′
+

dlogNe+1∑
n=1

4n−1 ∼ 10

3
N2. (4.22)

4.D. Appendix: Reducing operator
estimation over symmetries

Given a set {Si} ⊂ PN of Nsym mutually-commuting Pauli operators that
are symmetries ([Si, H] = 0), we can simultaneously diagonalize both the
Hamiltonian and the symmetries, implying that we can find a ground
state ρ such that Trace[ρP ] = 0 for each P that does not commute with
Si. In the case of a degenerate ground state eigenspace, not all states
will necessarily have this property (as symmetries may be spontaneously
broken). However, any such P will not appear in the Pauli decomposition
of the Hamiltonian, and so estimation of this RDM term is not necessary
to calculate the energy of the state. The commutation of a k-Majorana
operator Γ with a Pauli operator symmetry Si may be seen immediately
by counting how many of the k individual terms anti-commute with Si
— if this number is even, then [Γ, Si] = 0. This implies that we can
separate individual 1-Majorana operators into bins B~s with ~s ∈ {0, 1}Nsym

a commutation label:

γj ∈ B~s →
{
γjSi = Siγj iff si = 0

γjSi = −Siγj iff si = 1.
(4.23)
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Let ~s(γj) denote the label of the bin γj may be found in, and we may

generalize to all k-Majorana operators Γ =
∏k
l=1 γjl :

si

(
k∏
l=1

γjl

)
=
∑
l

si(γjl) mod 2. (4.24)

To estimate the symmetry-conserved sector of the 2-RDM, we are then
interested in constructing a set of cliques of 4-Majorana operators in B~0.

These take the form γj1γj2γj3γj4 where ~s(γj1) = ~s, ~s(γj2) = ~s+~δ, ~s(γj3) =

~s+~α, and ~s(γj4) = ~s+~α+~δ. (Recall here that in binary vector arithmetic,

~a+~a mod 2 = ~0.) We construct cliques for the above in two steps. First,
we iterate over all quadruples within each bin B~s (using the methods

in App. 4.C). This covers all of the above operators where ~δ = ~α = 0,
and may be done simultaneously with cost 10

3 B
2, where B is the size

of the largest bin. Then, we iterate between bins B~s and B~s+~β for all

β ∈ {0, 1}Nsym with β0 = 0. Such iteration achieves all pairs above —
either α0 = 0 (and we pair bins B~s with B~s+~α when we pair B~s+~δ with
B~s+~δ+~α), or δ0 = 0 (and we pair bins B~s with B~s+~δ when we pair B~s+~α

with B~s+~δ+~α), or (~δ+~α)0 = 0 (and we pair B~s with B~s+~δ+~α when we pair
B~s+~α with B~s+~δ). We must perform this pairing in parallel - i.e. construct

a set of 2Nsym−1-tuples by drawing one element from each B~s×B~s+δ such
that every two elements appear in at least one tuple. In App. 4.E we
describe how this may be achieved The total cost of the above is then
2Nsym−1(B2 + 2B ln(B) + ln(B)2). It is common for most symmetries to
divide the set of Majoranas in two, in which case B = 2N × 2−Nsym , and
our clique cover size is

N2

(
10

3
4−Nsym + 21−Nsym

)
+O(N ln(N)). (4.25)

We summarize our method in algorithm 1 (where we use h(~s) as the
Hamming weight of a binary vector ~s).
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Algorithm 1 Iterate over symmetry-conserved 2-RDM elements. Here,
iterQuad and pairBetween are described in App. 4.C, and parallelIterate
in Alg. 2

Construct bins B~s.
quadIter = {}
for ~s in {0, 1}Nsym do

quadIter[~s] = iterQuad(B~s)
end for
while any iterator in quadIter is not stopped do yield (next(iterator)
for iterator in quadIter if iterator is not stopped)
end while
seriesIterate(quadIter)

for ~β in {0, 1}Nsym−1, β 6= ~0 do
Left-append 0 to beta (i.e. β = (0, ) + β)
quadIter = {}
for ~s in {0, 1}Nsym , h(~s+ ~β) ≥ h(~s) do

quadIter[~s] = pairBetween(B~s., B~s+~β).
end for
parallelIterate(quadIter)

end for

4.E. Appendix: Parallel iteration over
pairings

If we wish to iterate over all pairs of two lists of L elements each, clearly we
must perform at least L2 total iterations, and the optimal strategy is triv-
ial (two loops). However, if we wish to iterate over all pairs between K = 3
or more lists of L elements (i.e. generate a set of K-tuples such that each
pair appears as a subset of one tuple), such an optimal strategy is not so
obvious. When K is less than the smallest factor of L, a simple algorithm
works as described in Algorithm 2. We can see that this algorithm works,
for suppose jk1 + l = a mod L and jk2 + l = b mod L for two separate
values of j, l - i.e. j1k1 + l1 = j2k1 + l2 mod L and j1k2 + l1 = j2k2 + l2
mod L. Then, we have j1(k1 − k2) = j2(k1 − k2) mod L, and as k1, k2

are smaller than the lowest factor of L, gcd(k1 − k2, L) = 1, implying
j1 = j2. This scheme achieves the optimal L2 total iterations, although
the reliance on K being smaller than the lowest factor of L is somewhat
unsavoury. We hypothesize that the asymptotic L2 is indeed achievable
for all K ≤ L, but have not been unsuccessful in our search for a construc-
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tion. Instead, for composite L, we suggest padding each list to have length
L′, being the first number above L that achieves this requirement. The
prime number theorem implies that L′−L ∼ log(L) if K ≤ L (as then we
require at worst to find the next prime number). This gives the scheme
runtime L2 + 2L log(L) + log(L)2, which is a relatively small subleading
correction.

Algorithm 2 parallelIterate: Iterate over K lists
dataArray[0], ..., dataArray[K − 1] of L elements, generating all
pairs between elements in separate lists. Assumes K less than the
smallest factor of L.

for j = 0 to L− 1 do
for k = 0 to L− 1 do

thisTuple = [dataArray[k][jk + l mod L] for k = 0 to K − 1]
yield thisTuple

end for
end for

4.F. Appendix: Measurement circuitry for
fermionic RDMs

Direct measurement of products of Majorana operators is a more com-
plicated matter than measurement of Pauli words (which require only
single-qubit rotations). However, when the fermionic system is encoded
on a quantum device via the Jordan-Wigner transformation [34], a rela-
tively easy measurement scheme exists. Within this encoding, we have

iγ2nγ2n+1 = Zn, (4.26)

so if we can permute all Majorana operators such that each pair (γi, γj)
of Majoranas within a given clique is mapped to the form (γ2n, γ2n+1),
they may be easily read off. To achieve such a permutation, we note that
the Majorana swap gate Ui,j = e

π
4 γiγj satisfies

U†i,jγkUi,j =


γk if i, j 6= k

γj if k = i

−γi if k = j.

(4.27)

And so repeated iteration of these unitary rotations may be used to ’sort’
the Majorana operators into the desired pattern. This may be performed
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in an odd-even search format [135] - at each step t = 1, . . . , N we decide
for each n = 1, . . . N whether to swap Majoranas 2n and 2n+ 1, and then
whether to swap Majoranas 2n and 2n − 1. Within the Jordan-Wigner
transformation these gates are local:

U2n,2n+1 = e−i
π
4 Zn , U2n−1,2n = e−i

π
4 Yn−1Yn , (4.28)

and so each timestep is depth 3, for a total maximum circuit depth of
3N and total maximum gate depth 3N2. (To see that only N timesteps
are necessary, note that each Majorana can travel up to 2 positions per
timestep.) Following the Majorana swap circuit, all pairs of Majoranas
that we desire to measure will be rotated to neighbouring positions and
may then be locally read out. As each Majorana swap gate commutes with
the global parity

∏2N
i=1 γi, this will be measurable alongside the clique as

the total qubit parity
∏N
i=1 Zi, allowing for error mitigation by symmetry

verification [52, 53]. As the above circuit corresponds just to a basis
change, for many VQEs it may be pre-compiled into the preparation itself,
negating the additional circuit depth entirely.

As an alternative to the above ideas, it is possible to extend the parti-
tioning scheme for measuring all k-qubit operators to a scheme to sample
all fermionic 2-RDM elements via the Bravyi-Kitaev transformation [35,
36]. This transformation maps local fermion operators to k = O(logN)
qubit operators, and so using our approach the resulting scheme would re-
quire O(3k logk−1N) = (3 logN)O(logN) unique measurement. Although
this is superpolynomial, it is a slowly growing function for small N and
also has the advantage that the measurement circuits themselves are just
single qubit rotations. Furthermore, as the set of fermion operators is very
sparse in the sense that it has only O(N4) terms rather than NO(logN)

terms, the scheme may be able to be further sparsified.
The measurement scheme to transform a sum of anti-commuting Majo-

rana operators to a single Majorana operator follows a similar scheme to
the Majorana swap network, but with the swap gates replaced by partial
swap rotations. Let A be a set of anti-commuting Majorana (or Pauli)
operators, and then for Pi, Pj ∈ A the (anti-Hermitian) product PiPj
commutes with every element in A but Pi and Pj itself. This implies
that the unitary rotation eθPiPj may be used to rotate between Pi and Pj
without affecting the rest of A:

e−θPiPjPke
θPiPj =


Pk if k 6= i, j

cos(θ)Pi + sin(θ)Pj if k = i

cos(θ)Pj − sin(θ)Pj if k = j

. (4.29)
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This rotation may be applied to remove the support of O on individual
Pi. For example, if θ1 = tan−1( c1c2 )

e−θ1P1P2Oeθ1P1P2 =
√
c21 + c22P2 +

L∑
i=3

ciPi. (4.30)

We extend this to remove support of O on each Pi in turn by choosing

θi =
√∑

j<i c
2
i /ci+1, and then

(
L−1∏
i=1

e−θiPiPi+1

)
O

(
L−1∏
i=1

eθiPiPi+1

)
=

√∑
i

c2iPL. (4.31)

Following this measurement circuit, O may be measured by reading all
qubits in the basis of the final Pauli PL. Intriguingly, for Pi, Pi+1 ∈ Aj,k,l,
we have that PiPi+1 = γiγi+1, which maps to a 2-qubit operator under
the Jordan-Wigner transformation (as noted previously). This implies a
measurement circuit for these sets may be achieved with only linear gate
count and depth, linear connectivity, and no additional ancillas. We can
slightly reduce the depth by simultaneously removing the Pi from the
“top” and ”bottom”; i.e., we remove P2N−3 by rotating with P2N−4 at
the same time as removing P1 by rotating with P2, until after exactly
N − 2 layers, we have only the term PN remaining. All generators in
this unitary transformation commute with the parity

∏2N
i=1 γi, implying

that it remains invariant under the transformation and may be read out
alongside PN . (This may require an additional O(1) gates if PN is not
mapped to products of Zi via the Jordan-Wigner transformation.)

4.G. Appendix: Proof that the maximum
size of an anti-commuting clique of
Pauli or Majorana operators is 2N + 1

We prove this result in general for the Pauli group PN , and note that
as the Jordan-Wigner transformation maps Majorana operators to single
elements of PN , the same is true of this. We first note that elements
within an anti-commuting clique S ⊂ PN may not generate each other
- let

∏n
i=1 Pi = Pj ∈ S, and if n is odd [Pi, Pj ] = 0 for any Pi in the

product, while if n is even [Pk, Pj ] = 0 for any Pk not in the product.
(The one exception to this rule is if one cannot find any such Pk, i.e. when
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Pj =
∏
i 6=j,Pi∈S Pi). Then, note that each element P ∈ PN commutes

with precisely half of PN , and anticommutes with the other half. This
can be seen because a Clifford operation C exists such that C†PC = Z1,
which commutes with all operators of the form I1P

′ and Z1P
′ and anti-

commutes with all operators of the form X1P
′ and Y1P

′, and these will
be mapped to other Pauli operators when the transformation is un-done.

We may extend this result: a set S = {P1, . . . , Pn} of n non-generating

anti-commuting elements in PN splits PN into 2n subsets P~b (with~b ∈ Zn2 ),
where Q ∈ P~b commutes with Pi if bi = 0 (and anticommutes if bi = 1).
To see that all P~b must be the same, note that given an operator Q ∈ P~b,
PiPjQ ∈ P~b⊕~δi⊕~δj (as PiPj anti-commutes with Pi and Pj but commutes

with all other elements in S), so |P~b| and P~b⊕~δi⊕~δj are the same size.

Similarly, if Q ∈ P~b, PiQ ∈ P~b⊕~1⊕~δi . If n is even, this is sufficient to
connect each element in P~b to an element in P~b′ , forcing all to be the same
size. However, if n is odd the above will not connect P~b and P~b′ unless

|~b| = |~b′| mod 2. We note that
⋃
~b,|~b| mod 2=0 P~b is the set of elements

that commute with
∏
Pi∈S Pi, and thus must be precisely half of PN .

This proves that the set of operators in PN that anticommute with all
elements in S is of size 4N/2|S|. This must be an integer, so n ≤ 2N .
Then, when n = 2N there is precisely one element that anticommutes
with all operators in S -

∏
Pi∈S Pi, and we may add this to S to get the

largest possible set of operators. Such a set is unitarily equivalent to the
set of 2N Majorana operators γi and the global parity

∏2N
i=1 γi.

4.H. Appendix: Proof of theorem 1

To bound the number of preparations of a state ρ required to estimate a
fermionic k-RDM, we first establish a correspondence between the allowed
measurement protocols and measurement of a set of commuting Pauli
operators on the original state ρ. As 2k-Majorana operators are Pauli
operators, this implies that an estimate of the expectation value 〈Γi〉 of
each 2k-Majorana operator Γi converges with variance

Var(〈Γi〉) ≤
(1− 〈Γi〉)(1 + 〈Γi〉)

4Mi
, (4.32)

where Mi is the number of preparations and measurements of ρ in a basis
containing Γi. We then show the existence of a worst-case state for which
this upper bound is tight, which implies that to estimate 〈Γi〉 with error
ε we require Mi ∼ ε−2 preparations and measurements of ρ in a basis
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containing Γi. To estimate expectation values of all
(

2N
2k

)
2k-Majorana

operators to error ε, we need for each operator Mi measurements in a
basis containing this operator. As we have established that our measure-
ment scheme only allows such measurements in parallel if the operators
commute, the bound derived in App. 4.B directly bounds the number of
operators that may be estimated per preparation of ρ to

(
N
k

)
, and the

result follows by Eq. 4.4.

We now show that our measurement protocol allows only for estimation
of commuting Pauli operators. By definition, Clifford operators map Pauli
operators to Pauli operators, so any measurement of a state ρ that consists
of a Clifford circuit UCl and subsequent readout in the computational
basis is equivalent to a measurement of the commuting Pauli operators
{U†ClZjUCl}. (The same is true of any tensor products {U†Cl ⊗j ZjUCl} =

{∏j U
†
ClZjUCl} on ρ — where the ⊗j is taken over any set of qubits —

and the following arguments remain true if Zj is replaced by ⊗jZj). It
remains to show that the number of preparations is unaffected by the
addition of Na ancilla qubits in the |0〉 state. Under such an addition, we

may still invert the measurement U†ClZjUCl = Pj,ρ⊗Pj,a, where Pj,rho and
Pj,a are Pauli operators on the system and the ancilla qubits respectively.
By construction, the state is separable across the bipartition into system
and ancilla qubits, so 〈Pj,ρ ⊗ Pj,a〉 = 〈Pj,ρ〉〈Pj,a〉. Then, as we require
our ancilla qubits to be prepared in the |0〉 state, 〈Pj,a〉 = 0 unless Pj,a
is a tensor product of I and Z, in which case 〈Pj,a〉 = 1. If 〈Pj,a〉 = 0, a
measurement of Zj does not yield any information about 〈Pj,ρ〉, while if
〈Pj,a〉 = 1, a measurement of Zj yields exactly the same information as

a direct measurement of Pj,ρ. Then, consider two operators U†ClZjUCl =

Pj,a⊗Pj,ρ and U†ClZkUCl = Pk,a⊗Pk,ρ. We have that [Pj,a⊗Pj,ρ, Pk,a⊗
Pk,ρ] commute, and if 〈Pj,a〉 = 1 and 〈Pk,a〉 = 1, Pj,a and Pk,a commute on
a term-wise basis (as they are tensor products if I and Z), which implies
[Pj,ρ, Pk,ρ] = 0. This shows that the addition of ancilla qubits in the
|0〉 state cannot be used to simultaneously measure non-commuting Pauli
operators via Clifford circuits, and our allowed measurements correspond
to simultaneous measurement of a set of commuting Pauli operators on
ρ, as required.

Finally, we argue for the existence of a state for which Eq. 4.32 is
tight. This may not always be the case - by constraining a fermionic
k-RDM to the positive cone of N -representable states, Pauli operators
with expectation values close to ±1 (and thus small variance) constrain
the expectation values of anti-commuting operators near 0 below this
limit. This beneficial covariance is of particular importance when taking

85



4. Nearly-optimal measurement scheduling of quantum states

linear combinations of RDM elements e.g. to calculate energies [132],
however it requires a state have highly non-regular structure which in
general will not be the case (nor known a priori). The simplest example
of an unstructured state is the maximally-mixed state on N fermions; by
definition all measurements of this state are uncorrelated, and the variance
on estimation of all terms is Var(〈Γi〉) = 1

4Mi
, which achieves the upper

bound in Eq. 4.32.
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5. Performance comparison of
optimization methods for
variational quantum
algorithms

5.1. Introduction

Recently we have witnessed an explosion of quantum computer prototypes
accessible to researchers in academic and industrial laboratories. Existing
quantum hardware has already demonstrated the ability to outperform
classical computers in specific mathematically contrived tasks [136, 137].
However, it is still unclear whether noisy intermediate-scale quantum
(NISQ) [47] hardware can outperform classical computers on practically
useful tasks. Here, variational quantum algorithms (VQA) [39, 40, 87]
were introduced as a means of preparing classically-hard quantum states
by tuning parameters of a quantum circuit to optimize a cost function by
utilising a classical optimizer.

The overall performance of VQAs depends on the performance of the
classical optimization algorithm. Finding the limitations of these opti-
mization methods for different VQA tasks is critical if they are to impact
research and industry. For this, researchers have proposed new classical
optimization algorithms that exploit periodic properties of parametrized
quantum circuits [138, 139]. Other works have focused on using machine
learning techniques to optimize VQAs [140, 141]. These articles bench-
mark new optimization techniques relative to standard classical optimizers
on a wide variety of systems. However, to the best of our knowledge, no
extensive comparison of the most common optimization methods for these
tasks has been reported yet.

In this chapter we study three aspects that affect the optimization per-
formance in VQAs. We focus on four off-the-shelf optimizers (SLSQP,
COBYLA, CMA-ES and SPSA) for the task of finding an approximate
ground-state energy of few physical systems. We first look at two dif-
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ferent sampling strategies and how they affect the optimization perfor-
mance with default optimizer hyper-parameters. Then we focus on hyper-
parameter tuning of CMA-ES and SPSA; finding a comparable perfor-
mance between them given optimal hyper-parameters, with the winner
depending on the details of the problem. Finally, we investigate the ac-
curacy of the solutions in the presence of stochastic sampling noise. We
define a ‘sampling noise floor’: a bound on the accuracy that an optimizer
can reach when the optimal parameters are those of the best-ever function
evaluation. Additionally, we show that CMA-ES algorithm can outper-
form this ‘sampling noise floor’ when the optimal parameters are selected
from an internal estimate of the optimal candidate. Our main contribu-
tion is strong numerical evidence that the optimal parameters of a VQA
should not be taken from the best-ever measured function evaluation.

5.2. Background

A variational quantum algorithm attempts to find approximate ground
states of an N -qubit quantum system as the output of a circuit U(~θ) with

tunable parameters ~θ. This generates a variational ansatz,

|Ψ(~θ)〉 = U(~θ)|Φ〉, (5.1)

where the parameters ~θ ∈ [0, 2π]d control the rotations of single and two-
qubit gates in a quantum circuit implementation of U applied to an initial
state |Φ〉 (i.e., U(~θ) = Uk(θk)Uk−1(θk−1) . . . U0(θ0)|Φ〉). During a VQA

run, these parameters are tuned to optimize a cost function C(~θ), which
in our case is the expectation value of a Hermitian observable Ô relative
to the state |Ψ(~θ)〉,

C(~θ) = 〈Ô〉 = 〈Ψ(~θ)|Ô|Ψ(~θ)〉. (5.2)

To measure the expectation value of Ô without additional quantum cir-
cuitry, it is typical to write Ô as a linear combination of easy-to-measure
operators, i.e., Pauli operators P̂i ∈ {I, X, Y, Z}⊗N

Ô =
∑
i

ciP̂i → C(~θ) = 〈Ô〉 =
∑
i

ci〈P̂i〉. (5.3)

A VQA then passes the estimation of the cost function C(~θ) to some

classical optimization routine to find the values of ~θ minimizing C. This
optimization loop and the optimizer choices are the focus of this chapter.
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To get an estimate of the expectation value 〈P̂i〉, one prepares and
measures the state multiple times in the P̂i basis and calculates the mean
of the eigenvalues observed. This approximates the cost function C by an
estimator C̄, whose distribution is dependent on the number of repetitions
M used to calculate 〈P̂i〉,

C̄(~θ,M) =
∑
i

ci
[
〈P̂i〉+ εi(M)

]
. (5.4)

Here, εi is a random variable drawn from a binomial distribution with
variance σ2

i ∼ 1/M that is used to simulate the experimental shot or sam-
pling noise. Assuming that Pauli operators are measured independently,
the variance of the estimator C̄ may be propagated directly,

Var[C̄] =
∑
i

c2iσ
2
i . (5.5)

In general, the assumption of independence is violated. One may mea-
sure mutually commuting operators in parallel [124, 125, 132–134, 142].
Then the resulting measurement has non-zero covariance [108, 115], which
should be accounted for. However, this only introduces a constant fac-
tor to the estimation cost, and will not significantly impact the relative
optimzer performance. Here, we will use M , defined in Eq. (5.4), as the

overall cost for the quantum subroutine which takes ~θ and M as inputs,
and outputs C̄(~θ,M).

To optimize within a VQA, an access to C(~θ) is provided to a classical

optimizer, which then minimizes the sampled cost function C̄(~θ,M) as a

function of the classical parameters ~θ. One can additionally provide esti-
mates of gradients ∇θC (or higher order derivatives) in order to perform
gradient-based (or Newton-like) optimization. To avoid a comparison of
the runtime of gradient estimation to that of estimating the raw cost func-
tion C̄(~θ,M), we only compare four gradient-free optimization algorithms.
Moreover, it has been shown that gradient-based optimization strategies
suffer given noisy function evaluations with simple noise structures [143]
(e.g., stationary and isotropic noisy covariance) in the sense that 1) the
convergence rate to local optima is hampered [144] and 2) such simple
noise does not help in escaping from local optima [145]. We select the
following optimizers (see Appendices for further details):

1. SLSQP determines a local search direction by solving the second-
order local approximation of the cost function that satisfies the con-
strains,
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2. COBYLA uses linear approximations of the target and constrains
function to optimize a simplex within a trust region of the parameter
space,

3. CMA-ES is a population-based optimization algorithm where the
points are drawn from a multivariate Gaussian distribution, whose
parameters (covariance matrix and location) are adapted online,

4. SPSA employs a stochastic perturbation vector to compute simul-
taneously an approximate gradient of the objective.

We compare these algorithms across multiple systems of different sizes
and number of parameters considered.

5.3. Three-stage sampling adaptation

Existing state-of-the-art quantum hardware is limited by the stability of
the devices, which need to be tuned within time-scales of hours up to
a day. This influences a hard limit on the total number of samples we
can measure before the devices changes, of the order of ∼109. This shot
budget becomes the limiting factor in VQAs. One must carefully balance
between exploring the parameter space and accurately measuring the cost
function. In this spirit, Cade et al. [146] introduced a sampling procedure
for SPSA that splits the total shot budget between three stages, resulting
in improved performance of VQAs.

Naively, one can fix the total number of shots per Pauli operator and
run the optimization until the budget is spent (i.e., if one used 1000 shots
per Pauli per function call and allocated a total shot budget of 107 per
Pauli, this would allow for a total of 10000 evaluations). We refer to
this approach as one-stage optimization. Alternatively, one could think
of an optimization strategy where the number of shots is increased as the
optimization progresses towards better parameters as introduced by Cade
et al. We perform a three-stage optimization procedure where the number
of samples per Pauli operator increases per phase, reducing the number
of total function calls. In our three-stage optimization, we fix the number
of shots per Pauli for each stage (i.e., 100-1000-10000 shots for a total
budget of 107). The number of function evaluations is then computed
from a ratio 10:3:1. For every 10 function calls at the first stage, we use
3 function calls in the second stage and 1 function call in the third stage
(i.e., 7150-2145-715 evaluations for a total budget of 107 shots per Pauli).

We compare the one- and three-stage protocols for the four optimization
algorithms previously introduced, aimed at assessing if the three-stage
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5.3. Three-stage sampling adaptation

protocol has any evident advantage over standard sampling strategy. For
this comparison we use the relative energy error,

∆rE =

∣∣∣∣∣C(~θopt)− E0

E0 − c0

∣∣∣∣∣, (5.6)

where C(~θopt) is the noiseless cost function evaluated at the optimized

parameters ~θopt obtained from a noisy optimization. E0 is the lowest
eigenvalue of the problem. c0 is the coefficient of the identity operator,
which is the largest Hamiltonian term. This is the relevant figure of
merit to capture the performance of the optimizer as it measures the
relative error in estimating the traceless part of the Hamiltonian H −
c0I, requiring the quantum computer. Our numerical experiments are
performed under sampling noise with a total shot budget of 107, 108

and 109 per Pauli operator. In the one-stage method we fix the total
number of function evaluations to 104 and use 103, 104 and 105 shots
per Pauli operator per function call. In the three-stage procedure the
function calls are also fixed at 7150-2145-715 for all budgets, and the
shots per Pauli operator at every stage are 102-103-104, 103-104-105, and
104-105-106, respectively. The optimization stops when the shot budget
is reached. However, the SLSQP and COBYLA optimization algorithms
have a termination criterion that in most cases results in exiting early and
not utilizing their full shot budget.

We benchmark the algorithms for three different systems on 8-qubits:
H4 in a chain and square configuration and the 2x2 Hubbard model. The
results are shown in figure 5.1. For every problem we run experiments for
one-stage (blue, pink and green dots) and three-stage (red, brown, and
purple dots) protocols for each optimization. Both SLSQP and COBYLA
have a consistent improvement when the three-stage sampling is applied,
but are inferior to the performance of CMA-ES and SPSA in all cases.
Conversely, for CMA-ES the one-stage sampling has better performance
than the three-stage protocol in all three test systems. Finally, SPSA
behaves differently with respect to the sampling procedure depending on
the system. For the square configuration of H4 the three-stage sampling
has a slightly better energy. In the case of the chain configuration, the
one-stage method shows almost a 4-fold improvement over the three-stage
method. For the 2x2 Hubbard model the three-stage methods has an order
of magnitude improvement in performance. Overall, the best performance
across all problems is achieved by SPSA in both one- and three-stage
methods (indicated by green and orange ticks on the top of the panel).
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5.4. Hyperparameter tuning

Most optimization algorithms come with default (hyper-)parameters de-
tailing the optimization. These (hyper)-parameters are either derived
under idealized theoretical assumptions, or evaluated from numerical ex-
periments on standard benchmarks. It is common to tune the hyper-
parameters of the optimizers when used on a function that has not been
previously studied [147, 148]. Similarly, when performing a VQA one
should consider hyper-parameter-tuning the optimizer.

Finding optimal hyper-parameters of an optimizatizer can be costly
and generally problem-dependent. A sub-field of classical optimization
has been devoted to automatizing such hyper-parameter tuning. Here
we use the iterated racing for automatic algorithm configuration [149],
IRACE (see Appendix 5.Cfor a description of the procedure), to tune the
SPSA and CMA-ES settings for four molecular systems, H4 square and
chain and H2O at equilibrium and stretched geometries (corresponding
to weakly- and strongly-correlated regimes, respectively). Additionally
we perform hyper-parameter tuning of CMA-ES for the Hubbard model
on three different configurations; 1x6, 2x2 and 2x3. For SPSA, however,
we take the results of ref. [146] where the hyper-parameters were tuned.
The hyper-parameters used for the numerical experiments can be found
in Tables I and II in Appendix 5.C.

With the tuned hyper-parameters we performed a new set of experi-
ments including new systems: H2O in its equilibrium and stretched ge-
ometries with 10 qubits and Hubbard models on 1x6 and 2x3 lattices
requiring 12 qubits. The results of these simulations are shown in fig-
ure 5.2. A first observation is that CMA-ES improves on the problems
tested without tuning. The overall performance between CMA-ES and
SPSA is roughly similar, with SPSA doing better in weakly-correlated
problems (H4 chain, H2O equilibrium and 2x2 Hubbard model). For
strongly-correlated systems, CMA-ES has a slightly better performance
with the mean values mostly within error bars (orange ticks in fig. 5.2).
Supporting our idea that hyper-parameter tuning is crucial to ensure a
good VQA performance is the 5-fold improvement of SPSA on the H4

chain problem. For the H4 square only a mild improvement is observed
for both SPSA and CMA-ES, both reaching an almost equal relative en-
ergy error. A reason of this can be that both optimizers find the optimal
parameters accessible by the ansatz, better result requiring a larger cir-
cuit.

With regards to the Hubbard model, SPSA performs clearly better on
the 2x2 configurations. However CMA-ES is capable of finding much lower
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Figure 5.2.: Comparison of optimized hyper-parameters of CMA-ES (red,
brown and purple dots) and SPSA (grey, orange and blue dots). Black crosses
and error bars depict the mean and 95% confidence interval of 15 independent
runs. Green and orange represent the same as in fig. 5.1.

points in with 108 and 109 optimization, suggesting that the optimization
landscape is not trivial, and that better results can be found. The 1x6
and 2x3 Hubbard models yield a comparable performance between the
optimizers. Again, a possible explanation for this is that they reach the
actual optimum.

Finally, we observe a that CMA-ES starts to outperform SPSA as the
system size and number of parameters increases. This might be an indi-
cation that SPSA is not as well-suited for large problems.
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5.5. The sampling noise floor

A successful VQA requires the optimization algorithm to return the opti-
mal parameters of C̄. It is common to assign as the optimal candidate the
one with the best-ever measured C̄. However, in VQAs, the optimization
is performed using a proxy cost function C̄ – a sampled version of the real
objective C. So, it is possible that C̄(~θ) returns a value that is lower than

its corresponding noiseless evaluation C(~θ) due to statistical fluctuations.
Any optimizer that assigns the optimal candidate to the point with the
best-ever function evaluation of C̄ will, with large probability, return a
candidate worse than the global minimum (assuming its existence). The
region of points in parameter space that can return the best-ever measured
C̄ we refer to as the sampling noise floor, discussed in the following.

Given a cost function C(~θ), we attempt to optimize its sampled version

C̄ with variance Var[C̄]. Let us assume C(~θ) has a global minimum ~θg with

noiseless value Cg, and that we evaluate C(~θ) at multiple ~θ including one

evaluation at ~θg. Under sampling noise, the value of the cost function

evaluated at ~θg is drawn with some probability 1 − p from a confidence
interval

∆p = [Cg +m(p)
√

Var[C̄],−∞), (5.7)

where m(p) ∼ log(p) is the size of the relevant confidence interval for
our distribution of C̄. Assuming this distribution is symmetric, whenever
~ω 6= ~θg satisfies C(~ω) − m(p)

√
Var[C̄] /∈ ∆p, with probability > (1 − p)

an evaluation of the noisy cost function will lie above this confidence
region, C̄(~ω) > ∆p. Then, with confidence > (1− p)2, ~θg will be correctly
identified (between these two candidates) as the optimal set of parameters.

However, when this is not the case and C(~ω) − m(p)
√

Var[C̄] ∈ ∆p, we

can no longer be confident that the true minimum ~θg will be identified.
This defines a (potentially disconnected) region in parameter space,

Ω(p) = {~ω : C(~ω) < C(~θg) + 2m(p)
√

Var[C̄]}, (5.8)

from where alternative candidates can be drawn with probability p. This
corresponds to a region of possible cost function values,

Cp =
[
C(~θg), C(~θg) + 2m(p)

√
Var[C̄]

]
, (5.9)

that an optimizer returning the best-ever measured C̄ may achieve. We
define the width of this region, 2m(p)

√
Var[C̄], as the sampling noise floor.
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This region is not completely defined, as we have not set a value for p.
In practice, the value of p depends upon the rate at which the optimizer
can converge; an optimizer that converges slowly will encounter more
parameter sets ~ω near the true minimum, increasing the probability that
one of these parameter sets might generate a false optimum. We do not
have direct access to an estimate for the width of Cp, but we can still
demonstrate the phenomenon numerically.

SPSA and CMA-ES have been designed not to rely on the best-ever
function evaluation. In particular, CMA-ES returns two different candi-
dates; the best-ever measured and a so-called favourite. The favourite
is computed by the algorithm’s update function at the end of the op-
timization process and includes all accumulated prior information. As
this information includes many more shots than a single function call,
in principle it can average out the sampling noise over the optimization
landscape, and beat the sampling noise floor. We investigate the effect of
sampling noise on these two candidates returned by CMA-ES.

Figure 5.3, shows the results of the sampling noise floor in the optimiza-
tion performance. For every system we computed the following energy
values: C̄(~θbest), C(~θbest) and C(~θfav). For each estimated energy we com-

pute the relative energy error ∆E =
C(~θopt)−E0

|E0−c0| . Note that the best-ever

function evaluation (orange points) is often below the true energy, break-
ing the variational principle. This is due to the effect of sampling noise,
and for a fair comparison we should compare C(~θbest) (red points) and

C(~θfav) (purple points), where the true cost function is evaluated. The

mean value of C(~θbest) gives an estimate for the width of the sampling
noise floor. We observe that in all cases, the mean of the favourite candi-
date is below the mean of the best candidate, showing that the optimizer
has beaten the sampling noise floor. For the Hubbard model and the H4

systems, this is not significant (up to a 95% confidence interval), but for
the two geometries of the water molecule, the difference is much larger.
Choosing the favourite over the best yields up to a 3-fold reduction of
error. We believe the difference in performance comes from the different
optimization landscapes of the different problems; studying this in detail
is a target for future work.

5.6. Conclusion

Variational quantum algorithms have recently prompted significant inter-
est as candidates amenable to near-term hardware. However, the per-
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5.6. Conclusion

Figure 5.3.: Best-ever versus favourite candidate from CMA-ES under noisy
optimization. The optimization uses 107 shots per Pauli over the course of the
experiment with individual estimations of C̄(~θ) are made using only 104 shots per
Pauli. From left to right: (orange) best-ever measured function evaluation, (red)
the best-ever candidate evaluated noiseless, and (purple) favourite candidate
evaluted noiseless.
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formance of these quantum algorithms relies on a classical optimization
of a difficult cost function. This task is in general intractable to solve
optimally. It is, therefore, important to benchmark the available opti-
mizers for this purpose. We study the performance of four off-the-shelf
optimization algorithms under the effect of sampling noise for the task of
finding the ground-state energies. We perform a comparison using default
hyper-parameters, and then extend the analysis using a three-stage sam-
pling method from Ref. [146] and by adding hyperparameter tuning. First
find that SPSA performs best in both standard and three-stage samplings
without tuning. Next, we focus on the performance of SPSA and CMA-
ES in the three-stage procedure. We then hyper-parameter-optimize these
two methods. With these new parameter settings, SPSA and CMA-ES
have a comparable performance on the strongly-correlated systems and a
small advantage for SPSA on the weakly-correlated ones. We notice that
the advantages of SPSA seem to vanish as problem sizes grow.

Finally, we study the effect of sampling noise on the optimization perfor-
mance using CMA-ES. We observe that the best-ever function evaluation
is may not be a feasible optimal candidate, contrary to the common ap-
proach in classical optimization. Specifically, we show that the best-ever
result suffers from a sampling noise floor problem that makes any of the
parameters within it a potential best-ever result. In contrast, the so-
called CMA-ES favourite candidate obtained from its update rule at the
end of the optimization shows an overall better mean and standard devi-
ation than its best-ever counter-part, indicating the sampling noise floor
can be overcome. We expect that our analytical and numerical results of
the sampling noise floor opens a new line of inquiry about optimization
methods for VQAs.
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Appendix

5.A. Appendix: Details on optimization
algorithms

In this appendix, we provide a more detailed description of the optimiza-
tion algorithms used in this chapter.

� Simultaneous perturbation stochastic approximation algorithm [150,
151] (SPSA) is designed for noisy evaluations of a cost function,
where a stochastic perturbation vector (for instance, a vector whose
components are independently sampled from the Rademacher dis-
tribution) is used to simultaneously estimate all partial derivatives
at given a point. Compared to the well-known finite difference
method to estimate the gradient, which requires 2d evaluations of
the cost function defined over Rd, the stochastic approximation al-
ways consumes two evaluations, hence saving many function evalu-
ations when the search dimension is high. However, this algorithm
does not follow exactly the gradient direction due to the use of
stochastic perturbation.

� Constrained Optimization BY Linear Approximations (COBYLA)
[152] is designed for constrained derivative-free optimization. It em-
ploys linear approximations to the objective and constraint functions
via a linear interpolation given M + 1 points (or simplex). These
approximations are then optimized within a trust region at each
step.

� Sequential Least Squares Quadratic Programming (SLSQP) [153,
154] is an implementation1 of the more general Sequential Quadratic
Programming (SQP) approach [155] for solving constrained opti-
mization problems. Loosely speaking, in each iteration, SQP pro-
poses a local search direction by solving a sub-problem defined at

1We took the implementation from the scipy package, which is based on the original
software as described in [153].
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the current search point in which the nonlinear cost function is re-
placed by its local second-order approximation and the constraints
are approximated by their affine approximation. When there is no
constraint, this method degenerates to Newton’s method.

� Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES)
[156] is the state-of-the-art direct search algorithm for continuous
black-box optimization problem, which distinguishes itself from other
algorithms in self-adaptation of its internal variables to the energy
landscape. Briefly, this algorithm iteratively draws a number of can-
didate solutions from a multivariate Gaussian distribution, in which
the shape of this distribution (e.g., covariance matrix and location)
is adapted online based on the evaluated points in its trajectory.

5.B. Appendix: Numerical experiments

In this appendix, we describe the numerical experiments used to generate
the data for the figures of the chapter. The code and data to reproduce
these figures can be found in [157].

To generate the target problems we use the open-source electronic struc-
ture package OpenFermion [90]. In addition, we generate the molecu-
lar systems with the computational chemistry software Psi4 through the
OpenFermion plug-in. The classical numerical simulations are performed
using the open-source quantum circuit simulator package Cirq [158]. Re-
garding the optimization methods we use the Scipy [159] sofware for
COBYLA and SLSQP, PyCMA [160] for CMA-ES and an in-house version
of SPSA based on the code in [161].

As described in the main text, we focus on the performance of the
optimization methods for VQAs under sampling noise conditions. In order
to include the sampling noise in our experiments we compute a noisy
expectation value for every Pauli operator in the Hamiltonian with a fixed
number of shots, as follows:

1. Prepare the ideal quantum state, measure 〈Pi〉 and p = 1−〈Pi〉
2 ,

2. sample p̃ = B(p,M) from a binomial distribution with M shots,

3. compute a noise expectation value 〈P̃i〉 = 1− 2p̃,

4. calculate the noisy Hamiltonian expectation value as

〈H̃〉 =
∑
i

ci〈P̃i〉. (5.10)
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H2O Equilibrium Stretched
O (0.0, 0.0, 0.1173) (0.0, 0.0, 0.0)
H (0.0, 0.7572, -0.4692) (0.0, 1.8186, 1.4081)
H (0.0, -0.7572, -0.4692) (0.0, -1.8186, 1.4081)

Table 5.1.: Table describing the configurations of the atoms for the two water
molecule problems used in this chapter.

This is a good approximation to the sampling noise generated by mea-
suring the expectation values of Pauli operators in real hardware, when
the number of shots is large enough. Moreover, we avoid the bottleneck
of preparing and measuring the same state multiple times.

In the Fermi-Hubbard model experiments (see app. 5.E for further de-
tails), we set the parameters of the Hamiltonian to t = 1.0 and U = 2.0.
The ansatz circuit for these problems is constructed using the Variational
Hamiltonian Ansatze (VHA) with 5 layer for the 1x6, 2 layer for the 2x2
and 4 layers for the 2x3 Hubbard model. These are the minimum number
of layers needed to achieve a ground-state fidelity of 0.99 in ref. [146].

For the H4 in the chain configuration, the first hydrogen atom is lo-
cated at 0.0 in all coordinates, then every atom is separated in the x-
direction by 1.5Å. In the square configuration, we fix the hydrogen
atoms in 2-dimensions. The positions of the atoms are parametrized
by their polar coordinates with R = 1.5Å and θ = π

4 , and we locate
them at (x, y, 0), (x,−y, 0), (−x, y, 0), (−x,−y, 0) with x = R cos(θ) and
y = R sin(θ). For the water molecule problems, the (x, y, z)-coordinates
of the atoms given in Table 5.1. Additionally, in both of the problems
we reduce the active space by freezing the lowest two lowest orbitals,
thus reducing the problem from 14 qubits to 10 qubits (or from 7 to 5
spin-orbitals). As a trial state to approximate the ground-state of the
molecular systems, we use the so-called Unitary Couple-Cluster ansatze.
A detailed description on how we construct the UCC ansatze can be found
in a separate appendix 5.D.

Finally, the total number of parameters to be optimized for each target
problem can be found in table 5.2.
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System # Parameters
H4 chain 14
H4 square 10
H2O eq. 26
H2O stret. 26
Hub. 1x6 15
Hub. 2x2 6
Hub. 2x3 16

Table 5.2.: Number of parameters of the ansatze for each target problem.

5.C. Optimization algorithms
hyper-parameters

Prior to applying the aforementioned optimizers on VQAs, we also op-
timize the hyper-parameters of those optimizers. Such an extra tuning
task aims at bringing up the performance of each optimizer to the max-
imum, hence facilitating a fair comparison on each problem. To achieve
this task efficiently, we utilize the well-known IRACE algorithm f for
the hyperparameter tuning. Irace has been extensively applied in auto-
mated machine learning researches for configuring machine learning mod-
els/optimizers [162, 163].

Built upon a so-called iterated racing procedure, this algorithm em-
ploy a statistical test (usually the Wilcoxon ranked-sum test) to obtain
a robust (with respect to the sampling noise in measured energy values)
ranking of hyper-parameter settings, thereby serving as a suitable choos-
ing for our task. The tuning process with IRACE initiates by fixing the
subset of optimizer hyper-parameters to be modified, including bounds
and potential constrains. Then, a ’race’ between randomly sampled val-
ues begins. These configurations are evaluated a fixed number of times,
and the less favourable configurations are disregarded based on a statisti-
cal test. The configurations that survived are then raced again until the
budget of evaluations is depleted or the number of configurations is below
a threshold. Next, IRACE updates the candidate generation model based
on the survival configurations, and generates a set of new configurations
to race against the elites. The racing procedure is repeated until the total
budget is depleted. The surviving configurations are returned as the opti-
mal configurations of the algorithm. The final hyper-parameters used for
the experiments are the average of the survivors are shown in Table 5.3
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SPSA a α c γ
default 0.15 0.602 0.2 0.101
H4 chain 1.556 0.809 0.106 0.097
H4 square 0.867 0.593 0.133 0.113
H2O eq. 0.103 0.878 0.149 0.131
H2O stret. 0.660 0.743 0.253 0.108
Hubbard 0.15 0.602 0.2 0.101

Table 5.3.: List of values for SPSA hyper-parameters used in Fig. 5.2 after
tuning using IRACE. We perform hyper-parameter optimization only with H4

chain and H2O equilibrium and use the same values for the respective square
and stretched configurations. For the Hubbard models we take the default
values as ref. [146] suggest their optimality.

and 5.4.
In detail, the hyper-parameters we tuned are as follows:

� For SPSA, we use the following ranges for each hyper-parameter:
a ∈ [0.01, 2], α ∈ [0, 1], c ∈ [0.01, 2], and γ ∈ [0, 1/6].

� For CMA-ES, we use the following ones: population size ∈ [30, 130],
c mean ∈ [0, 1], µ ∈ [0, 0.5], Damp. factor ∈ [0, 1], and σ0 ∈ [0.25, 1.1].

For running the irace algorithm, we allocated 500 evaluations of the hyper-
parameters as the total budget, as well as a maximum total running time
of 7 days, and used two evaluations of each hyper-parameter in the begin-
ning of each race. Also, we used the F-test for eliminating worse config-
urations in the racing procedure. The finally suggested configurations in
Table 5.3 and 5.4 are the best elites from four independent runs of irace.

As for COBYLA and SLSQP, we took their default hyper-parameter
settings, i.e., ρinitial = 0.1 and Tolerance= 10−8 for COBYLA and ε =
0.055 and Tolerance= 10−8.

5.D. Appendix: Unitary Coupled-Cluster
ansatz based on coupled-cluster
amplitudes

Several classes of systems remain challenging to solve, even for the coupled
cluster methods considered as the golden standard in quantum chemistry.
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CMA-ES2 σ0 Population µ c mean Damp. Factor
default 0.15 d4 + 3 log(m)e 0.5 1.0 1.0
H4 chain 0.20 149 0.383 0.293 0.665
H4 square 0.309 99 0.409 0.561 0.852
H2O eq. 0.344 99 0.460 0.192 0.770
H2O stret. 0.310 104 0.380 0.802 0.819
Hub. 1x6 0.9131 51 0.3814 0.3614 0.6006
Hub. 2x2 0.8561 113 0.2741 0.6317 0.6771
Hub. 2x3 0.897 128 0.1898 0.988 0.8391

Table 5.4.: List of values for CMA-ES hyper-parameters used in Fig. 5.2 after
tuning using IRACE. Here, m indicates the number of free parameters of the
ansatz in each problem.

Those systems are usually plagues by “quasidegeneracy”, meaning that
the wavefunction cannot be decomposed into a single leading component.
This leads to an important deterioration of methods relying on the sin-
gle determinant assumption (also said to be mono-reference) [164]. This
issue can be partially solved by developing multi-reference coupled clus-
ter approaches (see Refs. [165, 166] for a review). Owing to the recent
developments of quantum algorithms in the NISQ-era, there has been a re-
newed interest in the unitary formulation of coupled cluster (UCC) which
is naturally suited for quantum computation and naturally extendable to
generate multi-reference wavefunctions [39, 167], while being intractable
on classical computers [115]. Several formulations of UCC have been inves-
tigated to go beyond the standard UCCSD method where only fermionic
excitations from occupied to virtual orbitals (with respect to the reference
determinant, usually the Hartree–Fock one) are considered [115, 168–172].
However, the number of operators (and thus the number of parameters)
can rapidly become problematic if implemented naively. A powerful ap-
proach is provided by the Adaptive Derivative-Assembled Pseudo-Trotter
(ADAPT) types of ansatz [172–178], which allows to adaptively increase
the number of operators in the ansatz one by one until reaching a given
accuracy. In this chapter, we employ a different strategy by taking ad-
vantage of the amplitudes extracted from the traditional coupled cluster
method performed on a classical computer. In coupled cluster, the expo-
nential ansatz reads as follows

|Ψ(~t)〉 = eT̂ |Φ0〉, (5.11)
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where |Φ0〉 denotes the reference determinant (like the Hartree–Fock wave-
function) and

T̂ =

η∑
i=1

T̂i =
∑
µ

tµτ̂µ (5.12)

(η denotes the total number of electrons) is usually truncated to singles
and doubles only:

T̂1 =
∑
i∈occ
a∈virt

tiaâ
†
aai, (5.13)

T̂2 =
∑

i>j∈occ

a>b∈virt

tijabâ
†
aâ
†
baiaj .

One could think of determining the CC amplitudes t variationally, but
this is not convenient in practice because the Baker–Campbell–Hausdorff
(BCH) expansion cannot be used (because T̂ † 6= −T̂ ). Tractable im-
plementations rely on a non-variational optimization using the “Linked”
formulation:

e−T̂ ĤeT̂ |Φ0〉 = E(~t)|Φ0〉. (5.14)

The amplitudes are then determined by solving a set of non-linear equa-
tions defined by projecting Eq. (5.14) against a set of excited configu-
rations {|µ〉} (configurations obtained from the excitation operators in
T̂ ):

〈µ|e−T̂ ĤeT̂ |Φ0〉 = 0, (5.15)

for which the BCH expansion can be used, as it can be naturally truncated
to fourth order.

In this chapter, we computed the coupled cluster amplitudes of all
our molecular systems (H4 chain, H4 square and H2O) and defined our
UCC ansatz according to these amplitudes. Instead of implementing UCC
naively by considering all possible excitations, we only keep the excitation
operators for which the corresponding CC amplitude is non-zero. This re-
duces already the total number of operators (and thus the total number of
parameters) significantly. In practice, we use the trotterized-UCC ansatz,

|Ψ(~θ)〉 =
∏
µ

eθµ(τ̂µ−τ̂†µ)|Φ0〉. (5.16)
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This trotterized form is an approximation (though it may be mitigated
by the classical optimization [179]) which depends on the ordering of the
operators. We decided to order the operators with respect to the value of
the CC amplitudes in descending order, meaning that the first operator
to be applied to the reference state within the UCC ansatz will be the
operator with the highest associated CC amplitude. We figured out that
the operators in our ansatz were also the ones picked by the ADAPT-
VQE ansatz [172], although the ordering might not different. However,
ADAPT-VQE can add new operators (or select and repeat an already
present operator) to reach a higher accuracy. To avoid performing the
(somewhat costly) first ADAPT-VQE steps, one could think about using
our strategy first and then apply ADAPT-VQE for few more steps to
increase the pool of operators slightly. Note that a stochastic classical
UCC can also be employed as a pre-processing step to determine the
important excitation operators of the UCC ansatz, as shown in the recent
work of Filip et al. [180].

In our numerical experiments the initial state is always the Hartree–
Fock state corresponding to the number of electrons in the system. The
parameters of the circuit are initialized at 0.0.

5.E. Appendix: Variational Hamiltonian
ansatz for the Hubbard model

In this section, we provide the details on the variational Hamiltonian
ansatze (VHA) used for the Hubbard model problems.

The Fermi-Hubbard Hamiltonian describes the behaviour of fermions
on a lattice of nx x ny sites. Fermions can hope to nearest-neighbour
sites with some strength t, and observe a repulsion or Coulomb term of
strength U to move to the same site with the same spin,

HHubbard = Ht +HU =

−t
∑

(i,j),σ

(
a†iσajσ + a†jσaiσ

)
+ U

∑
i

ni↑ni↓.

One can further split the hopping term with respect to the vertical and
horizontal hopping terms Ht = Hv +Hh.

The VHA were introduced in ref. [119] as a means of constructing
parametrized quantum states motivated by time-evolution by Troterriza-
tion for the Hubbard model. However, in our numerical experiments we

106



5.E. Appendix: Variational Hamiltonian ansatz for the Hubbard model

use the VHA introduced by Cade et al. [146] where the horizontal and ver-
tical terms can be implemented in parallel (see eq.[2] in reference). The
parametrized quantum state is constructed as

|Ψ(~θ)〉 = U(~θ)|Φ〉 = ΠL
l=1e

iθv2,lHv2 eiθh2,lHh2 (5.17)

eiθv1,lHv1 eiθh1,lHh1 eiθU,lHU . (5.18)

The initial state |Φ〉 is the Gaussian state of the non-interacting part of
the Hamiltonian, and the parameters of the circuit are set to 0.0.

The Fermi-Hubbard Hamiltonian are generated with the open-source
package OpenFermion [90].
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6. Quantum simulation of
hydrogen molecule on
Quantum Inspire

6.1. Introduction

In the last decade the field of quantum computation has experienced an
unprecedented expansion due to the development of better and larger
quantum computer prototypes. Such developments have brought the at-
tention of governments and companies with the aim of transferring aca-
demic knowledge into impactful applications for society. One of the first
consequences of such effort has been the appearance of publicly accessi-
ble quantum computers via cloud services. This has allowed researchers
world-wide to be able to perform their own quantum computations with-
out the need of a specialized laboratory.

An increase in size and quality of quantum hardware is expected in
the upcoming years. However, these devices will fall within the noisy
intermediate-scale quantum [47] (NISQ) paradigm. It still remains an
open question whether NISQ hardware will be able to achieve some level
of beyond classical computation. For this reason, it is expected that the
main users of cloud-based quantum computing services will be researchers
with the goal of exploring how quantum computers can speed-up relevant
academic and industrial problems. Therefore, the upcoming generation
of cloud-based quantum computers should take into the needs of these
researchers.

One of the first public quantum computers Quantum Inspire was made
available in The Netherlands in a collaboration between TU Delft and
TNO [181, 182]. The goal of Quantum Inspire is to provide users access
to various technologies to perform quantum computations and insights
in principles of quantum computing and access to the community [181].
The current version of Quantum Inspire allows users to use its simulator,
a 5-qubit superconducting quantum processor (Starmon-5) device and a
2-qubit spin qubit processor (Spin-2).
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Performing a quantum computation with quantum hardware requires a
high level of knowledge and expertise. Fortunately, existing cloud-based
quantum computers are built with user-friendly interfaces such that run-
ning small experiments is possible with average coding skills. While these
simplifications allow anyone to access quantum computers, they typically
have a negative impact on the quality and flexibility of the algorithms
that can be run on them. In this work we use Quantum Inspire a to cal-
culate the dissociation curve of the Hydrogen molecule (H2). Our goal
is to explore the limits of Quantum Inspire for running NISQ computa-
tion, assessing the quality of the results, and the potential time overhead
associated with interaction between local computers from users and the
cloud-based service.

6.2. Quantum simulation of the Hydrogen
molecule

6.2.1. Variational quantum eigensolvers

In the upcoming years it is expected that quantum hardware will be lim-
ited to a few hundreds of moderate quality qubits, with stringent limi-
tations in coherence time and gate fidelities. To overcome such difficul-
ties, variational quantum eigensolvers (VQE) were designed to combine
quantum and classical resources such that the potential of noisy qubits is
maximized. A VQE uses a quantum processor to prepare a parametrized
quantum state |ψ(~θ)〉 and measure a quantum observable Ô such that

〈O〉 = 〈ψ(~θ)|Ô|ψ(~θ)〉. (6.1)

The expectation value of the observable serves as a cost function to a
classical optimization loop that suggests new parameters. This process
is repeated until some convergence criteria is met. The quantum state
|ψ(~θopt)〉 is an approximation to the lowest eigenstate of the observable,
and respectively its expectation value is an approximation to its lowest
eigenvalue. To run a VQE on real quantum hardware, one must prepare
the parametrized quantum state through a quantum circuit. Within this
quantum circuit, some of the gates have the possibility to be continuously
changed through a classical knob U(~θ) such that

|ψ(~θ)〉 = U(~θ)|ψ0〉, (6.2)

where |ψ0〉 is an initial quantum state (i.e. |0〉⊗N , Hartree-Fock, Gaussian
state, etc.).
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6.2.2. Ground-state energy of the Hydrogen molecule
via VQE

The hydrogen molecule (H2) has become a standard benchmark problem
to solve using near-term quantum hardware. Calculating the ground-state
energy using a VQE has done extensively in the past years [39, 41, 42,
44, 45, 83, 98]. The number of qubits required to compute the ground-
state energy of this problem in its minimal basis (STO-3G) is 4. However,
one can further reduce the problem to 2 qubits by removing qubits from
the inherent symmetries of the problem. Following ref. [41] we use the
2-qubit Hamiltonian under the Bravyi-Kitaev transformation at different
bond distances R,

H(R) = h0(R)II+h1(R)ZI+h2(R)IZ+h3(R)ZZ+h4(R)XX+h5(R)Y Y,
(6.3)

where the coefficients hi also dependent on R. Their values can be effi-
ciently computed using standard quantum chemistry packages [89, 90].

It is possible to obtain the exact ground-state energy of our target
problem with a single parameter quantum circuit. In fig. 6.1 we show the
quantum circuit implemented to calculate the ground-state energy of the
problem by optimizing the free parameter θ. The parametrized part of
the circuit is constructed from the unitary operation

U(θ) = e−iθX0X1 , (6.4)

and decomposed into a circuit by standard methods [31] (see boxed region
in fig. 6.1). The circuit is initialized in the Hartree-Fock state |ψ0〉 =
|10〉 using a π-rotation around the y-axis. A final phase correction is
needed to find the correct solution (π2 rotation around the z-axis) which
is implemented virtually. The final single-qubit gate rotations are used to
measure the different Pauli operators of the Hamiltonian 6.3.

6.2.3. Implementation in Quantum Inspire

We use the infrastructures provided by Quantum Inspire [181] to calculate
the dissociation curve of the H2 molecule with the Starmon-5 processor.
While Quantum Inspire provides a user-friendly web interface we code
the quantum circuits with the Software Development Kit (SDK). The
circuits are then uploaded to a server and are automatically scheduled and
executed. After the completion of the experiment we receive a dataset
with a binary shot count for every circuit. The data is downloaded to
a local computer, processed to obtain the expectation values of every
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Qi|0〉 Ry(π) H • • H Rz(
−π
2 ) Mi,j

Qj|0〉 H Rz(θ) H Mi,j

Figure 6.1.: Quantum circuit used to calculate the ground-state energy of the
H2 molecule. There is an optimal value of θ such that the circuit reaches the
exact ground-state energy of the Hamiltonian in eq. 6.3 for every bond distance
R.

operator in eq. 6.3, and added to obtain the final energy. The fact that
the data must be locally processed makes it nearly impossible to run an
optimization algorithm to optimize the angle. Instead of running the VQE
algorithm with the quantum hardware, we obtain the optimal angles from
a classical simulation of the perfect algorithm. These optimal angles are
implemented in the Starmon-5, using different combination of qubit pairs,
as well as simulating them with sampling and measurement error.

Our goal is to run the circuit from fig. 6.1 with the optimal parameters
previously obtained. However the actual circuit executed at the hardware
level might not be exactly the one we upload to the server because there
might be gates that are not native to the hardware. In our experiment
we use two qubits of the Starmon-5 device available in Quantum Inspire.
The Starmon-5 device does not have CNOT and H as native gates, thus
they are automatically decomposed onto native gates. Despite the fact
that we do not know the exact decomposition, we can make an estimate
on the total circuit time following the specifications from the gate time
specifications in [181],

tcir = 3 · t1q + 2 · tH + 2 · tCNOT + tmeas + tinit (6.5)

= 3 · 20 + 2 · 40 + 2 · 100 + 2000 + 150 ∼ 2500 ns. (6.6)

Those gates that are not native to Starmon-5 are automatically decom-
posed into native gates. As we do not know exactly which decomposition
takes place we have assumed that tH = 40 ns and tCNOT = 100 ns. These
numbers are taken from the fact that a generic single-qubit gate takes
20 ns and a two-qubit gate takes 60 ns, so we assumed two single-qubit
gates to decompose a H-gate, and two single-qubit gates and a two-qubit
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to decompose a CNOT.
In order to calculate the cost function of the problem, in our case the

energy from the Hamiltonian 6.3, we must prepare and measure the state
multiple times. Additionally, it is not possible to measure all terms of the
Hamiltonian simultaneously, therefore each cost function evaluation re-
quires to prepare N different circuits to estimate all the operators. In our
experiments we measure every operator with its own circuit, thus needing
a total of six circuits per evaluation. Every circuit is then measured with
M = 212 shots. An estimate total time T for a single function evaluation
is the

T = tcir ·M ·N ∼ 2.5 · 212 · 6 = 61440µs = 61.44 ms. (6.7)

However the number we obtained above does not reflect the actual run-
time of a single function evaluation. There are time-delays associated
with communication to the server, as well as periodical calibration and
tune-up steps running in the background from which the user has no
control. Therefore the total wall-time of running a single experiment is
much longer than expected. In our result we studied the actual wall-clock
time that takes to run a single function evaluation of the H2 molecule.

6.2.4. Results

The results of running the optimal angles on the Quantum Inspire infras-
tructure are shown in fig. 6.2. A first observation is that the simulated
results with sampling noise match almost perfectly the exact ground-state
energy curve. However when one includes measurement errors in the sim-
ulation the energy error increases to 0.6 to 0.7, showing how much impact
this has on the accuracy of the algorithm (dashed green curve). By ap-
plying measurement corrections the energy error is reduced by almost an
order of magnitude in the simulations (dashed red curve).

Turning our attention to the curves computed with the Starmon-5 de-
vice we observe a remarkable feature that the same qubit pair with dif-
ferent order does not result in an identical or even similar curve. For
example, the pink and light blue curves are obtained using the qubits 1
and 2, but they when qubit i = 1 is used the results are up to 6 times
worse than when i = 2. An exact same trend is observed when the qubits
picked are 0 and 2 (brown and green curves). Such an asymmetric behav-
ior of the system with the same qubit pair might be explained by the large
differences in coherence times and gate fidelities between qubits. When
the qubit with the worst parameters carries the majority of the gates, such
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6. Quantum simulation of hydrogen molecule on Quantum Inspire

Figure 6.2.: Approximate ground-state energy and energy error ∆E (inset) of
the H2 molecule with respect to the bond distance. The solid black line depicts
the exact ground-state energy dissociation curve of the problem. Classically
simulated energy and energy errors are shown in dashed lines with a cross
marker. We simulated three types of errors: sampling noise, sampling noise
with measurement errors and sampling noise with measurement and a correction
to the measurement error. Energies computed with the quantum device are
shown in solid lines with a dot marker. Each curve represents the result of the
experiment implemented on a different pair of qubits from the Starmon-5.
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a large difference in performance is not surprising. A similar asymmetry
is observed when the pair of qubits 2 and 4 is used (purple and orange
curves), although it is less pronounced. One possible reason for the less
pronounced asymmetry is the fact that these qubits are the best pair in
the device as described in the characterization data in ref. [181].

Perhaps the most striking result is given by the qubit pair 1 and 3
(grey curve). We would have expected to see a much worse result in the
dissociation curve in this combination because qubits 1 and 3 are not
directly coupled, and qubit 2 must be involved to mediate the interaction
(see ref. [183] for details of the chip). An additional number of single-
and two-qubit gates is required to implement our circuit 6.1 using qubits
1 and 3, and therefore a much worse performance is to be expected. One
potential explanation is that Quantum Inspire automatically re-assigned
the qubit pair to a pair that is directed interacted. Unfortunately, it is
not possible for the end-user to know in more detail what happens after
the job is submitted to the server.

We are also interested in obtaining the real runtime of performing the
experiments on a cloud-based system. For this, we extracted the wall-
clock time used to obtain every point in the dissociation curve for every
qubit pair used. In figure 6.3 we depict the runtime for every point of
the dissociation curve for every qubit pair. For each qubit pair we also
calculate the mean and standard error of all the times. In average the
total runtime per point is between 85 to 90 seconds. Compared to the
estimated runtime from eq. 6.5 of 61.4 milliseconds, it represents more
than 4 orders of magnitude in runtime. While our estimation did not
include communication delays and other related times, it is surprising
that all of them amount to more than a minute long.

We also observe three points that required more than 100 seconds to
compute. A reason for them to occur might be because a characterization
step took place in between the execution of the computation. Such process
occurs periodically and automatically and the end user has no control or
knowledge that it has occurred. This is particularly worrisome as the
parameters of the device might suddenly change while the computation is
not finished, thus making the computational unreliable.

6.3. Conclusion and outlook

Quantum computers promise a computational advantage compared to
classical computers for specific problems. In the past decade world-wide
efforts from public and private entities have produced a significant num-
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Figure 6.3.: Runtime of calculating every point in the dissociation curve (dots)
for each qubit pair. The cross for every qubit pair represents the mean time
of all points calculated with that qubit pair, the associated error bar is the the
95% confidence interval of the population.
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ber of prototypes of quantum computers, yet requiring expensive and
specialized equipment that only few laboratories can maintain. Even
though the state-of-the-art quantum hardware is not yet at the point
where unambiguous quantum advantage can be proved, they serve as a
test-bed for researchers to explore their potential. To engage with more
researchers some of these laboratories with quantum computer prototypes
have opened their resources to the public through cloud-access. In this
chapter we explore capabilities of one of such platforms Quantum Inspire
for research purposes.

Our first result show that even a 2-qubit toy experiment such as the
ground-state dissociation curve of the H2 requires a high level of exper-
tise and knowledge to be performed. First of all, users must be familiar
with the programming language of the platform to describe the quantum
circuits to be run. Once the quantum program is ready users must upload
it to the server, moment at which users have no longer control over the
algorithm. In our case we have observed an unexpected good performance
from a qubit pair that is not directly coupled. A possible explanation for
this result is that the system has automatically implemented the exper-
iment in a different qubit pair. Even though this might be an expected
behavior of the system, the providers must carefully specify which actions
are taken such that the results are trustworthy.

Secondly we study the runtime of measuring a single point in the H2

dissociation curve. We show that the time required to obtain this point
on the cloud service requires up to 4 orders of magnitude more time than
an estimated expected runtime. This is worrisome if one aims at using
cloud-based quantum computers for research purposes in the NISQ era.
The coherence times of NISQ device is expected to be relatively short, and
thus the time required to interact with the hardware must be minimized
as much as possible.
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7. Calculating energy
derivatives for quantum
chemistry on a quantum
computer

7.1. Introduction

Quantum computers are at the verge of providing solutions for certain
classes of problems that are intractable on a classical computer [47].
As this threshold nears, an important next step is to investigate how
these new possibilities can be translated into useful algorithms for spe-
cific scientific domains. Quantum chemistry has been identified as a
key area where quantum computers can stop being science and start
doing science [18, 19, 185, 186]. This observation has lead to an in-
tense scientific effort towards developing and improving quantum algo-
rithms for simulating time evolution [187, 188] and calculating ground
state energies [39, 86, 87, 189] of molecular systems. Small prototypes of
these algorithms have been implemented experimentally with much suc-
cess [39, 41, 42, 83, 100]. However, advances over the last century in clas-
sical computational chemistry methods, such as density functional theory
(DFT) [190], coupled cluster (CC) theory [191], and quantum Monte-
Carlo methods [192], set a high bar for quantum computers to make im-
pact in the field.

The ground and/or excited state energy is only one of the targets for
quantum chemistry calculations. For many applications one also needs
to be able to calculate the derivatives of the molecular electronic energy
with respect to a change in the Hamiltonian [193, 194]. For example,
the energy gradient (or first-order derivative) for nuclear displacements is
used to search for minima, transition states, and reaction paths [195] that
characterize a molecular potential energy surface (PES). They also form
the basis for molecular dynamics (MD) simulations to dynamically ex-
plore the phase space of the system in its electronic ground state [196] or,
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after a photochemical transition, in its electronically excited state [197].
While classical MD usually relies on force-fields which are parameterized
on experimental data, there is a growing need to obtain these parame-
ters on the basis of accurate quantum chemical calculations. One can
easily foresee a powerful combination of highly accurate forces generated
on a quantum computer with machine learning algorithms for the gen-
eration of reliable and broadly applicable force-fields [198]. This route
might be particularly important in exploring excited state PES and non-
adiabatic coupling terms, which are relevant in describing light-induced
chemical reactions [199–201]. Apart from these perturbations arising from
changing the nuclear positions, it is also of interest to consider the effect
that small external electric and/or magnetic fields have on the molecular
energy. These determine well-known molecular properties, such as the
(hyper)polarizability, magnetizability, A- and g-tensors, nuclear magnetic
shieldings, among others.

Although quantum algorithms have been suggested to calculate deriva-
tives of a function represented on a quantum register [184, 202–205], or of
derivatives of a variational quantum eigensolver (VQE) for optimization
purposes [115, 206], the extraction of molecular properties from quan-
tum simulation has received relatively little focus. To the best of our
knowledge only three investigations; in geometry optimization and molec-
ular energy derivatives [207], molecular vibrations [116], and the linear
response function [208]; have been performed to date.

In this chapter, we perform a geometry optimization of the H2 molecule
on a superconducting quantum processor, as well as its response to a small
electric field (polarizability), and find excellent agreement with the full
configuration interaction (FCI) solution.

7.2. Background

Let Ĥ be a Hamiltonian on a 2Nsys -dimensional Hilbert space (e.g. the
Fock space of an Nsys-spin orbital system), which has eigenstates

Ĥ|Ψj〉 = Ej |Ψj〉, (7.1)

ordered by the energies Ej . In this definition, the Hamiltonian is parametrized
by the specific basis set that is used and has additional coefficients λ1, λ2, . . .,
which reflect fixed external influences on the electronic energy (e.g. change
in the structure of the molecule, or an applied magnetic or electric field).
An dth-order derivative of the ground state energy with respect to the
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parameters λi is then defined as:

Dd1,d2,...
λ1,λ2,...

=
∂dE0(λ1, λ2, . . .)

∂d1λ1, ∂d2λ2, . . .
, (7.2)

where d =
∑
i di. As quantum computers promise exponential advantages

in calculating the ground state E0 itself, it is a natural question to ask
how to efficiently calculate such derivatives on a quantum computer.

7.3. The quantum chemical Hamiltonian

A major subfield of computational chemistry concerns solving the elec-
tronic structure problem. Here, the system takes a second-quantized ab
initio Hamiltonian, written in a basis of molecular spinors { φp(r) } as
follows:

Ĥ =
∑
pq

hpqÊpq +
1

2

∑
pqrs

gpqrs

(
ÊpqÊrs − δq,rÊps

)
, (7.3)

where Êpq = ĉ†pĉq and ĉ†p (ĉp) creates (annihilates) an electron in the
molecular spinor φp. With equation (7.3) relativistic and non-relativistic
realizations of the method only differ in the definition of the matrix ele-
ments hpq and gpqrs [209]. A common technique is to assume pure spin-
orbitals and integrate over the spin variable. As we want to develop a
formalism that is also valid for relativistic calculations, we will remain
working with spinors in this chapter. Adaptation to a spinfree formalism
is straightforward, and will not affect computational scaling and error
estimates.

The electronic Hamiltonian defined above depends parametrically on
the nuclear positions, both explicitly via the nuclear potential and implic-
itly via the molecular orbitals that change when the nuclei are displaced.

7.4. Energy derivative estimation using
eigenstate truncation approximation

In this section, we present a method for calculating energy derivatives
on a quantum computer. For wavefunctions in which all parameters are
variationally optimized, the Hellmann–Feynman theorem allows for ready
calculation of energy gradients as the expectation value of the perturbing
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operator [207, 211]:

∂E0

∂λ
= 〈Ψ0|

∂Ĥ

∂λ
|Ψ0〉. (7.4)

This expectation value may be estimated by repeated measurement of a
prepared ground state on a quantum computer, and classical calculation
of the coefficients of the Hermitian operator ∂Ĥ/∂λ. If state preparation
is performed using a VQE, estimates of the expectation values in Eq. 7.4
will often have already been obtained during the variational optimization
routine.

The Hellmann–Feynman theorem cannot be so simply extended to higher-
order energy derivatives. We may write an energy derivative via pertur-
bation theory as a sum of products of path amplitudes A and energy
coefficients fA. For example, a second order energy derivative may be
written as

∂2E0

∂λ1∂λ2
= 〈Ψ0|

∂2Ĥ

∂λ1∂λ2
|Ψ0〉

+
∑
j 6=0

2 Re

[
〈Ψ0|

∂Ĥ

∂λ1
|Ψj〉〈Ψj |

∂Ĥ

∂λ2
|Ψ0〉

]
1

E0 − Ej
, (7.5)

allowing us to identify two amplitudes

A1(j) = 〈Ψ0|
∂Ĥ

∂λ1
|Ψj〉〈Ψj |

∂Ĥ

∂λ2
|Ψ0〉, (7.6)

A2 = 〈Ψ0|
∂2Ĥ

∂λ1∂λ2
|Ψ0〉, (7.7)

and two corresponding energy coefficients

f1(E0;Ej) =
2

E0 − Ej
, f2 = 1. (7.8)

The generic form of a d-th order energy derivative may be written as

D =
∑
A

∑
j1,...,jXA−1

Re[A(j1, . . . , jXA−1)]

× fA(E0;Ej1 , . . . , EjXA−1
), (7.9)

where XA counts the number of excitations in the path.
One may approximate the sum over (exponentially many) eigenstates
|Ψj〉 in Eq. 7.9 by taking a truncated set of (polynomially many) ap-

proximate eigenstates |Ψ̃j〉. We call such an approximation the eigenstate
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truncation approximation, or ETA for short. However, on a quantum com-
puter, we expect both to better approximate the true ground state |Ψ0〉,
and to have a wider range of approximate excited states [82, 100, 214–216].
Here, we focus on the quantum subspace expansion (QSE) method of [82].
This method proceeds by generating a set of NE vectors |χj〉 connected

to the ground state |Ψ0〉 by excitation operators Êj ,

|χj〉 = Êj |Ψ0〉. (7.10)

This is similar to truncating the Hilbert space using a linear excitation
operator in the (classical) equation of motion coupled cluster (EOMCC)
approach [217]. The |χj〉 states are not guaranteed to be orthonormal;
the overlap matrix

S
(QSE)
j,k = 〈χj |χk〉, (7.11)

is not necessarily the identity. To generate the set |Ψ̃j〉 of orthonormal
approximate eigenstates, one can calculate the projected Hamiltonian ma-
trix

H
(QSE)
j,k = 〈χj |Ĥ|χk〉, (7.12)

and solve the generalized eigenvalue problem:

Ĥ(QSE)~v(j) = ẼjŜ
(QSE)~v(j) → |Ψ̃j〉 =

∑
l

~v
(j)
l |χl〉. (7.13)

Regardless of the method used to generate the eigenstates |Ψ̃j〉, the
dominant computational cost of the ETA is the need to estimate N2

E ma-
trix elements. Furthermore, to combine all matrix elements with constant
error requires the variance of each estimation to scale as N−2

E (assuming
the error in each term is independent). Taking all single-particle exci-
tations sets NE ∝ N2

sys. However, in a lattice model one might consider
taking only local excitations, setting NE ∝ Nsys. Further reductions to NE

will increase the systematic error from Hilbert space truncation, although
this may be circumvented somewhat by extrapolation.

For the sake of completeness, we also consider here the cost of numeri-
cally estimating an energy derivative by estimating the energy at multiple
points;

∂2E

∂λ2
=

1

δλ

(
∂E

∂λ
(λ+ δλ/2)− ∂E

∂λ
(λ− δλ/2)

)
+O(δλ2). (7.14)

In this equation, the derivatives can be computed using VQE via the
Hellmann–Feynman theorem. One can see that the sampling noise is
amplified by the division of δλ.
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7.5. Geometry optimization on a
superconducting quantum device

To demonstrate the use of energy derivatives directly calculated from a
quantum computing experiment, we first perform geometry optimization
of the diatomic H2 molecule, using two qubits of a superconducting trans-
mon device. (Details of the experiment are given in Sec. 7.B.) Geom-
etry optimization aims to find the ground state molecular geometry by
minimizing the ground state energy E0(R) as a function of the atomic
co-ordinates Ri. In this small system, rotational and translational sym-
metries reduce this to a minimization as a function of the bond distance
RH−H In Fig. 7.1, we illustrate this process by sketching the path taken by
Newton’s minimization algorithm from a very distant initial bond distance
(RH−H = 1.5Å). At each step of the minimization we show the gradient
estimated via the Hellman–Feynman theorem. Newton’s method addi-
tionally requires access to the Hessian, which we calculated via the ETA
(details given in Sec. 7.B). The optimization routine takes 5 steps to con-
verge to a minimum bond length of 0.749Å, within 0.014Å of the target
FCI equilibrium bond length (given the chosen STO-3G basis set). To
demonstrate the optimization stability, we performed 100 simulations of
the geometry optimization experiment on the quantumsim density-matrix
simulator [92], with realistic sampling noise and coherence time fluctua-
tions (details given in Sec. 7.C). We plot all simulated optimization tra-
jectories on Fig. 7.1, and highlight the median (RH−H, E(RH−H)) of the
first 7 steps. Despite the rather dramatic variations between different
gradient descent simulations, we observe all converging to within similar
error bars, showing that our methods are indeed stable.

To study the advantage in geometry optimization from direct estima-
tion of derivatives on a quantum computer, we compare in Fig. 7.2 our
performance with gradient-free (Nelder-Mead) and Hessian-free (conju-
gate gradient, or CG) optimization routines. We also compare the perfor-
mance of Newton’s method with an approximate Hessian from Hartree-
Fock (HF) theory. All methods converge to near-identical minima, but
both Newton methods converge about twice as fast as the raw CG method,
which in turn converges about twice as fast as Nelder-Mead. The density-
matrix simulations predict that the ETA method Hessians provide less
stable convergence than the HF Hessians; we attribute this to the fact
that the HF Hessian at a fixed bond distance does not fluctuate between
iterations. The density-matrix simulations also predict the CG method
performance to be on average much closer to the Newton’s method perfor-
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Figure 7.1.: Illustration of geometry optimization of the H2 molecule. A clas-
sical optimization algorithm (Newton) minimizes the estimation of the true
ground state energy (dark blue curve) on a superconducting transmon quantum
computer (red crosses) as a function of the bond distance RH−H. To improve
convergence, the quantum computer provides estimates of the FCI gradient (red
arrows) and the Hessian calculated with the response method. Dashed verti-
cal lines show the position of the FCI and estimated minima (error 0.014Å).
Light blue dashed lines show the median value of 100 density matrix simula-
tions (Sec. 7.C) of this optimization, with the shaded region the corresponding
interquartile range.
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Figure 7.2.: Comparison of geometry optimization via different classical opti-
mization routines, using a quantum computer to return energies and Jacobians
as required, and estimating Hessians as required either via the ETA on the
experimental device, or the Hartree-Fock (HF) approximation on a classical
computer. Each algorithm was run till termination with a tolerance of 10−3,
so as to be comparable to the final error in the system. (Inset) bar plot of the
number of function evaluations of the four compared methods. Light blue points
correspond to median Nfev from 100 density-matrix simulations (Sec. 7.C) of
geometry optimization, and error bars to the interquartile ranges.
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Figure 7.3.: Absolute error in energies and energy derivatives from an exper-
imental quantum computation on 11 points of the bond dissociation curve of
H2. The error is dominated here by experimental sources (in particular qubit
decay channels); error bars from sampling noise are smaller than the points
themselves. Continuous lines connect the median value of 100 density matrix
simulations at each points, with the shaded region corresponding to errors to
the interquartile range.

mance. However, we expect the separation between gradient and Hessian-
free optimization routines to become more stark at larger system sizes, as
is observed typically in numerical optimization [155].

To separate the performance of the energy derivative estimation from
the optimization routine, we study the error in the energy E, the Jacobian
J and Hessian K given as εA = |AFCI −Aexpt|, (A = E, J,K). In Fig. 7.3,
we plot these errors for different bond distances. For comparison we ad-
ditionally plot the error in the HF Hessian approximation. We observe
that the ETA Hessian is significantly closer than the HF-approximated
Hessian to the true value, despite the similar performance in geometry
optimization. The accuracy of the ETA improves at large bond distance,
where the HF approximation begins to fail, giving hope that the ETA
Hessian will remain appropriate in strongly correlated systems where this
occurs as well.
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Figure 7.4.: Estimated polarizability of the hydrogen molecule as a function
of the bond distance, in atomic units (1 a.u. = 0.14818471 Å3).

7.6. Polarizability estimation

A key property to model in quantum chemistry is the polarizability, which
describes the tendency of an atom or molecule to acquire an induced dipole
moment due to a change in an external electric field ~F . The polarizability

tensor may be calculated as αi,j = ∂E(~F )
∂Fi∂Fj

∣∣∣
~F=0

1. In Fig. 7.4, we calculate

the z-component of the polarizability tensor of H2 in the ETA, and com-
pare it to FCI and HF polarizability calculations on a classical computer.
We observe good agreement to the target FCI result at low RH−H, finding
a 0.060 a.u. (2.1%) error at the equilibrium bond distance (including the
inaccuracy in estimating this distance). However our predictions deviate
from the exact result significantly at large bond distance (RH−H & 1.2 Å).
We attribute this deviation to the transformation used to reduce the de-
scription of H2 to a two-qubit device (see Sec. 7.B), which is no longer
valid when adding the dipole moment operator to the Hamiltonian. To
confirm this, we classically compute the FCI polarizability following the
same transformation (which corresponds to projecting the larger operator
onto a 2-qubit Hilbert space). We find excellent agreement between this
and the result from the quantum device across the entire bond dissocia-

1The first-order derivative ∂E/∂Fi gives the dipole moment, which is also of interest,
but is zero for the hydrogen molecule.
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tion curve. This implies that simulations of H2 on a 4-qubit device should
match the FCI result within experimental error.

7.7. Conclusion

In this chapter, we have designed a new method for estimating energy
gradients on a near-term quantum computer that we named eigenstate
truncation approximation. We have demonstrated the use of this method
on a small-scale quantum computing experiment, obtaining the equilib-
rium bond length of the H2 molecule to 0.014Å (2%) of the target Full-CI
value, and estimating the polarizability at this bond length to within 0.060
a.u. (2.1%) of the same target.

Our method do not particularly target the ground state over any other
eigenstate of the system, and so can be used out-of-the-box for gradi-
ent estimation for excited state chemistry. Further investigation is also
required to improve some of the results drawn upon for this work, in
particular reducing the number of measurements required during a VQE.
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Appendix

7.A. Appendix: Classical computation

The one- and two-electron integrals defining the fermionic Hamiltonian in
Eq. 7.3 are obtained from a preliminary HF calculation that is assumed
to be easily feasible on a classical computer. In non-relativistic theory the
one-electron integrals are given by

hpq =

∫
drφ∗p(r)

(
−1

2
∇r + V (r)

)
φq(r),

(7.15)

where V (r) is the electron-nuclear attraction potential from fixed nuclei
at positions Ri. The two-electron integrals are given by,

gpqrs =

∫∫
dr1dr2

φ∗p(r1)φq(r1)φ∗r(r2)φs(r2)

r12
. (7.16)

For simplicity we used a finite difference technique to compute the ma-
trix representations of perturbations corresponding to a change in nuclear
coordinates and an external electric field

∂Ĥ

∂λ
≈ Ĥ(λ+ δλ/2)− Ĥ(λ− δλ/2)

δλ
, (7.17)

and

∂2Ĥ

∂λ2
≈ Ĥ(λ+ δλ) + Ĥ(λ− δλ)− 2Ĥ(λ)

δλ2
, (7.18)

where δλ = 0.001 corresponds to a small change in λ. The above (per-
turbed) quantum chemical Hamiltonians have been determined within
the Dirac program [219] and transformed into qubit Hamiltonians using
the OpenFermion [90] package. This uses the newly-developed, freely-
available [220] OpenFermion-Dirac interface, allowing for the simulation
of relativistic quantum chemistry calculations on a quantum computer.
While a finite difference technique was sufficient for the present purpose,
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such schemes are sensitive to numerical noise and have a high compu-
tational cost when applied to larger molecular systems. A consideration
of the analytical calculation of energy derivatives can be found in the
Supplementary Materials.

7.B. Appendix: Experimental methods

The experimental implementation of the geometry optimization algorithm
was performed using two of three transmon qubits in a circuit QED quan-
tum processor. This is the same device used in Ref. [44] (raw data is the
same as in Fig.1(e) of this paper, but with heavy subsequent processing).
The two qubits have individual microwave lines for single-qubit gating
and flux-bias lines for frequency control, and dedicated readout resonators
with a common feedline. Individual qubits are addressed in readout via
frequency multiplexing. The two qubits are connected via a common bus
resonator that is used to achieve an exchange gate,

1 0 0 0
0 cos(θ) i sin(θ) 0
0 i sin(θ) cos(θ) 0
0 0 0 1

, (7.19)

via a flux pulse on the high-frequency qubit, with an uncontrolled addi-
tional single-qubit phase that was cancelled out in post-processing. The
exchange angle θ may be fixed to a π/6000 resolution by using the pulse
duration (with a 1 ns duration) as a rough knob and fine-tuning with
the pulse amplitude. Repeat preparation and measurement of the state
generated by exciting to |01〉 and exchanging through one of 41 different
choices of θ resulted in the estimation of 41 two-qubit density matrices ρi
via linear inversion tomography of 104 single-shot measurements per pre-
rotation [111]. All circuits were executed in eQASM [221] code compiled
with the QuTech OpenQL compiler, with measurements performed using
the qCoDeS [222] and PycQED [223] packages.

To use the experimental data to perform geometry optimization for
H2, the ground state was estimated via a VQE [39, 87]. The Hamilto-
nian at a given H-H bond distance RH−H was calculated in the STO-
3G basis using the Dirac package [219], and converted to a qubit rep-
resentation using the Bravyi-Kitaev transformation, and reduced to two
qubits via exact block-diagonalization [41] using the Openfermion pack-
age [90] and the Openfermion-Dirac interface [220]. With the Hamiltonian
Ĥ(RH−H) fixed, the ground state was chosen variationally: ρ(RH−H) =

132



7.C. Appendix: Simulation methods

minρi Trace[Ĥ(RH−H)ρi]. The gradient and Hessian were then calculated
from ρ(RH−H) using the Hellmann–Feynman theorem and ETA respec-
tively. For the ETA, we generated eigenstates using the QSE, with the
Pauli operator XY as a single excitation. This acts within the number
conserving subspace of the two-qubit Hilbert space, and, being imaginary,
will not have the real-valued H2 ground state as an eigenstate. (This in
turn guarantees the generated excited state is linearly independent of the
ground state.) For future work, one would want to optimize the choice
of θ at each distance RH−H, however this was not performed due to time
constraints. We have also not implemented the error mitigation strategies
studied in Ref. [44] for the sake of simplicity.

7.C. Appendix: Simulation methods

Classical simulations of the quantum device were performed in the full-
density-matrix simulator ( quantumsim) [92]. A realistic error model of
the device was built using experimentally calibrated parameters to ac-
count for qubit decay (T1), pure dephasing (T ∗2 ), residual excitations of
both qubits, and additional dephasing of qubits fluxed away from the
sweet spot (which reduces T ∗2 to T ∗,red2 for the duration of the flux pulse).
This error model further accounted for differences in the observed noise
model on the individual qubits, as well as fluctuations in coherence times
and residual excitation numbers. Further details of the error model may
be found in Ref. [44] (with device parameters in Tab.S1 of this reference).

With the error model given, 100 simulated experiments were performed
at each of the 41 experimental angles given. Each experiment used unique
coherence time and residual excitation values (drawn from a distribution
of the observed experimental fluctuations), and had appropriate levels of
sampling noise added. These density matrices were then resampled 100
times for each simulation.

7.D. Appendix: Numerical optimization and
approximate Hessian calculations

Numerous numerical methods for geometry optimization exist, some gradient-
free, some requiring only gradient calculations, and some making use of
both gradients and Hessian data [155, 195]. As sampling noise from a
quantum computer is typically far larger than the fixed point error on
a classical computer, optimization techniques are required to be stable
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in the presence of this noise. In particular, common implementations of
algorithms that numerically estimate gradients tend to construct approx-
imate derivatives by difference approximations, which (as we investigated
above) dramatically enhance sampling noise unless care is taken. The
Nelder–Mead gradient-free algorithm [224] is a common choice for opti-
mization in quantum algorithms for this reason; as it does not rely on
such an approximation, and implementations in scipy [159] prove rela-
tively stable. Gradient- and Hessian-requiring algorithms do not tend to
suffer from such instability as gradient-free methods.

In this work, our geometry optimization was reduced to a one-dimensional
problem, removing some of the complexity of the task. With more atoms,
one need to choose both the direction and the distance to step towards
the minima of the energy landscape. Both the CG and Newton’s meth-
ods are adjustments to the steepest descent algorithm (which aims to
go solely in the direction of the derivative) to account for local curva-
ture. In the absence of any higher order derivatives to assist adjustment,
the non-linear CG algorithm weights each direction against traveling in
previously-explored directions, and then performs a line-search in this di-
rection (absent additional information that allows an estimation of how
far to initially travel). Newton’s method, by comparison, benefits from
access to the Hessian, allowing us to choose

δR =

[
∂2E0

∂R2

]−1
∂E0

∂R
, (7.20)

for the direction. One must compensate here for the fact that we wish to
minimize, and not maximise, the energy. For our one-dimensional problem
this is achieved by taking the absolute value of ∂2E0/∂R

2
H−H; for a higher-

dimensional problem this is slightly more involved [155]. Regardless, such
modified Newton’s methods tend to provide a far more optimal method for
estimating higher dimensional functions than Hessian-free methods [155,
195]. We are further able to bound the minimum bond length in our
geometry optimization (in particular to RH−H > 0.3 Å), which can be of
importance for stability as classical methods tend to fail when atoms are
unrealistically close together.

For large systems when low accuracy is needed (e.g. at the start of a
geometry optimization calculation), one may consider calculating the Hes-
sian via the HF Hamiltonian for the same geometry as a low-cost alterna-
tive to explicit calculation on the quantum computer. This is a standard
technique for geometry optimization in computational chemistry [225]. As
the Hessian is not used to determine convergence (which depends instead
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7.D. Numerical optimization and approximate Hessian

on the size of the gradient), the approximation only affects the conver-
gence rate and stability, rather than the final result. This is even more so
for quasi-Newton methods, as the Hessian is updated during the geometry
optimization by the estimated gradients, which are more accurate. Cal-
culating the HF Hessian is a standard procedure in most computational
programs; for further mathematical information, we refer the reader to
Ref. [226].
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Bäck, Benchmarking discrete optimization heuristics with IOHpro-
filer, Appl. Soft Comput. 88, 106027 (2020).

[24] T. Elsken, J. H. Metzen, and F. Hutter, Neural Architecture Search:
A Survey, J. Mach. Learn. Res. 20, 55:1-55:21 (2019).

[25] H. Xiong, S. Shi, D. Ren, and J. Hu, A survey of job shop scheduling
problem: The types and models, Comput. Oper. Res. 142, 105731
(2022).

[26] N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbrüggen, and S.
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Samenvatting

Een quantumcomputer is een apparaat dat de wetten van de quantum-
mechanica gebruikt om berekeningen uit te voeren. De interesse in quan-
tumberekeningen komt voort uit de verwachting dat je daarmee sommige
problemen veel sneller zou kunnen oplossen dan met klassieke computers.
Men spreekt van quantumversnelling. In tegenstelling tot wat men wel-
licht zou denken, ligt het niet voor de hand dat quantumcomputers de
klassieke computers ooit helemaal zullen vervangen. Hoogstwaarschijnlijk
zullen ze gëıntegreerd worden in grote supercomputers. Ze zullen worden
gebruikt voor heel specifieke taken waarbij de quantumversnelling kan
worden benut. In het afgelopen decennium is opmerkelijke vooruitgang
geboekt bij het bouwen van prototypes van quantumcomputers, al zijn
deze klein, kwetsbaar en foutgevoelig. Hoewel een grootschalige, ruis-
vrije quantumcomputer nog vele jaren van ons verwijderd is, verwachten
we spoedig toegang te hebben tot quantumhardware die groot genoeg is
om de beperkingen van de klassieke supercomputer te doorbreken. Dit
proefschrift behandelt een aantal specten die van invloed zijn op kleine
quantumcomputers, als zij gecombineerd worden met klassieke supercom-
puters.

Een van de meest uitdagende aspecten van bestaande quantumcompu-
ters is het feit dat ze extreem foutgevoelig zijn. Als we ernaar streven
nauwkeurige berekeningen van dergelijke apparaten te maken, is het be-
langrijk om dergelijke fouten zoveel mogelijk te verwijderen of te beperken.
In hoofdstuk 2 ontwikkelen we de theorie van een strategie om fouten te
beperken, gebruikmakend van het feit dat problemen in de natuurkunde en
scheikunde eigenschappen hebben die onveranderd moeten blijven (bijv.
aantal deeltjes, aantal spin-up/down-deeltjes, pariteit). Door een of meer
van dergelijke eigenschappen te meten en te verifiëren dat ze ongewij-
zigd blijven ten opzichte van hun bekende waarde, kunnen we vaststellen
wanneer er fouten zijn opgetreden. De uiteindelijke berekening wordt ver-
beterd door de berekeningen te verwijderen waarin de symmetrieën zijn
gewijzigd. In hoofdstuk 3 zetten we de theorie van symmetrieverificatie
aan het werk op een fysiek twee-qubit quantumapparaat voor de taak om
de laagste energie van het waterstofmolecuul te berekenen. De voorge-
stelde foutbeperkingsstrategie laat een tienvoudige verbetering zien in de
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nauwkeurigheid van de berekening.
Zelfs voor een middelgrote quantumcomputer met meer dan 50 qubits

is de hoeveelheid geheugen die op een klassieke computer nodig zou zijn
om de volledige beschrijving op te slaan astronomisch groot. Een quan-
tumalgoritme moet daarom slechts een deel van de informatie gebruiken
die de quantumtoestand beschrijft. In hoofdstuk 4 onderzoeken we wat
en hoe we de relevante informatie van een quantumcomputer kunnen be-
palen voor het berekenen van eigenschappen van fysische en chemische
systemen. Onze belangrijkste bijdrage is een bewijs van het minimale
aantal circuits dat hiervoor nodig is. Daarnaast bieden we een recept om
circuits te construeren die exact overeenkomen met het analytisch bere-
kende minimumaantal.

In vervolg werd de prestaties van optimalisatiealgoritmen die gebruik
maken van een variatieprincipe analyseert. Een optimalisatie-algoritme is
een stukje (klassieke) software die probeert de set parameters te vinden
die een wiskundige functie minimaliseren (of maximaliseren). Compu-
terwetenschappers hebben tientallen jaren van onderzoek besteed aan het
ontwikkelen, bestuderen en benchmarken van optimalisatiemethoden voor
een breed scala aan (klassieke) problemen. Een systematische studie van
hun prestaties bij gebruik in combinatie met quantumhardware ontbreekt
echter nog. Hoofdstuk 5 is een poging om deze leemte op te vullen door
enkele van de meest gebruikte optimalisatiealgoritmen te vergelijken in
een subset van modellen uit de natuur en scheikunde.

De afgelopen jaren hebben publieke en private quantumcomputerlabo-
ratoria kleine quantumcomputers toegankelijk gemaakt via internetdien-
sten. Dankzij deze quantumcomputers “in de cloud” heeft het onderzoek
naar quantumberekening een grote vlucht genomen, met honderden arti-
kelen. In hoofdstuk 6 doen we een klein experiment met de Nederlandse
quantumcomputer in de cloud, genaamd Quantum Inspire. We vinden
dat de communicatie via het internet gepaard gaat met grote vertragin-
gen, die op hun beurt de rekenprestaties bëınvloeden vanwege de korte
levensduur van de qubits, zelfs voor een heel klein probleem. Daarom
verwachten we dat het uitvoeren van grote berekeningen op cloudgeba-
seerde quantumcomputers moelijk haalbaar zal zijn.

In het laatste hoofdstuk van het proefschrift onderzoeken we een toe-
passing van quantumcomputers in de quantumchemie, de berekening van
de afgeleide van de energiefunctie. We beschrijven een methode om de af-
geleide te berekenen in bestaande quantumhardware. De methode wordt
vervolgens gebruikt om de geometrie van het model van het waterstofmo-
lecuul en de polariseerbaarheid ervan te optimaliseren met een realistisch
twee-qubit-apparaat. Ten slotte verifiëren we de resultaten van het experi-
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ment met uitgebreide simulaties, waarbij we een heel goede overeenkomst
vinden in zowel de simulatie van de chemie als de simulatie van het expe-
riment.
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Summary

A quantum processing unit or quantum computer is a device that uses the
laws of quantum mechanics to perform calculations. The interest in quan-
tum computation and quantum algorithms arises from the fact that these
machines can solve some problems much faster than classical computers,
what is commonly known as quantum speed-up. Contrary to what one
might think, quantum computers will never replace classical computers.
They will, most likely, become integrated within large supercomputers and
will be used for purpose-specific tasks where the quantum speed-up can
be exploited. In the past decade outstanding progress has been achieved
in building prototypes of quantum computers, albeit small, fragile and er-
ror prone. While a large-scale, noise-free quantum computer is still years
away, we expect to have access to quantum hardware sufficiently large to
challenge the limits of classical supercomputer. This thesis covers most
of the aspects that affect noisy quantum computers when combined with
classical computers.

One of the most challenging aspects of existing quantum computers is
the fact that they are extremely error-prone. If we aim at providing accu-
rate calculations from such devices it is important to remove or mitigate
errors as much as possible. In chapter 2 we develop the theory of a strategy
to mitigate errors using the fact that problems in physics and chemistry
have known properties that must remain unchanged, commonly known as
symmetries (e.g. number of particles, number of spin-up/down particles,
parity, amongst others). By measuring one or more of such properties and
verifying that they remain unchanged from their known value we are able
to identify when errors have occurred. The final computation is improved
by removing the calculations in which the symmetries have been changed.
In chapter 3 we put the theory of symmetry verification to work on a real
two-qubit quantum device for the task of calculating the lowest energy of
the hydrogen molecule. The proposed error mitigation strategy shows a
ten-fold improvement in the accuracy of the calculation.

Even for a moderate size quantum computer of ≥ 50 qubits, the amount
of classical memory required to store its full description is astronomical.
As such it is unfeasible to extract all the information of a quantum com-
puter. A quantum algorithm must, therefore, use only partial information
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of the quantum state. In chapter 4 we explore what and how to extract
the relevant information of a quantum computer for calculating proper-
ties of physical and chemical systems. Our main contribution is a proof
on the minimum number of circuits required to extract properties beyond
the energy for chemistry and physics problem from their reduced density
matrices. Additionally, we provide a recipe to construct measurement cir-
cuits that exactly match the minimum number analytically calculated for
2-reduced density matrices.

The journey continues with the analysis of the performance of opti-
mization algorithms in the context of variational quantum algorithms.
An optimization algorithm is a piece of (classical) software that attempts
at finding the set of parameters that minimize (or maximize) a mathe-
matical function. Computer scientists have devoted decades of research to
develop, study and benchmark optimization methods for a wide variety of
(classical) problems. However, a systematic study of their performances
when used in combination with quantum hardware is still lacking. Chap-
ter 5 is an attempt of filling this gap by comparing some of the most
used optimization algorithms in a subset of toy models in physics and
chemistry.

In recent years public and private quantum computer laboratories have
made small quantum computers accessible via internet services. Thanks to
these cloud-based quantum devices research in quantum computation has
democratized, showed by the fact that hundreds of articles are published
every year from researchers all over the world. In chapter 6 we run a
toy experiment with the Dutch public quantum computer infrastructure
Quantum Inspire. We find that internet communication comes with large
delays, which in turn affect the performance of the computation because
of the short lifetime of the hardware, even for such a very small problem.
Therefore we anticipate that performing large calculations on cloud-based
quantum computers will be problematic.

In the last chapter of the thesis we explore an application of quantum
computers in quantum chemistry, the calculation of energy derivatives.
We describe a method to compute energy derivatives in near-term quan-
tum hardware. The method is then used to optimize the geometry of
the model of the hydrogen molecule as well as its polarizability with a
real two-qubit device. Finally we verify the results of the experiment
with extensive simulations finding a really good agreement in both, the
simulation of the chemistry and the simulation of the experiment.
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Resum

Una unitat de processament quàntica o ordinador quàntic és un aparell
de computació que utilitza les lleis de la mecànica quàntica per a exe-
cutar càlculs. L’interés en la computació i algoŕısmia quàntica es deu al
fet que els ordinadors quàntics poden resoldre alguns problemes molt més
ràpidament que els ordinador clàssics, fet que es coneix com acceleració
quàntica. Contràriament al que es puga pensar, els ordinadors quàntics
mai reemplaçaran els ordinadors clàssics. Probablement, les unitats de
processament quàntiques seran integrades dins de grans supercomputado-
res, i seran utilitzades solament per a tasques especif́ıques on l’acceleració
quàntica puga ser explotada. L’última dècada s’ha carateritzat per un
progrés inaudit en la construcció de prototips d’ordinadors quàntics, en-
cara que menuts (en nombre de qubits), fràgils i erronis. Tot i que encara
que falten vàries dècades per a veure l’aparició d’un ordinador quàntic
a gran escala sense errors, creiem que en els pròxims anys podrem tenir
a l’abast ordinadors quàntincs amb un nombre de qubits suficientment
gran, de tal forma que els superòrdinadors clàssics més potents no puguen
simular-los. Aquesta tesi tracta gran part dels aspectes dels ordinadors
quàntics amb errors quan es combinen amb ordinadors clàssics.

Un dels reptes més grans per a l’ús dels ordinadors quàntics existents
és el fet que aquestes màquines són extremadament errònies. Si volem fer
computacions utilitzant aquesta tecnologia és de vital importància elimi-
nar, o al menys, reduir el nombre d’errors que ocorren durant l’execució
dels algorismes. Al segon caṕıtol desenvolupem la teoria per a mitigar er-
rors utilitzant el fet que els problemes en f́ısica i qúımica tenen propietats
conegudes que han de ser constants, anomenades simetries (per exemple
el nombre de part́ıcules, la direcció del seu spin (up o down) o la seua
paritat, entre d’altres). L’estratègia de redució d’errors funciona mesu-
rant una o més d’aquestes propietats, i verificant que el seu estat roman
inalterat al final del càlcul. El resultat de la computació és millorat quan
els resultats que senyalen que ha hagut un error són eliminats al final del
procés. Al tercer caṕıtol utilitzem la mitigació d’errors per verificació de
simetries en un experiment amb un ordinador quàntic real de dos qubits,
amb l’objectiu de càlcular l’energia mı́nima de la molècula d’hidrogen.
L’estratègia de mitigació d’errors per verificació de simetries fa que el
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resultat final siga 10 voltes més prećıs que sense la redució d’errors.
Un ordinador quàntic d’uns ≥ 50 qubits pot produir un estat quàntic la

descripció del qual requereix un nombre astronòmic d’espai en la memòria
d’un ordinador clàssic. Per tant, extraure tota la informació d’un estat
quàntic d’aquesta mida és impossible. En un algorisme quàntic és neces-
sari extraure informació de l’estat quàntic, però aquesta informació sols
pot ser parcial. Al quart caṕıtol explorem com i quina és la informa-
ció rellevant de l’estat quàntic per a càlcular propietats de sistemes f́ısics
i qúımics. La principal contribució d’aquest caṕıtol és una demostració
anaĺıtica del mı́nim nombre de circuits de mesura necessaris per a extraure
les propietats de sistemes f́ısics i qúımics més enllà de les energies, utilit-
zant les propietats de les matrius de densitat redüıdes. A més a més, hi
descrivim un mètode pel qual arribem al mı́nim nombre de circuits per al
cas de les matrius de densitat redüıdes d’ordre 2.

La tesi continua amb una anàlisi del rendiment d’alguns algorismes
d’optimització en el context d’algorismes quàntics variacionals. Un algo-
risme d’optimització és un software clàssic que té com a finalitat trobar
els paràmetres que mı́nimitzen (o maximitzen) una funció matemàtica
de forma numérica. Els enginyers informàtics porten dècades desenvolu-
pant, estudiant i caracteritzant el rendiment de mètodes d’optimització
numèrica en una gran varietat de problemes clàssics. Tanmateix, encara
no existeix un estudi sistemàtic del rediment dels optimitzadors numèrics
en algorismes quàntics variacionals. El cinqué caṕıtol és un intent d’om-
plir aquest buit, on hi comparem alguns dels optimitzadors més populars
en un conjunt de problemes modèlics en f́ısica i qúımica.

En els últims anys hem vist una expansió dels servicis de computació
quàntica a través de la xarxa, gràcies als laboratoris públics i privats que
han ficat les seues unitats de processament quàntiques al servici de tot-
hom. Això ha prodüıt una democratització de la recerca en computació
quàntica, reflectida amb la publicació de centenars d’articles cada any
d’investigadors de tots els llocs del món. Al sisè caṕıtol utilitzem el ser-
vici públic de computació quàntica dels Päısos Baixos, Quantum Inpsire,
per a fer un xicotet experiment. Els nostres resultats demostren que la
interacció entre un ordinador quàntic en el núvol i un ordinador clàssic
local a través de la xarxa té un sobrecost de comunicació que fa que els
resultats siguen molt dolents, ja que la vida de l’ordinador és molt curta.
Per tant, anticipem que executar grans càlculs en un ordinador quàntic al
núvol serà problemàtic.

En l’últim caṕıtol de la tesi explorem aplicacions dels ordinadors quàntics
en qúımica quàntica, en particular, el càlcul de derivades de l’energia. Aćı
describim un mètode per a calcular aquestes derivades en un ordinador
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quàntic que pot existir en un futur no molt llunyà. A més, utilitzem
aquest mètode per a càlcular la geometria i la polaritzabilitat del mo-
del de la molècula d’hidrogen en un ordinador quàntic real de dos qubits.
Finalment, fem ús de simulacions detallades per a verificar els resultats ob-
tinguts a l’experiment, trobant una gran concordança tant amb la qúımica
del sistema, com entre les simulacions i l’experiment.
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