
Experimental pain models for the evaluation of next-generation analgesics in clinical pharmacology
studies
Hijma, H.J.

Citation
Hijma, H. J. (2022, November 2). Experimental pain models for the evaluation of next-generation analgesics in clinical pharmacology
studies. Retrieved from https://hdl.handle.net/1887/3485147
 
Version: Publisher's Version
License: Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden
Downloaded
from: https://hdl.handle.net/1887/3485147

 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3485147


CHAPTER 1

Introduction: Analgesic drug 
development: proof-of-mechanism 
and proof-of-concept in early phase 
clinical studies

Authors: H.J. (Hemme) Hijma1,2 and G.J. (Geert Jan) Groeneveld1,2
1: Centre for Human Drug Research, Leiden, The Netherlands 
2: Leiden University Medical Centre, Leiden, The Netherlands 

Adapted from: Medicine in Drug Discovery. 2021, Jun 15;10: 100083. 
doi: 10.1016/j.medidd.2021.100083 



8 9

chapter 1 introduction

11
INTRODUCTION
Pain, while being one of the most common symptoms for which patients 
seek medical attention, is in terms of available treatment one of the main 
therapeutic areas in which little progress has been achieved: a mere 59 
compounds have been registered for the treatment of pain between 1960 
– 2010, with only two-thirds of those being an analgesic. [1] Where major 
breakthrough discoveries including opioids and acetylsalicylic acid have 
been discovered decades ago, most first-line therapies currently available 
still lack either long-term effectiveness (e.g., prolonged use of opioids in-
creases sensitivity to pain (i.e. hyperalgesia (Figure 1)), instead of provid-
ing pain relief) or have a poor risk-benefit profile (e.g., systemic adminis-
tration of lidocaine reduces pain but simultaneously induces cardiac ar-
rest). One of the main challenges preventing more analgesics successfully 
entering the market, is the complexity and multimodality of the under-
lying pathology of pain. To tackle this, and thus increase the number of 
analgesics actually reaching the patients, it is needed to understand and 
evaluate the signal processing dysfunction causing a patient’s pain symp-
toms, rather than developing drugs based on clinical symptoms alone. [2] 

Adopting the conventional approach wherein only pharmacokinetics 
(PK), safety and tolerability are considered main objectives in Phase I/II 
of the development, leaves essential questions on a drug’s actual effects 
unanswered till late, or even post-approval, which may result in multi-
million dollars ill-invested on ineffective drugs, or having severe public 
health consequences. [3] Instead, by evaluating proof-of-mechanism 
(PoM) and proof-of-concept (PoC) early-on in development, the developer 
is well-informed when making go/no-go decisions. While PK, safety and 
tolerability assessment unmistakably are important, it should be accom-
panied by study objectives answering key questions regarding the drug’s 
properties: whether the study drug reaches the target site and if so, if it 
has its intended pharmacological effect (i.e. PoM), or enabling trials with 
models resembling the (pain) condition(s) the drug is aimed to treat (i.e. 
PoC). [4] Here, we use the term PoC for demonstrating analgesic effects, 
either in patients with pain or in healthy subjects using experimental 
models to evaluate pain thresholds, as proposed by Campbell et al. [5] We 
do realize that the term ‘PoC’ is also often used for the first signs of clini-
cal effects in the target population, but believe that in the context of an-
algesic drug development, it is fair to consider demonstrating effects on 

ABSTRACT
Effective treatment for many pain disorders is still lacking, which is due 
to the complexity of pain in general and of the underlying pathology of 
many pain syndromes. This results in most investigational analgesic 
drugs failing to reach registration; either due to lack of efficacy, or due 
to the drug’s adverse effect profile. To increase the number of analgesics 
that reach the patient, it is essential to carefully and rationally plan the 
clinical development program. By including proof-of-mechanism (PoM) 
and/or proof-of-concept (PoC) methods in early-phase clinical drug stud-
ies, the analgesic drug developer will be better informed about the key 
characteristics of the studied drug, which will aid in making crucial deci-
sions during the development process. Here, we describe the top 10 cur-
rently most developed analgesic drug classes, link them mechanistically 
to appropriate methods to demonstrate PoM and PoC in early-phase clin-
ical trials, and include pros and cons of each of the methods described. 
Lastly, we discuss how each analgesic drug class requires a tailored ex-
perimental approach for proper evaluation of PoM and PoC, and how this 
can contribute to an efficient and question-based approach in early-phase 
analgesic drug research.
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of action was added manually for reporting. If the mechanism of action 
was not listed, details were searched on the respective manufacturer’s 
website or related business news. If still no details could be obtained, the 
compound was allocated to the group ‘undisclosed’. Listings from both da-
tabases were collated and duplicate entries removed. 

The top 10 currently most developed drug classes, excluding ‘undis-
closed’, was used for further reporting. Respective methods chosen 
to evaluate a class’s PoM and PoC have been determined using expert 
knowledge, with claims supported by literature available in the public do-
main. An overview of the dosing regimen used in each trial listed is avail-
able in Appendix B.

RESULTS
Top 10 analgesic compound classes currently in  
early-phase development

The main mechanism of action was identified for 426 compounds, of the 
508 unique entries included in total. Figure 2. displays the top 10 most de-
veloped analgesic drug classes, which is comprised of 270 (~53% of total 
enlisted) compounds. Refer to Appendix C for the complete list. 

The majority of entries identified (n=83) target opioid receptors (Figure 
2). Most of these opioidergic drugs, as well as those belonging to the non-
steroidal anti-inflammatory drug (NSAID)-class (n=47), are therapies or 
combinations developed using a new drug delivery strategy (e.g., abuse 
deterrent, prodrug or administration route) rather than classified as a 
novel drug entity. Voltage-gated sodium channel (Nav) inhibitors (n=43), 
the third most developed class, in addition to consisting of marketed 
drugs with updated drug formulation (e.g., lidocaine patches), includes 
a substantial amount of novel, selectively targeting drugs (e.g., selective 
Nav1.7 and Nav1.8 inhibitors). Further within-class details are discussed 
on a per-class basis in the remainder of this article. 

Methods to evaluate PoM and PoC per drug class
Opioids  Opioids have been widely available for decades and serve 
as the main therapy of choice for severe pain indications, albeit suf-
fering from a high abuse risk and severe adverse effects (AEs) when 

pain thresholds – if the evoked pain test reflects a process involved in the 
relevant target population with clinical pain – as PoC of having analge-
sic properties. For all biomarkers* that reflect target engagement more 
‘proximal’, i.e. closer to the mechanism of the compound, here we use 
the term PoM, which includes tests of target engagement (binding of the 
drug to its (receptor-)target), assessed at the body location targeted (e.g., 
synovial fluid sampled from the knee), and also tests that clearly link to 
the drugs- pharmacological properties (e.g., pupillometry for µ-opioid re-
ceptor (MOR) agonists, see section Opioids). [6] Human experimental pain 
studies are valuable assets to establish PoC in early-phase analgesic drug 
development, and together with PoM assessments may provide the drug 
developer important evidence to help make pivotal decisions on dose se-
lection, which patient (sub)populations to target, and/or evade unneces-
sary investments in compounds that otherwise were poised to fail later-
on. [4,5] In the case of testing first-in-class drugs, it may be that applicable 
models for both PoM and PoC are lacking, which may justify not trying to 
prove mechanism or – in case of analgesics – not demonstrating effects on 
pain thresholds and directly entering testing in patients, but should never 
lead to testing neither, and leaving questions unanswered. [3] 

Here, we list the top 10 currently most developed analgesic drug classes 
and link them mechanistically to applicable methods for evaluating PoM 
and PoC in early-phase clinical trials, including pros and cons for each 
method described. We review how experimental studies fit into analgesic 
drug development, in an effort to contribute to an efficient and question-
based approach. 

MATERIALS AND METHODS
The Clarivate Analytics Integrity- and Biopharm Insight databases were 
used as sources to uncover which analgesic drugs are currently in develop-
ment. [7,8] Both databases aggregate data from various sources including 
scientific journals, conference papers, statements of regulatory agencies, 
company websites and clinical trial websites such as clinicaltrials.gov. 
See Appendix A for details on the searches performed. A short term repre-
senting the drug class that aligned with the compound’s main mechanism 

* A characteristic that is objectively measured and evaluated as an indicator of normal biological 
processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention. [163]
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depends on the drug’s potency, administration route and dose. Applicable 
methods for MOR-like side effects – or absence thereof – include the dy-
namic end-tidal forcing technique to study effects on ventilation/respira-
tory depression, [15] abuse potential of the drug defined as changes on a 
drug-liking Visual Analogue Scale (VAS), [16] and/or motility of bowel as 
a measure for opioid-induced constipation by determining gastrointesti-
nal transit times. [17] All mentioned tests directly link to MOR effects and 
can be tested in sequential fashion with PoC tests (see below), but – except 
for the easily adoptable drug-liking VAS – require specific tools and exper-
tise, limiting their use. 

Methods for evaluating PoC

The cold pressor test, an evoked pain test using cold pain to measure pain 
thresholds, is primarily used to demonstrate analgesic effects of (MOR-) 
opioids both in an experimental context [12,18], and clinical context, as 
the cold pressor test allows for diagnosing fibromyalgia or opioid-induced 
hyperalgesia (OIH). [19] The model’s superiority in detecting analgesia lies 
in its tonic stimulus, which evokes the opioidergic-linked endogenous 
central pain inhibiting system [20,21]. See Table 1 for a detailed descrip-
tion of the method. The effects of potent opioids such as fentanyl have 
been further characterized by a battery of distinctive nociceptive tests, 
with changes apart from those noted on the cold pressor test, also report-
ed for heat and electrical pain thresholds; corroborating the broad appli-
cability of opioids as analgesics. [18,22] To assess KOR agonism, visceral 
pain thresholds induced by a multi-modal esophageal probe may be used, 
as shown by Arendt-Nielsen et al. and through the suggested role of the 
KOR in the visceral pain system. [23,24] To note, experimental pain tests 
require specialized tools and training which limit their applicability. 
Also, evoked pain thresholds are subject to a relatively high inter-indi-
vidual variability, which is likely related to the tests’ subjective outcome 
variable (i.e., reporting of when a pain threshold is reached). To counter 
this, two (or more) period cross-over study designs are often used, which 
allows comparing treatment effects within a single individual.

For PoC studies in clinical pain, i.e., trials assessing the first signal of 
treatment efficacy in a well-defined patient subpopulation, the dental im-
paction pain model (including third molar surgery) has been most widely 
used and found particularly useful for assessing dose ranging and profil-
ing of (novel) opioids, and NSAIDs. [25]

administered at higher doses. Opioids such as morphine achieve pain re-
lief mainly by targeting µ-opioid receptors (MORs), which are abundantly 
present throughout the human body both peripherally and in the cen-
tral nervous system, resulting in the wide range of pain indications that 
opioids can treat. Notable AEs, such as addiction and (fatal) respiratory 
depression following opioid (over)dosing, however, are also attributable 
to that same (µ-opioid) receptor. [9] Approximately a third of the opioids 
listed therefore not only target MORs, but also (ant)agonize the δ- and/or 
κ-opioid receptors (DOR and KOR, respectively), of which buprenorphine 
is an example. The KOR, similar to MOR, is abundantly present through-
out the body, whereas DOR expression is limited to the brain’s basal gan-
glia and neocortical regions. [10] 

Methods for evaluating PoM 

The mechanism of action of opioids, and tests proving those principles, 
have been well-described over the years. Potency, efficacy and action du-
ration of µ-opioid receptor agonism may be evaluated by assessing miosis 
using pupillometry, which in addition to confirming PoM in humans (i.e. 
extent of target engagement of MORs), in parallel serves as translational 
biomarker as MOR-agonism also induces miosis in rabbits and dogs. [6,11] 
Pupillometry has been used extensively for characterizing the effects of 
many (experimental) opioid drugs, including fentanyl, naltrexone and 
buprenorphine, and selectivity of the KOR antagonist LY2456302. [11,12] 
While easily implementable, it has been debated if opioid-induced mio-
sis is a peripheral effect (as it follows activation of the pupillary sphinc-
ter muscle, see e.g., Rollins et al., 2014) rather than affecting the central 
nervous system (CNS). [6,11] In addition, the method does require spe-
cific equipment and analysis methods. The latter also holds true for ex-
perimental Functional Magnetic Resonance Imaging (fMRI) studies, in 
which hemodynamic responses associated with neuronal activation are 
measured in the brain’s pain matrix, following nociceptive stimulation. 
[13] As such, oral morphine was found to significantly affect brain areas 
where opioidergic receptors are predominant after heat stimulation using 
a contact heat evoked potential stimulator. [14]

Classical opioids, as said before, suffer from a high frequency of AEs, 
which are hypothesized to be absent in the opioids that are currently 
being developed. Proxies to evaluate the risk-benefit profile early-on in 
development are therefore also of importance. The most suitable model 
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shown to be responsive to NSAIDs administered both topically and sys-
temically. [33,34] While yielding robust results with relatively little vari-
ability compared to other experimental pain models, application of these 
models may lead to post-inflammatory hyperpigmentation marks on the 
study participants' skin, lasting months or even years. [13,35] In addition, 
studies utilizing the UVB model are hampered by the need for a more ho-
mogenous study population, as irradiation levels needed to induce hyper-
algesia are only safe in lighter-skinned individuals. [35]

Together with the dental impaction pain model (as mentioned in the 
section Opioids – Methods for evaluating PoC), bunionectomy surgery 
has been used to evaluate an NSAID’s efficacy in patients suffering from 
acute pain, in the PoC setting. Others include the joint replacement and 
soft tissue surgery models, although the former two (dental- and bunio-
nectomy model) yield higher assay sensitivity. [36]

Nav inhibitors  Of the human Nav channels discovered, four (Nav1.3, 
Nav1.7, Nav1.8 and Nav1.9) have been found to be primarily present on no-
ciceptors. [37] Each of these has unique properties and plays a key role in 
the generation and/or propagation of action potentials (Figure 3). [37,38] 
As such, Nav1.7 is a key contributor to the initial rising phase of the ac-
tion potential, but may also amplify subthreshold stimuli, being a low 
activation channel as Nav1.3 and Nav1.9. Nav1.3 is primarily involved fol-
lowing axotomy and other forms of peripheral nerve injury. [39] Where 
Nav1.3 and Nav1.7 have fast gating kinetics (i.e., opening and closing of 
the channel), these properties are for Nav1.9 ultra-slow, also in compari-
son to Nav1.8. The latter is a high activation threshold channel that acts 
during the later rising phase to support high frequency firing (i.e., hyper-
excitability). [40]

First generation, non-selective Nav inhibitors have been one of the 
most widely used class of analgesics in the clinic for decades. Alike opi-
oids, these also suffer from a poor risk-benefit profile, as exemplified by 
lidocaine to which we alluded in the introduction. [41,42] To this end and 
following the discovery of Nav1.3, Nav1.7, Nav1.8 and Nav1.9’s contribu-
tion to pain signal initiation and propagation, subtype selective Nav in-
hibitors are currently being developed to treat acute and neuropathic 
pain disorders. Most selective inhibitors that came up in our search tar-
get either Nav1.7 or Nav1.8. While theoretically a promising target for an-
algesics, Nav1.3-subtype specific inhibitors are investigated to a limited 

NSAIDs  NSAIDs act mainly by targeting the cyclooxygenase (COX) en-
zymes (COX-1 and -2), that are responsible for inducing fever and inflam-
matory pain through prostaglandin E2 (PGE2) synthesis. [26] Given the 
side effects induced by classic (non-selective) NSAIDs such as gastrointes-
tinal bleeds attributable to COX-1 inhibition, drug developers turned to 
selective inhibition of COX-2. While initially praised for their expected ef-
ficacy and safety through target specificity, the selective COX-2 inhibitors 
were later found to induce significant cardiovascular side effects, leading 
to discontinuation of (the development of) most COX-2 selective inhibi-
tors. [27] Drugs currently being developed and belonging to this class are 
primarily non-selective COX inhibitors based on marketed NSAIDs, but 
novel due to their formulation, or by being combined with another drug 
and developed as a single treatment.

Methods for evaluating PoM 

One of the challenges with COX inhibitors related to proving their phar-
macological effects, is the mismatch between drug plasma concentra-
tions and exerted analgesic and/or AEs in inflammatory disease states, 
which is likely related to the complex pathophysiology of inflammation. 
[28] Evaluation of (other) biomarkers based on the drug’s proposed ac-
tion mechanism is therefore advised for e.g., calculating dosing regi-
mens. Examples include PGE2 and thromboxane B2 level determination. 
For subtype-selective drugs, the IC80 of COX-2 (i.e. concentration of drug 
needed to inhibit COX-2 by 80%) versus effective concentrations at COX-1 
can be used for proof-of-specificity. [28] Evaluation of these markers may 
not be available in a routine laboratory, which then requires assay set-up 
and additional funds.

Methods for evaluating PoC

For analgesics intended to treat inflammatory pain, the ultraviolet B 
(UVB)-induced hyperalgesia model, also referred to as the ‘sunburn 
model’, is primarily used as a readout for PoC. [13] UVB promotes inflam-
mation through increased production of various cytokines and prosta-
glandins originating from the affected keratinocytes. [29,30] See Table 1 
 for a detailed description of the method. The model has shown robust re-
sponses to NSAIDs such as ibuprofen [18,31,32]. Alternatively, freeze inju-
ry may be utilized to evoke local hyperalgesia lasting over three days that, 
in combination with the Von Frey hair filament assessment, has been 



16 17

chapter 1 introduction

11
or dorsal root ganglia (DRG; i.e. compounds targeting Nav1.7 or Nav1.8) 
(Figure 3), while TMS can be used to measure CNS/cortical excitability.

By exposing hyperexcited induced pluripotent stem cell-derived senso-
ry neurons, obtained from patients with inherited erythromelalgia (IEM), 
to the selective Nav1.7 inhibitor PF-05089771, Cao et al. have presented a 
method to confirm PoM of Nav inhibitors in a lab-based experiment. It 
has been proposed that this method may have broader utility than in IEM, 
e.g., also in other pain conditions of which hyperexcitability is the under-
lying cause. [55]

Methods for evaluating PoC

Prior to the reports from the two studies included in this thesis (Chapter 
2 and 3), no published data were available that reported positive effects of 
selective Nav inhibitors on human experimental pain models in a healthy 
subject population. Preclinical work showed that the selective Nav1.8 
inhibitor A-803467 reduced thermal and mechanical hyperalgesia, and 
attenuated neuropathic pain in multiple preclinical readouts, [56–59] 
whereas the selective Nav1.7 inhibitor PF-05089771 attenuated sensations 
of burning pain in patients with diabetic neuropathy. [60] The heat pain 
test with and without the capsaicin model to induce hyperalgesia and 
burning sensations may thus be applicable yet noting is was not sensitive 
to selective Nav1.8 inhibition in two studies (Chapter 2 and 3). In another 
study, the selective Nav1.8 inhibitor VX-150 significantly reduced pain in 
two studies in patients with acute pain (in patients that underwent bunio-
nectomy surgery, and in patients with knee osteoarthritis (OA)) and small 
fiber neuropathic pain respectively. [61,62] Stated PoC studies in patients 
therefore are suitable to evaluate (selective) Nav inhibitors, but we also 
propose that the cold pressor pain test may establish PoC for such com-
pounds considering the above results. The cold pressor pain test namely 
is sensitive to neuropathic pain treatments as pregabalin and mexiletine, 
[32], Chapter 4] and serves as a readout of TRPM8-mediated cold pain sen-
sations through its interplay with Nav1.8. [63,64] Rationale for this test 
is discussed in more detail in Section 1 of this thesis. As an alternative to 
performing a study with pain models, a PoC study in patients with trigem-
inal neuralgia is proposed based on positive findings of two Nav inhibi-
tors in this population. Both carbamazepine and more recently selective 
Nav1.7 inhibitor vixotrigine (BIB074, formerly raxatrigine) proved to be 
efficacious in this population. [65] 

extent, likely because Nav1.3 is highly homologous to other sodium chan-
nels (up to 85% for Nav1.2). [43] Development of Nav1.9-selective drugs is 
precluded by the inability to express the channel in heterologous systems, 
which is needed to study protein structure and function. [44,45]

Currently registered therapies for this drug class include the first-gen-
eration anticonvulsants phenytoin and carbamazepine, which are used 
primarily in the treatment of trigeminal neuralgia and as third-line thera-
pies for other forms of neuropathic pain.

Methods for evaluating PoM 

With Nav inhibitors primarily acting on action potential firing, the nerve 
excitability threshold tracking technique may yield detailed information 
on channel selectivity and amplitude of drug effects on peripheral nerves. 
[46] This measurement produces information on physiological condi-
tions, the state of ion channels involved in nerve excitation, as well as on 
the functionality of energy-dependent pumps. It allows for the identifica-
tion of exposure levels needed for state- and frequency- dependent block 
of sodium channels. [47] Threshold tracking is generally used to assess 
motor neuron excitability in e.g., amyotrophic lateral sclerosis patients. It 
can, however, also be used to assess sensory neuron function, and can be 
considered PoM given it is a distinct readout for the pharmacological ef-
fects of Nav inhibition. [47,48] The non-selective Nav inhibitors lidocaine, 
mexiletine and tetrodotoxin have been characterized using this tech-
nique. [49–51] 

To measure central effects induced by Nav inhibitors, drug effects can 
be evaluated using transcranial magnetic stimulation (TMS). TMS may be 
utilized either by recording TMS-evoked electroencephalographic (EEG) 
potentials (TEPs), or evoked electromyographic (EMG) responses. See 
Table 1 for a detailed description of the method. TEP P180, a late-phase 
potential controlled by axonal excitability, has shown negative respon-
siveness (i.e. decreases) to the Nav inhibitors lamotrigine and carbam-
azepine, [52,53] whereas motor thresholds as measured by EMG responses 
were increased following lacosamide and carbamazepine administra-
tion. [54] Both threshold tracking and TMS are non-invasive and utilized 
routinely in experimental studies, but are considered complex both to ex-
ecute and to analyze generated data. Evaluation of excitability following 
TMS as PoM moreover may may not be applicable for the selective Nav in-
hibitors, as they act mostly on ion channels present on peripheral nerves 
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for PoM, may provide more detailed information on the availability and 
(drug) occupancy of CB1 (using e.g., PET tracer [18F]MK-9470) and CB2 
(using e.g., [11C]NE4), in the brain. [77,78]

A PoM approach for cannabinoid drugs primarily inhibiting FAAH, on 
the other hand, is through assessment of endocannabinoid levels, with 
specific focus on anandamide levels as they increase upon FAAH inhibi-
tion. [79] FAAH inhibition can be measured using a fluorescence assay. A 
striking example in which such a PoM approach proved to be essential, is 
the infamous BIA 10–2474 (Bial) trial in which a novel FAAH inhibitor was 
tested. While safety, tolerability, PK and FAAH inhibition were evaluated, 
only the former three were used for dose escalation decisions. When the 
crucial data on the FAAH inhibitory effects had been taken into consider-
ation, it could probably have prevented the death of a healthy volunteer 
and irreversible brain damage in four other healthy study participants. 
[80] In the case of CBD, the main non-psychoactive component of cannabis, 
investigators have difficulty showing PoM, as CBD apart from having low 
affinity for CB1 and CB2, also acts on a plethora of other receptors through-
out the body. CBD therefore links to many diseases and (neuro)protective 
properties. [81] While early-phase studies in the context of CBD and pain 
are scarce, a possible, yet costly and complex, approach is by evaluating 
striatal activation during a verbal memory task using fMRI. CBD has been 
found to augment, and THC attenuate, the striatal activation, therefore 
this may be utilized for differentiation of CBD from THC-based drugs. [82]

Methods for evaluating PoC

PoC read-outs for CB1/CB2 ligands are complex, as translation between 
healthy volunteer- and patient studies has been difficult: despite theoreti-
cal evidence, THC administered in two distinct experimental pain studies 
with healthy subjects, induced hyperalgesia rather than analgesia. [83,84] 
Therefore, testing within a well-chosen patient subpopulation seems 
more appropriate. For example, pressure pain thresholds, but not spon-
taneous or electrical pain, assessed in fibromyalgia patients have been 
found reactive to THC administration, [85] as were pain scores reported 
by patients with multiple sclerosis. With the latter, it is important to take 
temporal effects into account when designing such a study, given effects 
can take weeks to develop. [86]

Genotyping may allow for PoC evaluation of a FAAH inhibitory drug: 
alterations in sensitivity to cold pain are associated with FAAH polymor-

Cannabinoids  Fueling an ever-growing trend, [66] both the natu-
ral cannabis sativa L. (cannabis) and cannabis-derived cannabinoids are 
amongst the currently most developed drugs, with an estimated sale 
value of 1.9 billion in 2020 in the Unites States alone. [67] Cannabinoids, 
apart from acting on the cannabinoid-1 and -2 receptor (CB1 and CB2, re-
spectively), [68] may relieve pain by acting on serotonin (5-HT) receptors 
[69] and transient receptor potential (TRP) channels including the TRPV 
and -A subtypes. [70] (Figure 4) Selective CB2 receptor agonists are of spe-
cific interest for drug developers given their observed efficacy in a range 
of preclinical inflammatory and neuropathic pain models, whilst mitigat-
ing psychotropic effects attributed to activation of central CB1 receptors. 
[71] For cannabinoids, adequate biomarkers largely depend on the recep-
tor targeted, and dose used. Given their action is so distinct, we here de-
fine three cannabinoid subgroups for which PoM and PoC options are dis-
cussed: those primarily targeting CB1 and CB2 receptors, those primarily 
inhibiting fatty acid amide hydrolase (FAAH), and cannabidiol (CBD). 

It is important to note that while multiple CB2 agonists and FAAH inhib-
itors are reported in our search, no recent trials were found on evaluation 
of these class subtypes in clinical pain. Despite promising preclinical evi-
dence, the CB2 agonist GW842166 was discontinued following its failure 
to demonstrate meaningful analgesia in patients with acute dental pain, 
and the FAAH inhibitor PF-04457845 failed to relieve pain in OA patients, 
although these are reports of almost a decade ago. [72,73] PF-04457845, 
however, recently was shown to reduce cannabis withdrawal symptoms 
in men, suggesting that FAAH inhibitors possibly may be better suitable 
as a treatment for indications other than pain. [74]

Methods for evaluating PoM 

When the drug is a ligand for both CB1 and CB2, e.g., in the case of tet-
rahydrocannabinol (THC)-formulations or cannabis-based formulations 
containing THC, motivation and attention-based cognitive tests are most 
applicable to evaluate PoM at low doses, whereas high doses affect blood 
pressure, heart rate and subjective feeling (e.g., VAS feeling high or evalu-
ation of psychotomimetic feelings). [75] The latter two, effect on heart rate 
and feeling high, also serve as PoM biomarkers for selective CB1 agonists. 
[76] Lack of observed effects on these proxies may therefore be beneficial 
for PoM of a CB2-selective analgesic. While evidently more costly, radio-
tracer positron emission tomography (PET) imaging studies, often used 
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Methods for evaluating PoC

NMDA antagonists such as ketamine have been profiled in an experimen-
tal setting on a variety of pain paradigms. The (cutaneous) heat pain test 
and, to a lesser extent, the (cutaneous) electrical pain test most adequate-
ly display ketamine’s analgesic potential. [18,98] The thermal grill test, 
during which warm and cold stimuli are applied simultaneously to the 
skin to evoke a paradoxical pain sensation, is suitable to confirm activa-
tion of the glutaminergic- rather than the endogenous opioid system, as 
ketamine reduced paradoxical pain intensity whereas the opioid-receptor 
antagonist naloxone did not. [99] Recently, NMDA receptor antagonists 
have been suggested as potential treatments for central sensitization, 
[100] which was positively evaluated in an experimental setting using the 
freeze injury hyperalgesia model (also see. NSAIDs – Methods for evalu-
ating POC). [95] 

Nerve Growth Factor (NGF) modulator  The interaction of  
NGF with tropomyosin kinase A (TrkA) – which is highly expressed in 
the DRG – has been found a key step in the sensitization of nociceptors. 
[101] Antagonists are therefore expected – and developed – as a treatment 
for chronic pain with specific focus on inflammatory conditions. [102] 
Development of this class was temporarily halted by the US Food and 
Drug Administration following reports that anti-NGF antibodies caused 
rapid joint destruction in patients with OA. [102] More recent data, how-
ever, suggest that lower dose anti-NGF antibodies may have a more favor-
able risk-benefit profile. [101] Approximately half of the NGF-compounds 
enlisted are anti-NGF antibodies, the other half TrkA-selective inhibitors. 

Methods for evaluating PoM 

For compounds developed to treat localized (inflammatory) pain con-
ditions – such as NGF antibodies to treat knee OA –, distribution to, and 
availability of the drug in the target tissue is key. Demonstration of this 
is feasible by performing synovial fluid sampling. [103] TrkA, however, is 
not highly expressed in blood cells and therefore does not allow for test-
ing of target engagement in blood. Alternatively, in the case where a TrkA 
inhibitor is studied, skin biopsies can be utilized for studying inhibition 
of NGF-induced TrkA phosphorylation ex vivo . [104] 

phisms in lower back- and postoperative pain conditions. [87,88] The lat-
ter is an expensive approach, and only applicable to a limited patient pop-
ulation. Alternatively, assessing EEG readouts from laser evoked poten-
tials (LEPs) generated on capsaicin-treated skin, may be suitable. Schaf-
fler et al. demonstrated that, in subjects with a confirmed hyperalgesic 
response to capsaicin, the FAAH inhibitor ASP8477 reduced sensitization, 
demonstrated by a decrease in LEP N2-P2 peak-to-peak amplitudes com-
pared to placebo. [89]

For CBD, preclinical evidence has established a PoC role for the UVB-
induced hyperalgesia model (Table 1), as CBD reduces keratinocyte-me-
diated inflammation, and potentially protects keratinocytes against UVB 
irradiation. [90,91] While there plausibly is a role for experimental pain 
models in characterizing CBD’s analgesic effects, given the beneficial 
effects from CBD reported by chronic pain patients, [92] there is little to 
no clinical evidence available in the public domain other than the cited 
experimental pain study in fibromyalgia patients, where no analgesic ef-
fects attributable to CBD could be demonstrated. [85]

NMDA modulator  N-methyl-D-aspartate receptor (NMDA) antago-
nists in a clinical setting have shown robust efficacy in treating (opioid-
induced) hyperalgesia, neuropathic pain syndromes and pain following 
opioid tolerance. [93] Primarily represented by ketamine and methadone, 
this drug class relieves pain by blocking the excitatory signal at the NMDA 
receptor, typically induced by binding of glycine and glutamate to their 
respective receptors. [94] Changes in glutamatergic neurotransmission, 
however, may also induce notable CNS-side effects, which have led to the 
recreational abuse of these drugs and failure of many novel NMDA antag-
onists during development. [95] 

Methods for evaluating PoM 

TMS (see Nav inhibitors – methods for evaluating POM) may be used to 
evaluate effects of NMDA antagonists on motor cortex excitability. Previ-
ously, ketamine was found to increase the motor cortex responses, and 
memantine to significantly affect its plasticity. [96,97] When planning to 
include TMS for evaluating NMDA receptor modulation, one – apart from 
the cons mentioned in the previous section – should be aware of a delay in 
effects, in the case that the to-be-tested drug has prolonged action charac-
teristics. [96]
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Receptor hypersensitivity and deficits in the 5-HT descending pain inhibi-
tory pathway following low 5-HT levels have generally been accepted to 
play a pivotal role in migraine pathophysiology and central sensitization. 
[113] Using experimental models such as quantification of the conditioned 
pain modulation (CPM) response, effects of 5-HT selective drugs on central 
pain systems may be evaluated for PoC, although clinical evidence for this 
approach is still limited and the test itself difficult to execute. [5,114] It is 
therefore suggested to evaluate pain thresholds in a multimodal test bat-
tery that apart from CPM also evaluates heat pain thresholds, as it has been 
demonstrated that both pain detection and tolerance thresholds are sensi-
tive to 5-HT function following acute tryptophan depletion. [115]

It is noteworthy to mention that, while cilostazol, Calcitonin Gene 
Related Peptide- and Isosorbide-5-mononitrate-induced headache models 
do induce migraine-like attacks and are established experimental tests, 
they fail to respond to the 5-HT agonist sumatriptan in healthy volunteers, 
which makes these models unsuitable for PoC of this specific drug class. 
[116–118] Rather, the Pituitary Adenylate Cyclase-Activating Polypeptide 
38 (PACAP38)-induced headache model can be used, as pretreatment with 
sumatriptan attenuated headache induced by PACAP38 in a double-blind 
cross-over setting. [119]

TRPV1 modulators  Primarily known for the hot burning sensa-
tions caused by capsaicin, the active component of chili peppers, agonists 
of the TRPV1 channel – abundantly expressed on nociceptive c-fibers 
(Figure 4) – induce hyperalgesia in low concentrations, while overstimu-
lation of that same receptor relieves pain through (temporary) nerve abla-
tion. Antagonism of TRPV1 is of interest for analgesic drug developers as 
well, following reporting of positive effects in preclinical inflammatory- 
and cancer pain models. [120] First-generation antagonists, however, in-
duced hyperthermia and impaired noxious heat sensation in many study 
participants. Development of this class of drugs was therefore initially 
halted. [121] Apparently it is possible to circumvent this problem, as at 
least seven later-generation compounds have recently progressed in the 
clinic without displaying these unwanted effects. [122] TRPV1 modulators 
have mostly been developed to treat neuropathic pain. 

Methods for evaluating PoC 

TrkA receptors, apart from modulation of various receptors such as 
TRPV1 through expression in the DRG, are also available on mast cells. 
NGF, through TrkA, therefore induces a pro-inflammatory response 
with increase of e.g., histamines, 5-HT and NGF, resulting in a positive 
feedback loop. [105] The UVB-induced hyperalgesia model (Table 1) in-
duces a (local) inflammatory response which, amongst others, results 
in increased NGF levels, [106] and applicability for PoC as previously de-
scribed. [31] To note, while the capsaicin-induced hyperalgesia model 
theoretically may also be suitable, given it induces sensitization and local 
inflammation through TRPV1 and mast cell activation, [107–109] to the 
best of the authors’ knowledge no clinical evidence is publicly available to 
substantiate the use of this model in the context of PoC for this compound 
class. 

5-HT modulators  5-HT mediates pleiotropic behavioral effects in-
cluding mood and anxiety through a family of 14 different receptor sub-
types. Additionally, 5-HT plays a complex part in both hyperalgesic and 
analgesic states, dependent on the receptor (sub)type targeted and action 
site, with choice of the descending inhibitory pathways in the CNS, the 
trigeminal system, or afferent nerve fibers (Figure 4). [110] Various 5-HT 
subtype-selective (5-HT1B,-1D,-1F,-2B) modulators are currently devel-
oped, of which approximately half are to treat migraine or other headache 
syndromes.

Methods for evaluating PoM 

To assess blood-brain-barrier penetrability of the drug, cerebrospinal 
fluid may be sampled by performing a lumbar puncture. Proper PoM 
studies are lacking for subtype selective 5-HT modulators; however, 
subclass-related AEs reported so-far may guide PoM evaluation. As such, 
triptans (5-HT1B/1D agonists) are found to induce vasoconstrictive effects 
and chest tightness. While vasoconstriction can only be assessed in vitro, 
using e.g., isolated arteries obtained from explanted hearts following car-
diac transplantation, [111] evaluation of chest tightness is part of the clini-
cal evaluation. The 5-HT1F selective agonist lasmiditan dose-dependently 
induces dizziness, which can be evaluated using a VAS. [112]
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GRC-6211, while reported to be selective, highly potent and yield good bio-
availability across various preclinical models, was discontinued after a 
clinical trial in OA pain was suspended. For further suggested reading on 
this topic, see the comprehensive review of e.g., Kort and Kym, 2012. [129] 

Calcium modulators  Calcium channels present on peripheral 
nerve fibers are responsive to a variety of noxious stimuli. Upon activa-
tion, action potential propagation is increased due to an increased cal-
cium influx. Voltage-gated calcium channels at central nerve terminals 
subsequently propagate pain signals through increased release of gluta-
mate (Figure 4). [132] Calcium channel modulators – of which the gaba-
pentioids are by far the most prescribed – inhibit this signal, resulting in 
their usefulness as treatments for (neuropathic) pain disorders. [133]

Methods for evaluating PoM

Similar to NMDA antagonists and Nav inhibitors, the role of calcium chan-
nels in membrane excitability makes evaluation of altered excitability 
following TMS a viable biomarker, although the exact affected parame-
ters vary between the calcium channel inhibitors administered. [134] 
Previously, it has been shown that intracortical excitability is a Gamma-
aminobutyric acid (GABA)-controlled process, involving the interneuro-
nal circuits in the motor cortex. As such, gabapentin prolonged cortical 
silent periods and the short intracortical inhibition, in addition to reduc-
ing intracortical facilitation, whereas in contrast losigamone (a sodium 
and calcium channel inhibitor without neurotransmitter properties) 
increased motor thresholds without affecting intracortical excitability, 
thereby demonstrating specificity of the mentioned cortical excitability 
parameters for calcium channel modulators. [135–138] 

Methods for evaluating PoC

The analgesic effects of gabapentinoids have been profiled in experimen-
tal studies and have demonstrated nociceptive effects in multiple evoked 
pain tests, including a multimodal test battery. Oral doses of 300 mg pre-
gabalin have shown robust and reproducible effects on pressure- and cold 
pressor pain thresholds. [32] Results for secondary hyperalgesia to pin-
prick and allodynia to brushing following topical capsaicin application 
vary, while noting that the allodynia assessment did produce more robust 
results. [139] 

Methods for evaluating PoM 

The relationship between capsaicin, vasodilation and flare is common 
knowledge for years, and extensively studied as PoM. [123] Laser Doppler 
perfusion imaging, although requiring expensive machinery, is a reliable 
method to assess macrovascular changes in the skin including capsaicin-
induced flare, and is proposed to evaluate mediators of neurogenic in-
flammation, such as TRPV1 modulators. [124]

Methods for evaluating PoC 

For drugs developed as TRPV1 antagonists, capsaicin-induced hyperal-
gesia serves as an excellent experimental pain model. In low to medium 
concentrations (i.e. up to 3%), capsaicin administered either intradermal-
ly or topically has been successfully used for decades as a TRPV1-receptor-
mediated challenge. [125] Readouts for this challenge include heat- and 
mechanical pain thresholds, but also effects on capsaicin-induced flare 
as shown in an early-phase drug study previously. [126] While extensively 
used, large inter-individual variability is reported for the response to cap-
saicin. [5] As such, the administration route (intradermal or topical) and 
test procedure employed (e.g., re-heating of treated area) have been cor-
related to enhancement of capsaicin-induced sensitization. [127] 

More recent advancements in evaluating TRPV1 agonism include as-
sessing changes in nociceptive detection thresholds following intra-epi-
dermal electrical stimulation, which allows for temporally discriminat-
ing altered peripheral, versus altered central pain processing mecha-
nisms. [128] The technique, however, is currently still in development and 
has therefore not yet been applied widely.

Notwithstanding the usefulness of capsaicin to demonstrate PoM and 
PoC, translation of positive preclinical data to clinical efficacy has been 
especially hard for TRPV1 antagonists. No clinically significant effects 
could be observed for AZD1386 on the Western Ontario and McMaster Uni-
versities pain scale, in a PoC study in patients with chronic pain from knee 
OA. [129] Noteworthy, AZD1386 did significantly decrease pain intensity 
versus placebo in the same study. It has been proposed that by excluding 
NSAID-sensitive patients – who presumably have an inflammatory com-
ponent to their pain – study outcomes were negatively influenced, suggest-
ing that patient selection may influence PoC study outcomes. [130] In a dif-
ferent study assessing dental pain, AZD1386 elicited significant analgesia, 
although effects were very short-lived (up to 1 h). [131] Another antagonist, 
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While available literature on experimental pain studies with GABA-
selective drugs is scarce, the analgesic profile of a partial α2/α3/α5-
selective GABA(A) agonist has previously been characterized: pressure-
evoked and cold pressor- evoked pain thresholds were inhibited in a 
similar fashion to 300 mg pregabalin. [148] Another study, testing the ben-
zodiazepines clonazepam and clobazam, reported analgesia in a capsa-
icin-pressure cuff algometry challenge, further indicating a possible role 
of pressure pain as a proxy for GABA-ergic analgesic drug effects. [149] It 
must be noted, however, that clonazepam and clobazam are not regarded 
as analgesics in general clinical use, their effectiveness in pain being lim-
ited to the clinical study setting. [150]

DISCUSSION
In the present article, we have listed the analgesic drug classes that are 
currently most developed, and have mechanistically linked them to bio-
markers suitable for use in early-phase drug studies, to aid in efficient and 
question-based analgesic drug development. For proper evaluation of 
PoM and PoC, each drug class requires a tailored experimental approach. 
A few methods including TMS, the capsaicin- and UVB-induced hyperal-
gesia models and the cold pressor evoked pain test were found to be more 
widely applicable across drug classes.

PoM and PoC, as we defined these terms in the introduction may not 
align with how they are commonly used by the scientific community. 
PoC, while here describing experimental models to evaluate pain thresh-
olds in healthy volunteers or patients, is often also regarded as the first 
signal of clinical efficacy within the relevant target patient population. 
Although we added the reporting of effectiveness in a healthy population 
to PoC – as it proves the analgesic potential of a compound –, such studies 
(i.e. positive PoC trials performed in healthy volunteers) do not warrant 
omitting PoC studies in an applicable patient population. Evoked pain 
tests, while preferably mechanistically linked to administered drug and 
target patient population, only induce pain that is short-lived, neglect-
ing the more chronic, and emotional aspects that coexist in patients ex-
periencing pain. Rather, results from healthy volunteer PoM/PoC studies 
allow for an improved and often leaner, therefore more cost-efficient de-
sign of successive trials in patients. PoM and PoC studies therefore serve 
as a translational step between preclinical experiments and studies in 

GABA modulators  As the chief inhibitory neurotransmitter, GABA 
reduces neuronal excitability throughout the central nervous system. 
Interestingly, many non-selective GABA-ergic compounds including ben-
zodiazepines have evident pharmacological effects, of which analgesia is 
not one. This may be because significant adverse effects such as sedation 
precede the drug’s antinociceptive effects. [140], As GABA(A) subunits α2 
and α3 have been linked to pain relief, while sedation has been attributed 
to GABA(A) subunit α1, GABA-ergic drug developers seek subtype specific-
ity. Compounds listed in this class either target GABA(A) subunits α2, α3 
and/or α5 and aim to treat neuropathic pain, or target GABA(B) for chronic 
and osteoarthritis pain relief. [141,142] 

Methods for evaluating PoM

For GABA modulators, PoM partly depends on demonstrating subtype se-
lectivity, which can be obtained by discriminating the observed pharma-
cological effects against those observed from non-selective GABA-ergic 
drugs, including sedation. A selection of neuropsychological and neuro-
physiological tests may be used to differentiate effects from e.g., α2 and 
α5-selective-drugs to those from non-selective GABA(A) agonists. A VAS 
measuring alertness to assess sedation, a test to quantify swaying of the 
body as proxy for postural imbalance, a VAS measuring ‘feeling high’ to 
evaluate a drugs’ abuse potential, and effects on saccadic eye movement 
using a computer-based eye tracking system, have all repeatedly been 
used to prove GABA(A) selectivity. [143–145] While VAS scales are cheap 
and easily adoptable, the body sway test and saccadic eye movement tasks 
do need specific (computer) equipment and trained staff.

For demonstrating GABA(A) versus GABA(B) selectivity as an extension 
of PoM, TMS (Table 1) experiments may be useful. Using multiple GABA-
ergic drugs alprazolam (a classical positive allosteric modulator (PAM) at 
α1, α2, α3, and α5 subunit-containing GABA(A) receptors), diazepam (clas-
sical non-selective benzodiazepine), zolpidem (PAM at α1 GABA(A) sub-
units only) and baclofen (GABA(B) agonist)), an amplitude increase of the 
N45 potential has been shown to display GABA(A)-selectivity, whereas a 
decreased amplitude of the N100 potential showed GABA(B)-selectivity. 
[146] Oscillatory changes following single-pulse TMS are feasible as read-
outs also: opposite effects have been demonstrated for GABA(A)- and 
GABA(B)-ergic compounds on α-band-synchronization measured in the 
stimulated sensorimotor cortex and lateral frontal cortex. [147]
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inflammatory hyperalgesia model to evaluate a TrkA inhibitor’s potential 
to treat inflammatory pain, although the correlation between the model 
(increased NGF levels following UVB exposure), and the disease state that 
it mimics (NGF upregulation in synovial fluid in patients with osteoar-
thritis) is not fully known. It must therefore be noted that, while PoM and 
PoC studies do bridge the gap between preclinical research and studies in 
patient (sub)populations, positive results generated in such trials do not 
guarantee a drug’s efficacy in a patient population. Two examples are the 
CB2 agonist GW842166 and the FAAH inhibitor PF-04457845, as discussed 
in section Cannabinoids of this chapter.

Also in a therapeutic area such as pain, research and technology has 
reached unprecedented levels that allow for meticulous assessment of 
a compound’s (dose-dependent) effects. By incorporating tests such as 
those mentioned into early-phase trials, success – or failure – of a novel 
drug may be confirmed rather sooner than later. Moreover, with the 
change to personalized medicine and target selectivity, drugs developed 
to treat a multitude of conditions from the start are in decline. Instead, 
highly selective drugs treating well-chosen patient subpopulations are 
being developed. PoC, but especially PoM trials will aid in a crucial as-
pect related to this change. By incorporating methods that evaluate the 
drug’s mechanism of action accurately, PoM studies can confirm target 
selectivity that may be unachievable using PoC experimental models 
alone. Therefore, results obtained for PoM, but also PoC – or preferably 
combined –, can help determine the optimal dose and patient (sub)popu-
lation to target in the following development phase(s) – and aid in increas-
ing the number of treatments reaching patients.

Aims and outline of this thesis
Continuing efforts are made to expand and further improve our knowl-
edge on pain signaling and effective treatment of pain. One is by develop-
ing and validating new methods for early-phase clinical drug studies that 
have improved accuracy or improved resemblance to clinical pathophysi-
ology, and may so improve the evaluation of a drug’s mechanism of action 
and analgesic potential. The other is by actually testing novel compounds 
that are proposed to have a superior clinical utility, using methods that 
we believe to be appropriate for evaluating their pom and/or PoC. For all 
types of pain but especially within the field of neuropathic pain, there is 

the relevant patient populations seeking to find the first signal of clinical 
efficacy. By confirming the active concentration range in a PoM or PoC 
study, fewer dose levels need to be evaluated in patients rendering these 
studies more (cost-)efficient. Moreover, (first-in-human) single or mul-
tiple ascending dose (SAD, MAD) studies that are a mandatory part of any 
drug’s development trajectory, often can be enabled with PoM and/or PoC 
models. Important information on the drug’s characteristics including 
pharmacokinetic-pharmacodynamic (PK-PD) relationships – especially of 
interest when evaluating wide dose ranges as during SAD or MAD studies – 
can then be generated, at little additional cost. 

Due to the complexity of pain and its underlying mechanisms, a wide 
variety of analgesics with ever-increasing specificity are currently being 
developed. The classes discussed here represent those mostly developed, 
although it must be noted that compounds within a particular class may 
still vary substantially, for example due to (sub)type selectivity or route 
of administration. As such, Nav1.7 contributes differently to analgesia 
than Nav1.8 does; therefore, arguably other, even more specific biomark-
ers may be superior in evaluating compounds targeting either channel. 
The encompassing commentary nonetheless holds true: each technique 
mentioned does provide a firm handhold for assessing PoM and/or PoC, 
and that development of each unique compound needs a tailor-made 
approach. 

While it is thus important to evaluate proxies aligning with the pro-
posed mechanism of action, it is equally important to not narrow the 
study objectives unnecessarily. By testing multimodally – i.e., in addition 
to evaluating the desired endpoint, also include models each representing 
a distinct (pain) pathophysiology to evaluate effects other than expected 
– an (analgesic) effect profile can be created. [18] Multimodal testing in 
general does not significantly increase subject burden or study costs, yet 
provides increased knowledge on the drug’s putative mechanism of ac-
tion, and therefore confidence to make pivotal decisions about the com-
pound’s future. [13] This argument, however, only applies to analgesics 
of which the exact mechanism of action is linked to the suggested test. 
If there is no scientific rationale behind e.g., a NSAID possibly affecting 
electrical pain thresholds, it would be futile to add this method to a PoC 
study. Yet even when there is an evident rationale to use a specific test, 
the relationship between the experimental model and the disease it mim-
ics often is not fully elucidated. E.g., it is rational to use the UVB-induced 

1
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Section I

In this first section, we assessed the validity of a panel of nociceptive and 
hyperalgesia models in context of the assessment of analgesic effects of 
(novel) Nav inhibitors. We tested a novel and selective Nav1.8 inhibitor, 
VX-150, in a dedicated PoC two-way cross-over study and reported our 
findings in Chapter 2. In Chapter 3 the safety, tolerability and nocicep-
tive test results of a first-in-human study with Nav1.8-selective inhibitor 
VX-150 are described. To further study how Nav inhibition modulates no-
ciceptive processing, in Chapter 4 we tested the two registered, non-se-
lective, Nav inhibitors lacosamide and mexiletine using a nociceptive test 
battery and UVB-induced hyperalgesia model.

Section Ii
Next, we evaluated a selection of models on their potential to induce hy-
peralgesia in healthy subjects. Chapter 5 describes results from a clinical 
study in which we studied the suitability of the human endotoxemia to in-
duce inflammatory hyperalgesia. Chapter 6 and 7 discuss how depriving 
healthy subjects from sleep induces sex-dependent enhanced pain sensi-
tivity, and report that different readouts may be applicable. In Chapter 8, 
we investigated whether we could improve our existent topical capsaicin 
(cream) formulation with an updated (ethanolic solution) formulation by 
testing its potential to induce peripheral and central sensitization.

The main findings of this thesis are summarized and discussed in 
Chapter 9, which also includes general conclusions and recommenda-
tions on the use of experimental models in early-phase analgesic drug 
development.

still much to be gained, as illustrated by the large unmet medical need 
and limitedly efficacious drug treatments that are currently available. 
[151] 

Neuropathic pain is defined by the International Association for the 
Study of Pain (IASP) as “pain that arises as a direct consequence of a lesion 
or diseases affecting the somatosensory system”. [152] A key contributor 
to the chronification of neuropathic pain is central sensitization, which 
may manifest clinically as hyperalgesia (also see Figure 1), a symptom 
non-existent in healthy individuals. Models that can induce hyperalgesia 
and tools that can reliably assess altered functioning following induction, 
are sought-after as they may aid in examining the potential of (novel) an-
algesics as neuropathic pain treatment. Hyperalgesia – in experimental 
context – may be induced peripherally (i.e., increasing responsiveness to 
stimuli locally by increasing nociceptor sensitivity at the affected area), 
or centrally (i.e., increasing responsiveness to stimuli by increasing sen-
sory neuron excitability at the dorsal horn and thalamus; Figure 4). [125] 
Hyperalgesia models that are suitable for use in early-phase drug studies 
can be an important asset for improved PoC of the analgesic drug classes 
described here in Chapter 1. To be ‘suitable for use’, we applied the gen-
eral criteria for usability of a biomarker, as described previously: 
•	 The model should induce a clear, consistent response across studies, 

and across drugs from the same class
•	 A clear response to therapeutic doses must be observed
•	 Dose (concentration)-response relationship can be demonstrated (if 

the study design allows for this)
•	 There should be a plausible relationship between the model, 

the pharmacology of the tested drug class and the disease 
pathophysiology. [153] 

As convincing evidence in favor of hyperalgesia models with respect to 
the above criteria is limited, further research is warranted. The main ob-
jectives of this thesis therefore were to evaluate applicable tools for profil-
ing the effects of (novel) analgesics using hyperalgesia models and other 
established nociceptive tests (Section I), and explore other tools that may 
even better predict an analgesic’s effects in healthy volunteers (Section II). 
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Table 1   Key PoC methods often used in early-phase analgesic drug development.

Method Details

TMS METHOD A non-invasive, painless technique to stimulate the brain. Through 
a coil which is kept on the head of the subject, a magnetic pulse is applied to 
the brain. This magnetic pulse induces an electric field and electrical currents 
in the cortex, which in turn, if large enough, depolarize neurons and initiate 
action potentials. Because the focus of the magnetic field lies just beneath the 
coil, TMS activates a brain area in the superficial cortical layers of only a few 
centimeters in diameter. [154,155]

PRO’S TMS provides the opportunity to assess cortical excitability, which can 
be regarded as a measure of how easily neurons and cortical networks are 
activated by the magnetic pulse. [154]

CON’S Expensive method requiring specific knowledge to be performed and 
analyzed. Results are subject to operator-variability, and found effects may be 
difficult to interpret mechanistically.

CLINICAL TRANSLATION widely used as supportive diagnostic tool for a 
variety of neurological diseases. [156]

UVB-induced 
hyperalgesia 

METHOD First, the minimal dose of UVB needed to induce erythema (MED, 
in mJ/cm2) is determined for each subject individually. Subsequently, 18-24h 
prior to planned test days, 2x or 3x MED is applied on healthy skin, to induce 
inflammatory hyperalgesia. Readouts include heat pain ratings using a 
thermode, or mechanical allodynia surrounding affected site using e.g., Von 
Frey filaments (i.e., secondary allodynia).[13]

PRO’S Low inter- and intra-subject variability, stable hyperalgesia for 36 h

CON’S Induction of post-inflammatory hyperpigmentation lasting 6 months 
(2xMED dose) up to multiple years (3xMED dose). Requires a more homogenous 
study population as irradiation levels needed to induce hyperalgesia are only 
safe in lighter-skinned individuals. [35] 

CLINICAL TRANSLATION Agreement between drug effects reported in this 
model, and trials in patients suffering from burn injury and postoperative 
pain. [157]

Method Details

Capsaicin-
induced 
hyperalgesia

METHOD Low concentration capsaicin is either topically applied and absorbed 
for a brief period (e.g., 30 min) or injected intradermally, to induce transient 
burn-like sensations on and around the treated area/location. The same 
readouts can be evaluated as mentioned for the UVB-induced hyperalgesia 
model. 

PRO’S Method that is easy to use, highly customizable and selectively links to 
TRPV1 agonism. The sensitizing effects after topical application are considered 
mild with effects approximately lasting a day. Both the topical and intradermal 
model induce reproducible primary heat sensitizationX. [158] Intradermal 
injection exerts reproducible effects on the area surrounding the area of 
application (i.e. secondary area). 

CON’S Subject burden for the intradermal model is high, as the injection 
induces a near-maximal pain sensation (rating of ~9/10). [159] After topical 
application, the response on the secondary area is highly variable both 
between subjects and within the same subject. [127,160] 

CLINICAL TRANSLATION Used as model to induce secondary hyperalgesia. 
In combination with mechanical stimulation, drug efficacy for this model is 
associated with effective treatment of trigeminal neuralgia and renal colic. 
[157] High concentrations are indicated in postherpetic neuralgia through 
temporary denervation that may last up to months. [13]

Cold pressor 
pain test

METHOD Variations of this test are available, all involving submerging (a 
part of) the hand or foot in cold water. Cold pressor test methodology often 
used (Eckhart et al., Jones et al.): A blood pressure cuff is inflated to 20 mmHg 
below resting-diastolic pressure, after which the ipsilateral hand is submerged 
in a cold water bath. Pain is rated using a rating scale (e.g., VAS) until pain 
tolerance or 120s is reached, whichever comes first. Subjects are instructed to 
remove their hand, the cuff deflates at that same time. [161,162]

PRO’S broadly applicable, easily adoptable test that may also be used to induce 
the CPM response.

CON’S temperature of the water, and ability of equipment to maintain set 
limit (i.e. by circulating water) results in evident differences between studies, 
limiting translatability of the model. [13]

CLINICAL TRANSLATION used for diagnosing fibromyalgia or opioid-induced 
hyperalgesia [19]

CPM: conditioned pain modulation, MED: minimal erythema dose, TMS: transcranial magnetic 
stimulation, UVB: ultraviolet B, VAS: visual analogue scale
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Figure 1   High-level illustration of definitions of allodynia and hyperalgesia  With 
gradually increasing intensity of a pain stimulus, a normal pain response is expected to 
increase following a sigmoid curve, as described on the right part of the Figure. 
Allodynia is defined as perceiving a stimulus as painful where it normally would not be 
perceived as such, this is defined as allodynia. (blocked area under the left sigmoid 
curve) E.g., a stroke with a brush or feather that produces a painful sensation. 
Hyperalgesia is defined as having an increased sensitivity to a painful stimulus, that 
normally would also perceived as painful (striped area under the left sigmoid curve). 
E.g., a blow with a hammer that was rated with a pain intensity of 3 out of 10, where the 
pain typically would be rated as 1 out of 10. 

Figure 2   Top 10 analgesic drug classes currently in early phases of drug 
development (until the therapeutic exploratory phase (phase I/II))  Numbers 
represent number of unique compounds currently in development, per respective class. 

GABA: gamma-aminobutyric acid; Nav: voltage-gated sodium channel; NMDA: N-methyl-D-aspartate 
receptor; NGF: Nerve Growth Factor; NSAID: non-steroidal anti-inflammatory drug; TRPV1: transient 
receptor potential cation channel subfamily V member 1.

Figure 3   Illustration of unique role of various Nav channels in action potential 
generation. (Adapted from [40]) (full color version of this illustration on inside of the cover)
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Figure 4   Schematic overview of primary target location per analgesic drug class. 
Drug classes are described with numbers, legend in top left corner describes which 
number links to which class. The pain pathway is described as having three distinctive 
target locations: the central nervous system, dorsal horn, and peripheral nerves. While 
specific drug classes may target multiple sites to a lesser extent as well, for sake of 
reasoning only the main target locations are linked to a specific drug class. 

GABA: gamma-aminobutyric acid; Nav: voltage-gated sodium channel; NGF: Nerve Growth Factor; 
NMDA: N-methyl-D-aspartate receptor; NSAID: non-steroidal anti-inflammatory drug; TRPV1: 
transient receptor potential cation channel subfamily V member 1.  
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