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ABSTRACT Adaptive intelligence aims at empowering machine learning techniques with the additional
use of domain knowledge. In this work, we present the application of adaptive intelligence to accelerate MR
acquisition. Starting from undersampled k-space data, an iterative learning-based reconstruction scheme
inspired by compressed sensing theory is used to reconstruct the images. We developed a novel deep
neural network to refine and correct prior reconstruction assumptions given the training data. The network
was trained and tested on a knee MRI dataset from the 2019 fastMRI challenge organized by Facebook
AI Research and NYU Langone Health. All submissions to the challenge were initially ranked based on
similarity with a known groundtruth, after which the top 4 submissions were evaluated radiologically. Our
method was evaluated by the fastMRI organizers on an independent challenge dataset. It ranked #1, shared
#1, and #3 on respectively the 8× accelerated multi-coil, the 4× multi-coil, and the 4× single-coil tracks.
This demonstrates the superior performance and wide applicability of the method.

INDEX TERMS Image reconstruction, MRI, deep learning, ISTA, fastMRI challenge.

I. INTRODUCTION
Magnetic Resonance Imaging (MRI) is a widely applied
non-invasive imagingmodality, with excellent soft tissue con-
trast and high spatial resolution. Unlike Computed Tomog-
raphy (CT) scanning, MRI does not expose patients to any
ionizing radiation, making it a compelling alternative. MR
images are essential for clinical assessment of soft tissue as
well as functional and structural measurements, which leads
to early detection and diagnosis of many diseases. However,
MRI is relatively slow compared to other imaging modalities.
The total examination time can vary from 15minutes for knee
imaging to an hour or more for cardiac imaging. Remaining
still for this long in a confined space is challenging for any
patient, being especially difficult for children, elderly and
patients under pain. Motion artifacts are not only difficult to
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correct, which may require a complete re-scan [1]. Further-
more, the acquisition time affects the temporal resolution and
subsequently limits the potential of MRI for dynamic imag-
ing, where high temporal resolution and robustness against
motion are critical for diagnosis. Moreover, the relatively
long scan times lead to high costs that limit the availability
of MRI scanners [2]. Therefore, fast acquisition and recon-
struction are crucial to improve the performance of current
MR scanners, which led in recent years to the development
of techniques such as parallel reception, compressed sensing
and multi-band accelerations. However, there is still a need
for further scan acceleration.

The long acquisition time is intrinsic to the scan-
ner and physics properties of MRI. For the majority of
scans performed in clinical practice, this acquisition is
done through consecutive reading-out of single lines in
k-space. These readouts are constrained by physical limita-
tions of the hardware, the contrast generating principle, and
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human physiology. The scanning time could be shortened
by reducing the number of acquired lines in k-space, i.e.
by undersampling the 2D or 3D k-space. However, this could
violate the Nyquist criterion, resulting in aliasing and blur-
riness in the reconstructed images, rendering them unqual-
ified for clinical purpose. Compressed Sensing (CS) and
Parallel Imaging are the most common solutions for accel-
eration by undersampling, while maintaining image quality.
Compressed Sensing, the focus of this paper, introduced by
Donoho [3], Lustig [4] and Candes [5], leverages the fact that
MR images can be compressed in some domain, restoring the
missing k-space data through an iterative reconstruction algo-
rithm [6]. Parallel Imaging uses multiple receive coils that
provide an additional signal encoding mechanism, allowing
to reduce the number of necessary k-space lines to reconstruct
an image, thus partially parallelizing the data acquisition [7].

When CS is used to accelerate MR acquisitions, the
k-spaces is sampled pseudo-randomly and the image is subse-
quently reconstructed by promoting a sparse solution. In the
optimal setting, the reconstructed image will be identical to
the Fourier transform of the full k-space and have a limited
number of large coefficients when transformed to the sparse
domain. Equation (1) shows the optimization function that
describes the CS algorithm:

min
x

{
‖ MFx−My ‖22 +λ ‖ 9x ‖1

}
, (1)

where x is the reconstructed image, y is the fully measured
k-space data, F is the Fourier transform, M (mask) is the
undersampling operation, 9x represents the sparsity trans-
form coefficients, and λ is the regularization parameter. The
`1 norm is used to enforce sparsity of the solution in a domain
specified by the transformation 9. The `2 norm is used as a
similarity measure between the measured k-space data My
and the reconstructed k-space MFx, called the ‘‘data con-
sistency’’ term. Note that, in case of multi-coil acquisitions,
the data consistency term is given by:∑

q

‖ MF
(
Sq · x

)
−Myq ‖22, (2)

where q denotes the coil element and Sq the corresponding
coil sensitivity map. The coil sensitivity maps S are computed
using the fully centered region of k-space. A low-passed
version of the coil images xlpfq is obtained by cropping the
available region of k-space. The sensitivity map Sq, for the
individual coil element is computed as follows:

Sq =
xlpfq√∑
j

(
xlpfj

)2 (3)

To simplify notation, without loss of generality, the single-
coil data consistency term will be used throughout this paper.

Recently, deep learning has shown promising results for
speeding up MR acquisition by adopting Convolutional Neu-
ral Networks (CNN) and Generative Adversarial Networks

(GAN). In contrast to iteratively solving optimization prob-
lems, deep learning offers a solution for reconstructing
highly-accelerated scans by adopting learnable reconstruc-
tion schemes.

The literature of deep learning-based reconstruction algo-
rithms can be divided into two categories [8]. First, data-
driven approaches, where a neural network is trained to find
the optimal transformation from the zero-filled k-space to
the desired reconstruction. Here, the network is completely
dependent on the underlying training dataset without any
task-specific prior knowledge on the domain; following are
selected exemplar algorithms of this approach. Quan et al. [9]
developed a GAN network for MR reconstruction starting
from undersampled data. Their network consists of two con-
secutive networks, one for reconstruction and one for refin-
ing the results. They used a cyclic data consistency term
alongside the WGAN loss. Mardani et al. [10] developed a
GANnetwork for CS. The proposed network corrects aliasing
artifacts of MR images. Guo et al. [11] proposed a WGAN
with recurrent context-awareness to reconstruct MRI images
from highly undersampled k-space data. Schlemper et al.
propose a cascaded CNN-based compressive sensing (CS)
technique for the reconstruction of diffusion tensor cardiac
MRI [12]. Yang et al. proposed a conditional GAN-based
architecture for de-aliasing and fast CS-MRI [13], [14].
Putzky et al. [15] treated the MR reconstruction problem as
an inverse problem. They applied the previously introduced
invertible Recurrent Inference Machine (i-RIM) model [16],
which iteratively updates its current state based on the output
of the forward model. The model was trained and evaluated
on the single- and multi-coil data at 4× and 8× accelerations
from the fastMRI challenge (see Section II for more details).
AUTOMAP [17] reports good reconstruction results with
an architecture that learns to directly transform k-space into
image data. Lee et al. [18] introduced two separate deep resid-
ual networks for magnitude and phase. The proposed net-
works successfully reconstructed images even when obtained
with high undersampling factors.

Second, hybrid approaches are presented in the literature.
This class of algorithms builds on top of existing recon-
struction solutions and integrate learning-based approaches to
substitute part of the original computations, often by adopting
an unrolled implementation of an iterative algorithm [19].
A notable example is the Variational network presented by
Hammernik et al. [20] utilizing learned filters in an existing
iterative optimization scheme, while Yang et al. presented
the Deep ADMM-Net [21], which extends the Alternating
Direction Method of Multipliers (ADMM) [22] approach by
integrating learnable operators.

Aggarwal et al. [23] introduced a model based deep learn-
ing architecture named MoDL to solve the inverse problem,
including MR reconstruction. The proposed model consists
of a series of recursive linear CNN networks. These networks
share weights for regularization and reduction in the number
of parameters. The proposed network imitates the CS algo-
rithm and for numerical optimization, the authors introduced
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a data consistency term using a conjugate gradient (CG) opti-
mization scheme at every iteration. The model was trained on
multi-coil brain MR slices from 4 patients and tested on one
patient. Ramzi et al. [24] provided a reproducible benchmark
of deep learning based reconstruction methods on the single-
coil part of the fastMRI dataset [25]. The benchmark consists
of a U-net [26], cascade net [27], KIKI-net [28], and PD-
net [29]. Cascade net has been inspired by a dictionary learn-
ing approach [30]. This approach is composed of residual
convolutional blocks applied in image space followed by data
consistency layers. The data consistency layers enforce the
k-space values be close to the original k-space measurements.
KIKI-net is a cascaded network where a non-residual convo-
lutional block has been added to perform k-space completion,
while PD-net provides a learnable and unrolled version of the
Primal Dual Hybrid Gradient optimization algorithm [31].
Seitzer et al. discussed the inadequacy of loss function for
training a CS-MRI reconstruction CNN [32]. In that study
they proposed a refinement method which incorporates both
loss functions in a harmonious way to improve the training
stability.

Recently, Zhang and Ghanem [33] developed a deep learn-
ing approach called ISTA-Net that mimics the conventional
ISTA algorithm, but enriches it by replacing the sparsify-
ing transform and the thresholding with learned operations.
The resulting network does not implement a fully iterative
algorithm, but it simulates it by adopting a fixed number of
iterations, effectively enabling the implementation of a deep
neural network that can be trained by the backpropagation
algorithm. Inspired by the work of Zhang and Ghanem [33],
in this paper we propose a deep-learning based solution,
Adaptive-CS-Network, that mimics the ISTA algorithm, but
introduces strong prior information, i.e., inductive biases,
to better constrain the reconstruction problem. The main
contributions of this work are: i) we propose a novel CNN
network that integrates and enhances the conventional CS
approach; ii) it integrates multiscale sparsification, inspired
by wavelet transforms, but in a learnable manner; iii) we
adopt domain-specific knowledge, such as data consistency,
a prior on known phase behavior, and the location of the
background: these computations cannot be easily learned
by a CNN; iv) the proposed model exploits the correlation
between neighbouring slices by adopting a 2.5D learning
approach. In addition, we propose a hierarchical training
strategy that leverages the available data. We conducted
extensive experiments to investigate the performance of the
network, and show that domain specific information is crucial
for reconstructing high-quality MR images. The proposed
network showed superior performance by winning one, and
co-winning a second track out of the three tracks of the
fastMRI challenge [25].

II. FastMRI CHALLENGE
The fastMRI challenge is a challenge organized by Facebook
AI Research and NYU Langone Health [25]. The aim of the
challenge is to advance and encourage AI-based research in

MR reconstruction in order to allow acceleration of the acqui-
sition and, subsequently, to reduce the examination time. The
challenge is divided in three tracks: 4× single-coil, 4×multi-
coil, and 8× multi-coil accelerations. Eight teams partici-
pated in the multi-coil track and 17 teams in the single-coil
track [34].

A. DATASET
The challenge organizers released a large-scale dataset of raw
MR data of the knee [35]. The data was acquired with a
2D protocol in the coronal direction with a 15 channel knee
coil array using Siemens MR machines at two different field
strengths: 1.5T and 3T [25]. The data was acquired using two
pulse sequences: a proton density weightingwith (PDFS) and
without (PD) fat suppression. The data is divided approxi-
mately equally between these pulse sequences. The pixel size
is 0.5 mm × 0.5 mm with a slice thickness of 3 mm.
The dataset is divided in 4 categories: training (973 vol-

umes, 34,742 slices), validation (199 volumes, 7,135 slices),
test (118 volumes, 4,092 slices), and challenge (104 vol-
umes, 3,810 slices). These numbers are the same for multi-
coil and single-coil data, with the exception of the test and
challenge categories, where single-coil data has respectively
10 and 12 volumes less than the multi-coil data. The training,
validation and test sets were publicly available since late
November, 2018, while the challenge set was available since
September 2019. The full k-space was available for all the
datasets except for the test and challenge sets. Training and
validation sets were considered for training and optimizing
our model, while the test set was used for evaluating model
performance on a public leaderboard. The final model was
evaluated by the organizers on the independent challenge set.

The k-space data provided in the challenge were under-
sampled using a Cartesian mask, where k-space lines are
set to zero in the phase encoding direction. The sampling
density is dependent on the acceleration rate (4× or 8×),
where the sampled lines are randomly selected. All masks,
however, are fully sampled in the central area of k-space
which corresponds to the low frequencies of the image. For
the 4× accelerated scans, this percentage is 8% while it is
4% for 8× acceleration. Besides making the reconstruction
problem easier to solve, such lines allow for obtaining a low-
pass filtered version of the image that is used to compute the
coil sensitivity maps Sq as presented in Equation (3) using a
root sum of square approach [25].

B. QUANTITATIVE EVALUATION
In order tomeasure the accuracy of the reconstructed volumes
r compared to the target volumes t, the following metrics
were considered:

1) NORMALIZED MEAN SQUARE ERROR (NMSE)
measures the square of the Euclidean norm between a pair of
images:

NMSE =
||r− t||22
||t||22

(4)
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2) PEAK SIGNAL-TO-NOISE RATIO (PSNR)
the ratio between the maximum intensity and the underlying
distortion noise:

PSNR = 10 log10
max(t)2

1
N ||r− t||22

(5)

3) STRUCTURAL SIMILARITY INDEX METRIC (SSIM)
measures image similarity using human perception
aspects [36]. SSIM is calculated by measuring three image
distortions including luminance l(·), contrast c(·) and struc-
ture s(·):

SSIM = l(r, t)αc(r, t)βs(r, t)γ , (6)

where α, β, γ are the distortion weights, here chosen as 1. In
this study, similar to the fastMRI challenge, the SSIM score
is computed on the magnitude version of the 2D MR scans,
leading to grayscale images.

C. RADIOLOGICAL EVALUATION ON THE
CHALLENGE DATASET
We submitted the reconstructions on the challenge dataset
via an online form, which were then evaluated indepen-
dently by the fastMRI organizers, described in detail by
Knoll et al. [34]. All submissions were ranked by the SSIM
metric, after which only the 4 highest ranking submissions
were evaluated by a panel of 7 radiologists. The panel was
asked to evaluate the reconstructions on a scale from 1 to 5 on
four different categories, where 1 is the best and 5 is the worst.
The 4 categories were the rating of artifacts, reconstruction
sharpness, perceived contrast-to-noise ratio and diagnostic
confidence. The radiological scores were subsequently aver-
aged and translated to a final ranking.

III. METHODS
In this section we present the background of our solution,
first by introducing the Iterative Shrinkage-Thresholding
Algorithm (ISTA) [37] and, second, by introducing its deep
learning-based variant, ISTA-Net [33]. Then, we present our
solution, the Adaptive-CS-Network, that builds on top of
the ISTA-Net framework by introducing several improve-
ments, including strong inductive biases derived from domain
knowledge on the reconstruction problem.

A. ISTA BACKGROUND
ISTA is an optimization algorithm to solve (1) in an iterative
fashion, starting from the reconstruction x0, which is often
obtained by reconstructing the zero-filled undersampled
k-space. The initial estimate is refined using the following
update rules:

ri+1 = xi − ρFT (MFxi −My), (7)

xi+1 = argmin
x

1
2
‖ x− ri+1 ‖22 +λ ‖ 9x ‖1, (8)

where FT denotes inverse Fourier transform, ri+1 is an
update of the estimate xi, where the error in the measured

data My is corrected by a step ρ. Equation (8) is a special
case of the proximal mapping, with a regularization weight
λ, and a crucial step for optimization algorithms such as
ISTA, ADMM [22] and AMP [38]. When 9 is a wavelet
transformW, it can be proven that

xi+1 =W−1soft(Wri+1, λ), (9)

where soft is the soft-tresholding operator defined as
soft(u, λ) = max(|u| − λ, 0) · u

|u| . In general, solving (8) is
not straightforward for non-linear operators 9, limiting the
applicability of the ISTA framework to simple transforms.
Another problem of this family of algorithms, is the difficulty
of tuning the hyperparameters λ and ρ in addition to its slow
convergence, hence requiring a lot of iterations to achieve the
optimal solution of (1).

B. ISTA-NET
Recently, Zhang and Ghanem introduced a deep-learning
approach to overcome the limitations of the ISTA framework
for image-to-image reconstruction. Their solution, called
ISTA-Net [33], replaces the handcrafted transform 9 with
a learned operator S(·), which consists of a 2D learnable
convolution followed by a rectified linear unit (ReLU) and
a second convolution. By replacing9 with S(·) in (8), we can
rewrite the update rule as

xi+1 = argmin
x

1
2
‖ x− ri+1 ‖22 +λ ‖ S(x) ‖1, (10)

and, by defining Ŝ as the inverse of S, i.e., Ŝ ◦S = I , Zhang
and Ghanem propose to update (9) as follows:

xi+1 = Ŝ(soft(S(ri+1), λ)), (11)

where Ŝ has a similar architecture as S.
The model is trained end-to-end, where the iterations of the

ISTA algorithm are ‘‘unrolled’’, i.e., a number b of identical
reconstruction blocks are created. Note that in the ISTA-
Net approach, the learnable parameters are shared among all
the blocks in the unrolled network, unlike our solution. The
training loss is defined as a combination of the reconstruction
and discrepancy loss:

L = Lreconstruction + σLdiscrepancy (12)

Lreconstruction = ‖ xb − FT y ‖22 (13)

Ldiscrepancy =
1
b

b∑
i=1

‖ Ŝ(S(xi))− xi ‖22 (14)

The reconstruction loss encodes the need for the final recon-
struction, defined as xb, to be as close as possible in the
least squares sense to the ground-truth image, i.e., FT y. The
discrepancy loss stimulates that Ŝ ◦ S = I . The σ parameter
allows to control the weight given to the discrepancy loss,
and it is chosen to be arbitrarily small, e.g., σ = 0.01. An
extension, called ISTA-Net+ is also presented by the authors,
where residual computations are adopted.
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FIGURE 1. Proposed adaptive Adaptive-CS-Net architecture. The input and output of the network are stacks of three consequent knee MR images.

C. ADAPTIVE-CS-NETWORK
Starting from the network developed by Zhang and Ghanem,
we developed the Adaptive-CS-Network approach. Our solu-
tion builds on top of the ISTA-Net solution based on three key
innovations, here ordered by importance to the final network
performance: i) the use of multi-scale and ii) multi-slice
computations, together with iii) the introduction of soft MRI
priors. We present them independently, building towards the
update rule of the Adaptive-CS-Network model as presented
in (16). Fig. 1 illustrates the proposed network.

First, many non-learned CS algorithms make use ofmulti-
scale transforms to sparsify the signal. An example is given
in (9), where W is a wavelet transform; a decomposition of
the signal into a set of basis functions at different scales. We
include this inductive bias in our design, and adopt a multi-
scale transform U , and its inverse Û . As an additional design
choice, we decide to sparsify and learn only the residual,
therefore our update rule is written as follows:

xi+1 = Û(soft(U(ri+1), λs,fs ))+ ri+1, (15)

where U comprises of 2D convolutions and non-linearities in
the form of Leaky-ReLU to counteract the problem of dying
neurons. To generate a multiscale representation, a max-
pooling layer is used and the resulting features are then
processed again by convolutional blocks and non-linearities.
The exact design of U is presented in Fig. 1. The feature
maps produced at the different scales are then thresholded
using the soft-max function. Differently from ISTA-Net+,
we learn a lambda parameter and feature channel fs for
each scale s. This approach gives the network the flexibil-
ity of tuning the thresholds independently, hence reducing
the complexity of the transforms learned by the convolu-
tional operators. Finally, the filtered channels are transformed
back into the image domain by the inverse Û , consisting of

interpolation, 2D convolutions and Leaky-ReLU operators.
Note that, contrary to the latest literature in deep learning
networks, we decided not to adopt strided convolutions for
sub- and up-sampling, which would increase the risk of cre-
ating checkerboard artifacts [39]; instead we took the more
conservative approach of adopting pooling and interpolation
layers for achieving better image quality. Overall, the compu-
tation represented by Û(soft(U(ri+1), λs,fs )) is implemented
with a UNet-like architecture [26], where the feature maps
before the skip connections are filtered according to the
parameter λs,fs .
Second, it is important to note that the slice thickness of

the dataset is much higher than the in-plane resolution. This
indicates that inter-slice correlations are less useful for finer
scales, and potentially damaging as they will become a con-
founder for the network. However, such information becomes
beneficial at coarser scales, e.g., to facilitate the delineation
of the bone in several slices. Since our transform U is multi-
scale by nature, we found it beneficial to inject neighbor-
ing slices into the model, while leaving it to the network
to identify at which scale the information will be used. To
reduce the memory footprint of the model, we adopted a 2.5D
convolution approach by concatenating neighbouring slices
into the input tensor along the channel dimension, enabling
to ‘‘reinvest’’ the saved GPU memory as compared to a truly
3D convolution approach, into more unrolled iterations.More
details on the number of slices used and the definition of the
loss function are given in Section IV-C.

Finally, we adopted a hybrid- or nudge- approach to incor-
porate additional prior knowledge into the reconstruction
algorithm. We therefore computed additional information
derived from the current estimate xi together with k-space
My. These soft priors, which are presented in the next section,
capture some properties of anMR image that cannot be easily
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learned by a deep neural network due to the limited size of
the receptive field. The priors come in the form of images,
and are provided as extra input channel to the transform U . In
this way, they are integrated in the computations performed
by U whenever this is beneficial for the optimization of the
loss function.

D. FINAL DESIGN
The overall update for a block Bi+1 in the Adaptive-CS-
Network model is defined as follows:

xi+1 = Bi+1(xi)

= xi + Ûi
(
soft

(
Ui
(
xi, edc,i, eφ,i, ebg,i

)
, λs,fs

))
. (16)

Each block in the network learns different transforms Ui and
Ûi, enabling each block to focus on different properties of the
image and effectively increasing the network capacity. Note
that Ui and Ûi are different for every reconstruction block i.

In our final design, the transform Ui does not receive the
data consistent image ri, as defined in (7), but rather the
current estimate xi together with the data consistency prior
edc,i computed as follows:

edc,i = FT (MFxi −My). (17)

This ‘‘soft data-consistency’’ update allows the network
to evaluate the reliability of the acquired data and poten-
tially compensate errors in the coil combination defined
by F in (1).
The second prior we provided to the network, eφ,i, repre-

sents the known phase response for spin-echoMR sequences.
Theoretically, spin-echo sequences have zero phase every-
where in the image. In practice, however, slowly varying
phase will occur, i.e. nonzero phase only in the low frequen-
cies, due to hardware and acquisition imperfections. Taking
this into account, it is noted that the final reconstructed image
should be a real valued image after removal of the slowly
varying phase. This information is captured in the following
prior:

eφ,i =

{
xi ·

x∗i,lpf
‖xi,lpf‖2

}
imag

, (18)

where ∗ denotes the complex conjugate, and lpf refers to
low pass filtering. The low pass filter is chosen such that
it corresponds to the center part of k-space which is fully
sampled. By doing so, the low pass filtered image xi,lpf can
be derived beforehand only once, hence xi,lpf is replaced
by x0,lpf.
Finally, we adopt a simple approach to estimate the loca-

tion in xi where the background is found, which is common in
parallel imaging techniques. The following prior is applied:

ebg,i =
xi

‖xi,lpf‖2
. (19)

This prior will penalize estimated signal content where
‖xi,lpf‖ is low, i.e., within the background. Again, xi,lpf is

replaced by x0,lpf. Because x0,lpf is based on the fully mea-
sured central part of k-space, the image is artefact free albeit
at low spatial resolution, leading to a reliable background
identification.

In Fig. 1 the design of the Adaptive-CS-Network is shown,
including the multi-scale transforms, the multi-slice compu-
tation and the priors provided as input. Note how the spin-
echo and background priors are computed only for the central
slice, in order to save GPU memory.

E. NETWORK TRAINING AND IMPLEMENTATION DETAILS
We implemented our models in PyTorch [40]. All the
optimization experiments were performed on an NVIDIA
V100 GPU with 16 GB RAM and the final network was
trained on two NVIDIA V100 GPU with 16 GB RAM.
In order to run as many experiments as possible given the
challenge deadline, model optimization (see Section IV) was
done with a relatively small model (≤10 blocks), which we
trained for 20 epochs. All the optimization networks were
trained and validated on the highest acceleration rate of the
challenge, i.e. 8× and for single-coil data, except for the
number of the blocks which was performed for both 4× and
8×, and for the priors which are more relevant for the multi-
coil data. Since the ground truth for the test set was not
available, all the quantitative comparisons were only done on
the validation set.

For the challenge, we trained the final model using the
training and validation datasets for 25 epochs and accel-
erations randomly selected from 2× to 10×. The residual
connections designed on a per-iteration basis, facilitates the
learning and prevents the degradation of the error gradient
throughout the architecture. The model was subsequently
fine-tuned on eight data sub-populations identified by the
acceleration (4× and 8×), the protocol (PD and PDFS) and
the scanner field strength (1.5T and 3T). Fine-tuning was
then performed for 10 epochs on the sub-populations. This
procedure was performed independently for the single- and
multi-coil datasets, resulting in a total of 8models. All models
were trained using an exponentially decaying learning rate
of 10−4. The final models have 33M trainable parameters
each; for the single-coil data this leads to an inference time of
approximately 327 ms, while it takes approximately 518 ms
to compute the reconstruction of a multi-coil dataset on an
NVIDIA V100 GPU.

IV. EXPERIMENTS AND RESULTS: MODEL OPTIMIZATION
In this section we present how we optimized the network
configuration, on a smaller model with 10 reconstruction
blocks, using the quantitative measures reported in Section II-
B for validation.We performed experiments on the number of
the blocks, the loss functions, the influence of using adjacent
slices, the optimizer, and the soft priors. A repeated measure
one-way ANOVA test was performed on the SSIM values
using a significance level of p = 0.05. P-values are only
stated for the comparisons between the best method and
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FIGURE 2. The effect of the number of blocks on performance, using the
4× and 8× single-coil validation data. The variance values are shown by
the bars. The stars in the first plot show one-way ANOVA statistical
significance.

the other methods. In all the experiments a learning rate
of 0.0001 was used.

A. NUMBER OF BLOCKS
The proposedmodel consists of multiple blocks, related to the
number of unrolled iterations of the ISTA scheme. Increasing
the number of blocks leads to an increase in the number
of parameters of the model, and subsequently training time
and GPU memory usage as well as an increase in risk of
overfitting. In this experiment we investigated the effect of
the number of the blocks on the quality of reconstructed
images. Tests were ran with the 2D network for 4× and
8× acceleration rates without neighboring slices, MSE as
loss function, RMSprop as optimizer, and with the Unet-like
architecture of 16 filter maps for each convolutional layer.
Fig. 2 reports the relative changes to a single block of our
quantitative metrics. Based on the experiments, increasing
the number of the blocks will improve the performance of
the network. Therefore, the final network was configured
with the maximum number of blocks that could be fitted
into GPU memory: 25 blocks. However, for the optimization
experiments below only 10 blocks were employed to limit the
duration of the training.

B. LOSS FUNCTIONS
In this experiment we investigated the effect of a wide range
of differentiable loss functions on the performance of our
network. Here, we used the single slice reconstruction net-
work with only 10 blocks, RMSprop as the optimizer, and
16 filter maps for each convolutional layer. The models were
trained for 20 epochs to ensure convergence of the model.
The evaluated loss functions included MSE, perceptual loss
(PL) [41], `1, Huber [42] and multi-scale structural similarity
index (MSSIM) [43]. The PL loss function was calculated
using a pre-trained VGG-16 at layers relu1_2, relu2_2, and
relu3_3.

MSSIM [43] builds upon SSIM (see Section II-B3) by
incorporating structural similarity at multiple image resolu-
tions, thereby supplying more flexibility compared to SSIM,
and is defined as follows:

MSSIM=
[
lM (rc, tc)

]αM M∏
i=1

[
ci(rc, tc)

]βi [si(rc, tc)]γi , (20)

TABLE 1. The effect of the loss function on performance, using the
8× single-coil validation data. Stars denote one-way ANOVA statistical
significance.

where rc, tc, denote the reconstructed and target images
respectively,M is the number of scales used, lM , ci and si are
the luminance, contrast, and structure as defined in [36], αM ,
βi, and γi are the weights of the distortion factors at different
resolution levels. We adopted the same weights as reported
in [43].

Zhao et al. [44] reported that a linear combination of SSIM
and `1 preserves the different properties of an image better
than each separately: SSIM encourages the network to pre-
serve structural and contrast information, while `1 enforces
sensitivity to uniform biases to preserve luminance [45].
Since MSSIM reached higher metric values than SSIM (see
Table 1), we deployed a weighted summation of MSSIM [43]
and `1:

L = αMSSIM(rc, tc)+ (1− α)‖rc − tc‖1, (21)

where α = 0.84 was chosen, following Zhao et al. [44].
Note that, compared to the ISTA-Net approach, we found it
beneficial not to adopt the discrepancy loss as presented in
Eq. (12) for two reasons. First, we empirically found that
tuning the loss multiplier θ is not straightforward, leading
to sub-optimal results in terms of the reconstruction loss.
Secondly, computing the discrepancy loss is very demanding
in terms of GPU memory, requiring to perform a second for-
ward pass where only the thresholding operation is ignored.
While feasible, it requires to make the model significantly
smaller in terms of learnable parameters, hence reducing
model performance significantly.

Table 1 reports the quantitative results for the different loss
functions. Theweighted linear combination ofMSSIMand `1
yielded the best results, where the p-values indicate that the
improvement achieved thanks to our modifications is highly
consistent across all scans, despite the small improvements
on SSIM-values. Fig. 3 shows two example results for the
different loss functions, confirming the favorable results for
the model trained using a combination of MSSIM and `1.
Therefore, this loss functionwas selected for training the final
model. For the remainder of the experiments, MSSIM is used
as loss function.

C. MULTI-SLICE NETWORK
The resolution of the images in the dataset is anisotropic with
a voxel size of 0.5 × 0.5 × 3 mm3. Due to the correlation
between adjacent slices with respect to anatomical struc-
tures in MRI images, we performed an experiment to assess

VOLUME 8, 2020 204831



N. Pezzotti et al.: Adaptive Intelligence Algorithm for Undersampled Knee MRI Reconstruction

FIGURE 3. Two examples of single-coil 4× for the different loss functions. A small network is used to test several losses. SSIM values are shown in
yellow.

TABLE 2. The effect of adopting a 2.5D approach on the 8× single-coil
data using the small model. W denotes the loss weight applied to the
neighboring slices. Stars denote one-way ANOVA statistical significance.

whether inclusion of neighbouring slices into the reconstruc-
tion might improve the performance. We compared the 2D
scheme using only the center slice with three alternative 2.5D
schemes: i) the neighboring slices were used together with
the center slice as input, but only the center slice was used in
the loss function (network 2.5D); ii) and iii) the neighboring
slices are also used in the loss, with different weights (0.1 vs
0.2 for the neighbors; 1.0 for the center slice). To compute
the first and last slice, we pad the volume with replicas of the
edge slices. MSSIMwas used for the loss function, 10 blocks,
RMSprop as the optimizer, and 16 feature maps.

Table 2 shows the results of this experiment, showing that
the 2.5D schema very consistently improves over the 2D
scheme, and that the loss should only be defined on the center
slice. For the final model, this scheme was selected.

D. OPTIMIZER
We experimented with different optimizers including
RMSprop, rectified Adam (RAdam) [46], LookAhead [47]
and Ranger [48]. RAdam exploits a dynamic rectifier to
adjust the adaptive momentum of Adam [49]. LookAhead not
only uses an adaptive learning rate and accelerated schemes
but also iteratively updates two sets of weights, i.e. fast
and slow weights. Ranger combines Radam and LookAhead
optimizers into a single one. We used the 2D network with
10 blocks and 16 feature maps for each layer, and MSSIM
the loss function.

TABLE 3. The effect of the optimizer on performance, using the 8×
single-coil validation data. Stars denote one-way ANOVA statistical
significance.

Table 3 tabulates the results for the different optimizers.
Since the best results were obtained for the RAdam optimizer,
very consistently improving over the other optimizers, this
was used for the final network.

E. ADAPTIVE-CS-NET VS ISTA-Net+

In this experiment, we compare the proposed model to
ISTA-Net+ [33]. For this experiment, a 2D network with
10 blocks and 16 feature maps per layer was used, SSIM
as loss function, and RAdam as the optimizer. Since ISTA-
Net+ uses a much smaller single scale architecture with much
fewer network parameters, we added an experiment increas-
ing the feature maps for ISTA-Net+ such that the number of
parameters was the same as for our architecture. According
to the results reported in Table 4, the proposed model out-
performs ISTA-Net+ significantly. Figure 4 shows a quali-
tative comparison between ISTA-Net+ and Adaptive-CS-Net
on the single-coil 4× dataset. Although for the first image
Adaptive-CS-Net reconstructed a better output in terms of the
anatomical structure, the output of ISTA-Net-L+ has a higher
SSIM value. This implies that the radiological evaluation is a
complementary step to judge the quality of the results.

F. SOFT PRIORS
To assess the contribution of the additional soft pri-
ors, we compared the full model against a version with-
out known phase behaviour eφ,i and without background
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FIGURE 4. Qualitative comparison of Adaptive-CS-Net vs ISTA-Net+ on the single-coil 4× dataset. The SSIM values are
shown in yellow.

TABLE 4. Adaptive-CS-Net vs ISTA-Net+ on the 8× single-coil dataset.
ISTA-Net+ has 0.75M trainable parameters, while ISTA-Net-L+ and
A-CS-Net have 2.12M trainable parameters. Stars denote one-way ANOVA
statistical significance.

information ebg,i. Visually, we observed only small differ-
ences. To verify the differences in a realistic setting, we sub-
mitted the results to the public leaderboard of the fastMRI
challenge. As shown in Table 5, the network with all priors
performed better in terms of the SSIM metric, although the
results worsened in terms of NMSE and PSNR. Despite the
fact that the improvement was minimal, we decided to adopt
all priors for the final model to ensure our participation in the
last challenge phase, since the selection was based on SSIM.

V. ADAPTIVE-CS-NET: SUBMITTED MODEL
In this section, we describe the configuration of the submitted
model [50] and analyze the resulting reconstructions. The
final performance is evaluated with the quantitative metrics
on the test and challenge datasets, and by presenting the
radiological scores for the challenge dataset as performed by
the fastMRI challenge organizers.

Following our model optimization study, the configuration
of the final model was determined as follows. The linear
combination of MSSIM and `1 (21) was chosen as the

TABLE 5. The effect of adding priors to the final network on
performance, using the multi-coil test data.

loss function. The 2.5D scheme was chosen with two neigh-
boring slices, with the loss applied only on the central slice.
For training the model, the RAdam optimizer was deployed.
Fig. 5 shows the structure of the final network. Each block
is determined by three parameters for the denoiser: 1) the
number of scales for the denoiserU , Û , 2) the kernel size used
in the convolutions and, 3) the number of feature maps in the
first convolutional layer, which is then doubled at each scale.
According to the experiments presented in Fig. 2, the num-
ber of reconstruction blocks greatly affects the reconstruc-
tion performance, empirically observing that performance
still improves when 15 blocks are used. The available GPU
memory is a limiting factor when designing a deep neural
network. To allow for a large number of blocks, we chose a
different design in each block, mixing a less powerful design
(16 filters) with more powerful ones (64 filters). By adopting
this strategy, our final design contained 25 reconstruction
blocks and has 33M parameters.

Fig. 6 shows example results of the final network for the
multi-coil track from the validation dataset. Fig. 7 shows
examples from the test and challenge datasets. Table 6 shows
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FIGURE 5. Final network, each block has the same structure as shown in Fig. 1 and is defined by U, Û [number of scales, kernel size, number of feature
maps in the first scale]. For all layers Leaky ReLU was used as the activation function.

FIGURE 6. Example results of the final model for the multi-coil track accelerated by 8× on the validation dataset. Top row depicts the target image,
bottom row the reconstructed images with the SSIM value in yellow.

the SSIM, NMSE, and PSNR values for the test and challenge
set (as described in Section II-A), for the images with and
without fat suppression and both combined, for both single-
andmulti-coilMRI scans. For the radiological evaluation, our
method scored 2.285, 1.286, and 2.714 for multi-coil 4×,
multi-coil 8×, and single-coil 4×, respectively (the closer
to 1, the better). The average runtimes for the model are
518 and 327 milliseconds for the multi-coil and the single-
coil data, respectively. More details on the results for the
challenge were presented in [34].

VI. DISCUSSION
In this paper we propose a general method, named Adaptive-
CS-Net, for reconstructing undersampled MRI data, combin-
ing ideas from compressed sensing theory with ideas from
MR physics and deep learning. The method was developed
in the context of the 2019 fastMRI challenge, which focused
on accelerating knee MR imaging. The proposed network is
an unrolled iterative learning-based reconstruction scheme,
in which a large number of reconstruction blocks refine the
MR image by denoising the signal in a learned and multi-
scale fashion.Moreover, we added neighboring slices as input
to the sparsifying transform, as well as a number of soft priors
that encode MRI domain knowledge.

The main driver of the performance of our network is the
multi-scale architecture, as demonstrated in a direct com-
parison with ISTA-Net+ that is corrected by the number of
trainable parameters. According to the experimental results

TABLE 6. Results for the final model for single- and multi-coil data on the
test and challenge dataset.

on the number of blocks for 4× and 8× accelerations of
both single- and multi-coil data, we showed that the num-
ber of blocks has a large impact on model performance.
Therefore, it was decided to use the maximum number of
blocks that we could fit into the GPU memory, where we
adopted different model designs for the different blocks to
save memory. It might be expected that beyond a certain
number of blocks, overfitting of the data might occur. How-
ever, signs of overfitting were not observed during training
and the final number of blocks was only marginally larger
than tested in the optimization experiments. Whether further
increase in the number of blocks could result in even better
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FIGURE 7. Example results of the final network from the test and challenge datasets, for which no ground truth reconstructions are available.

performance could be the topic of further experiments. This
would, however, need better hardware, as the current design
is memory- and time-bound during training. With the current
configuration, final model training took approximately 7 days
on two V100 GPUs.

We experimented with a large variety of loss functions.
Results showed that the linear summation of MSSIM and `1
performed best. Figure 6 showed that poor SNR data yield
very low SSIM scores. Surprisingly, within high SNR data,
a large variance of SSIM scores is also found. This highlights
the fact that further research is required in order to develop
better quality metrics. Moreover, we defined a 2.5D scheme
to train the network in which three adjacent slices were
reconstructed while the loss function was calculated only for
the central slice. The proposed scheme outperformed the 2D
network as well as 2.5D networks in which the loss was
calculated over all slices. By incorporating the neighbouring
slices, the network can exploit existing correlations into the
reconstruction of the target slice, which is our main target
as defined by our loss. It can be expected that for MRI
acquisition with less asymmetric voxel sizes, the inclusion
of information of neighbouring slices would become more
important. However, weighing the loss of the neighbouring
slices resulted in less optimal results since it forces the net-
work to solve a more difficult problem: the network has
to reconstruct multiple slices instead of a single one. This
reduces the effective network capacity per slice, leading to
a degradation of the reconstruction performance. We tested
different optimizers, where the newly introduced RAdam
outperformed the others and we used it for training the final
network. We also incorporated prior knowledge, including
data consistency, known phase behaviour and background
discrimination to support the network in the reconstruction
process. We observed that these priors provided only limited
extra performance to the network, resulting in visually similar
images and minimal difference in the metrics.

We can conclude that the Adaptive-CS-Net is sufficiently
powerful to learn directly from the data how to reconstruct
the undersampled k-space, being themulti-scale structure and
the use of many reconstruction blocks the main driver of our
performance. As a future work, we want to better understand
how much the network is relying on the priors by adopt-
ing interpretable AI techniques such as differentiable image
parameterizations for feature visualization [51]. Stronger use
of the priors via the loss function is an additional option.

As mentioned before, the radiologist scores were based
on the visual quality of the reconstructed images and not on
diagnostic interchangeability. Therefore, designing a network
based on the diagnosis can be considered a point for further
research. We furthermore observed that optimizing for SSIM
was needed for reaching the final stage of the challenge,
but is not necessarily an ideal representative of radiological
image quality. This observation was very recently confirmed
in a comparative study by others [52]. The proposed method
outperforms the benchmark networks, including U-net [26],
cascade net [27], KIKI-net [28], and PD-net [29], on the
single-coil track as reported in [24]. It outperforms as well the
i-RIM model [16] on the Multi-coil track but not the single
coil track [34].

VII. CONCLUSION
In this paper we propose an adaptive intelligence algorithm
called Adaptive-CS-Net, which was developed in the context
of the 2019 fastMRI challenge. In the two clinically relevant
tracks of the challenge, using multi-coil MRI acquisitions,
the proposed method was leading, while on a simulated
single-coil track the method ranked 3rd.
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