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CHAPTER 5

Transferable Potential Function for Flexible H2O

This chapter is based on:

E. Ö. Jónsson, S. Rasti, M. Galynska, J. Meyer and H. Jónsson, Transferable Potential

Function for Flexible H2O Molecules Based on the Single Center Multipole Expansion,

submitted to the Journal of Chemical Theory and Computation (JCTC)

The submitted version of is available at arXiv:2007.06090v2 [physics.comp-ph]arXiv:2007.06090v2 [physics.comp-ph].
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Abstract

A potential function is presented for describing a system of flexible H2O molecules

based on the single center multipole expansion (SCME) of the electrostatic interac-

tion. The model, referred to as SCME/f, includes the variation of the molecular

quadrupole moment as well as the dipole moment with changes in bond length and

angle so as to reproduce results of high level electronic structure calculations. The

multipole expansion also includes fixed octupole and hexadecapole moments, as well as

anisotropic dipole-dipole, dipole-quadrupole and quadrupole-quadrupole polarizability

tensors. The model contains five adjustable parameters related to the repulsive inter-

action and damping functions in the electrostatic and dispersion interactions. Their

values are adjusted to reproduce the lowest energy isomers of small clusters, (H2O)n

with n = 2 − 6, as well as measured properties of the ice Ih crystal. Subsequent

calculations of the energy difference between the various isomer configurations of the

clusters show that SCME/f gives good agreement with results of electronic structure

calculations and represents a significant improvement over the previously presented

rigid SCME potential function. Analysis of the vibrational frequencies of the clusters

and structural properties of ice Ih crystal show the importance of accurately describing

the variation of the quadrupole moment with molecular structure.
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5.1 Introduction

The most commonly used potential energy functions for describing water molecules

and their interaction are based on simple pairwise additive functions with fixed point

charges [11–44], such as the well known TIPnP and SPC force fields. Extensions of

these potential functions to describe flexible molecules have been developed, such as

aSPC/Fw [55] and q-TIP4P/F [66], and they offer, for example, the possibility to include

the effect of zero point energy. The point charge potential functions are typically

parameterized in such a way as to reproduce a few thermally averaged properties of

liquid water. The properties of water molecules are, however, strongly environment

dependent as illustrated by the molecular dipole moment, which is 1.8 D in the gas

phase and 3.1 D in ice Ih [77]. This large environment dependence needs to be modeled

accurately in order to develop a transferable potential function applicable, for example,

to small clusters and crystal structures as well as liquid water.

Such environment dependence is best described using well established physical laws,

since empirical fitting to some limited set of data is likely not going to work well when

the potential function is applied to configurations that are significantly different from

the ones used in the fitting process. A systematic multipole expansion up to and

including the hexadecapole, with dipole and quadrupole polarizability, has been shown

to reproduce well the electrostatics in water clusters and ice [88]. A potential function

based on this approach has been presented for rigid molecules and is referred to as the

single center multipole expansion (SCME) potential function [99, 1010]. In the present

work, this approach is extended to flexible molecules.

By expanding the electrostatics around a single center on each molecule, the introduc-

tion of point charges is avoided and the correct long range distance dependence of the

Coulomb potential built in naturally. The leading term, the dipole potential, decays

as 1/R3, and combined with the polarization response of the molecules this makes it

possible to use a long range cut-off for the electrostatic interaction between molecules

in typical condensed matter simulations. [77]
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Hybrid simulation schemes, where part of the system is simulated using a potential

function while another part is described using electronic structure calculations, the so-

called quantum mechanics / molecular mechanics (QM/MM) simulations, have been

used in important simulation studies in various fields such has biochemistry [1111–1515],

medicine [1616], photochemistry [1717] and solvation dynamics [1818–2121], nanostructures [2222],

and materials science [2323]. In most cases, such simulations make use of fixed point

charge models [2424–2727], thereby neglecting the mutual polarization of the charges in the

MM subsystem by the QM subsystem – an effect that was, however, included in the

inceptive work initiating the QM/MM approach [2828]. The use of fixed point charge

models to represent water molecules in the MM region results in errors that limit the

applicability of the QM/MM method.

Several H2O potential functions that include some level of polarizability exist [2929–3131].

These include the Thole-type multipole models such as the TTMn series [3232–3535], and

HBB2-pol [3636, 3737]. The MB-pol [3838–4040] potential function has arguably reached the

highest precision as it includes an explicit treatment of two-body and three-body in-

teractions through an intricate permutationally invariant polynomial fit to data bases

constructed with high level quantum chemistry calculations. However, inclusion of

such explicit many body terms makes the interfacing with a QM region more challeng-

ing. Instead, simpler polarizable MM potential functions based on pair-wise potentials

to describe the short-range interactions are used in so-called polarizable embedding

QM/MM (PE-QM/MM) approach [2626, 4141–7171]. The PE-QM/MM approach can be

used to study the effects of solvation and solvent response to excitations and charge

transfer in solvated species. However, such simulations have typically included only

the molecular dipole-dipole response and make use of atomic point charges.

Here, an extension of the single-center multipole expansion [99, 1010] (SCME) potential

function is described, which has recently been integrated in a PE-QM/MM scheme [7272,

7373]. The extended potential function, SCME/f, includes flexibility of the internal geom-

etry of the water molecules while still maintaining the single center description of the

electrostatic interaction in terms of molecular moment tensors. The SCME/f model in-
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cludes variable dipole and quadrupole moment tensors that depend on the geometry of

the H2O molecule. The dipole is described by the well established Partridge-Schwenke

model, [7474] but a new, geometrical model based on four sites is presented here for the

quadrupole moment. It reproduces results of high-level multireference electronic struc-

ture calculations of the quadrupole moment to within 1.6% RMS over a broad range

in its magnitude. This model for the quadrupole moment is found to provide better

description than the so-called M-site models that have been used previously. [22, 3232–4040,

7575–7878]

There are five adjustable parameters in the description of the intermolecular interac-

tion. They include parameters relating to the pair-wise repulsive interaction as well

as damping parameter in the dispersion interaction and a screening parameter for the

electrostatic interaction tensors. These parameters are optimized in such a way that

the SCME/f reproduces the binding energy and intermolecular distance of the dimer,

the interaction energy of the lowest energy conformation of water clusters (H2O)n with

n ranging from 3 to 6, calculated at the level of RI-MP2 with CCSD(T) corrections

[7979] and full CCSD(T) at the complete basis set limit [8080] as well as measured prop-

erties of crystalline ice Ih taking into account the zero-point energy. The resulting

parametrization of the model reproduces nicely trends in the relative energy of the

conformers of the hexamer obtained from high level quantum chemistry calculations.

Some discrepancies, however, exist in the series of pentamer isomers. An analysis of

the frequency of vibrational modes of the various clusters and the structure of ice Ih

crystal highlights the importance of an accurate model for the molecular quadrupole

moment.

The article is organized as follows: The SCME/f potential function is described in

Section 5.25.2. The dipole and quadrupole surfaces are presented in Section 5.35.3 and

the calculation of atomic forces is described in Section 5.45.4. The fitting of the five

adjustable parameters is described in Section 5.55.5 and comparison with ab initio data

on the cluster conformer energy and vibrational frequencies of small clusters is described

in Section 5.65.6. Discussion and conclusions are in Section 5.75.7.
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5.2 Flexible SCME Model

eX

eY

eZ

A
B

C

Figure 5.1: The definition of the principal vectors and local reference frame for the

water molecule used in the SCME/f model. The black circle denotes the expansion

center, chosen here to be at the center of mass. Black arrows show the three prin-

cipal vectors A, B and C pointing from the oxygen and the hydrogen atoms to the

expansion center. The gray opaque arrows show the local reference frame basis vectors

{eX , eY , eZ}. The principal vectors B and C define a local-to-global reference frame

rotation matrix. Due to symmetry specific indexing of the atoms is omitted, and po-

sitions and scales are exaggerated for clarity.

Fig. 5.15.1 shows the principal vectors which define both the position of the expansion

center and the local-to-global reference frame rotation matrix for the flexible water

molecule. The local frame origin is placed at the center of mass (COM). In SCME/f

each water molecule is ascribed a molecular dipole and quadrupole moments in terms

of variable partial charges based on the internal geometry, µiα({ria}) and θiαβ({ria}),

respectively, where {ria} = {riO, riH1 , riH2}, and is the set of position vectors for atoms

a in molecule i in the global reference frame. The details of the dipole moment and

quadrupole moment surfaces are described in Section 5.35.3. The index i is used to denote

both the specific water molecule, as well as the corresponding COM site. Furthermore,

each water molecule is ascribed, in the local reference frame, a fixed octupole, Ωi
′

αβγ , and
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hexadecapole, Φi
′

αβγδ, moment tensors, as well as polarizability tensors including dipole-

dipole, αi
′

αβ , dipole-quadrupole, Ai
′

αβγ , and quadrupole-quadrupole, Ci
′

αβγδ, induction

terms.

Lipparini et al. [8181] describe commonly used local reference frames and associated

rotation matrices. The derivation here follows closely their work, with some obvious

sign changes. The expansion center is placed at the COM

ri =

ni∑
a

ria
Ma

M i
(5.1)

where ni denotes the atomic sites {O,H1,H2} of molecule i, and Ma and M i is the

mass of the atom and molecule, respectively. The principal vectors used to define the

rotation are

Bi = ri − riH1 , Ci = ri − riH2 , (5.2)

where in general, i.e. for a flexible H2O molecule, Bi 6= Ci. Unit basis vectors are in

terms of the principal vectors given by

eiZ =
BiCi + CiBi

|BiCi + CiBi|

eiX =
Bi − (Bi · eiZ)eiZ

|Bi − (Bi · eiZ)eiZ |

eiY =eiZ × eiX (5.3)

where eiZ is, as defined above, the bisector between the two oxygen-hydrogen bonds.

In terms of the unit basis vectors a unitary local-to-global reference frame rotation

matrix is

Ri =


eiXx eiXy eiXz

eiYx eiYy eiYz

eiZx eiZy eiZz

 (5.4)

Given the rotation matrix for each molecule the fixed moment and polarizability ma-

trices are rotated into the global reference frame for each COM site i11

1Throughout this work Einstein notation was used, i.e. Cartesian vector spaces are indexed with

Greek letters, α = β = · · · = ν ∈ {x, y, z}, and repeated Greek indices are to be summed over.
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M i
α...δ = Riηα . . . R

i
σδM

i′

η...σ (5.5)

where M i
α...δ is a generalized tensor of order t, requiring t rotation operations (e.g.

αiαβ = RiηαR
i
τβα

i′

ητ ). With the definitions above atomic forces are derived (see the

Supplementary Information) from the contribution of the fixed moments and polariz-

abilities to the electrostatic interactions involving the single expansion center on each

molecule.

General formulation, and notation, of the perturbative expansion of the electrostatic

intermolecular interaction – resulting in the multipole moment model – can be found

elsewhere [8282]. Here only the main expressions are presented which are used to arrive

at a self-consistent solution to polarized molecular moments at sites i in response to

the external field due to all other neighboring molecules j(6= i).

Given the external field, V iα (negative of the electric field), and the field gradient, V iαβ ,

at the COM of i, the molecules are polarized resulting in induced dipole and quadrupole

moments

∆µiα = −αiαβV iβ −
1

3
AiαβγV

i
βγ (5.6)

∆θiαβ = −AiγαβV iγ − CiγδαβV iγδ (5.7)

where the external field is given by

V iα =

n∑
j 6=i

V ijα (5.8)

and the contribution to the external field at site i due to site j is given by

V ijα =− T ijαβ(µjβ({rjb}) + ∆µjβ) +
1

3
T ijαβγ(θjβγ({rjb}) + ∆θjβγ)

− 1

15
T ijαβγδΩ

j
βγδ +

1

105
T ijαβγδεΦ

j
βγδε (5.9)

The field gradient – and higher order gradients – are given by the subsequent use of

the gradient operator, ∇βV iα = V iαβ , ∇γV iαβ = V iαβγ .

At the start the external field and field gradient due to the intrinsic moments is eval-

uated at each site. This results in an induced dipole and quadrupole moment, which
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in turn results in a change in the external field and field gradient. A self-consistent

solution to the non-linear relation between Eq. (5.65.6)–Eq. (5.95.9) is achieved with an

iterative procedure and a suitable convergence threshold of the induced moments to

achieve energy-force consistency (see the Supplementary Information).

As the point moments come close the multipole moment expansion breaks down – re-

sulting in the so-called polarization catastrophe. [8383] In order to avoid this screened in-

teraction tensors are introduced [8383–8888] which effectively smear out the point moments.

To zeroth order the Coulomb interaction tensors in Eq. (5.95.9) are defined as

T ij =
1

|rj − ri|
λ0(r) =

1

r
λ0(r) (5.10)

where λ0(r) is a short-range electrostatic interaction screening function. The gradi-

ent operators act to increase the order of the screened interaction tensors, for exam-

ple

∇αT ij =T ijα ≡ −
rα
r3
λ1(r) (5.11)

∇βT ijα =T ijαβ ≡ 3
rαrβ
r5

λ2(r)− δαβ
r3

λ1(r) (5.12)

where rα = (rj − ri)α.

Most commonly used interaction tensor screening functions in the context of polar-

izable force fields are based on exponential decay of the point charges resulting in

the Thole-type damped tensors. [8383] Here we make use of screening functions derived

from considering the overlap and resulting Coulomb electrostatic screening of Gaussian

charge densities and multipoles. [8787] In the equations above they are

λ1(r) = erf(S)− 2√
π
Se−S

2

(5.13)

λ2(r) = erf(S)− 2√
π

(
S +

2

3
S3

)
e−S

2

(5.14)

where S is the screened distance, S = r/g, and g is the screening length – describing

the spatial extent of the Gaussian functions.

In the SCME/f model the total energy is a functional of the external field, V iα, at each
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molecular COM site i and is given by

Etot[{V iα}] = Eelst[{V iα}] + Enon−elst + Emon (5.15)

where the terms on the right hand side are, Eelst[{V iα}], the total electrostatic energy

functional, the non-electrostatic terms, Enon−elst, which includes a pair-wise repulsive

and a dispersion potential, and Emon, which is a sum of the internal energies described

by the Partridge-Schwenke potential energy surface (PS–PES) of the water monomer.

[7474]

More explicitly the first term on the right hand side of Eq. (5.155.15) can be further

separated into three terms describing the inter- and intramolecular contributions to

the total electrostatic energy of the system, namely

Eelst[{V iα}] = Ein[{V iα}] + Epol[{V iα}] + Eself [{V iα}] (5.16)

where Ein[{V iα}] is the electrostatic interaction between the intrinsic molecular mo-

ments and Epol[{V iα}] is the field-induced polarization energy. At self-consistency these

terms combine to give

Ein+pol[{V iα}] =
1

2

n∑
i

(
(µiα({ria}) + ∆µiα)V iα +

1

3
(θiαβ({ria}) + ∆θiαβ)V iαβ

+
1

15
ΩiαβγV

i
αβγ +

1

105
ΦiαβγδV

i
αβγδ

)
(5.17)

Eself is the on-site self-energy, given by

Eself [{V iα}] = −1

2

n∑
i

(
∆µiαV

i
α +

1

3
∆θiαβV

i
αβ

)
(5.18)

and accounts for the change in internal energy required to polarize the molecules.

The non-electrostatic term is composed of two intermolecular pair-wise potentials cen-

tered on the oxygen atom

Enon−elst = Erep + Edisp (5.19)

describing repulsion, Erep, and dispersion Edisp. In the following expressions for the

potentials the distance r refers to the oxygen-oxygen distance between pair i and j, or

r = |rjO − riO|.

118



“Thesis” — 2022/11/3 — 8:17 — page 119 — #127

5.3. THE DIPOLE AND QUADRUPOLE MOMENT SURFACES

Making use of the same dispersion coefficients as in the original SCME model [8989]. The

dispersion energy is

Edisp = −
n∑
i

n∑
j<i

(
C6

r6
t6(r) +

C8

r8
t8(r) +

C10

r10
t10(r)

)
(5.20)

with isotropic coefficients up to tenth order from Wormer and Hettema [9090]. At short

range the interaction is smoothly switched off with a Tang-Toennies damping function

[9191]

tm(r) = 1− e−τdr
m∑
k=0

(τdr)
k

k!
(5.21)

where the parameter τd represents the inverse decay length of the charge density.

In the rigid SCME [8989] model a modified Born-Mayer potential is used, which includes

a term which scales the magnitude of the repulsion depending on the local environ-

ment around the repulsion center – a molecular density dependent term. With the

introduction of the Gaussian type interaction tensor screening function we find the

molecular density dependence unnecessary and revert back to the basic Born-Mayer

type potential. The pair-wise repulsion is

Erep =

n∑
i

n∑
j<i

Arepr
−ke−hr (5.22)

The parameters of the non-electrostatic terms, τd, Arep, k and h, are optimized to work

with the new SCME/f model. The optimization also includes the screening length

parameter g of Eq. (5.145.14). The fitting is described in Section 5.55.5.

5.3 The Dipole and Quadrupole Moment Surfaces

The internal energy as described by the PS-PES includes analytical atomic force com-

ponents, [7474] as well as an accurate mapping of the dipole moment surface (DMS) for

an isolated water molecular as a function of the internal geometry. The DMS is given

by

µiα(riO, riH1 , riH2) = qiH1riH1
α + qiH2riH2

α + qiOriOα (5.23)
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where qiO = −(qiH1 + qiH2) and the partial charges of the two hydrogens are in turn a

function of the internal geometry, fitted to recreate the calculated DMS. For example

qiH1 = qiH1(rOH1 , rOH2 , cos(θHOH)), where rOH1 and rOH2 are the internal bond lengths

between the oxygen and the two hydrogens, and θHOH the HOH angle. This mapping

is used, and it was left unchanged.

The DMS partial charges are not suitable to describe a quadrupole moment surface

(QMS) without modification. Instead the charge site associated with the oxygen is split

up into two components and placed within a plane perpendicular to the symmetry plane

of the hydrogens and oxygens. The sites are denoted L1 and L2, where the site positions

are directly related to the length of the hydrogen bond lengths indexed H1 and H2,

and the HOH angle. See Fig. 5.25.2. The QMS is written as

θiαβ(riO, riH1 , riH2) =

n′
i∑
a

3

2

{
qia
(

(ria − ri)α(ria − ri)β −
δαβ
3
||ria − ri||

)}
(5.24)

where n′i denotes the sites {H′1,H′2,L1,L2} associated with molecule i. The apostrophe

on the hydrogen is used to discern their role in the QMS from their role in the DMS

since the charges qiHl
′

are different from the DMS charges, and are

qiHl
′

= AqiHl + BqH
eq (5.25)

and for the L-sites they are

qiLl = CqiHl + DqH
eq (5.26)

where qH
eq is the DMS charge of the hydrogen in the equilibrium monomer configura-

tion.

The position of the L1 and L2 charge sites is related to the atomic positions of each

water molecule through a rotation operator times a scaling factor which controls the

length of the rotated vector. A translation operator translates the vector to the COM

position of molecular site i for completeness. Explicitly this operation is

riLlα = RiLlηα e
iZ
η f(rHl) + riα (5.27)

We make use of the unit basis vectors previously used to define the local-to-global

rotation matrices in Eq. (5.15.1)–Eq. (5.35.3). The rotation matrices for the L1 and L2 sites

120



“Thesis” — 2022/11/3 — 8:17 — page 121 — #129

5.3. THE DIPOLE AND QUADRUPOLE MOMENT SURFACES

are

RiL1 =
(

cos(f(θ))I− sin(f(θ))
[
eiX
]
×

)
(5.28)

RiL2 =
(

cos(f(θ))I + sin(f(θ))
[
eiX
]
×

)
(5.29)

and is a simplification of the general Rodrigues’ rotation operator [9292] in terms of the

local orthonormal basis vectors (shown in Fig. 5.15.1).

In order to allow for flexibility of the L-sites and correlate their positions to the change

in the positions of the hydrogens, both the angle factor and length scale factor are

defined in terms of the OH bond lengths and HOH angle through

f(rHl) =a + b(|riO − riHl | − req) + c(|riO − riHl | − req)2 (5.30)

f(θ) =d + e(θ − θeq) (5.31)

where req and θeq are the equilibrium hydrogen to oxygen bond length and HOH angle

of the isolated PS–PES water molecule, respectively, see Fig. 5.25.2. It is found that a

second order polynomial in terms of the change in bond length, and a linear term for

the change in bond angles is adequate to capture the QMS with good accuracy. The

charge scaling parameters A, B, C and D, and the geometric parameters a, b, c, d, e

are fitted parameters, described below.

5.3.1 Ab initio QMS Calculations and Fit

The dipole and quadrupole moment is mapped using the ab initio quantum chemistry

software ORCA [9393, 9494]. An iterative-configuration expansion configuration interaction

(ICE-CI) method is used, with the aug-cc-pvqz basis set and the energy convergence

threshold is set to 10−8 Eh. Eight correlated electrons are included and the active

orbitals were chosen by including MP2 orbitals of natural orbital occupation numbers

ranging between 1.99999 and 0.00001. The ICE-CI method is related to the CIPSI

technique [9595]. Note that this level of theory is necessary to accurately determine the

dipole and quadrupole moment using their well defined charge density based operators,

instead of resorting to energy based schemes to estimate these quantities. For exam-

ple, it is found that coupled-cluster at the CCSD(T)/aug-cc-pvqz level of theory and
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eY

eZ

f(θ)

f(rH )l

H1 H2

L2 L1

Figure 5.2: L-site placement (yellow) in the water monomer structure. The re-

lationship of the angle to the unit basis vectors which describe the local reference

frame is shown, Eq. (5.315.31) and eqs Eq. (5.285.28)–Eq. (5.295.29). For example, operat-

ing with the rotation vector corresponding to hydrogen indexed 1 on eiZα results in(
cos(f(θ))eiZα − sin(f(θ))eiYα

)
. Due to symmetry specific indexing of the atoms is com-

pletely interchangeable, and either pair of H and L in the Figure above can serve as

pair 1 or 2. The distance from the oxygen to a L-site, controlled with f(rHl) is a second

order polynomial function depending on the position of one of the hydrogens (while

the position of the other L-site depends on the other hydrogen), Eq. (5.305.30). Positions

and scales are exaggerated for clarity.

orbital optimized coupled-cluster theory OOCCSD(T)/aug-cc-pvdz, did not provide a

satisfactory agreement with the DMS of the PS-PES, when using the dipole moment

operator µα =
∫
ρ(r)rαdr. See the Supporting Information for more details.

Starting from the ground state geometry in the local-frame as shown in Fig. 5.15.1 the

internal bond lengths and HOH angle are systematically changed and range from 0.7

to 1.3�A, and 60 to 175°, respectively. These intervals broadly represent the variation

in the bond lengths and the angle of the water molecule in the liquid phase at am-

bient conditions. Fig. 5.35.3 shows a comparison between the internal energy change of

each configuration as calculated by the ICE-CI method compared to the PS-PES. The
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agreement is excellent, and justifies the use of the ab initio data to fit the QMS while

retaining the original PS-PES energy mapping to describe the internal energy change

and resulting atomic forces in our model. Fig. 5.45.4, left, presents a comparison between

the ICE-CI DMS and the PS-PES DMS, again in an excellent agreement.

0 1 2 3 4 5 6 7
Ab initio [eV]

0

1

2

3

4

5

6

7

PS
-P

ES
 [e

V]

Eint

Figure 5.3: The relative internal energy difference between the different monomer

configurations used in the QMS fit, compared between the ab initio results and the

PS–PES. The good agreement between the two methods implies that the use of the

ICE-CI data to fit the QMS justifies the use of the original PS–PES to represent internal

energy changes and resulting atomic forces, as both potential energy surfaces are close

with RMSD of 0.022 eV, within chemical accuracy (∼0.51 kcal/mol).

The QMS model parameters associated with the charges in eqs Eq. (5.255.25)–Eq. (5.265.26),

A, B, C and D, as well as the geometric parameters of eqs Eq. (5.305.30)–Eq. (5.315.31), a,

b, c, d and e, are fitted to best reproduce the principal quadrupole moment compo-

nent. Considering the water molecule in the ground state configuration the symmetric
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quadrupole moment tensor can be written as

θ =


θT −∆ 0 0

0 −θT −∆ 0

0 0 2∆

 (5.32)

where θT = (θxx − θyy)/2.
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Figure 5.4: Left: comparison of the dipole z- and x-components, µz and µx respectively,

as predicted by the DMS, Eq. (5.235.23) and compared to the ICE-CI µz and µx. Note that

due to a choice of local reference frame the µy component is always numerically zero.

The DMS of the PS-PES and ICE-CI are in an excellent agreement, with a RMSD of

0.004 D and within 0.5% on average. Right: comparison of the θT component mapped

by the QMS, Eq. (5.245.24), with the ab initio ICE-CI data. The geometric QMS model of

this work, which is fitted to best reproduce the ab initio results, captures the results to

a good degree with low scatter, a mean absolute error of 0.04 DÅ, and an average RMS

difference of around 1.6% (see Supplementary Information for the RMSD analysis).

The values of the QMS parameters are determined by carrying out a least-squares opti-

mization, using a module freely available in the scientific computing package SciPy. [9696]

Table 5.15.1 presents the numerical values and units of the resulting best fit parameters,

and Fig. 5.45.4, right, shows the resulting fit of the θT components, compared between

the QMS fit and ab initio ICE-CI values. The overall fit is in good agreement with

the ab initio values over a broad range of θT values, with very low scatter. The largest
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deviation is found where θT is lowest, i.e. where the quadrupole moment interaction

strength is the weakest.

Table 5.1: Numerical values and units of the quadrupole moment surface function,

Eq. (5.245.24).

Geometry Charges

a [Å] 0.5149 A 0.9763

b −1.1271 B 0.6418

c [Å−1] 0.5146 C 0.7251

d [rad] 3.5908 D −1.0603

e −0.1081 qH
eq 0.3310

req [Å] 0.9578

θeq [rad] 1.8240

5.4 Forces

With the various expressions given in the preceding section analytical atomic force

components can be obtained and are derived from the negative gradient of the total

energy expression, Eq. (5.155.15), with respect to the position of atom a in molecule i,

or

F iaα =− dEtot

driaα

=− ∂Eelst

∂riaα
− ∂Enon−elst

∂riaα
− ∂Emon

∂riaα
(5.33)

The first term on the right hand side result in several contributing factors to the

atomic forces due to the definition of the principal axes, choice of expansion center and

the DMS and QMS. The atomic forces resulting from the simple pair-wise potentials

describing the non-electrostatic terms are omitted for the sake of brevity, and the

atomic forces due to the monomer energy expression – the PS-PES – are accounted for

in their original work. [7474]
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The first term on the right hand side of Eq. (5.335.33), the total intermolecular electrostatic

interaction, can be further divided into four contributions

−∂Eelst

∂riaα
=− ∂Eelst

∂µjβ({rjb})
∂µjβ({rjb})

∂riaα
− ∂Eelst

∂θjβγ({rjb})
∂θjβγ({rjb})

∂riaα

− ∂Eelst

∂V jβγδε...η

∂V jβγδε...η
∂riaα

− ∂Eelst

∂Rjηβ

∂Rjηβ
∂riaα

(5.34)

which are, in order, the partial derivative of the DMS and QMS, partial derivative of

the external field and gradients thereof, and partial derivatives of the local-to-global

rotation matrices as defined in Eq. (5.15.1)–Eq. (5.45.4).

At self-consistency of the iterative process which minimizes the energy in terms of the

polarized moments the following conditions apply

∂Eelst

∂∆µiα
=

∂Eelst

∂∆θiαβ
=
∂Eself

∂∆µiα
=

∂Eself

∂∆θiαβ
= 0

There are no explicit force contributions from the self-energy terms due to the on-site

external field as the self-energy can be written solely in terms of the on-site induced

moments (see the Supplementary Information). This results in a non-trivial additional

condition
∂Eself

∂V jβγδε...η
= 0 (5.35)

Due to these conditions of the self-energy a single force contribution arises and is due

to the local-to-global transformation of the fixed polarizability tensors

− ∂Eself

∂riaα
= −∂Eself

∂Rjηβ

∂Rjηβ
∂riaα

(5.36)

The total force contribution due to the intermolecular electrostatic interaction and

intramolecular self-energy is then

−
(
∂Ein+pol

∂riaα
+
∂Eself

∂riaα

)
=− ∂Ein+pol

∂µjβ({rjb})
∂µjβ({rjb})

∂riaα
− ∂Ein+pol

∂θjβγ({rjb})
∂θjβγ({rjb})

∂riaα

− ∂Ein+pol

∂V jβγδε...η

∂V jβγδε...η
∂riaα

−

(
∂Ein+pol

∂Riηβ
+
∂Eself

∂Riηβ

)
∂Riηβ
∂riaα

(5.37)
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The terms in the expression above are given explicitly in the Supporting Information.

It is noted that in order to evaluate the first term on the right hand side, explicit partial

charge derivatives with respect to atomic positions of the DMS are required, which were

not included in the original work on the PS–PES. [7474] These are provided by Burnham

and Xantheas, first used in the development of a flexible Thole-type multipole moment

expansion potential. [3232]

5.5 Flexible Model Fit

With the introduction of the DMS and QMS, the Gaussian type interaction tensor

screening functions, as well as the changes to the pair-wise repulsion function, all of

the five model parameters which affect the intermolecular interactions g, τd, Aref , k

and h are re-fitted. The fitting is performed with the same least-squares optimization

module used for the QMS fit. The same numerical values are used for the fixed octupole

and hexadecapole, as well as the dipole-dipole, dipole-quadrupole and quadrupole-

quadrupole polarizability as in the original SCME model. [8989] The Fortran based

SCME/f code is freely available online [9797], and includes an interface to the Python

based Atomic Simulation Environment [9898, 9999] library. The data set used for the fitting

Figure 5.5: The lowest lying water cluster (H2O)n isomers for n=2-6 used in the fitting

procedure for the model parameters. From left to right; dimer (Cs), trimer (UUD),

quadromer (S4), pentamer (cyclic, CYC) and hexamer (prism, PRI).

includes several points around the minimum of the dimer binding curve with the energy

minimum and oxygen-oxygen distance corresponding to CCSD(T) calculations. [8080] A

single interaction energy for the lowest lying trimer, tetramer, pentamer and hexamer
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is included. Fig. 5.55.5 shows the geometry of the lowest-lying water clusters (H2O)n

in the range n = 2 − 6. The reference calculations which are used here include the

complete basis set limit CCSD(T) energies of the low-lying water hexamer structures

by Bates and Tschumper. [7979] For the other cluster sizes – trimers, tetramers and

pentamers – complete basis set limit RI-MP2 calculations, with CCSD(T) corrections,

are used. [8080]

Table 5.2: Properties of crystal ice Ih evaluated with SCME [99, 1010] and SCME/f,

compared to experimental values. 〈rOO〉 is the average oxygen-oxygen distance, a, b, c

the lattice parameters for a dipole-free orthorhombic cell (containing eight molecules).

V ZPE
0 (V0) is the optimized cell volume, EZPE

lat (Elat) and BZPE
0 (B0) are the lattice

energy and bulk modulus with (and without) zero-point energy correction, all expressed

per molecule.

Property SCME SCME/f Exp.1

〈rOO〉 [Å] 2.742 2.751 2.751

a [Å] 4.470 4.478 4.497

b [Å] 7.747 7.777 7.789

c [Å] 7.287 7.331 7.321

V0 [Å3] 31.55 30.38

V ZPE
0 [Å3] 31.98 32.05

Elat [eV] −0.611 −0.645 −0.611

EZPE
lat [eV] −0.489 −0.491

B0 [GPa] 11.4 15.0

BZPE
0 [GPa] 12.2 10.9

1 Experimental values: average oxygen-oxygen distance is from Bjerrum [100100], lattice parameters

from Röttger et al. [101101] (and resulting V ZPE
0 ), enthalpy of vaporization (EZPE

lat ) and lattice energy

(Elat) from Whalley [102102], and bulk modulus from Hobbs [103103].

In addition to the clusters, properties of hexagonal ice (ice Ih) have been considered,

which is the most common ice phase. There are no high-level first-principles calcula-

tions with sufficient accuracy to serve as reference values. Instead, experimental data
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for lattice constants, unit cell volume, bulk modulus and lattice energies need to be

used, which generally include zero-point energy (ZPE) effects – and these effects are

quite sizeable. [102102, 104104–106106] Consequently, I have performed phonon calculations

with the SCME/f model for proton disordered units cells of ice Ih containing 96 water

molecules using the Parlinski-Li-Kawazoe finite-displacement method [107107] as imple-

mented in the phonopy package [108108] using 3 × 3 × 3 supercells and a displacement

of 0.01 Å. For a unit cell with fixed cell vectors a geometry relaxation has been per-

formed, which employs the analytical SCME/f forces with a force threshold of 10−3

eV/Å. Then, using a 10× 10× 10 q-point sampling for the Brillouin zone integration,

A numerically converged phonon density of states g(ω) has been obtained, the first

moment of which provides the ZPE

EZPE = h̄
2

∫ ∞
0

ω g(ω) dω . (5.38)

Considering the dependence of the phonon frequencies on the unit cell volume ω = ω(V )

within the so-called quasi-harmonic approximation yields a ZPE-corrected energy-

volume curve

Etot+ZPE(V ) = Etot(V ) + EZPE(V ) , (5.39)

where the energy zero is such that it describes infinitely separated (non-bound) indi-

vidual water molecules. By fitting the Rose-Vinet equation of state [109109] the minimum

EZPE
lat = Etot+ZPE(V ZPE

0 ) of that curve together with the ZPE-corrected bulk modulus

BZPE
0 has been obtained (see supporting information for more details), which can be

compared against accurate experimental data. [101101–103103] In order to include this data

in the fitting process, an initial Etot+ZPE(V ) was calculated based on the SCME/f pa-

rameters first determined by fitting the data set derived from the water clusters. Then,

Etot(V ) was improved by further parameter adjustments such that the expected ZPE

correction would bring it close to the experimental values.

This trial and error scheme was found necessary since the phonon calculations are sig-

nificantly more expensive than the calculation of the cluster properties. The end results

based on a new set of phonon calculations is presented in Table 5.25.2 and shows good

agreement with the experimental target properties. (The concomitant energy-volume
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Table 5.3: Intermolecular interaction model parameters, numerical values and units.

Damping Repulsion

τd [Å−1] 7.5548 Arep [eV] 8149.63

g [Å] 1.1045 k 0.5515

h [Å−1] 3.4695

curves are shown in the supporting information.) Table 5.35.3 compiles the concomitant

final optimized parameters of the SCME/f model.

Table 5.45.4 shows the resulting interaction energy and relative interaction energy ver-

sus the reference CCSD(T) calculations of the lowest lying isomers used in the fit.

This includes a structural analysis comparing the relaxed SCME/f structure to the

CCSD(T) reference structures, where the RMS deviation of nearest neighbor oxygen-

oxygen distances, 〈drOO〉, intramolecular oxygen-hydrogen bond lengths of the donor

hydrogens, 〈drOH〉, hydrogen bonding (H-bond) bond lengths, 〈drO···H〉, and angles

between oxygen-hydrogen-oxygen in H-bonds, 〈d6 OHO〉, are presented. The overall

RMSD of the atomic positions is also presented, 〈dra〉, and is evaluated with the Kabsch

algorithm [110110]. The interaction energies for the different cluster sizes are reproduced

to a reasonable degree, with sub kcal/mol difference compared to the CCSD(T) results,

except for the prism isomer of the hexamer where the interaction energy is overesti-

mated by 1.18 kcal mol−1. The resulting relaxed structures are in an overall very good

agreement with the reference structures, with small variations in the second decimal

in terms of atomic distances. Similarly, the angles between OHO in H-bonds are in a

good agreement with the reference. The largest deviation is found in the angle between

the donor-acceptor in the dimer.

5.6 Model Validation

For further validation of the new model the interaction energies and relative energy

differences of all higher lying isomers of the pentamers and hexamers are calculated,

which are not included in the fitting data set, and compared to the relative energies from
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Table 5.4: Interaction energy (kcal/mol) and distances (Å) between atoms in the

most stable configuration of clusters (H2O)n with n=2,· · · ,6. Eint is the SCME/f cal-

culated interaction energy of the clusters and ∆Eint (kcal/mol) the difference with

respect to the CCSD(T) values. 〈drOO〉, 〈drOH〉 and 〈drO···H〉 are the RMSD of the

oxygen-oxygen neighbour distances, intramolecular oxygen-hydrogen bond lengths of

the donor-hydrogen and bonding oxygen· · · hydrogen bond length distances, respec-

tively, compared to the CCSD(T) obtained structures. [7979, 8080] 〈dra〉 is the overall

RMSD of the relaxed SCME/f structure evaluated using the Kabsch algorithm [110110].

〈d6 OHO〉 is the RMSD of the angle (in degrees) between the oxygen-hydrogen-oxygen

in hydrogen bonds.

(H2O)n Eint ∆Eint 〈drOO〉 〈drOH〉 〈drO···H〉 〈dra〉 〈d6 OHO〉

2-Cs −4.85 +0.18 0.011 0.000 0.017 0.017 5.923

3-UUD −15.16 +0.54 0.035 0.010 0.037 0.037 2.489

4-S4 −27.51 −0.11 0.005 0.014 0.006 0.045 1.382

5-CYC −36.72 −0.71 0.014 0.015 0.003 0.046 0.369

6-PRI −47.10 −1.18 0.017 0.012 0.035 0.033 4.564

the quantum chemistry references. [7979, 8080] The trends are shown in Figs. 5.65.6 and 5.75.7,

and the trend predicted with the rigid SCME is shown for comparison. All structures

are relaxed with a force tolerance of 10−4 eV�A
−1

, and results collected in Table 5.55.5,

which also presents the RMS difference between the relaxed SCME/f structures and

the quantum chemistry reference structures.

For the pentamers, Fig. 5.65.6, most of the relative energy difference trend is captured

with the exception of isomer FRA, whose relative stability is underestimated. Another

key difference between SCME/f and the reference calculations is the series of CAA-

CAB isomers, which have a cagelike structure. In particular the cage structure of

isomers CAA and CAB are not stable and rearrange to isomers which are more akin to

the fused ring structures of the FRA-FRC isomers. The resulting SCME/f structures

of CAA and CAB are near identical, with an interaction energy difference of only 0.01
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Table 5.5: Energies and relative energy and structural properties of the pentamer and

hexamer isomers. See the caption of Table 5.45.4 for the definition of the table entries.

(H2O)n Eint ∆Eint 〈drOO〉 〈drOH〉 〈drO···H〉 〈dra〉 〈d 6 OHO〉

5-FRB −35.60 −0.72 0.026 0.012 0.041 0.036 4.008

5-CAC −35.50 −0.81 0.053 0.012 0.089 0.136 8.548

5-CAA −35.07 −0.53 0.060 0.012 0.053 0.254 9.281

5-CAB −35.06 −1.23 0.065 0.011 0.080 0.237 6.107

5-FRC −33.56 −1.12 0.025 0.013 0.026 0.043 1.859

5-FRA −32.91 0.22 0.025 0.013 0.032 0.059 1.731

6-CAG −46.44 −0.74 0.013 0.017 0.019 0.054 1.607

6-BK1 −46.37 −1.09 0.014 0.015 0.009 0.033 2.346

6-BK2 −46.26 −1.35 0.014 0.016 0.008 0.038 3.433

6-BAG −45.90 −1.52 0.015 0.017 0.012 0.065 3.826

6-CYR −45.36 −1.00 0.012 0.015 0.006 0.018 3.913

6-CB1 −44.57 −1.23 0.013 0.015 0.003 0.031 2.924

6-CB2 −44.49 −1.20 0.013 0.015 0.005 0.025 2.284

1 Pentamers; fused-ring-B (FRB), cage-C (CAC), cage-A (CAA), cage-B (CAB), fused-ring-C

(FAC) and fused-ring-A (FRA); and the hexamers; cage (CAG), book-1 (BK1), book-2 (BK2),

bag (BAG), cyclic-ring (CYR), cyclic-boat-1 (CB1) and cyclic-boat-2 (CB2).

kcal/mol. Only the CAC isomer keeps its cagelike structure, but one of the H-bonds

is not stable (between a donor acceptor oxygen with distance greater than 3.0 Å),

resulting in a rotation of one of the water monomers. Compared to the rigid SCME

predecessor this represents an improvement, in particular for the FRB, CAC and CAA

isomers, whose stability is greatly underestimated relative to the CYC isomer.

For the hexamers, Fig. 5.75.7, the overall trend in the relative interaction energies is

captured to a good degree compared to the CCSD(T) reference, and is a substantial

improvement over the rigid SCME model, which greatly underestimates the stability

of the prism isomer relative to all other isomers. The bond lengths and angles of
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the hexamer isomers are all in very good agreement with the reference structures,

with small differences in the second or third decimal in terms of the bond lengths,

and the H-bonded OHO angles deviate by only 2-4◦. Tables 5.65.6 and 5.75.7 presents

vibrational frequency analysis of the lowest lying isomers, including the cyclic ring

isomer of the hexamer. The RMS deviation from near-CBS CCSD(T) calculations

[111111, 112112] are presented for the different classes of modes. These are intermolecular low-

energy vibrarional modes (10-1000 cm−1), intramonomer bending modes (1600-1800

cm−1) and H-bonded and non-bonded OH stretching modes (ca. 3200-3900 cm−1).

For comparison, the same analysis is performed for the SCME/f model, but with the

quadrupole moment fixed and corresponding to the numerical value of the quadrupole

moment for the ground state monomer configuration.

With the inclusion of the QMS (left column Tables 5.65.6 and 5.75.7) the low-energy vi-

brational modes and, in particular, the bending modes are in a good agreement with

the reference calculations. The RMS deviation ranges from 18 to 23 cm−1 and 7 to

14 cm−1 for the two classes of modes, respectively. The maximum difference in the

bending modes does not exceed 20 cm−1 for any of the clusters analyzed. The red shift

of the H-bonded OH stretches is, however, not captured by our model, resulting in an

overestimation of these modes, which becomes systematically larger with cluster size.

This is due to the underlying monomer potential energy surface, whose limit in terms

of hydrogen dissociation is OH· + H· whereas should be in the condensed phase OH–

+ H+. The model potential does not describe this important change, and the resulting

weakening of oxygen-hydrogen bonds in H-bonding OH. The high-frequency modes for

the dimer are though in a reasonable agreement with the reference calculations.

A comparison to the same vibrational frequency analysis is performed with the quadrupole

moment fixed (right column, Tables 5.65.6 and 5.75.7). Fixing the quadrupole moment re-

sults in a drastic change in the difference between all of the types of modes and for all

cluster sizes, with for example a RMS deviation of up to three times greater for the

bending modes. The overall agreement with the reference calculations of all modes is

consistently worse, in particular for the larger cluster, n=4-6. Only the low-frequency
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Table 5.6: Relative vibrational properties of three lowest lying water clusters (H2O)n

with n=2,3,4 (Cs, UUD, S4). The entries for each system correspond from top to

bottom, the low-frequency intermolecular vibrational modes (l, 10 to 1000 cm−1), in-

tramonomer bending (b, 1600 to 1800 cm−1) and high frequency stretching of H-bond

OH and non-bonded OH bonds (h, 3200 to 3900 cm−1). 〈∆cm−1〉 is the RMSD be-

tween the frequencies in the low, medium and high range, as predicted with SCME/f

compared to near-CBS CCSD(T) reference calculations. [111111, 112112] The last entry is

RMSD for the total frequency range (t), where the value in the parenthesis excludes the

overestimated H-bond OH stretches. max|∆cm−1 | is the maximum absolute difference

for each entry. The two columns on the right are for the SCME/f model potential with

the quadrupole moment set to a fixed value corresponding to the ground state water

monomer configuration.

quadrupole moment surface fixed quadrupole moment

(H2O)n 〈∆cm−1〉 max|∆cm−1 | 〈∆cm−1〉 max|∆cm−1 |

2-Cs l 17.52 41.50 15.33 23.10

b 6.71 9.10 9.18 12.70

h 28.55 36.10 50.41 70.30

t 17.23 23.56

3-UUD l 23.03 49.20 34.43 71.70

b 7.75 12.20 18.41 23.90

h 68.09 89.30 153.65 190.40

t 31.20 (24.98) 64.02 (29.19)

4-S4 l 20.87 44.40 29.43 58.10

b 10.74 12.80 25.69 29.40

h 155.58 200.20 266.11 334.10

t 59.19 (21.06) 100.25 (26.49)
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Table 5.7: Same as Table 5.65.6, but for different water clusters (H2O)n with n=5,6 (CYC,

CYR, PRI).

quadrupole moment surface fixed quadrupole moment

(H2O)n 〈∆cm−1〉 max|∆cm−1 | 〈∆cm−1〉 max|∆cm−1 |

5-CYC l 18.47 35.20 35.08 65.30

b 14.22 19.60 26.44 34.40

h 179.34 229.60 282.41 358.10

t 66.02 (20.13) 105.22 (31.38)

6-CYR l 21.10 44.30 35.16 75.40

b 11.55 13.10 32.53 40.00

h 185.38 239.30 280.06 356.30

t 67.75 (23.24) 103.48 (32.56)

6-PRI l 21.70 87.60 27.74 56.20

b 9.86 18.30 35.16 45.80

h 208.58 408.60 313.99 571.80

t 75.79 (24.60) 113.85 (36.40)
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Figure 5.6: Relative energy difference for the lowest lying pentamers water cluster

isomers. The results for the rigid version of SCME [99, 8989] and SCME/f are com-

pared. Relative energy differences from high level quantum chemistry calculations are

also shown. RI-MP2 energies at the complete basis set limit with CCSD(T) correc-

tions [8080] (MP2/CBS+∆CCSD(T)). The acronyms from left to right are the different

isomers: Cyclic (CYC), fused-ring-B (FRB), cage-C (CAC), cage-A (CAA), cage-B

(CAB), fused-ring-C (FAC) and fused-ring-A (FRA).

modes of the Cs dimer seem improved by fixing the quadrupole moment. While the

parametrization of the intermolecular interaction parameters is with the QMS included,

the structural properties and interaction energy of the small clusters are not drastically

changed with the quadrupole moment fixed (see Supplementary Information).

It is also of interest to analyze the structure of the monomers in crystal ice Ih with or

without the QMS included. Table 5.85.8 presents the average internal HOH angle of each

water monomer in the crystal lattice, extracted at volume V ZPE
0 , and compares to the

experimental value of the angle for the isolated monomer and in crystal ice Ih. The
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Figure 5.7: The same as Fig. 5.65.6 but for hexamer water cluster isomers. CCSD(T)

energies at the complete basis set limit (CCSD(T)/CBS) [7979]. The acronyms from left

to right are the different isomers: Prism (PRI), cage (CAG), book-1 (BK1), book-2

(BK2), bag (BAG), cyclic-ring (CYR), cyclic-boat-1 (CB1) and cyclic-boat-2 (CB2).

experiments show a clear widening of the monomer HOH angle by about 3.5 degrees

(104.5◦–108.1◦) going from the gas to crystal phase. Without the QMS the trend is

opposite, with the angle favoring lower values by about 4.5 degrees (104.5◦–99.95◦),

where the dipole moment is high. The correct trend is captured again with the inclu-

sion of the QMS, with the angle widening by about 2 degrees (104.5◦–106.51◦). The

QMS correctly balances the magnitude of the dipole moment and principal quadrupole

moment in the lattice, and in such a way that a widening of the angle is favoured.

5.7 Discussion and Conclusions

An extension of the SCME potential function has been presented for water molecules

to allow for distortion of the molecular structure. In addition to the dipole moment
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Table 5.8: Average intramolecular HOH angles (in degrees) for the SCME/f model

with and without the QMS. Experimental angles for the isolate water molecule (gas)

and in crystal ice Ih (Ih) are presented for comparison.

Exp (gas) Exp (Ih) SCME/f SCME/f no QMS

〈6 HOH〉 104.5 108.1 106.51 99.95

surface, this flexible potential function, SCME/f, includes a mapping of the quadrupole

moment surface which has not been previously included at this level of detail to our

knowledge. A simpler model for the quadrupole moment that has been used in both

rigid and flexible point charge based potential functions [22, 7575–7878], as well as more

sophisticated polarizable models [3232–4040], make use of the so-called M-site. We now

digress in a brief comparison between the QMS model described in this work and the

M-site model.

In the M-site model the partial charge associated with the oxygen is moved off the

atomic center to a position behind the oxygen and on to the bisector defined by the

two OH bond vectors. The position of the M-site in the global coordinate frame is

written as [113113–115115]

rM = (1− γ)rO +
γ

2
(rH1 + rH2) (5.40)

where 0 < γ ≤ 1. For any finite value of γ the partial charges are re-scaled according

to

qHγl =
qHl

1− γ
, qM = −qHγ1 − qHγ2 (5.41)

such that the dipole moment remains unchanged in the M-site frame, and a single set

of three partial charges describes both the dipole and quadrupole moment.

More importantly, a value of γ can be derived such that the ∆ component in Eq. (5.325.32)

vanishes, resulting in the compactly written moment tensor

θ =


θT 0 0

0 −θT 0

0 0 0.

 (5.42)
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This illustrates that the principal quadrupole moment component θT is origin inde-

pendent, and is the rational for placing the partial charge on the M-site and not on

the oxygen center. The strength of the quadrupole moment interaction is determined

by θT . For the ground state PE-PES water monomer configuration used in this work

a γ = 0.4071 results in a compact tensor of the form in Eq. (5.425.42) (see the Supplemen-

tary Information). Similar values for γ are reported in potential functions based on

the M-site. While such a three site partial charge model can capture both the dipole

and principal quadrupole moment for a fixed ground state monomer configuration, the

question is how the model holds up in the case of a flexible water monomer.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Ab initio T [DÅ]

1

2

3

4

5

M
od
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 [D

Å]

qH
eq

DMS

Figure 5.8: M-site model making use of a fixed charge (γ − qH
eq, red) in the ground

state monomer configuration or the DMS charges (γ − DMS, green). The fixed point

charge model (red) tends to underestimate the strength of the quadrupole moment

over the whole range, whereas when based on the DMS charges (green) the quadrupole

moment is underestimated in the lower region and overestimated in the higher region

(> 3.0 DÅ).

Using the ab inito ICE-CI quadrupole moment data four M-site models are considered

and compared, and are representative of M-site models encountered in the literature.
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Figure 5.9: M-site model making use of scaled charge (γ−qH∗
eq , magenta) and a combi-

nation of scaled DMS and fixed charges as in Eq. (5.255.25) (γ− (DMS + qH
eq)∗, blue). The

overall trend is better captured in Figs. 5.85.8 and 5.95.9, but the scatter is still substantial

for the scaled fixed charge model (magenta). The agreement is improved substantially

with the mixture of fixed charges and variable DMS charges (blue) compared to the

other models, and the scatter is more concentrated in the region of low θT . See the

Supplementary Information for details on the M-site models.

The details of the models and parameters are presented in the Supplementary Infor-

mation. The first two models, Fig. 5.105.10 left, make use of γ = 0.4071 and a set of

fixed partial charges (γ − qH
eq) – corresponding to the partial charges of the ground

state monomer configuration – or scaled ground state charges (γ − qH,∗
eq ). The scaling

parameter is fit such that the model best captures θT over the whole range. The fixed

point charge model tends to underestimate the strength of the quadrupole moment

over the whole range, whereas the scaling of the charge results in a change in the slope

and overall better agreement. However, in both cases the scatter is substantial and the

RMS difference between the trace components of the quadrupole moment versus the

ab inito values is > 10% on average (see the Supplementary Information).
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Figure 5.10: M-site models. See the Supplementary Information for details on the

individual models. Left: M-site models making use of a fixed charge (γ − qH
eq, red)

corresponding to the ground state monomer configuration or scaled charge (γ − qH,∗
eq ,

cyan). The fixed point charge model (red) tends to underestimate the strength of the

quadrupole moment over the whole range, whereas the scaling results in a change in

the slope and an overall better agreement. Right: M-site models making use of variable

DMS charges (γ−DMS, green) and scaled DMS charges (γ−DMS∗), magenta). Both

model tend to underestimate the strength of the quadrupole moment in region of low

strength, whereas overestimate in the region of large strength. The agreement is only

slightly improved with the scaled DMS model, corresponding to a shift of the M-site

to γ = 0.3838.
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In the third and fourth model, Fig. 5.105.10 right, the charge are described with the DMS

charge. In the third model the optimal γ value is used (γ − DMS) and in the fourth

model the DMS charges are scaled (γ−DMS∗) to best capture θT over the whole range.

The qualitative trend is the same in both cases, with the strength of the quadrupole

moment underestimated in the region of low strength, and overestimated in the region

of large strength, and the overall agreement is only slightly improved with a change in

the slope. Similar to the fixed charge models the scatter is substantial, and the RMS

difference is found to be ≈ 10%, on average.

While the simple M-site models capture the overall qualitative trend in the change of

the principal quadrupole moment over a broad range of configurations, an analysis of

the RMS difference of the quadrupole moment components shows that they deviate

significantly for monomer configurations different than the ground state configuration.

Neither the fixed charge or DMS charge M-site models (scaled or not) seem to better

capture the principal quadrupole component over the other, and in all cases the RMS

difference is around 10% or greater. This illustrates that a three site model based on

the M-site principle is not able to capture the variation of the quadrupole moment in

a flexible water potential model to a good degree. The four site QMS model developed

in this work, which captures the principal quadrupole moment with a mean absolute

error of 0.04 DÅ, similarly has low scatter throughout the range with an average

RMS difference of 1.6%, with greatest discrepancy in the region where the quadrupole

moment interaction is the weakest.

Furthermore, the intermolecular interactions of the SCME/f model only depend on

five parameters. The parameters have been fitted to reproduce high level quantum

chemistry calculations for the water dimer energy surface near the equilibrium geom-

etry and interaction energy of the lowest-lying water clusters up to and including the

hexamer, as well as the properties of the Ih ice crystal – and in such a way that ex-

perimental values are reproduced to a good degree after including zero point energy

corrections.

The simple parameterization of the flexible model and the use of a single center for
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the electrostatic interactions allows for the seamless integration into our recently im-

plemented PE-QM/MM interface [7272, 7373].

The calculated energy of the higher lying energy isomers of hexamer water cluster are

found to be in a reasonable agreement with the results of CCSD(T) calculations in

the complete basis set limit. [7979] The relative trend in the energy differences between

the isomers, as well as the overall structures are captured to a good degree. This

represents a significant improvement over the rigid SCME potential function and is

on par with the trend predicted with the HBB2-pol [3636, 3737] potential function, which

explicitly models the N-body expansion up to the three-body terms in the interaction

energy and is the predecessor of the MB-pol potential function. [3838–4040] However,

discrepancies are present in the series of pentamer isomers, in particular the cage-like

isomers. H-bonds in bonds where the distance is greater than 3 Å are found to be

unstable, leading to a rearrangement of some of the SCME/f structures compared to

the reference structures.

Analysis of the vibrational modes of the small water clusters reveal a substantial im-

provement with the QMS mapping included (as opposed to a fixed value). In particular

are the intramolecular bending modes in the range 1600 to 1800 cm−1, with maximum

absolute deviation consistently less than 20 cm−1 with the QMS included, compared

to near-CBS CCSD(T) calculations. [111111, 112112] Importantly, including the DMS only

results in the opposite trend of the intramolecular angle widening in crystal ice Ih com-

pared to the gas phase. The inclusion of the QMS recovers the correct trend due to the

balance between the magnitude of the dipole and principal quadrupole moment which

are functions of the internal geometry and strongly dependent on this angle.

While the results presented here represent an important step forward in the develop-

ment of a single center multipole expansion model for water, there is room for improve-

ment, and this will be addressed in future work. A natural next step to the mapping of

the dipole and the quadrupole is to incorporate a mapping of the polarizability tensors.

Work is ongoing to incorporate the intramolecular geometry dependent mapping of the

dipole-dipole, dipole-quadrupole and quadrupole-quadrupole polarizability tensors by
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Loboda et al. [116116]. It has been suggested that a critical part of the H-bond OH soften-

ing lies in the correct mapping of the polarizability surface of the individual monomers.

[3535]

In particular, and in order to further address the overestimated H-bonded OH stretches,

an improvement of the underlying water monomer potential energy surface – whose

limit in terms of hydrogen dissociation is OH· + H· – must be made when there are

neighboring water molecules such that it approaches to some degree the dissociation

limit in a condensed phase which is OH– + H+. In order to capture this one could

modify the DMS and QMS charges to better represent this limit, and in a way which

depends on the environment. Modifying the charge of the DMS has, for example,

previously been considered in water potentials in order to capture the charge delocal-

ization and resulting softening of the H-bond, such as in the TTM3-F model. [3434]

Further improvements to this flexible SCME model that are being pursued include a

more elaborate repulsive part including deviations from spherical symmetry.
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5.A Appendix

The supporting information includes a detailed derivation of the atomic forces corre-

sponding to contributions presented in Eq. (5.375.37), as well as a comparison between

the numerical and analytical forces as the convergence criteria of the induced mo-

ments is varied. The parameters used for the model M-site description of the principal

quadrupole moment are presented, followed by an analysis of the RMSD between ab

initio versus the QMS quadrupole as well as model M-site quadrupoles with respect to

geometrical variation of the monomer. Binding energies and relative structural prop-

erties of the lowest-lying water clusters are given for the case where the quadrupole

moment is set to a fixed value corresponding to the ground state monomer configu-

ration. Finally, the evaluation of the bulk properties from fitting the energy-volume

relation – with and without zero-point energy corrections – is described.

5.A.1 Analytical Forces

We further apply the chain rule considering the main electrostatic plus induction force

expression in the main text

−
(
∂Eele+ind

∂riaα
+
∂Eself

∂riaα

)
=− ∂Eele+ind

∂µjβ({rjb})
∂µjβ({rjb})

∂riaα
− ∂Eele+ind

∂θjβγ({rjb})
∂θjβγ({rjb})

∂riaα

− ∂Eele+ind

∂V jβγδε...η

∂V jβγδε...η
∂riaα

−
(
∂Eele+ind

∂Rjνo
+
∂Eself

∂Rjνo

)
∂Rjνo
∂riaα

(5.43)

The last term on the right hand side describes the force contribution due to the defini-

tion of the local-to-global reference frame transformation, and is the only term which

includes an explicit contribution to the atomic forces due to the self-energies. To see

this we first write the MM induced dipoles and quadrupoles as

∆µiα = −ααβV iβ −
1

3
Aα,βγV

i
βγ = ∆µiα(α) + ∆µiα(A) (5.44)

∆θiαβ = −Aγ,αβV iγ − Cγδ,αβV iγδ = ∆θiαβ(A) + ∆θiαβ(C) (5.45)
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where on the right hand side of the second equality the contribution from the external

field and field gradient due to the on-site potential is split up. With these definitions

it is easy to relate the external field and field gradient at site i to the self-consistent

moments of molecule i

V iβ =− ∆µiα(α)

ααβ
(5.46)

V iγ =−
∆θiαβ(A)

Aγ,αβ
(5.47)

and

V iγδ =−
∆θiαβ(C)

Cγδ,αβ
(5.48)

V iβγ =− ∆µiα(A)

Aα,βγ
. (5.49)

The self-energy of an induced dipole in linear response theory is

Eµself = −
∫ ∆µi

0

V iβd∆µi. (5.50)

It gives the energy cost of inducing a first order moment in the potential field at site i.

By inserting the relation in Eq. (5.465.46) into the equation above, and by considering only

(for the moment) the induced dipole in in response to an external field gives

Eµself =

∫ ∆µi(α)

0

∆µiα(α)

ααβ
d∆µi =

1

2

∆µiα(α)∆µiβ(α)

ααβ
. (5.51)

For isotropic atomic polarization this becomes

Eiso
self =

1

2

(∆µi)2

α
. (5.52)

This form is most frequently encountered in MM work based on isotropic atomic po-

larization and induced dipole in response to an external field. Similarly for the induced

quadrupole

Eθself = −1

3

∫ ∆θi

0

V iβγd∆θi (5.53)

which expresses the energy cost of inducing a second order moment in the field gradient

at site i. The factor of 1/3 follows from the definition of the traceless Cartesian moments
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[8282] used in SCME. The total self-energy for a single site i in SCME is then

Eself =Eµself + Eθself

=

∫ ∆µi

0

∆µiα(α)

ααβ
d∆µi +

1

3

∫ ∆θi

0

∆θiαβ(C)

Cγδ,αβ
d∆θi

=
1

2

∆µiα(α)

ααβ

(
∆µiβ(α) +

1

3
∆µiβ(A)

)
+

1

6

∆θiαβ(C)

Cγδ,αβ

(
∆θiγδ(C) + ∆θiγδ(A)

)
=

1

2

∆µiα(α)∆µiβ(α)

ααβ
+

1

3

∆µiα(α)∆θiβγ(C)

kα,βγ
+

1

6

∆θiαβ(C)∆θiγδ(C)

Cγδ,αβ
(5.54)

where the relations in Eqs. (5.465.46) and (5.495.49) are used. The matrix k is given by

k =
αC

A
(5.55)

This expression for the self-energies is very useful at self-consistency (SCF). First and

foremost it shows that there are no force contributions arising from partial derivatives

of the on-site potential field and field gradients when considering the self-energy terms,

since at SCF we have
∂Esys

tot

∂∆µiα
=
∂Esys

tot

∂∆θiα
= 0, (5.56)

which implies
∂Eself

∂V jbβγδε...η
= 0 (5.57)

Contributions arise from the static octupole and static hexadecapole, as well as the

dipole-dipole, dipole-quadrupole quadrupole-quadrupole polarizability matrices. The

general contributions are of the following form

∂E

∂Rjνo

∂Rjνo
∂riaα

→ δijδνo,βγ (5.58)

resulting in for the static moments

∂Eele+ind

∂Rjνo

∂Rjνo
∂riaα

=
1

15

(
∂Riηβ
∂riα

RiτγR
i
κδ +Riηβ

∂Riτγ
∂riα

Riκδ +RiηβR
i
τγ

∂Riκδ
∂riα

)
Ωi

′

ητκV
i
βγδ

+
1

105

(
∂Riηβ
∂riaα

RiτγR
i
κδR

i
ση +Riηβ

∂Riτγ
∂riaα

RiκδR
i
ση

+RiηβR
i
τγ

∂Riκδ
∂riaα

Riση +RiηβR
i
τγR

i
κδ

∂Riση
∂riaα

)
Φi

′

ητκσV
i
βγδε (5.59)
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and for the polarizability matrices the contributions are(
∂Eele+ind

∂Rjνo
+
∂Eself

∂Rjνo

)
∂Rjνo
∂riaα

= −1

2

(
∂Riηβ
∂riα

Riτγ +Riηβ
∂Riτγ
∂riα

)
αi

′

ητV
i
βV

i
γ

− 1

3

(
∂Riηβ
∂riα

RiτγR
i
κδ +Riηβ

∂Riτγ
∂riα

Riκδ +RiηβR
i
τγ

∂Riκδ
∂riα

)
Ai

′

ητκV
i
βV

i
γδ

− 1

6

(
∂Riηβ
∂riα

RiτγR
i
κδR

i
ση +Riηβ

∂Riτγ
∂riα

RiκδR
i
ση

+RiηβR
i
τγ

∂Riκδ
∂riα

Riση +RiηβR
i
τγR

i
κδ

∂Riση
∂riα

)
Ci

′

ητκσV
i
βγV

i
δη (5.60)

where the factors 1/2, 1/3 and 1/6 are due to the self-energy terms – i.e. the contri-

bution from the electrostatic plus induction interaction is reduced exactly by one-half

due to net cancellation by the self-energy terms.

Different choices of local frames and principal vectors, as well as atomic force contribu-

tions, are detailed in the work of Lipparini et al. [8181] The specific choices in this work

which define the rotation matrix RiΛλ result in obvious sign changes compared to their

work, so the atomic contributions are detailed below in compact form. We require the

derivatives of the rotation matrix with respect to the atomic coordinates which can be

written as

∂RiΛλ
∂riaα

=


∂eiXx
∂riaα

∂eiXy
∂riaα

∂eiXz
∂riaα

∂eiYx
∂riaα

∂eiYy
∂riaα

∂eiYz
∂riaα

∂eiZx
∂riaα

∂eiZy
∂riaα

∂eiZz
∂riaα

 (5.61)

The COM and principal vectors used to define the rotation are

ri =
∑
a∈i

ria
Ma

M i
, Bi = ri − riH1 , Ci = ri − riH2 (5.62)

Defining

Di = BiCi + CiBi (5.63)

such that

eiZ =
Di

Di
(5.64)

148



“Thesis” — 2022/11/3 — 8:17 — page 149 — #157

5.A. APPENDIX

where Bi, Ci and Di are the euclidean norms of the vectors, the terms in the derivative

of the rotation matrix, Eq. (5.615.61), are then

∂eiZλ
∂riaα

=
∂eiZλ
∂Di

β

(
∂Di

β

∂riγ

∂riγ
∂riaα

+
∂Di

β

∂riaα

)
(5.65)

∂eiXλ
∂riaα

=
∂eiXλ
∂Biβ

(
∂Biβ
∂riγ

∂riγ
∂riaα

+
∂Biβ
∂riaα

)
+
∂eiXλ
∂eiZβ

∂eiZβ
∂riaα

(5.66)

∂eiYλ
∂riaα

=
∂eiYλ
∂eiXβ

∂eiXβ
∂riaα

+
∂eiYλ
∂eiZβ

∂eiZβ
∂riaα

(5.67)

where the leading terms are as follows

∂eiZλ
∂Di

β

=

(
I

Di
− Di ⊗Di

(Di)3

)
λβ

(5.68)

∂eiXλ
∂Biβ

=

(
I− eiZ ⊗ eiZ − eiX ⊗ eiX

| Bi − (Bi · eiZ)Bi |

)
λβ

(5.69)

∂eiXλ
∂eiZβ

=

(
(Bi · eiZ)eiX ⊗Bi

| Bi − (Bi · eiZ)Bi |2
− (Bi · eiZ)I + eiZ ⊗Bi

| Bi − (Bi · eiZ)Bi |

)
λβ

(5.70)

∂eiYλ
∂eiZβ

=ελστδβσe
iX
τ (5.71)

∂eiYλ
∂eiXβ

=ελστe
iZ
σ δβτ (5.72)

where I is the 3×3 identity matrix and εαβγ the Levi-Civita symbols. The latter terms

are

∂Di
β

∂riγ

∂riγ
∂riaα

=

(
(Bi + Ci)I +

Bi ⊗Ci

Ci
+

Ci ⊗Bi

Bi

)
βγ

δγα
Ma

M i
(5.73)

∂Di
β

∂riH1
α

=−
(
BiI +

Bi ⊗Ci

Ci

)
βα

(5.74)

∂Di
β

∂riH2
α

=−
(
CiI +

Ci ⊗Bi

Bi

)
βα

(5.75)

∂Biβ
∂riγ

∂riγ
∂ria

=δβγδγα
Ma

M i
(5.76)

∂Biβ

∂riH1
α

=− δβα (5.77)
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For the DMS (see the main text) the first term on the right hand side is

∂Eele+ind

∂µjβ({rjb})
=

(
∂Eele+ind

∂µjβ({rjb})
+
∂Eele+ind

∂V kγδ...η

∂V kγδ...η

∂µjβ({rjb})

)
=

1

2
V jβ +

1

2

n∑
k

δjkV
k
β

(5.78)

∂µjβ({rjb})
∂riaα

=

(
∂qjb

∂riaα
+
∂rjb

∂riaα

)
= δji

(
ni∑
b

∂qjb

∂riaα
rjbβ + δbaq

jbδβα

)
(5.79)

∂Eele+ind

∂µjβ({rjb})
∂µjβ({rjb})

∂riaα
=qiaV iα +

ni∑
b

∂qib

∂riaα
ribβ V

i
β (5.80)

The derivatives of the DMS, ∂qib

∂riaβ
, with respect to the atomic positions are derived by

Burnham and Xantheas [3232] and are available in open source repositories.

For the force contribution due to the QMS we first rewrite the following expres-

sion

θiαβ(riO, riH1 , riH2) =

H′
1,H

′
2,L1,L2∑
a

3

2

{
qia
(

(ria − ri)α(ria − ri)β −
δαβ
3
||ria − ri||

)}
(5.81)

noting that the position of the L-sites in the global frame are

riLlα = RiHlηα e
iZ
η f(rHl) + riα (5.82)

we remove redundant terms and the expression for the QMS becomes

θiαβ(riO, riH1 , riH2) =
3

2

{H′
1,H

′
2∑

a

qia
(

(ria − ri)α(ria − ri)β −
δαβ
3
||ria − ri||

)

+

1,2∑
l

qiLl
(
driLlα driLlβ −

δαβ
3
||driLl ||

)}
(5.83)

where

driLlα = RiHlηα e
iZ
η f(rHl) (5.84)
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Similar to the DMS we have

∂Eele+ind

∂θjβγ({rjb})
=

(
∂Eele+ind

∂θjβγ({rjb})
+
∂Eele+ind

∂V kδκ...η

∂V kδκ...η

∂θjβγ({rjb})

)
=

1

6
V jβγ +

1

6

n∑
k

δjkV
k
βγ

(5.85)

∂θjβγ({rjb})
∂riaα

=
3

2
δji

{H′
1,H

′
2∑

b

∂qjb

∂riaα

(
(rjb − rj)β(rjb − rj)γ −

δβγ
3
||rjb − rj ||

)

+

1,2∑
l

∂qjLl

∂riaα

(
drjLlβ drjLlγ − δβγ

3
||drjLl ||

)

+

H′
1,H

′
2∑

b

qjb

(
δβα

(
δba −

nj∑
c

δca
M c

M j

)
(rjb − rj)γ

+ (rjb − rj)βδγα

(
δba −

nj∑
c

δca
M c

M j

)

+ δβγ
2

3

(
δba −

nj∑
c

δca
M c

M j

)
δαδ(r

jb − rj)δ

)

+

1,2∑
l

qjLl

(
δβα

∂drjLlβ

∂riaα
drjLlγ + drjLlβ δγα

∂drjLlγ

∂riaα

+ δβγ
2

3

∂rjLlδ

∂riaα
drjLlδ

)}
(5.86)

The terms involving the partial derivative of the charges for each site are readily avail-

able since through the definition of the QMS charges we have

qiH
′
l =AqiHl + BqiHleq (5.87)

qiLl =CqiHl + DqiHleq (5.88)
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and hence the expression reduces to

∂Eele+ind

∂θjβγ({rjb})
∂θjβγ({rjb})

∂riaα
=

1

2

1,2∑
l

{
∂qiHl

∂riaα

(
A

(
driHlβ driHl

γ − δβγ
3
||driHl ||

)

+ C

(
driLlβ driLlγ −

δβγ
3
||driLl ||

))

+ qiH
′
l

(
2

(
δba −

ni∑
c

δca
M c

M i

)
driHl
γ δβα

− 2

3

(
δba −

ni∑
c

δca
M c

M i

)
driHlα δβγ

)

+ qiLl

(
2
∂driLlβ

∂riaα
driLlγ −

2

3

∂driLδ
∂riaα

driLlδ δβγ

)}
V iβγ (5.89)

where

driHlα = (riHl − ri)α (5.90)

The only unknowns are the derivatives of the position of the L-sites in the local frame

reference. Applying the rotation operators

RiL1 =
(

cos(θ′)I− sin(θ′)
[
eiX
]
×

)
(5.91)

RiL2 =
(

cos(θ′)I + sin(θ′)
[
eiX
]
×

)
(5.92)

on eiZ in the case of L1 and L2 the expression for the local frame vectors becomes

driL1
α =

(
cos(θ′)eiZα − sin(θ′)eiYα

)
f(riH1) (5.93)

driL2
α =

(
cos(θ′)eiZα + sin(θ′)eiYα

)
f(riH2) (5.94)

Derivatives of the expressions above are of the form

∂driLlβ

∂riaα
=
∂driLlβ

∂eiZγ

∂eiZγ
∂riaα

+
∂driLlβ

∂eiYγ

∂eiYγ
∂riaα

+
∂driLlβ

∂f(rHl)

∂f(rHl)

∂riaα

+

(
∂driLlβ

∂cos(θ′)

∂cos(θ′)

∂θ′
+

∂driLlβ

∂sin(θ′)

∂sin(θ′)

∂θ′

)
∂θ′

∂riaα
(5.95)
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For l = 1 as an example the leading terms are

∂driLlβ

∂eiZγ
=cos(θ′)f(riH1)δβγ (5.96)

∂driLlβ

∂eiYγ
=− sin(θ′)f(riH1)δβγ (5.97)

∂driL1

β

∂f(rH1)
=
(
cos(θ′)eiZβ − sin(θ′)eiYβ

)
(5.98)

∂driLlβ

∂cos(θ′)

∂cos(θ′)

∂θ′
=eiZβ (sin(θ′)) f(riH1) (5.99)

∂driLlβ

∂sin(θ′)

∂sin(θ′)

∂θ′
=eiYβ (−cos(θ′)) f(riH1) (5.100)

and the two remaining latter terms are

∂f(rH1)

∂riH1
α

=− b (rO − rH1)α
| rO − rH1 |

− 2cf(rH1)
(rO − rH1)α
| rO − rH1 |

(5.101)

∂θ′

∂riH1
α

=
1√

1− x2

(
− (rO − rH2)α
| rO − rH1 || rO − rH2 |

+ x
(rO − rH1)α
| rO − rH1 |2

)
(5.102)

where

x =
(rO − rH1) · (rO − rH2)

| rO − rH1 || rO − rH2 |
and

θ′ = arccos(x) (5.103)

Finally, the third term on the right hand side in the force expression of equation 5.435.43

is the partial derivatives of the external field at each site with respect to the atomic

positions. It is of the general form

∂Eele+ind

∂V jβγδε...η

∂V jβγδε...η
∂rkδ

∂rkδ
∂riaα

→ Oiβγδε...ηV
i
αβγδε...η

Ma

M i
(5.104)

where Oiβγδε...η is the (n − 1)th ranked moment tensor (static plus induced) and

V iαβγδε...η the corresponding nth ranked external potential gradient. Considering the

electrostatic plus induction interaction expression (see the main text), this leads to

∂Eele+ind

∂V jβγδε...η

∂V jβγδε...η
∂rkδ

∂rkδ
∂riaα

=

(
(µiβ({ria}) + ∆µiβ)V iαβ +

1

3
(θiβγ({ria}) + ∆θiβγ)V iαβγ

+
1

15
ΩiβγδV

i
αβγδ +

1

105
ΦiβγδεV

i
αβγδε

)
Ma

M i
(5.105)
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The energy-force consistency of the formulation is checked against numerical forces,

and at different convergence criteria of the induced moments, see figure 5.115.11.

Figure 5.11: C2v isomer configuration for the water dimer (top left), used for the

numerical versus analytical forces at different convergence criteria ranges for one of the

right hydrogens, HR (top right), as well as the left and right oxygen, OL (bottom left)

and OR (bottom right). The convergence of the force components is shown versus the

magnitude of the convergence criteria, CC, which is defined as
∑
i | ∆µin+1 −∆µin |≤

CC, and similarly for the induced quadrupole moment. Good energy-force consistency

is reached reliably at a criteria of 1e-6 D for the dipole (or DÅ for the quadrupole).
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5.A.2 Deviation of M-site Models

The general expression for the %RMS difference is given by

%RMS =

√∑x,y,z
i (θii − θab initio

ii )2∑x,y,z
i (θab initio

ii )2
× 100% (5.106)

and reveals if there is a large deviation from the individual components of the quadrupole

moment along the trace, {θxx, θyy, θzz}, relative to the trace norm. While a quadrupole

model may capture the principal quadrupole component θT , such as the M-site based

γ−(DMS−qH
eq)∗ model, to a reasonable degree this can simply be due to a net cancella-

tion of errors in the individual components. The QMS model captures both the θT and

the ∆ component on average at around 1.6% evaluated over the whole range. There is

no systematic correlation in the deviation of the quadrupole components of the QMS

models and the RMSD of the monomer geometry from the equilibrium geometry. The

RMSD of the geometry is evaluated with the Kabsch algorithm [110110].

To solve for the γ factor and hence the position of the M-site such that ∆ vanishes

(see main text), one considers the water monomer in the equilibrium configuration

with the oxygen placed at the origin. In this configuration and frame of reference the

quadrupole moment tensor only has components along the trace {θxx, θyy, θzz}, where

θzz = 2∆. This component, in terms of the charges and positions of the hydrogens and

the M-site, is given by [117117]

θzz = qH(−(rH
x )2 + 2(rH

z )2 − 2(rM
z )2) (5.107)

which is trivial to solve in order for ∆ to vanish, by using the generalization of this

expression in the global coordinate frame [113113–115115]

rM = (1− γ)rO +
γ

2
(rH1

+ rH2
) (5.108)

5.A.3 Energy-Volume Curves for Ice Ih

Fig. 5.135.13 shows energy-volume curves without (Etot(V ), blue) and with zero-point-

energy correction according to the quasi-harmonic approximation (Etot+ZPE(V ), red).
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Figure 5.12: Root-mean-square percentage difference between the three diagonal com-

ponents of the quadrupole moment tensors of two M-site models and the QMS model

versus the ab initio (ICE-CI) quadrupole moment tensor respectively. The ab initio

and the average RMS percentage QMS difference is around 1.6%. The largest devi-

ation corresponds to the numerically lowest θT . There is no correlation between the

magnitude of the relative geometrical change relative to the ground state monomer

geometry and the deviation of the quadrupole moment.

The indicated 6 data points are the direct results from the calculations with the opti-

mized (final) parameters for SCME/f described in the main article around the equilib-

rium volume. The lines are the results of least-square fits to the Rose-Vinet equation

of state

E(η) = E0 +
2B0 V0

(B′ − 1)2
·
[
2− (5 + 3B′ (η − 1)− 3η) · exp

(
−3

2
(B′ − 1) (η − 1)

)]
(5.109)

as implemented in the PHONOPY package [108108], where η = V
V0

and E0 = −Elat. The

corresponding fit parameters compiled in Table 5.95.9. We have verified that adding more

points does not yield significant changes for the fit parameters, in particular those that

are directly compared against experimental data (E0, V0 and B0).
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Figure 5.13: Energy-volume curves without (Etot(V ), blue) and with zero-point-energy

correction (Etot+ZPE(V ), red) obtained with the optimized (final) parameters for

SCME/f. Energies and volumes are per water molecule.

E0 (eV) V0 (Å3) B0 (eV/Å3) B0 (GPa) B′

Etot 0.645 30.38 0.094 15.0 5.39

Etot+ZPE 0.489 31.98 0.076 12.2 5.68

Table 5.9: Fit parameters for the Rose-Vinet equation (Eq. (5.1095.109)) for the fits to

Etot(V ) and Etot+ZPE(V ) shown in Fig. 5.135.13. All quantities are given per water

molecule.
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