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CHAPTER 3

Importance of Zero-point Energy for Crystalline Ice

Phases

This chapter is based on:

S. Rasti and J. Meyer, Importance of zero-point energy for crystalline ice phases: A

comparison of force fields and density functional theory, J. Chem. Phys. 150, 234504

(2019).

61



“Thesis” — 2022/11/3 — 8:17 — page 62 — #70
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Abstract

Density functional theory (DFT) including van der Waals (vdW) interactions and ac-

counting for zero-point energy (ZPE) is believed to provide a good description of crys-

talline ice phases [B. Pamuk et al., Phys. Rev. Lett. 108, 193003 (2012)]. Given

the computational cost of DFT, it is not surprising that extensive phonon calculations,

which yield the ZPE, have only been done for a limited amount of ice structures. Com-

putationally convenient force fields on the other hand are the method of choice for large

systems and/or dynamical simulations e.g. of supercooled water. Here I present a sys-

tematic comparison for seven hydrogen-ordered crystalline ice phases (Ih, IX, II, XIII,

XIV, XV, VIII) between many commonly-used non-polarizable force fields and density

functionals, including some recently developed meta-GGA functionals and accounting

for vdW interactions. Starting from the experimentally determined crystal structures,

I perform space-group-constrained structural relaxations. These provide the starting

point for highly-accurate phonon calculations that yield effectively volume-dependent

ZPEs within the quasi-harmonic approximation. In particular when including ZPE, the

force fields show a remarkably good performance for equilibrium volumes and cohesive

energies superior to many density functionals. A decomposition of the cohesive ener-

gies into intramolecular deformation, electrostatic and vdW contributions quantifies

the differences between force fields and DFT. Results for the equilibrium volumes and

phase transition pressures for all studied force fields are much more strongly affected

by ZPE than all studied density functionals. I track this down to significantly smaller

shifts of the O-H-stretch modes and compare with experimental data from Raman

spectroscopy.

3.1 Introduction

Ice is a condensed phase of water which plays an important role in different fields

including astrophysics and planetary sciences [11–44] as well as cryobiology [55]. It occurs

in many different phases due to the large variety of forming different hydrogen bonds
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between the individual H2O molecules. With increasing pressure these ice phases get

more close packed [66], which makes their phase diagram and their structures more

unusual [77]. From the 17 known ice phases [88] seven are proton ordered and thus have

a well-defined crystal structure. These ice phases (ice Ih, ice IX, ice II, ice XIII, ice

XIV, ice XV, ice VIII) capture a wide range of local coordination and thus (hydrogen)

bonding scenarios between individual H2O molecules in solid water. They are listed

together with their space groups and depicted in Table 3.13.1 and Fig. 3.13.1, respectively,

ordered by increasing pressures at which they form. The geometric structure and

relative stability of these different ice phases can be conveniently model using small unit

cells and periodic boundary conditions in order to compare to available experimental

data.

Ice-Ih Ice-IIIce-IX Ice-VIIIice-XIII Ice-XIV Ice-XV

Figure 3.1: The unit cell of seven proton ordered ice structures. The oxygen and

hydrogen atoms are shown in red and white colors, respectively.

Despite more than 30 years of computer simulations of water, chemical interaction

models are still challenged to accurately describe the phase diagram of water [99–1111]

due to the complex interplay between hydrogen bonding [1212, 1313], van der Waals (vdW)

[1414–1818] and other non-local exchange-correlation effects [1010, 1111, 1919–2121]. Density func-

tional theory (DFT) can capture many of these contributions with varying accuracy

for different exchange correlation functionals [1010, 1111, 1616–1919] and so can force fields de-

pending on the sophistication of their parametrization [2222]. Furthermore, vibrational

properties can also play an important role, but this has so far been investigated only for

a small amount of ice phases [1717, 1818, 2323–2626]. For example, zero-point energy associated

with the lattice vibrations has been found to be responsible for the anomalous volume

isotope effect (VIE) of ice Ih [1818, 2727] as well as isotope effects for phase transitions

[2828].

63



“Thesis” — 2022/11/3 — 8:17 — page 64 — #72

CHAPTER 3. IMPORTANCE OF ZERO-POINT ENERGY FOR CRYSTALLINE
ICE PHASES

It is the goal of this study to provide an extensive comparison between off-the-shelve

(non-polarizable) force fields, most of which have been fitted to experimental data

for liquid water, and state-of-the-art density functionals for the aforementioned seven

proton-ordered ice phases (Table 3.13.1 and Fig. 3.13.1). Given the computational efficiency

and good performance in previous studies of ice Ih, II and III [1818, 2424, 2828] compared

to path integral molecular dynamics [2323], lattice dynamics combined with the quasi

harmonic approximation has been used to obtain the ZPE and account for its influ-

ence on equilibrium structures and cohesive energies. I find a large effect on structural

properties in case of the force fields and almost none for DFT, which are related to

a different description of the O-H-stretch frequency shifts upon compression and ex-

pansion. Likewise, I identify qualitatively different trends for the contributions to the

cohesive energies.

Table 3.1: Bravais lattice, space group, number of water molecules N per unit cell and

formation conditions (minimum and maximum pressures Pmin and Pmax, respectively)

of the crystalline ice phases considered in this work.

Ice Bravais Lattice Space group N Pmin . . . Pmax (GPa)

Ih Hexagonal P63cm
a 12 0.0 . . . 0.2 b

IX Tetragonal P41212 c 12 0.2 . . . 0.4b,d

II Trigonal R3̄ e 12 0.3 . . . 0.5 b,f

XIII Monoclinic P21/a
d 28 0.5 . . . 1.1 b

XIV Orthorombic P212121
d 12 1.1 . . . 1.3 b

XV Triclinic P 1̄ f 10 1.2 . . . 1.5 b

VIII Tetragonal I41/amd
g 8 1.5 . . . 2.5 b,h

aFrom Ref. [2929] bFrom Ref. [3030] cFrom Ref. [3131] dFrom Ref. [3232] eFrom Ref. [3333]

f From Ref. [3434] gFrom Ref. [3535] hFrom Ref. [3636]

This chapter is structured as follows: In Section 3.23.2 the theoretical methods and com-

putational details are briefly described. Subsequently, results for the relaxed structures

(Section 3.3.13.3.1), the cohesive energies for these structures together with a decomposi-

tion into different bonding contributions (Section 3.3.23.3.2) and phase transition pressures
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(Section 3.3.33.3.3) are presented. This is followed by a detailed analysis of the ZPE (Sec-

tion 3.3.43.3.4). The chapter ends with conclusions and a short outlook on future work in

Section 3.43.4.

3.2 Methodology

3.2.1 Total energy calculations

The Lammps code has been used [3737] in order to calculate total energies, forces and

stress tensors for the SPC/E [3838], TIP3P [3939], TIP4P/2005 [4040], TIP4P/ice [4141] and

q-TIP4P/F [4242] force fields (FF), that have been parametrized and are commonly

used for simulations of water. Harmonic potentials were added to SPC/E, TIP3P,

TIP4P/2005 and TIP4P/ice in order to enable intramolecular OH-bond stretching

(ωstretch = 3357cm−1) and HOH-angle bending (ωbend = 1610 cm−1) based on experi-

mental data [4343] for the corresponding vibrational modes of liquid water. q-TIP4P/F

already describes flexible water molecules by construction [4242]. The Lennard-Jones

parts of these force fields have been truncated at a cut-off distance of 9 Å. Long-range

Coulomb interactions are accounted for via Ewald summation [4444].

DFT calculations at the LDA [4545] and GGA [4646] level have been carried out with the

FHI-aims package [4747, 4848] using the standard tight settings. For the latter, pairwise

dispersion interactions were added to the PBE exchange-correlation functional [4646]

using the Tkatchenko-Scheffler (PBE+TS) [4949] as well as the many body dispersion

correction (PBE+MBD) [5050] methods. Calculations at meta-GGA level (and beyond)

were performed with the Vasp code [5151, 5252] using the hard projector-augmented-wave

(PAW) potentials [5353] for hydrogen and oxygen included with VASP [5454] together with a

plane-wave cut-off energy of 900 eV. The SCAN [5555] and SCAN+rVV10 [5656] exchange-

correlations functionals have been used, where the latter includes the non-local rVV10

van der Waals functional [5757, 5858] on top of the SCAN meta-GGA. In all cases a 4×4×4

Monkhorst-Pack grid [5959] is used for Brillouin zone sampling.
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For the force fields the total energy EFF can be decomposed according to

EFF = Emol + Eelec + ELJ-r + ELJ-a︸ ︷︷ ︸
ELJ

, (3.1)

where Emol is the sum of all intramolecular (stretching and bending) contributions and

Eelec is the electrostatic (Coulomb) energy. ELJ-r denote the repulsive and ELJ-a the

attractive part of the Lennard-Jones potential (ELJ), that is employed in all of the force

fields used in this study in order to account for intermolecular Pauli-repulsion and van

der Waals (vdW) interactions, respectively. Likewise, for the DFT calculations, it is

straightforward to decompose the total energy EDFT(+vdW) into

EDFT(+vdW) = Ekin+XC + Eelec (+EvdW) . (3.2)

Here Ekin+XC is the sum exchange-correlation and kinetic, Eelec is the Hartree and

EvdW the vdW energy.

Data obtained from neutron diffraction experiments [3131–3535, 6060] has been used in order

to generate the initial structures of proton ordered ice phases compiled in Fig. 3.13.1

and Table 3.13.1. As originally suggested by Hamann [2929], ice Ih has been modeled with

a unit cell containing 12 molecules. In order to simultaneous relax the lattice vectors

and the internal coordinates of each ice structure while constraining its space group,

the algorithm suggested by Pfrommer et al. [6161] has been implemented into the Atomic

Simulation Environment [6262]. Using this implementation with the stress tensor and

forces obtained from the FF and DFT calculations, space-group constrained equilibrium

structures with equilibrium unit cell volume V0 could be obtained. A tight (generalized)

maximum force threshold of 10−4 eV/Å has been used as convergence criterion for the

geometry optimizations. This ensures (vide infra) high-quality phonon calculations. In

order to obtain bulk moduli B0, energy-volume curves E(V ) are fitted to 13 structures

within ±4% of the isotropically contracted and expanded V0 using the Rose-Vinet [6363]

equation of state (EOS), performing geometry optimizations of the internal coordinates

for each of them. Based on the optimized structures, cohesive energies are obtained

according to

Ecoh = Emol − 1
Nice

Eice (3.3)
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in the usual way, where Emol is the total energy of an isolated H2O molecule, Eice is

the total energy of the optimized unit cell of the ice phase with Nice water molecules

therein.

3.2.2 Inclusion of Zero-Point Energy Effects

The quasi-harmonic approximation (QHA) has been used in order to evaluate the

Helmholtz free energy

F (V, T ) = E(V ) + Fphonon(V, T ) (3.4)

with

Fphonon(V, T ) =
1

2

∑
q,b

h̄ωq,b(V )︸ ︷︷ ︸
EZPE

+kBT
∑
q,b

ln

[
1− exp

(
−h̄ωq,b(V )

kBT

)]
(3.5)

Here kB is the Boltzmann constant and ωq,b is the phonon frequency at wavevector q

for band b. The zero-point energy (ZPE) is (equivalently) given by the first moment

of the phonon density of states (DOS) nphonon

EZPE = Fphonon(V, T = 0) = h̄
2

∫ ∞
0

dωω nphonon(ω) (3.6)

where nphonon(ω) =
∑

q,b δ(ω−ωq,b). Because of the volume dependence of the phonon

frequencies and the ZPE the minimum of Fphonon(V, T ) with respect to V can be

shifted compared E(V ), resulting in equilibrium volumes V ZPE
0 , bulk moduli BZPE

0 and

cohesive energies EZPE
coh that account for ZPE effects. These are obtained by calculating

phonons for the same 13 structures that have been used for the E(V ) curves before.

The Parlinski-Li-Kawazoe finite-displacement method [6464] has been employed for the

phonon calculations (with displacement of 0.001 Å), and F (V, T = 0)-curves fitted

employing the Rose-Vinet [6363] EOS, both as implemented in the phonopy package

[6565]. Exploiting symmetry, the Brillouin zone has been sampled by 30× 30× 30 grids

for those calculations, which is equal to at least 1456 irreducible q-points for each

structure.

67



“Thesis” — 2022/11/3 — 8:17 — page 68 — #76

CHAPTER 3. IMPORTANCE OF ZERO-POINT ENERGY FOR CRYSTALLINE
ICE PHASES

3.2.3 Determination of Phase-Transition Pressures

Transition pressures PA→B, at which an ice phase A goes over into a phase B, are

obtained at T = 0 using three different approximations:

1. The ∆-approximation yields the transition pressure as the negative slope of the

common tangent between the E(V )-

P∆
A→B = −∆E

∆V0
= −EB − EA

VB − VA
(3.7)

or the F (V, T = 0)-curves

P∆,ZPE
A→B = − ∆F0

∆V ZPE
0

= −
F (V ZPE

0,B , T )− F (V ZPE
0,A , T )

V ZPE
0,B − V ZPE

0,A

∣∣∣∣∣
T=0

(3.8)

of the two ice phases A and B. Obviously, the latter includes ZPE effects.

2. The effect of contraction and expansion can also be included directly in the ther-

modynamic description by adding the PV to E(V ) and minimizing the resulting

enthalpy with respect to the volume

H(P ) = min
V

[E(V ) + PV ] . (3.9)

The crossing point of H(P ) for two ice phases A and B then defines the corre-

sponding transition pressure PHA→B

HA(PHA→B) = HB(PHA→B) . (3.10)

3. Also accounting for the phonon contributions within the QHA, the Gibbs free

energy

G(T, P ) = min
V

[E(V ) + Fphonon(V, T ) + PV ] (3.11)

is calculated in the same fashion H(P ) above. The zero-temperature transition

pressure PGA→B is then defined as the pressure where the Gibbs free energies of

two ice phases A and B are equal

GA(PGA→B, T )
∣∣
T=0

= GB(PGA→B, T )
∣∣
T=0

. (3.12)
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3.3 Results and Discussions

3.3.1 Equilibrium Structures

The detailed results from the structural optimization with all interaction models are

provided in the Section 3.A3.A. Figure 3.23.2 highlights the relative differences of the calcu-

lated equilibrium volumes with respect to measured data. Without considering ZPE

(Fig. 3.23.2 (a)), q-TIP4P/F shows the best agreement with experiments for all ice phases

among the force fields. It yields the smallest average deviation of about 3%, which in-

creases in the order q-TIP4P/F < TIP4P/ice < TIP4P/2005 < TIP3P < SPC/E to

almost 8%.

As expected from previous studies for selected ice phases, LDA shows the worst per-

formance among all DFT methods [1111]. The PBE-based results are in good agreement

with results from previous calculations [1919]. PBE shows an overall good performance,

while including the TS and MBD corrections to account for vdW-interactions improve

the PBE structures for high-pressure ice phases. On the other hand, the equilibrium

volumes of the low-pressure ice phases (ice Ih in particular) are better described by

TIP3P and q-TIP4P/F. The more compact forms of the high-pressure ice phases thus

pose a much bigger challenge to the force fields to properly account for molecular

deformation, vdW interactions hydrogen bonding networks. On average though, the

deviation of the equilibrium volumes for all PBE-based methods is comparable to the

TIP4P-family FFs. Quite in contrast, SCAN and (even worse) SCAN+RVV10 show

significantly larger deviations from the experimentally determined structures than all

force fields.

Figure 3.23.2 (b) shows the results for the equilibrium volumes including ZPE. Apart from

PBE, the volumes for all DFT methods increase very little towards the corresponding

experimental data. ZPE-corrected PBE also yields enlarged unit cells, but these now

become too large. The ZPE-corrected equilibrium volumes for all FFs increase much

more and become significantly closer to the experimental data. Consequently, the

average deviations for the latter become less than 3% and thus outperform all DFT
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methods. The importance of individual phonon modes for this result will be analyzed

in more detail in Section 3.3.43.3.4.
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Figure 3.2: Relative differences of calculated V0 (a) and V ZPE
0 (b) from experimental

data (black dashed line at 0) for the unit cell volumes of the various ice phases. Lines

are meant to guide the eye only, with differently colored dashed (solid) lines marking

force fields (density functionals).

3.3.2 Cohesive Energies

The cohesive energy per H2O molecule allows to characterize the relative stability of

the different ice phases. Experimental data is available ice Ih, IX, II and VIII from

Whalley [6666] without and with ZPE. ZPE is excluded from the latter in a linear fashion,

and ice IX, II, VIII are less stable than ice Ih by 5, 1 and 33 meV/H2O, respectively.

This data is shown together with the results of the calculations from this work without

(with) ZPE in Fig. 3.33.3 (a)(Fig. 3.33.3 (b)). The sequence of increasingly compressed ice

structures listed in Table 3.13.1 is therefore expected to decrease in stability and thus
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Figure 3.3: Cohesive energies per water molecule for the various ice phases without (a)

and with (b) account for ZPE. Lines are meant to guide the eye only, with differently

colored dashed (solid) lines marking force fields (density functionals). Experimental

data from Whalley [6666] is shown by blue squares, without (a) and with (b) ZPE cor-

rection suggested as part of that work. Due to the strong overbinding of LDA relative

to the experimental reference, results are not shown here, but provided in the supple-

mentary material together with all other numerical values.

yield decreasing cohesive energies.

Without ZPE (see Fig. 3.33.3 (a)) all methods correctly predict ice Ih (ice VIII) to be

most (least) stable. Only the SCAN functional yields the relative cohesive energies in

outstanding quantitative agreement with experiments. It is therefore the only method

that is able to predict that ice II is more stable than ice IX, as has been observed

before by Sun et al. [2121]. In addition to SCAN, the near degeneracy between ice

Ih and ice II is only captured correctly with DFT functionals that explicitly account

for vdW interactions (PBE+TS, PBE+MBD, SCAN+rVV10). Still, all DFT methods
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functionals overbind the structures by more than 50 meV per water molecule with LDA

being significantly further away. Absolute cohesive energies are on average much better

described by all the FFs, except for TIP4P/ice, which surprisingly shows the largest

offset with respect to the experimental data. The relative stability can be problematic

(in particular for TIP3P). Like for the equilibrium volumes q-TIP4P/F performs best

overall by predicting even the absolute cohesive energies very accurately.

Including ZPE reduces the cohesive energy in all calculations (see Fig. 3.33.3 (b)) as

expected according to the ZPE correction employed by Whalley [6666]. Consequently,

the superiority of the FFs for the prediction of the absolute cohesive energies does not

change. q-TIP4P/F remains the best choice among the FFs and TIP4P/ice remains

the worst. The prediction of relative stability does not improve or even gets worse for

TIP3P. For the DFT methods LDA gains the biggest improvements due to ZPE but

still shows the worst description. The cohesive energies of PBE and PBE+TS improve

slightly for ice VIII. For the SCAN functional on the other hand, the inclusion of ZPE

very slightly worsens the predicted relative stability of the ice phases.

In order to analyze where the differences of the cohesive energies come from, Fig. 3.43.4

shows a decomposition into the total-energy contributions described in Section 3.2.13.2.1.

As shown by the negative sign of Emol
coh + ELJ-r

coh for the FFs (Fig. 3.43.4 (a)) and Ekin+xc
coh

for almost all DFT methods (Fig. 3.43.4 (d)) these contributions decrease the absolute

cohesive energy of each ice phase due to structural deformation in the crystal compared

to the gas phase. LDA as well as SCAN for ice VIII and PBE+TS are noteworthy

exceptions to this trend by yielding positive Ekin+xc
coh . Overall, for both DFT and

FFs, the destabilization decreases for the more compact ice phases with increasing

pressure.

In contrast, the electrostatic contributions Ecoul
coh shown in Fig. 3.43.4 (b) and Fig. 3.43.4 (e)

for FFs and DFT, respectively, stabilize each ice phase, and the stabilization reduces

from ice Ih to ice VIII. For LDA, the magnitude of the stabilization can be up to

two times larger than for TIP4P/ice, which has the largest Ecoul
coh among the force

fields.
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Figure 3.4: Decomposition of cohesive energy without ZPE for the various ice phases

(see 3.33.3 (a)) into contributions to the total energies for FFs ((a)-(c), see Eq. (3.13.1)) and

DFT ((d)-(f), see Eq. (3.23.2)). Lines are meant to guide the eye only, with differently

colored dashed (solid) lines marking force fields (density functionals).

Naturally, the contributions to the cohesive energies related to the attractive part of

the Lennard-Jones potential ELJ-a
coh in case of the FFs (Fig. 3.43.4 (c)) and van der Waals

energies EvdW
coh for PBE+TS and PBE+MBD (Fig. 3.43.4 (f)), stabilize each ice phase.

The latter two DFT methods, which explicitly separate EvdW, show a monotonously

increasing stabilization from ice Ih to ice VIII. In particular, as already discussed by

Santra et al. [1616], the EvdW
coh for PBE+TS stabilizes ice VIII about two times more

than ice Ih. Figure 3.43.4 (f) shows that PBE+MBD yields almost the same result. ELJ-a
coh

for the FFs is of very similar magnitude, but, quite in contrast, this does not show

such a monotonous trend. This is mirrored by the fact that the Pauli repulsion, which
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Figure 3.5: The solid lines show the accumulated the Lennard-Jones potential ELJ for

TIP4P/2005 (this work, (a)) and van der Waals energies EvdW for PBE+TS (data from

Santra et al. [1616], (b)), when more and more pairs contribute with increasing oxygen-

oxygen distance R. Different ice phases are shown by the differently colored lines. In

panel (b), the attractive part of the Lennard-Jones potential ELJ-a for TIP4P/2005 is

indicated by dashed lines for comparison.

is described by the repulsive part of the Lennard-Jones potential, does not decrease

monotonously when going from ice Ih to ice VIII as shown in Fig. 3.53.5 for TIP4P/2005

as representative example. Inspired by the analysis of Santra et al. [1616], Fig. 3.53.5 (a)

shows ELJ as a function of contributing pairs in growing neighbor shells that can be

characterized by maximum oxygen-oxygen distances R. For TIP4P/2005 and equiva-

lently for all the other FFs, the first neighbor shell at ≤ 3Å is in the repulsive regime

of the Lennard-Jones potentials used for the FFs (e.g. σ = 3.1668 Å for TIP4P/2005

[4141]). Only subsequent neighbor shells then accumulate attractive contributions ELJ-a

to ELJ. Compared to PBE+TS (Fig. 3.53.5 (b)) (for which all neighbors yield attractive

contributions to EvdW by construction), the ELJ-a contributions to TIP4P/2005 are

much smaller at comparable distances. Altogether, since the parameters of ELJ of the

FFs have been fitted without separating ELJ-r and ELJ-a, it is not surprising that ELJ-a
coh

and EvdW
coh show different trends.
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3.3.3 Phase Transition Pressures
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Figure 3.6: Phase transition pressures at which ice Ih goes over into the other six

ice phases (IX, II, XIII, XIV, VIII) considered in this work as obtained by the ∆-

approximation (a) without and (b) ZPE (see Eq. (3.73.7) and Eq. (3.83.8) in Section 3.2.33.2.3,

respectively). Lines are meant to guide the eye only, with differently colored dashed

(solid) lines marking force fields (density functionals). The blue filled squares show

experimental data extrapolated to the zero temperature including error bars where

available as given by Whalley [6666].

Since phase transition pressures for two ice phases A and B are generally influenced

both by structural and energetic effects, it is interesting to calculate the latter using the

different techniques described in Section 3.2.33.2.3 and compare with experimental reference

values [3030, 3232, 3434, 3636]. Figure 3.63.6 shows the results for the ∆-approximation. No values

are shown when the transition pressure turn out to be negative. As observed by Santra

et al. [1919] before, without taking ZPE into account (Fig. 3.63.6 (a)) PBE largely overes-

timates P∆
A→B, but can be significantly improved by accounting for vdW interactions

in PBE+MBD and (even more) PBE+TS. LDA benefits from error canceling for both

the equilibrium volumes and cohesive energies and does slightly better than PBE, but
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Figure 3.7: Same as 3.63.6, but for phase transition pressures obtained from (a) enthalpy

and (b) Gibbs free energy (see Eq. (3.103.10) and Eq. (3.123.12) in Section 3.2.33.2.3, respectively).

not as good PBE+MBD. The SCAN functional performs even better than PBE+TS,

and SCAN+rVV10 (likewise with account for vdW) yields the best results. Due to the

problems with the relative stability of the ice phases discussed in Section 3.3.23.3.2, only q-

TIP4P/F, again the best among the FFs, yielding meaningful results for all transitions

which are comparable to PBE+TS. Including ZPE (Fig. 3.63.6 (b)) does not change most

of the DFT results except for SCAN+rVV10, which now yields positive P∆,ZPE
A→B for all

transitions. The same happens for all force fields apart from SPC/E. Their agreement

with the available experimental data is not as good as for SCAN+rVV10, but still

much better than LDA, SCAN and all PBE-based methods.

Transition pressures obtained based on the enthalpy and Gibbs free energy, PHA→B and

PGA→B shown in Fig. 3.73.7 (a) and Fig. 3.73.7 (b), respectively, which the latter includes

ZPE, follow the same qualitative trends. However, in case of PHA→B more DFT methods

and FFs than for P∆,ZPE
A→B failed to predict a positive values or simply yield results that

are out of the range plotted in Fig. 3.73.7 (a). Results based on the Gibbs free energy on

the other hand are comparable to the ZPE-corrected ∆-approximation. Furthermore,
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those results for PGA→B shown in Fig. 3.73.7 (b) are only mildly affected by temperature,

i.e. the change in the worst case by about 0.08 GPa at T = 200 K.

3.3.4 Analysis of Zero-Point Energy Effects
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Figure 3.8: Phonon densities of states for ice II obtained with TIP4P/ice (a) and

PBE + TS (c). Black, red and blue lines show the phonon DOSs at the corresponding

equilibrium volumes (V0) as well as isotropically compressed (0.96 · V0) and expanded

(1.04 · V0) structures, respectively. Experimental data for the stretching frequencies is

indicated by the black vertical lines. Internal energy E(V ) (dark green) and Helmholtz

free energy F (V, T = 0) (light green) are plotted for TIP4P/ice (b) and PBE + TS

(d) using E(V0,TIP4P/ice) and E(V0,PBE+TS) as energy zeros, respectively. V0,TIP4P/ice

(V ZPE
0,TIP4P/ice) and V0,PBE+TS (V ZPE

0,PBE+TS) are the corresponding equilibrium volumes

without (with) taking ZPE into account, which are indicated by black vertical lines.

As observed in Sections 3.3.13.3.1 to 3.3.33.3.3, ZPE has much more pronounced effects on the

results of FF compared to DFT calculations. These effects originate from the influence
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of the QHA (see Section 3.2.23.2.2) on the equation of state for the different ice phases,

i.e. phonon frequencies must change significantly differently for these two families of

interaction potentials when compressing or expanding the unit cell. Focusing on ice II,

Fig. 3.83.8 illustrates the reason for these differences by taking TIP4P/ice and PBE+TS

as representative examples for the respective families. The other family members show

the same qualitative trend for ice II and also the other ice structures.

In ascending order, the phonon frequencies can be grouped into crystal modes (0 to

500 cm−1, a.k.a. hydrogen-bond bending and stretching), librational modes (500 to

1500 cm−1) and finally intramolecular bending (1500 to 2000 cm−1 as well as stretch-

ing (2000 to 4000 cm−1) modes.11 Upon compression, the phonon DOS for TIP4P/ice

(Fig. 3.83.8 (a)) shows strong shifts towards higher frequencies for the crystal and libra-

tional. The intramolecular bending and stretching modes on the other hand are hardly

affected. Consequently, the first moment of the phonon DOSs (i.e. EZP,TIP4P/ice(V ),

see Eq. (3.63.6)) is monotonously increasing for V < V0, and thus the minimum of

FTIP4P/ice(V, T = 0) (see 3.53.5) shifts to the right as shown in Fig. 3.83.8 (b). This is

in good agreement with the microscopic Grüneisen parameters (γi = − V
ωi

∂ωi
∂V ) that

Ramı́rez et al. [2424] have calculated for ice II using the q-TIP4P/F model.

For PBE+TS these upwards shifts of the crystal and librational modes due to compres-

sion are almost the same as for TIP4P/ice (Fig. 3.83.8 (c)). However, only the bending

modes remain unaffected, whereas the stretching modes shift in the exact opposite

way. This almost compensates the effect of the low-frequency modes on the first mo-

ment of the phonon DOS, so that EZP,PBE+TS(V ) is almost constant and the minima of

EPBE+TS(V ) and FPBE+TS(V, T = 0), V0,PBE+TS and (V ZPE
0,PBE+TS), practically coincide

as shown in Fig. 3.83.8 (d).

According to the Raman spectra measured by Minceva-Sukarova et al. [6767] the change

of O-H stretch frequencies with pressure ∂ν
∂P is about 80cm−1/GPa for most crystalline

ice phases for a wide range of temperatures between 250 and 0 K. Given a bulk modulus

B0 between 12 and 16.5 GPa in this temperature range for ice II [6868], this allows us to

1See also Fig. 2.72.7 in Section 2.4.22.4.2 for ice Ih.
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estimate the expected frequency change ∆ν ≈ −B0

V0

∂ν
∂P ∆V0 ≈ ±38 to 53cm−1 for the

volume change ∆V0 = ±0.04 · V0 considered in Fig. 3.83.8. The average frequency shifts

according to the data presented in that figure are 10 cm−1 and 116 cm−1 for TIP4P/ice

and PBE + TS, respectively, thus revealing slightly larger relative errors for the FF

considering the fact that the simulations have been carried out for 0 K. The better

description of the equilibrium volumes by the FFs thus appears to be fortuitous error

canceling. This is consistent with the failure of q-TIP4P/F to describe the anomalous

volume isotope effect for ice Ih [1818] as well as isotope dependence of the ice XI-ice

Ih phase transition temperature [2828], which, however, is also quite challenging to be

modeled correctly by first-principles-based techniques [2727].
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Figure 3.9: Same as Fig. 3.83.8, but for q-TIP4P/F-h ((a) and (b)) and q-TIP4P/F ((c)

and (d)). In q-TIP4P/F-h the Morse potential describing the intramolecular OH bond

has been replaced by the harmonic potential that is identical to the Morse potential

up to second order.

In order to analyze how much harmonic potential used together with TIP4P/ice for
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the intramolecular O-H-bond (see Section 3.2.13.2.1) affects the results shown in Fig. 3.83.8, I

turn to q-TIP4P/F, where these bonds are described by a Morse potential. Approxi-

mating the latter by a second-order Taylor expansion and keeping all other parameters

unchanged (force field labeled q-TIP4P/F-h), I have recalculated the phonon DOS for

ice II. The results are shown in Fig. 3.93.9 (a) in comparison to conventional q-TIP4P/F

shown in Fig. 3.93.9 (b). As expected by construction, only the O-H stretching modes in

the phonon DOS are different. The harmonic potential in q-TIP4P/F-h yields much

more rigid O-H bonds than the Morse potential in q-TIP4P/F, as evidenced by their po-

sition and much smaller shift upon compression and expansion. In fact, for q-TIP4P/F

the corresponding average frequency shifts of 87 cm−1 (53 cm−1) for 4% compression

(4% expansion) fit very nicely to the aforementioned values suggested by the Raman

experiments. The strong influence of the Morse potential can be understood by con-

sidering its second derivative with respect to the O-H bond distance rOH

∂2V Morse

∂r2
OH

= 2Dα2 e−α∆rOH
(

2e−α∆rOH

− 1
)

, (3.13)

where D is the well depth, α is the width and ∆rOH = rOH−rOH
0 is the deviation from

the equilibrium O-H bond length rOH
0 for a single H2O molecule. Despite the small

changes of the latter in the ice crystal (i.e. 0 < ∆rOH � 1), the exponential terms

in Eq. (3.133.13) show that vibrational frequencies are very sensitive to ∆rOH. Quite in

contrast, the second derivative of the harmonic potential is constant, i.e. completely

unaffected by ∆rOH.

3.4 Conclusion

I have performed a comprehensive study on seven crystalline (proton-ordered) ice

phases with a wide range of DFT functional, including the recently developed meta-

GGAs SCAN and SCAN+RVV10, and commonly-used off-the-shelve (non-polarizable)

water force fields. A particular focus has been on accurate phonon calculations within

the quasi-harmonic approximation, which has been found to be very successful for

ice structures [2323, 2424], in order to account for zero-point energy effects. Looking at
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equilibrium volumes, cohesive energies and phase transition pressure, the force fields

show an overall good or even better performance than DFT. q-TIP4P/F is the clear

winner among the FFs considered in this study with 5 % error in equilibrium volume

and quite accurate cohesive energy and transition pressures in particular when ZPE is

taken into account. Quite in contrast, the DFT results are much less affected by ZPE.

The DFT functionals struggle much more with a simultaneously good description for

all these properties as already discussed in earlier studies: PBE+MBD deviates from

the cohesive energy by more than 100 meV/H2O, but shows the best agreement with

the experimental volumes [1919]. The SCAN functional underestimates the equilibrium

volume by 10 % and overestimates the absolute cohesive energy by 60 meV/H2O, but

yields relative cohesive energies and relative equilibrium volumes that are in remarkable

agreement with experiment [5555].

Our decomposition of the cohesive energies reveals that intramolecular deformation is

over-compensated by electrostatics and the attrative part of the Lennard-Jones po-

tentials in case of the FFs. The electrostatics are also the dominant and typically

even larger bonding contribution for the DFT methods. In case of PBE+TS and

PBE+vdW van der Waals interactions stabilize the crystals additionally. While the

latter monotonously increase from ice Ih to ice VIII this is not the case for the attra-

tive part of the Lennard-Jones potentials. Our analysis of phonon DOSs has revealed

that the smaller redshift (blueshift) of the O-H stretch vibrations upon compression

(expansion) of the crystal (i.e. the corresponding Grüneisen parameters) obtained with

all FFs compared to all DFT functionals considered here is responsible for the larger

effect of ZPE for the FFs. This is in line with previous work for a few ice structures [1818,

2424]. Comparison to Raman spectra measured as function of pressure [6767] indicates that

neither shifts are accurate when the intramolecular O-H stretching is described with a

harmonic potential in case of the FFs. I have clearly identified the Morse potential in

q-TIP4P/F to yield a significant improvement. Future work with state-of-the polariz-

able force fields [2222] could provide valuable insights for both the bonding contributions

and the vibrational frequency shifts.
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3.A Appendix

3.A.1 Data for Equilibrium Ice Structures

Tables 3.23.2 to 3.83.8 list the optimum lattice parameters for the seven proton-ordered ice

phases (see Table 3.13.1 and Fig. 3.13.1) as obtained using different force fields (SPC/E

[3838], TIP3P [3939], TIP4P/2005 [4040], TIP4P/ice [4141] and q-TIP4P/F [4242]) and exchange-

correlation functionals (LDA [4545], PBE [4646], PBE+TS [4949], PBE+MBD [5050], SCAN

[5555], SCAN+rVV10 [5656]). Corresponding volumes per water molecule V0 (V ZPE
0 ), bulk

moduli B0 (BZPE
0 ) and cohesive energies Ecoh (EZPE

coh ) without (with) zero-point en-

ergy taken into account are given as well. Experimental data is included for compari-

son.

Table 3.2: Data for ice Ih.
SPC/E TIP3P TIP4P q-TIP4P TIP4P LDA PBE PBE PBE SCAN SCAN Exp.

/2005 /F /ice +TS +MBD +rVV10

Ice Ih, P63cm

a (Å) 7.60 7.78 7.67 7.74 7.71 7.19 7.67 7.58 7.63 7.51 7.42 7.78a

c (Å) 7.10 7.17 7.10 7.24 7.12 6.80 7.24 7.15 7.18 7.11 7.04 7.33a

V0 (Å3) 29.63 31.33 30.16 31.33 30.58 25.37 30.72 29.64 30.13 28.91 27.98

V ZPE
0 (Å3) 31.37 33.07 31.99 32.44 32.31 24.57 30.46 29.21 29.19 28.51 28.18 32.05a

B0 (GPa) 20.53 18.61 19.36 17.76 21.03 29.05 14.54 16.48 16.55 17.26 18.28

BZPE
0 (GPa) 14.95 13.42 14.99 14.20 16.52 24.63 12.53 14.08 14.20 18.23 20.58 9.2b

Ecoh (eV) 0.635 0.598 0.700 0.619 0.769 1.168 0.630 0.717 0.778 0.687 0.709 0.609c

EZPE
coh (eV) 0.505 0.436 0.514 0.487 0.574 1.059 0.501 0.583 0.654 0.618 0.596 0.491c

a10 K, from Ref. [6969]. b248 K, from Ref. [7070].

c0 K, from Ref. [6666].
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Table 3.3: Data for ice IX.
SPC/E TIP3P TIP4P q-TIP4P TIP4P LDA PBE PBE PBE SCAN SCAN Exp.

/2005 /F /ice +TS +MBD +rVV10

Ice IX, P41212

a (Å) 6.68 6.91 6.57 6.59 6.60 6.18 6.60 6.49 6.56 6.46 6.39 6.72a

c (Å) 6.43 6.22 6.79 6.84 6.83 6.49 7.50 6.80 7.31 6.55 6.36 6.79a

V0 (Å3) 23.92 24.78 24.42 24.74 24.77 20.67 27.22 23.88 26.21 22.79 21.63

V ZPE
0 (Å3) 25.30 26.10 25.83 25.59 26.13 20.42 27.41 24.17 25.17 23.41 22.13 25.63a

B0 (GPa) 14.97 15.51 13.83 12.24 14.83 21.53 11.77 15.68 11.88 14.30 17.28

BZPE
0 (GPa) 9.74 10.27 8.60 9.84 9.82 22.06 10.29 13.92 12.87 14.71 14.11 7.55b

Ecoh (eV) 0.638 0.617 0.691 0.613 0.759 1.131 0.588 0.708 0.755 0.674 0.710 0.607c

EZPE
coh (eV) 0.514 0.458 0.512 0.485 0.572 1.020 0.460 0.575 0.636 0.601 0.593 0.487c

a30 K, from Ref. [3131].

b253 K, for ice III (i.e. proton-disordered ice IX), Ref. [7171].

c0 K, from Ref. [6666].

Table 3.4: Data for ice II.
SPC/E TIP3P TIP4P q-TIP4P TIP4P LDA PBE PBE PBE SCAN SCAN Exp.

/2005 /F /ice +TS +MBD +rVV10

Ice II, R3̄

a (Å) 7.49 7.62 7.63 7.68 7.67 7.14 7.70 7.57 7.66 7.47 7.39 7.78a

α (◦) 112.98 113.10 113.17 113.15 113.17 112.92 112.81 113.02 112.87 113.08 113.17 113.10 a

V0 (Å3) 22.80 23.86 23.79 24.34 24.15 19.85 25.03 23.50 24.58 22.47 21.60

V ZPE
0 (Å3) 24.11 25.13 25.11 25.26 25.39 19.74 25.35 23.92 23.54 22.60 22.08 24.97b

B0 (GPa) 25.40 25.18 24.46 20.69 26.69 35.73 15.83 20.66 20.03 22.19 24.03

BZPE
0 (GPa) 19.60 19.67 19.10 16.85 20.75 32.73 13.34 17.22 11.45 17.66 24.29 16.18c

Ecoh (eV) 0.645 0.631 0.681 0.604 0.748 1.123 0.562 0.700 0.743 0.677 0.716 0.609d

EZPE
coh (eV) 0.522 0.472 0.510 0.479 0.570 1.007 0.435 0.564 0.616 0.601 0.599 0.490d

a200 K, from Ref. [3333]. b0 K, from Ref. [6666].

c0 K, from Ref. [6868]. d0 K, from Ref. [6666].
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Table 3.5: Data for ice XIII.
SPC/E TIP3P TIP4P q-TIP4P TIP4P LDA PBE PBE PBE SCAN SCAN Exp.

/2005 /F /ice +TS +MBD +rVV10

Ice XIII, P21/a

a (Å) 9.22 9.43 9.24 9.35 9.28 8.51 9.22 8.94 8.96 8.88 8.74 9.24a

b (Å) 7.05 6.99 7.32 7.37 7.36 6.94 7.52 7.39 7.41 7.25 7.17 7.47a

c (Å) 9.93 10.10 10.04 10.13 10.09 9.54 10.30 10.01 10.04 9.91 9.77 10.29a

β (◦) 108.01 107.82 109.77 110.38 109.83 109.97 109.25 109.04 109.06 109.53 109.28 109.70 a

V0 (Å3) 21.92 22.63 22.79 23.37 23.13 18.91 24.05 22.30 22.50 21.48 20.65

V ZPE
0 (Å3) 23.11 23.79 24.02 24.24 24.29 18.85 24.33 22.66 22.16 21.67 21.09 23.91a

B0 (GPa) 23.61 21.03 22.60 20.05 24.53 34.42 15.11 21.66 20.10 21.53 23.62

BZPE
0 (GPa) 18.16 16.22 18.62 17.19 20.63 31.82 12.94 18.06 21.93 17.71 21.76 13.2 b

Ecoh (eV) 0.619 0.606 0.672 0.598 0.738 1.111 0.551 0.698 0.740 0.668 0.711

EZPE
coh (eV) 0.502 0.451 0.500 0.473 0.559 0.997 0.426 0.568 0.618 0.589 0.593

a80 K, from Ref. [3232].

b248 K, for ice V (i.e. proton-disordered ice XIII), Ref. [7070].

Table 3.6: Data for ice XIV.
SPC/E TIP3P TIP4P q-TIP4P TIP4P LDA PBE PBE PBE SCAN SCAN Exp.

/2005 /F /ice +TS +MBD +rVV10

Ice XIV, P212121

a (Å) 7.83 7.84 8.05 8.17 8.09 7.74 8.45 8.25 8.33 8.07 7.94 8.35a

b (Å) 8.35 8.61 8.31 8.28 8.35 7.60 8.22 8.01 8.09 7.80 7.67 8.14a

c (Å) 3.85 3.87 3.85 3.92 3.87 3.73 4.02 3.93 3.96 3.94 3.91 4.08a

V0 (Å3) 20.98 21.78 21.47 22.11 21.78 18.28 23.28 21.61 22.23 20.70 19.83

V ZPE
0 (Å3) 22.19 22.99 22.70 22.94 22.93 18.22 23.68 22.03 21.31 20.92 20.41 23.12a

B0 (GPa) 27.14 25.29 27.34 24.31 30.02 38.91 15.82 21.92 21.85 23.49 25.87

BZPE
0 (GPa) 20.52 19.06 20.57 20.07 23.22 35.46 13.51 18.31 32.68 21.05 22.91

Ecoh (eV) 0.610 0.595 0.679 0.604 0.746 1.104 0.538 0.692 0.732 0.666 0.709

EZPE
coh (eV) 0.490 0.440 0.502 0.477 0.561 0.990 0.412 0.557 0.612 0.587 0.594

a80 K, from Ref. [3232].
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Table 3.7: Data for ice XV.
SPC/E TIP3P TIP4P q-TIP4P TIP4P LDA PBE PBE PBE SCAN SCAN Exp.

/2005 /F /ice +TS +MBD +rVV10

Ice XV, P 1̄

a (Å) 6.00 6.01 6.14 6.21 6.17 5.76 6.24 6.13 6.20 6.01 5.94 6.23a

b (Å) 5.99 6.00 6.12 6.20 6.15 5.78 6.24 6.13 6.21 6.00 5.92 6.24a

c (Å) 55.74 5.91 5.63 5.65 5.65 5.35 5.85 5.69 5.77 5.62 5.52 5.79a

α (◦) 87.93 85.95 89.63 90.22 89.65 89.93 90.09 90.30 90.24 90.08 89.98 90.10a

β (◦) 86.57 84.60 88.49 88.84 88.53 89.90 89.57 89.83 89.79 89.85 89.94 89.90a

γ (◦) 87.97 86.54 89.27 89.72 89.31 90.52 90.61 90.50 90.50 90.70 90.731 89.90a

V0 (Å3) 20.58 21.14 21.13 21.75 21.43 17.82 22.80 21.33 22.24 20.24 19.40

V ZPE
0 (Å3) 21.74 22.29 22.29 22.53 22.50 17.81 23.24 21.80 21.26 20.56 20.01 22.53a

B0 (GPa) 27.71 26.75 27.52 24.49 30.46 40.27 16.26 22.09 21.22 24.29 26.74

BZPE
0 (GPa) 20.87 20.35 21.03 20.27 23.80 36.89 13.68 18.40 22.64 19.58 24.53 13.08b

Ecoh (eV) 0.601 0.593 0.664 0.590 0.730 1.088 0.520 0.680 0.715 0.658 0.706

EZPE
coh (eV) 0.487 0.441 0.495 0.467 0.553 0.973 0.395 0.544 0.598 0.582 0.591

a80 K, from Ref. [3434].

b253 K, for ice VI (i.e. proton-disordered ice XV), Ref. [7171].

Table 3.8: Data for ice VIII.
SPC/E TIP3P TIP4P q-TIP4P TIP4P LDA PBE PBE PBE SCAN SCAN Exp.

/2005 /F /ice +TS +MBD +rVV10

Ice VIII, I41/amd

a (Å) 4.48 4.38 4.63 4.74 4.65 4.44 4.86 4.79 4.81 4.63 4.57 4.57a

c (Å) 7.44 7.76 7.17 7.01 7.20 6.38 7.03 6.96 7.00 6.70 6.60 6.77a

V0 (Å3) 18.66 18.64 19.22 19.70 19.52 15.75 20.73 19.93 20.27 17.98 17.23

V ZPE
0 (Å3) 19.83 19.78 20.33 20.57 20.57 16.17 21.65 20.55 19.63 18.97 19.80 20.09b

B0 (GPa) 29.00 28.31 29.37 26.05 31.63 46.01 15.61 18.11 22.60 28.23 31.23

BZPE
0 (GPa) 21.19 19.49 21.68 20.97 23.33 41.56 11.73 16.24 85.57 48.04 6.92 24.3 c

Ecoh (eV) 0.519 0.532 0.588 0.531 0.646 1.042 0.453 0.620 0.663 0.643 0.704 0.577d

EZPE
coh (eV) 0.420 0.391 0.437 0.415 0.488 0.910 0.328 0.488 0.556 0.550 0.574 0.458d

a10 K, from Ref. [3535]. b0 K, from Ref. [6666].

c87 K, from Ref. [7272]. d0 K, from Ref. [6666].
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