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CHAPTER 2

Theory and Methods

Atomistic modelling of water in its condensed form can be done at very different levels

of theory. Here, those which are relevant to this thesis are briefly described, including

some numerical and computational details where appropriate. First, the stage is set

in Section 2.12.1 by the Born-Oppenheimer approximation, which is most fundamental

for the description of interactions and dynamics at the atomic scale. After that, Sec-

tion 2.22.2 introduces density functional theory (DFT) as one of the most popular and

successful first-principles methods for inter- and intramolecular interactions between

individual water molecules. Given the importance of van-der-Waals interactions for

the latter, this chapter also pays special attention on how these interactions can be ac-

counted for in the context of DFT. Coarse-graining away the electronic structure, force

fields are another commonly-used approach for modelling water-water interactions as

presented in Section 2.32.3. Those which are used in this thesis can be grouped into two

categories, fixed-charged and polarizable force fields of different complexity. Since the

main goal of this thesis is studying properties of crystalline forms of water ice which are

heavily affected by the lattice vibrations of the latter, this chapter ends with concise

descriptions of phonons in Section 2.42.4. In particular, their relation to the Helmholtz

free energy is described and the so-called quasi-harmonic approximation is presented

in order to account for thermal expansion.
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2.1 Born-Oppenheimer Approximation

The description of a chemical system from first principles starts from the quantum me-

chanical many-body problem that is given in its time-independent form by the electron-

nuclear Schrödinger equation

ĤΨ = EΨ . (2.1)

E is the ground state (total) energy of the system (at zero temperature), Ψ is the

electron-nuclear wave function that describes the spatial coordinates {RA}MA=1 of M

nuclei and the spatial and spin coordinates {ri, σi}Ni=1 of N electrons. The Hamilton

operator is given by

Ĥ = −
N∑
i=1

∇2
i

2
−

M∑
A=1

∇2
A

2MA
+

N∑
i=1

N∑
j>i

1

|ri − rj |
+

M∑
A=1

M∑
B>A

ZAZB
|RA −RB |

−
N∑
i=1

M∑
A=1

ZA
|ri −RA|

(2.2)

in Hartree atomic units. MA and ZA are the mass and charge of a nucleus A, respec-

tively, ∇A (∇i) denotes the Laplacian operator with respect to nuclear (electronic)

coordinates. The first and third term are the kinetic energy of and Coulomb repulsion

between the electrons, and the second and fourth term describe the same for the nuclei.

The last term accounts for the Coulomb attraction between electrons and nuclei.

Exact analytical solutions of Eq. (2.22.2) are possible only for very few chemically relevant

systems. Also numerically it is enormously difficult to calculate the full electron-nuclear

wave function. Instead, electrons and nuclei are usually decoupled from each other

according to the Born-Oppenheimer approximation [11], which is based on the large

mass difference between the former: even for the lightest atom MA is already about

2000 times larger than the electron mass. The electronic part of Ĥ is given by

Ĥelec = −
N∑
i=1

∇2
i

2
+

N∑
i=1

N∑
j>i

1

|ri − rj |
−

N∑
i=1

M∑
A=1

ZA
|ri −RA|

, (2.3)

which yields an electronic Schrödinger equation analogous to Eq. (2.22.2)

ĤelecΨelec = EelecΨelec (2.4)
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with energy Eelec for the electronic ground state. This equation is easier to solve than

Eq. (2.22.2), but still approximations are needed for chemically interesting systems. One

of the most popular approximations is described in Section 2.22.2.

The Born-Oppenheimer approximation allows to express the total (potential) energy

of a chemical system for a set of nuclear positions ({RA}MA=1) as

Etotal = Eelec +

M∑
A=1

M∑
B>A

ZAZB
|RA −RB |

. (2.5)

The real-valued function Etotal({RA}MA=1) of 3M variables constitutes the system’s

potential energy surface (PES). Instead of solving Eq. (2.42.4), a PES can also be con-

structed (semi-)empirically based on physical-chemical properties of the system and

thus without explicitly accounting for the electrons – which is commonly referred to as

a force field. There are many such force fields for water, and those which are relevant

in the context of this thesis are described in Section 2.32.3.

2.2 Density Functional Theory

One of the most popular and successful approaches for solving the electronic Schrödinger

equation (Eq. (2.42.4)) is density functional theory. According to the Hohenberg-Kohm

theorem it is fundamentally possible to write Eelec as a functional of the electron den-

sity n(r) [22]. Unfortunately, a universal (Hohenberg-Kohn) density functional is not

known. However, Kohn and Sham have suggested to use an auxiliary system of non-

interacting electrons as a starting point for to approximate this functional. This system

has a well-defined kinetic energy

Ts({φi}) =

∫
dr τs(r) = −1

2

∑
i

∫
drφ∗i (r)∇2 φi(r) , (2.6)

where φi are the single-particle (so-called Kohn-Sham) orbitals and τs(r) is the con-

comitant kinetic energy density. The Kohn-Sham orbitals yield the electron density 11

1The sums in Eqs. (2.62.6) and (2.72.7) extend over an appropriate amount of orbitals depending on the

treatment of electron spin.
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as

n(r) =
∑
i

|φi|2 . (2.7)

Ts constitutes a large contribution to Eelec, and the same holds for the classical elec-

trostatic repulsion

EHartree[n(r)] =

∫
dr

∫
dr′

n(r)n(r′)

|r− r′|
(2.8)

and electron-nuclear attraction

Eext[n(r)] = −
M∑
A=1

∫
dr

n(r)ZA
|r−RA|

(2.9)

energies. This results in the decomposition

Eelec[n] = Ts{φi} + EHartree[n(r)] + Eext[n(r)] + Exc[n(r)] , (2.10)

which is employed by the vast majority of practical DFT calculations nowadays. The so-

called exchange-correlation functional Exc[n(r)] is supposed to capture all the quantum-

mechanical contributions of the actual system of interacting electrons that are missed

by the other terms. Again, the exchange-correlation functional is not known exactly,

but since it is a much smaller contribution to Eelec than the Hohenberg-Kohn func-

tional, much simpler approximations can thus yield very accurate results. Minimizing

Eq. (2.102.10) with respect to the electron density yields the Kohn-Sham equations, which

are Schrödinger-like equations for the Kohn-Sham orbitals. This equations need to be

solved self-consistently due to the relation between the latter and the electron density

given by Eq. (2.72.7).

2.2.1 Exchange-Correlation Functionals

Nowadays there are many different exchange-correlation functionals available. They

are usually categorized according to their complexity by the scheme originally suggest

by John Perdew [33]. This Jacob’s ladder (see Fig. 2.12.1) is comprised of several rungs

starting from the Hartree approximation, i.e., only accounting for exchange (“earth”)

and ascending to the exact exchange-correlation functional (“heaven”). The simplest

and therefore most common approximations for Exc (first three rungs) are used in
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Hartree Theory

 1st : LDA  

 2nd : GGA  

 3rd : meta-GGA  

 5th : exact exchange + exact 
partial correlation 

 4th : hybrid GGA and hybrid 
meta-GGA  

Heaven of Chemical Accuracy

Figure 2.1: Jacob’s ladder for categorizing different approximations for Exc according

to Perdew et al. [33]

the scope of this thesis (see Chapter 33 in particular) and therefore described in the

following subsections.

2.2.1.1 Local Density Approximation

In the local density approximation (LDFA) for Exc the electron density at each point

(r) is taken to define a homogenous electron gas (HEG), so that the corresponding

exchange-correlation functional is obtained as the superposition

ELDA
xc [n] =

∫
drn(r)

(
εHEG
x [n(r)] + εHEG

c [n(r)]
)

. (2.11)

The exchange energy density of the HEG is known analytically

εHEG
x [n] = −3

4

3

√
3n(r)

π
. (2.12)

For the correlation energy density of the HEG εHEG
c [n] accurate Quantum Monte Carlo

energy are available for a large range of electron densities [44, 55]. Historically, these re-

sults have been interpolated differently by, e.g. Vosko-Wilk-Nusair (VWN) [66], Perdew

and Zunger (PZ) [77] as well as Perdew and Wang (PW) [88], which has led to numeri-
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cally (but not conceptually) different LDAs. The differences are very small so that one

usually still refers to “the LDA”.

In general, for inhomogeneous systems, the LDA underestimates the correlation and

overestimates the exchange energy so that the total balance, ELDA
xc , benefits from error

cancellation. Since LDA satisfies several so-called sum rules [99, 1010], this error cancel-

lation is not accidental but systematical. Still, the cohesive energies of ice and water

clusters are overestimated by more than 50 % [1111–1313]. In addition, the LDA completely

misses long-range van der Waals interactions due to its strictly local dependence on

the electron density.

2.2.1.2 Generalized Gradient Approximation

Generalized gradient approximations (GGAs) for the exchange-correlation energy are

based on the general form

EGGA
xc [n] =

∫
drn(r) εHEG

xc [n(r)] FGGA
xc [n(r),∇n(r)] . (2.13)

In the spirit of a Taylor expansion the so-called gradient enhancement factor FGGA
xc

depends not only on the density but also on its gradient at a point r, which is why

GGAs are also called semi-local functionals. There is no unique way how to construct

FGGA
xc , which has resulted in a variety of different GGA functionals. Some examples are

the GGAs developed by Lee, Yang and Parr (LYP) [1414], Perdew and Wang (PW91) [1515]

and Perdew, Burke and Ernzerhof (PBE) [1616]. In general, they are more accurate for

chemical systems because the density varies strongly when covalent bonds are formed,

and they come at essentially the same computational cost as the LDA.

2.2.1.3 Meta-generalized Gradient Approximation

Meta-generalized gradient approximations (MGGAs) for Exc sit on the third rung of

Jacob’s ladder. This class of exchange-correlation functionals take the second derivative

of the electron density (∇2n(r)) and/or the kinetic energy density (see Eq. (2.62.6)) into

account. Previous studies indicate that meta-GGAs such as TPSS [1717] and SCAN [1818]

can improve the accuracy for numerous systems, including (small) water clusters and

20
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ice [1919–2222] The computational cost for meta-GGAs is slightly higher than for GGAs,

which is mainly because it is more difficult to achieve self-consistency when solving the

Kohn-Sham equations.

2.2.2 Van der Waals Interactions

Van der Waals (vdW) interactions can appear (with different meaning) in the context

of electrostatic, induction, and dispersion interactions. In the following, the focus is

on the latter, i.e. the attractive interaction caused by fluctuating dipoles which are

constituted by the correlated motion of electrons in individual atoms. This kind of

interaction primarily contributes at the long range and therefore none of the exchange

correlation functionals described in the previous section can properly account for them.

Nowadays there are many different approaches available that can account for van der

Waals interactions in DFT calculations [2323–2626]. Those which have been employed in

this thesis are described very briefly in the following subsections.

2.2.2.1 C6 Correction and Many-Body Dispersion

Dispersion interactions were introduced by London [2727] as so-called London forces. Us-

ing the second-order quantum mechanical perturbation theory, the concomitant energy

can be expanded as

EABvdW = −
∞∑
n≥6

CABn
RnAB

, (2.14)

where CABn are dispersion coefficients for the interaction between a pair of atoms A and

B at distance RAB from each other. Focusing on the first non-zero term, an accurate

determination of the CAB6 coefficient becomes the primary target for all DFT-based

vdW methods described in the remainder of this section. It is calculated according to

the Casimir-Polder equation [2828]

CAB6 =
3

π

∫ ∞
0

dω αA(iω)αB(iω) , (2.15)

where αA,B are the dipole polarizabilities of the respective atoms due to an external

electric field. Accurate calculations of α(iω) are challenging because a large amount of
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accurately described electronically excited states are required. Dipole polarizabilities

can also be obtained experimentally in the condensed or gas phase from measurements

of the dielectric function [2929], Rayleigh scattering [3030] and molecular beam [3131] exper-

iments.

C6 correction schemes, which are also commonly referred to as DFT+vdW or DFT-D

schemes, add an additional term to the total energy of a DFT calculation that is of

the form

EvdW = −
∑
A

∑
B>A

fdamp(RAB)
CAB6

R6
AB

. (2.16)

Maintaining the short range interaction between two atoms A and B at the DFT level,

the damping function fdamp(RAB) smoothly switches off the dispersion interactions at

small distances. Obviously, Eq. (2.162.16) can be easily evaluated after the actual DFT

calculation and therefore comes at hardly any additional computational cost on top of

the former.

In this thesis, the so-called TS correction scheme suggested by Tkatchenko and Scheffler

[3232] is used. It is based on accurate TD-DFT calculations of C6 coefficients for the vdW

interactions between individual atoms, C6,0, by Chu and Dalgarno [3333]. To account for

changes for atoms in molecules (or in a solid), these coefficients are rescaled to

CAA6,eff = vAA[n] CAA6,0 . (2.17)

Here the scaling factor vAA[n] describes the change of atomic volume based on Hirshfeld

partitioning [3434] of the electron density n that is obtained from the DFT calculation

for the “non-free” atoms A. The corresponding C6 coefficients for heteronuclear pairs

of atoms are obtained from

CAB6,eff =
2CAA6,eff C

BB
6,eff

α0,B

α0,A
CAA6,eff +

α0,A

α0,B
CBB6,eff

, (2.18)

where the (static dipole) polarizabilities of the free atoms α0 are also taken from

the work of Chu and Dalgarno [3333]. fdamp(RAB) is chosen as a Fermi-type damp-

ing function with parameters that are optimized to the S22 database from Jurečka

et al. [3535].
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The TS scheme provides a surprisingly accurate description of van der Waals interac-

tions in the DFT context in particular for molecular systems. However, it struggles with

accounting for (long-range) screening in the condensed phase, which has been addressed

by an extension to the TS scheme Tkatchenko et al. [3636]. This so-called many-body

dispersion scheme (MBD) replaces Eq. (2.162.16) by a quantum mechanical many-body

expression for a system of coupled dipole oscillators with frequency-dependent polar-

izabilities α(iω), which for the “non-free” atoms are again obtained from Hirshfeld

partitioning. MBD still comes at moderate computational costs compared to the un-

derlying DFT calculation and therefore can easily be applied to condensed phases of

water.

2.2.2.2 van der Waals Density Functionals

Van der Waals density functionals (vdW-DFs)22 add a long-range contribution typically

to semi-local exchange-correlation functionals

Exc[n] = EGGA
x [n] + E0

c [n] + Elr
c [n] . (2.19)

Usually, the exchange energy is taken from a particular GGA [3838, 3939], and the short-

range correlation energy E0
c is treated at the LDA level [2626]. The simplest expression

for the long-range correlation energy is

Elr
c =

1

2

∫
dr

∫
dr′ n(r) Φ(r, r′)n(r′) . (2.20)

Φ(r, r′) is the non-local kernel, for which different expressions have been suggested [3838,

4040, 4141] and some of them been applied to water [4242] and ice [4343] systems.

From a computational point of view, the straightforward numerical implementation

of Eq. (2.202.20) by evaluating the six dimensional integral is computationally expensive.

However, many DFT codes employ the technique suggested by Román-Pérez and Soler

[4444]. This technique significantly reduces the computational effort and thus enables

self-consistent calculations which come at almost the same cost as calculations with

GGA functionals.
2Acknowledging the work of two pioneers in their development, they also referred to as Langreth-

Lunqvist functionals. [3737–3939]
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2.2.3 Computational Aspects

In principal, all-electron calculations for condensed phases of water can nowadays be

carried out very accurately and computationally conveniently based by using numerical

atom-centered basis sets. However, in practice, not all exchange-correlation functionals

have been available in the code implementing the latter, which is why it was necessary

to resort to plane-waves basis sets for some of the DFT calculations in this thesis.

2.2.3.1 Numerical Atom-Centered Basis Sets

One type of basis sets employed in this thesis are all-electron numerical atom-centered

orbitals (NAO) as implemented in the FHI-aims code [4545], which can be written

as

ψi(r) = ψi(r, θ, ϕ) =
ui(r)

r
Ylimi(θ, ϕ) . (2.21)

Here Yl(i),m(i) is a spherical harmonic function with (atomic angular momentum in-

dexes) l and m that implicitly depend on the basis function index i. ui(r) is obtained

as numerical solution of Schrödinger-like radial equation[
−1

2

d2

dr2
+
li(li + 1)

r2
+ vi(r) + vcut(r)

]
ui(r) = εi ui(r) (2.22)

for a particular (radial) potential vi(r) and a reasonably chosen confining potential

vcut(r). vi(r) determines the shape of the concomitant basis function. To construct

the minimal basis set it is taken from a DFT calculation for the free neutral (and

non-spin-polarized) atom of a given chemical element using the exchange-correlation

functional selected for the target system. This way, core electrons are described very

accurately and efficiently because their orbitals hardly change due the formation of

chemical bonds. Additional basis functions are added by using vi(r) from free hydrogen-

like atoms or ions, analogous to polarization functions in Gaussian basis sets. In FHI-

aims these basis functions are ranked and grouped into tiers for each element based on

how much they reduce the total energy for dimers at different bond distances covering

the binding curve for that element [4545]. vcut(r) is a steeply increasing potential that

ensures ui(r) quickly goes to zero beyond a certain distance, which is usually chosen
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to be between 4 to 5�A for light elements. This allows to minimize the computational

effort for numerical operations involving the basis functions (e.g. integrations), ideally

resulting in linear scaling of the latter with respect to the amount of atoms. Predefined

choices for basis set tiers and parameters determining the numerical accuracy of the

basis set representation (including vcut(r)) are available in FHI-aims in form of the

so-called light, tight and very tight settings [4545]. In this thesis, adequate settings have

been selected based on thorough convergence tests.

2.2.3.2 Plane-Wave Basis Sets

According to Bloch’s theorem electronic states φn,k(r) in a crystalline solid with band

index n at point k in the first Brillouin zone can be described exactly by the Fourier

expansion

φn,k(r) =
∑
G

Cn,G+k exp(i(G + k)r) . (2.23)

The discrete set of plane wave vectors G are given by the reciprocal lattice of the

crystal. For numerical applications of Eq. (2.232.23) in a computer code, the plane-wave

expansion needs to be cut off to keep the amount of basis set coefficients Cn,G+k finite.

In practice, this is achieved by choosing a cut-off energy Ecut such that

1

2
|G + k|2 ≤ Ecut . (2.24)

Obviously, the choice of the cut-off energy determines the numerical accuracy of a

plane-wave DFT calculation. Core electrons require very large values for Ecut because

they are strongly localised at a particular nucleus and cause the radial parts of the

corresponding valence electrons to oscillate in this core redion in order to maintain

orthogonality. Since the computational effort increases significantly with increasing

Ecut, practical plane-wave calculations freeze the core electrons into the nuclei to avoid

the two aforementioned problems. Each chemical element is thus represented by a

so-called pseudopotential.

In this thesis, the Vasp code is used for all plane-wave DFT calculations, which also

provides a set pre-constructed pseudopotentials. The latter and concomitant Ecut have
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been chosen carefully based on convergence tests and comparison with FHI-aims for

each system under investigation.

2.2.3.3 Reciprocal Space Sampling

For a crystalline solid many quantities, like e.g. the electron density, are obtained by

integration over the first Brillouin zone Since the electronic wave-functions for different

k-points are very similar33, it is possible to approximate the integrals by a summation

over a discrete set of k-points. Throughout this thesis, uniform k-point grids as sug-

gested by Monkhorst and Pack [4646] are used, and convergence of the results with respect

to the grid density has been carefully checked.

This method generates a uniform k points mesh along three lattice vectors in reciprocal

space. It is worth noting that an inadequate k point sampling can lead to inaccurate

results. Nevertheless, setting a denser set of k points can solve this problem. There-

fore, it is crucial to check the number of k points for having accurate and converged

results.

2.3 Force Field Methods for Modeling Ice

The potential energy surface that the nuclei experience after the electronic problem

has been solved separately according to the Born-Oppenheimer approximation (see

Section 2.12.1) can be describe by a so-called force field model, which is given by a par-

ticular (often physically motivated) functional form together with a set of parameters.

The construction of such force fields for modelling water in both the liquid and solid

phase has a long history. As a result, there are now several tens of such water models

available, many of which have been demonstrated to provide an accurate description

of many physical properties of water and ice. [4949, 5757–5959].

Figure 2.22.2 provides an overview of the particular force fields used in this thesis, grouped

according to their complexity. The simplest ones, i.e., the SPC/E [6060] and TIPnP

3See Eq. (2.232.23), but this also hold for an appropriate expansion of Block states in atom-centered

basis sets.
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Fixed-Charge Force Fields
SPC/E
 TIP3P

    TIP4P/2005
TIP4P/ice
q-TIP4P/F

AMOEBA

Polarizable Force Fields
MB-pol
SCME

Figure 2.2: Spectrum of the complexity of water force fields. The force fields used

in this thesis are SPC/E [4747], TIP3P [4848], TIP4P/2005 [4949], TIP4P/ice [5050], and q-

TIP4P/F [5151], AMOEBA [5252, 5353], MB-pol [5454, 5555], and SCME [5656].

families of potentials [4848], at the left side of this spectrum use fixed point charges for

modelling electrostatic and Lennard-Jones potentials (for approximating van der Waals

interactions, the latter of which have been discussed earlier in Section 2.2.22.2.2 in the con-

text of DFT). The resulting electrostatic and vdW pair potentials are parametrized to

reproduce the properties of liquid water or ice. Consequently, the so obtained empirical

parameters of these two-body interactions also need to approximately account for any

interactions involving three or more water molecules that are not included systemati-

cally. The majority of these force fields treat a single water molecule as a rigid monomer

– assuming that the energy cost to deform individual water molecules is much larger

than intermolecular interactions. SPC/fW [6161] and q-TIP4P/F [5151] are two examples

where flexibility has been added. The explicit expressions and parameters of all the

fixed-charged pair potentials used in this thesis are summarized in Section 2.3.12.3.1.

Force fields towards the right of Fig. 2.22.2 all explicitly include (higher) electrostatic

multipole moments as well as polarization effects. The latter implicitly accounts for

many-body interactions in the electrostatics. Both provide a well-defined classical

limit for the interaction between water molecules at large distances, which is relevant
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for modelling many delicate properties of water and ice correctly [5252, 5454, 5555, 6262, 6363].

The common approach for including polarization effects is the Appliquès polarizable

point dipole model [6464]. This approach is further extended by Thole [6565] to address

the polarization catastrophe. Some of known Thole-type polarization force fields are

TTM3-F [6666], TTM4-F [6262], AMOEBA [5252, 5353], SCME [5656] and MB-pol [5454, 5555], the

last three of which are being employed in this thesis. Other examples for polarizable

force fields are DPP2 [6767], CC-pol [6868, 6969] and WHBB [7070]. They have not been

considered here because they cannot be used for large systems as they are primarily

targeted for water in the gas-phase [7171] or because they are rigid water models (DPP2

and CC-pol). In its original formulation, the latter also partially holds for SCME [5656],

but lifting this limitation completely is part of this thesis (see Chapter 55). The main

difference between AMOEBA, SCME and MB-pol is how the quantum mechanical

many-body contributions to dispersion and repulsion between water molecules at the

short range are being accounted for. As described in Section 2.3.22.3.2, AMOEBA is empir-

ically parametrized similar to fixed-charge force fields, but it includes atomic multipole

moments (up to quadrupoles) and polarizabilites (up to dipoles). In contrast, both

SCME and MB-pol rely on highly accurate ab initio quantum chemistry calculations.

The main difference is that SCME primarily tries to capture as much as possible by

including high-order molecular electrostatic contributions (up to permanent molecular

hexadecapoles and induced quadrupoles), which leads to a still fairly small amount of

parameters (see Section 2.3.32.3.3). On the other hand, MB-pol utilizes a rather complex

mathematical construct to fit the contributions to the intermolecular interactions at

short distances involving (up to) three water molecules directly to quantum chemical

data (see Section 2.3.42.3.4).

2.3.1 Fixed-Charge Pair Potentials

The first fixed-charge water model was proposed by Bernal and Fowler [7272] in 1933.

Nowadays there are now several tens of these models available, among which the ex-

tended single charge model (SPC/E [4747]) and some of the members of the family of

transferable intermolecular potential (TIP) models are employed in this thesis. These
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Figure 2.3: Three-site (left) and four-site (right) geometries of fixed-charge water force

field. The oxygen atom is shown in red, hydrogen in white, and the virtual site in

yellow. req represents the equilibrium bond distance between oxygen and hydrogen,

θeq is the equilibrium H−O−H bond angle, and rO-M shows the distance between

oxygen and virtual site in case of four-site force fields.

models are either based on three (TIP3P [4848]) or four (TIP4P/2005 [4949]) atomic sites

per water molecule as show in Fig. 2.32.3. They have been modified specifically for ice

(TIP4P/ice [5050]) or to effectively account for quantum effects while introducing molec-

ular flexibility (q-TIP4P/F [5151]).

All of these force fields models describe the total energy based on four energy terms:

Etotal = Eelec + EvdW︸ ︷︷ ︸
intermolecular

+ Ebond + Eangle︸ ︷︷ ︸
intramolecular

(2.25)

Here, the electrostatic (Eelec) and van der Waals (EvdW) contributions constitute the

intermolecular, and the O−H bond stretching (Ebond) and H−O−H angle bending

(Eangle) constitute the intramolecular contributions.

The electrostatic interactions are described by pairwise Coulomb potentials between

the sites i and j that carry the electric charges qi and qj :

Eelec =
1

4πε0

∑
i

∑
j>i

qi qj
|ri − rj |

if |ri − rj | < rc,elec (2.26)

ε0 is the electric constant. In the simplest case, to decrease computational cost, only

interactions between sites at distances |ri − rj | smaller than the the cut-off radius
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Table 2.1: Electrostatic and Lennard-Jones parameters for SPC/E, TIP3P,

TIP4P/2005, TIP4P/ice, and q-TIP4P/F force fields. Maintaining charge neutral-

ity for each water molecule, the oxygen and hydrogen partial charges for the three-site

models is +q and −q/2, respectively. In four-site models (TIP4P/2005, TIP4P/ice,

and q-TIP4P/F), +q is located at the virtual site (see Fig. 2.32.3). The Lennard-Jones

potentials only act between oxygen atoms and thus only εO−O and σO−O in Eq. (2.272.27)

are non-zero. The only exception to that is TIP3P, which is why the corresponding

parameters are listed separately in Table 2.22.2.

q(e) εO−O(kcal mol−1) σO−O(�A)

SPC/E 0.8200 0.1553 3.1660

TIP3P 0.8300 [see Table 2.22.2]

TIP4P/2005 1.1128 0.1852 3.1589

TIP4P/ice 1.1794 0.2108 3.1668

q-TIP4P/F 1.1128 0.1852 3.1589

Table 2.2: Lennard-Jones parameters for the intermolecular interactions between O−O,

O−H and H−H pairs in the TIP3P model.

O−O O−H H−H

ε (kcal mol−1) 0.1521 0.0836 0.0460

σ (�A) 3.1507 1.7753 0.4000

rc,elec are taken into account. Contributions from sites beyond the latter can be effi-

ciently accounted for by reciprocal space techniques like for example Ewald summation

[7373].

EvdW accounts for Pauli repulsion at small and van der Waals attraction at large

distances (see Section 2.2.22.2.2 for a discussion of the latter in the DFT context). It is

given by:

EvdW =
∑
i

∑
j>i

4εij

[(
σ

ri − rj

)12

−
(

σ

ri − rj

)6
]

if |ri − rj | < rc,vdW (2.27)
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Figure 2.4: SPC/E electrostatic, van der Waals and total energy without intramolec-

ular contribution in kcal mol−1 unit when two single water molecules oriented on their

hydrogen-bond network.

Here 6
√

2σ is the equilibrium distance that yields −εij , i.e. the depth of the potential

well. Again, for computational convenience, pairs at distances larger than the cut-off

distance rc,vdW are usually neglected. Unlike for the Coulomb potential, the use of

reciprocal space techniques is usually not necessary due the much faster decay of this

6-12 Lennard-Jones potential as a function of distance. The relevance of EvdW for the

bonding in different ice phases is analyzed in Chapter 33.

Table 2.12.1 compiles the parameters related to intermolecular interactions (q, ε, and σ)

as introduced in Eqs. (2.262.26) and (2.272.27) above for each force field. SPC/E force field is

a result of the re-parametrization of the original SPC [7474] potential. Fig. 2.42.4 shows the

SPC/E electrostatic energy (Eq. (2.262.26)), Lennard-Jones energy (Eq. (2.272.27)), and total

energy without intra-molecular contribution when two single molecule are interacting

on their hydrogen-bond side. TIP3P is very similar to the SPC/E model but with

some minor modifications. One of the main changes is adding additional Lennard-Jones
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Table 2.3: Geometry parameters for five fixed-charge water models used in this work.

The req, θeq, rO-M are illustrated in Fig. 2.32.3.

Water models req(�A) rO-M(�A) θeq(degree)

SPC/E 1.000 n/a 109.5

TIP3P 0.957 n/a 104.5

TIP4P/2005 0.957 0.155 104.5

TIP4P/ice 0.957 0.158 104.5

q− TIP4P/F 0.942 0.155 107.4

parameters for the interactions between hydrogen-hydrogen and oxygen-hydrogen pairs,

which are compiled in Table 2.22.2. In the four-site models TIP4P/2005, TIP4P/ice,

q-TIP4P/F, the negative charge of the oxygen atom is located on an additional virtual

site on the bisector of the H−O−H angle. Figure 2.32.3 illustrates this construction, and

the model-specific distances from the oxygen atom rO-M are listed in Table 2.32.3. This

way, the (continuous) electron density as obtained by a quantum mechanical description

is mimicked better than with a three-site model. As evidenced by Table 2.12.1, the

parameters related to intermolecular interactions are the same for TIP4P/2005 and q-

TIP4P/F. They were obtained in a way to reproduce the phase-diagram of water and

ice [4949, 5151]. TIP4P/ice results from a subsequent reparametrization to better match

thermodynamic properties of ice. For example, TIP4P/ice can accurately describe the

melting temperature of ice [5050].

Intramolecular energy contributions in Eq. (2.252.25) have not been included in the original

SPC/E, TIP3P, TIP4P/2005, TIP4P/ice models, i.e. they all describe rigid

water molecules. In order to account for intramolecular vibrations, in this thesis I

have adapted the common approach to add flexibility by employing simple harmonic

potentials. Bond stretching is described by the harmonic potential

Ebond =
∑
i

Kr

[
(ri,1 − req)2 + (ri,2 − req)2

]
(2.28)

where ri,1 and ri,2 are the two O−H bond lengths of a single water molecule and req

is the model-specific equilibrium bond distance provided in Table 2.32.3. The same bond
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force constant Kr = 450.372 kcal mol−1 �A
−2

obtained from the measured Raman spec-

trum of liquid water [7575] is employed for all of the aforementioned models. Equivalently,

bending is described by

Eangle =
∑
i

Kθ(θi − θeq)2 (2.29)

where θi is the H−O−H angle of each water molecule and θeq is the model-specific

equilibrium bond angle given in Table 2.32.3. Again, the same bending force constant

Kθ = 55 kcal mol−1 rad−2 obtained from experimental data is used for all the models

mentioned above.

q-TIP4P/F is a flexible water model “by design” [5151]. The bond stretching is ac-

counted for based on a Morse potential

Ebond =
∑
i

EMorse(ri,1) + EMorse(ri,2) (2.30)

which is approximated according to

EMorse(r) ≈ Dr

[
α2
r(r − req)2 − α3

r(r − req)3 +
7

12
α4

r (r − req)4

]
(2.31)

Thanks to this anharmonic potential, q-TIP4P/F is able to capture the anharmonic

and anticorrelation effects between the O−H bond and the hydrogen bonding. [5151] The

bending contribution to the intramolecular interactions is a harmonic potential like in

Eq. (2.292.29) above. The corresponding parameters, Dr = 116.09 kcal mol−1 and αr =

2.287�A
−1

as well as Kθ = 43.925 kcal mol−1 rad−2, respectively, are optimized such

that path integral molecular dynamics simulations yield best possible agreement with

the experimental absorption spectrum, diffusion constant, and vibrational properties

of liquid water [5151].

In this thesis, all of the fixed-charge pair potentials described in this section are em-

ployed via the Lammps MD package [7676].

2.3.2 AMOEBA

Ren and Ponder [5252] have developed the so-called Atomic Multipole Optimized Energies

for Biomolecular Applications (AMOEBA), which includes polarization effects as well
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Table 2.4: Parameters for the electrostatic interactions in the AMOEBA model. For

the dipole and quadrupole moments of oxygen atoms, the H−O−H bisector is chosen

as z-axis and the x-axis is in the plane defined by the H2O molecule. For hydrogen, the

z-axis is aligned along the O−H bond direction, and the x-axis lies in the molecular

pointing towards the other H atom. In both cases, the y-axis is added such that

right-handed coordinate systems are completed. Only non-zero components in these

reference frames of both multipole moments are listed here.

O H

charge qO = −0.426 16 e qH = +0.213 08 e

dipole moment µO,z = +0.062 51 e a0 µH,x = −0.101 17 e a0

µH,y = −0.271 71 e a0

quadrupole moment ΘO,xx = +0.175 76 e a0
2 ΘH,xx = +0.122 83 e a0

2

ΘO,yy = −0.231 60 e a0
2 ΘH,yy = +0.089 50 e a0

2

ΘO,zz = +0.055 84 e a0
2 ΘH,zz = −0.212 33 e a0

2

ΘH,xy = −0.069 89 e a0
2

polarizability αO = +0.920�A
3

αH = +0.539�A
3

= +6.209 · 4πε0a3
0 = +3.637 · 4πε0a3

0

as intramolecular flexibility. In this thesis, the most recent parameterization for water

given in 2014 by Laury et al. [7777] (AMOEBA14) is used. The total energy expression

of AMOEBA consists of the following terms:

Etotal = Eperm
elec + Eind

elec + EvdW︸ ︷︷ ︸
intermolecular

+ Ebond + Eangle + EUB︸ ︷︷ ︸
intramolecular

(2.32)

In contrast to the fixed-charge models described in the previous section, the electro-

static contribution takes both permanent (Eperm
elec ) and induced (Eind

elec) atomic multi-

pole moments into account. The permanent electrostatic moments include monopoles,

dipoles, and quadrupoles obtained from high-level electronic structure calculations for

the hydrogen and oxygen atomics sites (see Table 2.42.4) enumerated by i, which are writ-

ten conveniently in poly-tensorial notationMi = [qi, µi,x, µi,y, µi,z,Θi,xx,Θi,xy, . . . ,Θi,zz]
T .
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This allows to write

Eperm
elec =

∑
i,j
j>i

qi [T ij , T ijx , T
ij
y , T

ij
z , T

ij
xx, T

ij
xy, . . . , T

ij
zz]Mj

+
∑
i,j
j>i

∑
α

µi,α [T ijα , T
ij
αx, T

ij
αy, T

ij
αz, T

ij
αxx, T

ij
αxy, . . . , T

ij
αzz]Mj

+
∑
i,j
j>i

∑
α,β

Θi,αβ [T ijαβ , T
ij
αβx, T

ij
αβy, T

ij
αβz, T

ij
αβxx, T

ij
αβxy, . . . , T

ij
αβzz]Mj ,

(2.33)

where the left parts of the “scalar-products” with Mj are the multipole interaction

tensor elements in Stone’s [7878] notation

T =
1

R
(2.34)

Tα = −Rα
R3

(2.35)

Tαβ =
1

R5

[
3RαRβ −R2δαβ

]
(2.36)

Tαβγ =
1

R7

[
15RαRβRγ − 3R2 (Rαδβγ +Rβδαγ +Rγδαβ)

]
(2.37)

Tαβγδ =
1

R9
[105RαRβRγRδ (2.38)

− 15R2 (RαRβδγδ +RαRγδβδ +RαRδδβγ +RβRγδαδ +RγRδδαβ)

+3R4 (δαβδγδ + δαγδβδ + δαδδβγ)
]

Here R denotes the distances between two sites and the site indicators i and j have

been omitted for brevity.

Since AMOEBA includes polarizabilities of hydrogen and oxygen atoms as given in

Table 2.42.4, a smeared charge distribution

ρ =
3a

4π
exp(−au3) (2.39)

with dimensionless width parameter a = 0.39 is used in practice, where u = Rij(αiαj)
− 1

6 .

This has originally been suggested by Thole [6565, 7979] in order to avoid a polarization

catastrophy at short-distances. Consequently, the multipole interaction tensor elements

T... need to be replaced by their damped counterparts TD
..., which include additional

weights for the individual terms resulting from Eq. (2.392.39) but are otherwise of equiva-

lent form [5252].

35



“Thesis” — 2022/11/3 — 8:17 — page 36 — #44

CHAPTER 2. THEORY AND METHODS

Table 2.5: Parameters for the intermolecular vdW interactions between O−O, O−H

and H−H pairs in the AMOEBA model.

O−O O−H H−H

ε (kcal mol−1) 0.1512 0.0263 0.0105

R0 (�A) 3.5791 3.2001 2.1176

Induced dipoles are calculated via the product of the polarizabilities and the electric

field Fi = (F ix, F
i
y, F

i
z) at atomic site i

µind
i,α = αi F

i
α = αi

∑
{j}

[T ijα , T
ij
αx, T

ij
αy, T

ij
αz, T

ij
αxx, T

ij
αxy, . . . , T

ij
αzz]Mj

+
∑
{j′}

[T ij
′

αx , T
ij′

αy , T
ij′

αz ] · [µind
j′,x, µ

ind
j′,y, µ

ind
j′,z]

T .
(2.40)

Fi has two contributions. The first one results from the permanent multipole mo-

ments of all the water molecules surrounding the molecule containing the atomic site

i (summation over {j}). The second one is from the induced dipoles of all other

atomic sites except site i (summation over {j′}) Equation (2.402.40) is solved iteratively

to yield a self-consistent solution for all the µind
i,α [5252]. Substituting µi,α + µind

i,α for

µi,α in Eq. (2.332.33) yields additional terms which define the induced electrostatic energy

contribution Eind
elec.

Also in contrast to the fixed-charge models, the van der Waals intermolecular inter-

actions (EvdW) are based on the buffered 14-7 potential originally suggested by [8080].

Dudek and Ponder [8181] showed that when combined with quadrupole moments, this

potential allows to better reproduce reference energetics obtained from ab initio cal-

culations – in particular in the repulsive regime when two interacting sites approach

each other. In the AMOEBA14 parametrization the buffered 14-7 potential is given

by

Eijvdw = εij

(
1.07

ρij + 0.07

)7
(

1.12

ρ7
ij + 0.12

− 2

)
, (2.41)

where εij is the minimum energy at distance R0
ij for the interacting sites i and j. ρij =

Rij
R0
ij

describes the rescaled distance between this pair. Like in TIP3P (see Section 2.3.12.3.1)
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all oxygen and hydrogen atomic sites contribute, and the parameters are tabulated in

Table 2.52.5.

The intramolecular interactions in Eq. (2.322.32) consist of bonding (Ebond =
∑
i,oE

i,o
bond),

H−O−H bending (Eangle =
∑
iE

i
angle), and the Urey-Bradley (EUB =

∑
iE

i
UB) con-

tributions.

Ebond is based on an anharmonic potential, which includes deviations of the O−H bond

length r from its equilibrium value r0 = 0.9565�A up to fourth order

Ei,obond = Kr(ri,o − r0)2
[
1− 2.55(ri,o − r0)− 3.793125(ri,o − r0)2

]
(2.42)

where Kr = 556.82 kcal mol−1 �A
−2

is the stretching force constant i enumerates the

water molecules and o = 1, 2 the O−H bonds in each molecule.

Eangle is described by

Eiangle = Kθ (θi − θ0)2 η(θi, θ0) (2.43)

where Kθ = 48.98 kcal mol−1 rad−2 is the bending force constant and

η(θ, θ0) = 1− 0.014(θ − θ0) + 5.6 · 10−5(θ − θ0)2

+ 7.0 · 10−7(θ − θ0)3 + 2.2 · 10−8(θ − θ0)4
(2.44)

accounts for anharmonicity up to second order deviations from the equilibrium bond

angle θ0 = 107.91°.

EUB is based on the simple harmonic expression

EiUB = Kl(li − l0)2 (2.45)

where l0 is the ideal length of virtual bond between the two hydrogens inside a single

water molecule and Kl = −7.6 kcal mol−1 �A
−2

is the force constant associated with

this virtual bond.

The implementation of AMOEBA14 available in the TINKER package [5353, 8282] is used

in this thesis.
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Table 2.6: Parameters for the electrostatic interactions in the SCME model. The

multipole moments are with respect to the center of mass of a H2O molecule. The

H−O−H bisector is chosen as the negative z-axis and the x-axis is in the plane defined

by the H2O molecule. The y-axis is added such that right-handed coordinate system

is completed. Only non-zero components in this reference frames are listed here.

dipole moment (e a0)

µz = −0.729 81

quadrupole moment (e a0
2)

Θxx = +1.955 32 Θyy = −1.858 67 Θzz = −0.096 65

octupole moment (e a0
3)

Ωxxy = −3.271 90 Ωyyz = +1.366 06 Ωzzz = +1.905 85

hexadecapole moment (e a0
4)

Φxxxx = −0.949 03 Φxxyy = −3.384 90 Φxxzz = +4.333 93

Φyyyy = +4.098 35 Φyyzz = −0.713 45 Φzzzz = −3.620 48

2.3.3 SCME

The Single Center Multipole Expansion (SCME) is a water model that in its original

formulation by Wikfeldt et al. [5656] is based on rigid water molecules. Chapter 55 of

this thesis describes an extension that adds flexibility and thus intramolecular energy

contributions. Unlike AMOEBA, SCME employs permanent molecular multipole mo-

ments which are defined with respect to the center of mass of a H2O molecule up to

and including hexadecapoles. Like in AMOEBA, polarizability is accounted for, but

also including induced molecular quadrupoles instead of only atomic dipoles. The total

energy used by SCME

Etotal = Eperm+ind
elec + Edisp + Erep︸ ︷︷ ︸

intermolecular

(2.46)

consists of permanent and induced electrostatic (Eperm+ind
elec ), dispersion (Edisp) as well

as short-range repulsion (Erep) contributions.

38



“Thesis” — 2022/11/3 — 8:17 — page 39 — #47

2.3. FORCE FIELD METHODS FOR MODELING ICE

Table 2.7: Same as Table 2.62.6, but for polarizabilities.

dipole–dipole polarizability (4πε0a
3
0)

αxx = +10.31146 αyy = +9.54890 αzz = +9.90656

dipole–quadrupole polarizability (4πε0a
4
0)

Ax,xz = −8.42037 Ay,yz = −1.33400 Az,xx = −2.91254

Az,yy = +4.72407 Az,zz = −1.81153

quadrupole–quadrupole polarizability (4πε0a
5
0)

Cxx,xx = +12.11907 Cxx,yy = −6.95326 Cxx,zz = −5.16582

Cxy,xy = +7.86225 Cxz,xz = +11.98862 Cyy,yy = +11.24741

Cyy,zz = −4.29415 Cyz,yz = −6.77226 Czz,zz = +9.45997

The electrostatic energy component is given by

Eperm+ind
elec = −1

2

∑
i

(
µiαF̃

i
α +

1

3
Θi
αβF̃

i
αβ +

1

15
ΩiαβγF̃

i
αβγ +

1

105
ΦiαβγδF̃

i
αβγδ

)
,

(2.47)

where the prefactor of 1
2 avoids double counting. For the remainder of this section, the

Einstein convention is being employed, i.e. doubly occurring Cartesian components (x,

y, z), which are denoted by Greek letters, are being summed over. The summation

over different water molecules on the other hand is written out explicitly. Dipole,

quadrupole, octopole and hexadecapole moments of a particular water molecule i are

denoted by µi, Θi, Ωi and Φi, respectively. The dipoles and quadrupoles are based

on measured values [8383, 8484], whereas the higher multipoles have been obtained from

quantum chemical calculations at the MP2 level [8585]. They are all defined with respect

to the center of mass of a H2O molecule and compiled in Table 2.62.6. F̃ iα is the α-

component of the electric field, caused by all the other molecules except for molecule

i and scaled by a switching function f sw that depends on the center-of-mass distance

rcom
ij between molecules i and j:

F̃ iα =
∑
j
j 6=i

f sw(rcom
ij )F ijα (2.48)

F ijα is the multipole expansion of the electric field caused by water molecule j at the
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center of mass of molecule i

F ijα = T ijαβ

(
µjβ + ∆µjβ

)
− 1

3
T ijαβγ

(
Θj
βγ + ∆Θj

βγ

)
+

1

15
T ijαβγδ Ωjβγδ −

1

105
T ijαβγδε Φjβγδε ,

(2.49)

where again Stone’s T notation is used for the multipole interaction tensors as in the

previous Section 2.3.22.3.2 (see Eqs. (2.342.34) to (2.382.38))44. The derivatives of this multipole

expansion (with respect to Cartesian directions) are denoted by adding additional

(Greek) indices, i.e. n additional indices for the n-th derivative:

F ijα...δ =
∂

∂rβ
· · · ∂

∂rδ
F ijα (2.50)

These derivatives also define F̃ iα...δ by substituting F ijα in Eq. (2.482.48) accordingly. The

induced dipole (∆µiα) and quadrupole (∆Θi
αβ) moments of water molecule i are ob-

tained self-consistently from

∆µiα = αiαβ F̃
i
β +

1

3
Aiα,βγ F̃

i
βγ (2.51)

∆Θi
αβ = Aiγ,αβ F̃

i
γ + Ciγδ,αβ F̃

i
γδ . (2.52)

Here αiαβ , Aiα,βγ and Ciαβ,γδ are the corresponding dipole-dipole, dipole-quadrupole

and quadrupole-quadrupole polarizabilities, respectively. Again, the values compiled

in Table 2.72.7 are based on experiments (ααβ) and quantum chemical calculations (Aα,βγ

and Cαβ,γδ) [5656]. Equations (2.512.51) and (2.522.52) together with Eqs. (2.482.48) and (2.492.49) (and

their multi-subscripts counterparts) are solved iteratively until all components of the

electric field and its gradients as well as the induced multipole moments are converged

up to certain threshold.55 f sw smoothly switches off any electrostatic interactions at

short (rcom
ij < 5�A) and long (rcom

ij > 11�A) distances.66 The overlap of electron densities

associated with different water molecules at short distances leads to strong repulsion

due to quantum mechanical effects (Pauli repulsion), which is captured by the Erep

term in Eq. (2.462.46) (vide infra). Like for the simplest water force fields described in

Section 2.3.12.3.1, the long-range cut-off included in f sw is an approximation that makes

4Tαβγδε = ∇εTαβγδ
510−7 a.u. in the original work of Wikfeldt et al. [5656].
6See Wikfeldt et al. [5656] for details on the definition of f sw.
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Table 2.8: Parameters for the dispersion and repulsion interactions in the SCME model.

All values are giving in atomic units matching to Eqs. (2.532.53) to (2.572.57)

damping

τd = 2.32837906

dispersion

C6 = 46.44309964 C8 = 1141.70326668 C10 = 33441.11892923

repulsion

A = 1857.45898793 C = 1.68708507 · 106

b = 1.44350000 c = 1.83402715 d = 0.35278471

a0 = +1.02508535 · 10−1 a1 = −1.72461186 · 10−4 a2 = +1.02195556 · 10−7

a3 = −2.60877107 · 10−11 a4 = +3.06054306 · 10−15 a5 = −1.32901339 · 10−19

the evaluation of the SCME computationally convenient, in particular when dealing

with infinitely extended (bulk) ice structures.

The dispersion and repulsion energies are obtained by only considering the oxygen-

oxygen distances rOO
ij between different water molecules. The dispersion energy is

given by

Edisp = −
∑
i,j
j>i

[
fTT

6 (rOO
ij )

C6

(rOO
ij )6

+ fTT
8 (rOO

ij )
C8

(rOO
ij )8

+ fTT
10 (rOO

ij )
C10

(rOO
ij )10

]
,

(2.53)

with coefficients Cn (n ∈ {6, 8, 10}) compiled in Table 2.82.8 and the Tang-Toennies [8686]

damping function

fTT
2n (rOO

ij ) = 1 − exp(−τd rOO
ij )

2n∑
k=0

(τd r
OO
ij )k

k!
, (2.54)

The damping factor τd is physically motivated by the inverse decay length of the charge

density in a water monomer (see Table 2.82.8).

The original formulation of SCME [5656] employs a modified Born-Mayer potential for
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the repulsion energy

Erep = A
∑
i,j
j>i

[1 +B(ρj) +B(ρi)] (rOO
ij )−b exp(−c · rOO

ij ) , (2.55)

where

B(ρi) =


0 if ρi ≤ 1600∑5
n=0 anρ

n
i if 1600 < ρi < 8000

0.0875 if 8000 ≤ ρi .

(2.56)

ρi is the superposition of the electron densities of all water molecules surrounding a

given molecule i

ρi =
∑
j
j 6=i

exp(−d · rOO
ij )

C

(rOO
ij )3

(2.57)

The eleven parameters A, C, an (n = 0, 1, . . . , 5), b, c and d compiled in Table 2.82.8

have been obtained by Wikfeldt et al. [5656] via fitting to quantum chemical calculations

for small water clusters (consisting of up to six H2O molecules, at the MP2 level).

Finally, in the extension of SCME for flexible water molecules that is presented in

Chapter 55 of this thesis, the Born-Mayer term needed to be substituted by a different

expression.

2.3.4 MB-pol

The MB-pol potential has been developed by Paesani and coworkers [5454, 5555, 8787]. Com-

pared to the AMOEBA and SCME models described in the two previous subsections,

MB-pol relies on a much larger number of parameters, which are consequently obtained

by fitting to accurate quantum chemical calculations at the CCSD(T) level [8888, 8989].

Therefore, in the interest of conciseness and unlike in the previous sections, not all ana-

lytical expressions are provided here. Instead, only the essential concepts are explained

and compared to AMOEBA and SCME wherever relevant.

Like all water force fields described in the preceding sections, MB-pol is based on

the notion that interactions between water molecules can be separated into different

contributions of varying relevance at different separation distances [7878]. The electron
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densities of individual molecules hardly overlap in the long-range part, which is there-

fore dominated by dispersion and electrostatic interactions. MB-pol (only) considers

pair-wise contributions to the dispersion interactions – analogous to the fixed-charge

force fields, AMOEBA and SCME. For the electrostatic interactions, MB-pol employs a

Thole-type model (TTM) [6565], which is based on (smeared) atomic charges and includes

polarization and thus many-body effects at the long range similar to AMOEBA but

rather different from SCME. Building on earlier work resulting in the so-called HBB2-

pol force field [8888, 8989], MB-pol explicitly accounts for quantum mechanical many-body

effects involving up to three water molecules at the short range. This is a unique feature

compared to all other force fields considered so far. Going beyond three-body terms

has not been found to be necessary for achieving chemical accuracy [9090–9393]. Since no

“simple” analytical form is known for the concomitant short-range two- and three-body

potentials, these are heavily parametrised based on a large dataset generated by the

aforementioned quantum chemical calculations.

Consequently, the total energy of the MB-pol model

Etotal = Eelec + E2B
short + E3B

short︸ ︷︷ ︸
intermolecular + intramolecular

+ Edisp︸ ︷︷ ︸
intermolecular

+ E1B︸︷︷︸
intramolecular

(2.58)

is decomposed into permanent and induced electrostatic (Eelec), dispersion (Edisp),

short-range two-body (E2B
short) and three-body (E3B

short) intermolecular contributions.

The intramolecular contribution that accounts for the flexibility of a single water

molecule (one-body term E1B) is taken “as is” from Partridge and Schwenke [9494].

The electrostatic energy in MB-pol is based on the so-called TTM4-F model as orig-

inally constructed by Burnham et al. [6262], Burnham et al. [9595], and Burnham and

Xantheas [9696]. This bares similarities to the AMOEBA model presented in 2.3.22.3.2, i.e.,

it accounts for permanent and induced electrostatic intermolecular interactions

Eelec = ETTM4-F = Eperm
TTM4-F + Eind

TTM4-F , (2.59)

with smeared charges and induced dipoles located on the H and shifted slightly away

from O atomic sites of a H2O molecule. Only charge-charge, charge-dipole and dipole-
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dipole interactions (the latter also intramolecular) are included in Eq. (2.592.59), i.e., un-

like in SCME (higher order) molecular multipole moments are not considered explicitly.

The dependence of the atomic charges on the geometry of a single water molecule is ob-

tained from the dipole moment surface (DMS) by Partridge and Schwenke [9494]. Babin

et al. [5454] use the same values for the polarizabilities and charge (Thole) smearing pa-

rameters as given by Burnham et al. [6262], except for a reduced dipole-dipole interaction

related smearing width.77

The expression for the dispersion energy

Edisp =
∑
a>b

V6,8(xa,xb) = −
∑
a>b

∑
i∈a
j∈b

[
fTT

6 (δij6 rij)
Cij6
r6
ij

+ fTT
8 (δij8 rij)

Cij8
r8
ij

]
(2.60)

is similar to SCME. xa and xb denote all the atomic positions belonging to water

molecules a and b. V6,8 obviously contributes to two-body interactions at the long

range as it includes summation over all atomic sites i and j in two different H2O

molecules a and b, respectively, with concomitant distances rij only considered up to

r−8
ij . fTT

6 is the Tang-Toennies damping function already given by Eq. (2.542.54). The

parameters δHH
6,8 , δOH

6,8 , δOO
6,8 and CHH

6,8 , COH
6,8 , COO

6,8 for Eq. (2.602.60) are obtained from

fitting to the results from the aforementioned quantum chemical calculations.

The short-range two-body energy contribution

E2B
short =

∑
a>b

V 2B
short(xa,xb) (2.61)

is based on the short-range two-body potential

V 2B
short(xa,xb) = s2B(rOaOb)V

2B
poly(ξ2B

1 , . . . , ξ2B
31 ) , (2.62)

which involves all the atomic positions xa and xb of two different water molecules plus

two oxygen lone-pair sites each. These two additional sites L1 and L2 are schemati-

cally depicted for one water molecule in Fig. 2.52.5. Babin et al. [5454] have represented

V 2B
poly(ξ2B

1 , . . . , ξ2B
31 ) by permutationally invariant polynomials up to fourth degree in the

variables ξ2B
i , which are based on the six intramolecular distances (ξ2B

i = exp(−k2B
i di),

7It has been set identical to its intermolecular counterpart.
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O

H1

H2

L1

L2

Figure 2.5: Oxygen lone-pair sites L1 and L2 used in the short-range two-body potential

V 2B
short (see Eq. (2.622.62)).

i = 1, . . . , 6), nine intermolecular Coulomb-like terms (ξ2B
i = exp(−k2B

i di)/di, i =

7, . . . , 15) and the sixteen intermolecular distances involving the aforementioned oxy-

gen lone-pair sites (ξ2B
i = exp(−k2B

i di), i = 16, . . . , 31). Here di denote actual distances

between sites and k2B
i (i = 1, . . . , 31) are fit parameters, which are obtained from the

aforementioned quantum chemical calculations after (long-range) two-body contribu-

tions resulting from Eelec and Edisp have been subtracted. s2B smoothly switches on

V 2B
short in a range 5.5�A < rOaOb < 7.5�A based on the distance rOaOb between the two

oxygen atoms of the molecules a and b.

The short-range three-body energy contribution

Eshort
3B =

∑
a>b>c

V 3B
short(xa,xb,xc) (2.63)

is based on the short-range three-body potential

V 3B
short(xa,xb,xc) =

[
s3B(tab)s

3B(tac) + s3B(tab)s
3B(tbc) + s3B(tac)s

3B(tbc)
]

V 3B
poly(ξ3B

1 , . . . , ξ3B
36 ) ,

(2.64)

involving the atomic positions of three different water molecules (xa,xb,xc). Babin

et al. [5555] have constructed V 3B
poly in similar to V 2B

poly by using permutationally invariant

polynomials up to fourth degree in the variables ξ3B
i . All monomials contributing to

V 3B
poly are based on the 9 intramolecular distances (ξ3B

i = exp(−k3B
i di), i = 1, . . . , 9

45



“Thesis” — 2022/11/3 — 8:17 — page 46 — #54

CHAPTER 2. THEORY AND METHODS

Figure 2.6: Schematic representation of four particular distances d10, d25 (both red),

d36 (blue), and d1 (green) between atoms of the three depicted H2O molecules a,

b and c. The corresponding variables ξ3B
i = exp(−k3B

i di), i ∈ {1, 10, 25, 36} yield

monomials that contribute to V 3B
poly (see Eq. (2.642.64)), i.e., V 3B

poly = . . .+ξ10ξ25+ξ10ξ25ξ36+

ξ10ξ25ξ36ξ01 + . . .
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– 3 pairs each per H2O) and the 27 intermolecular distances (ξ3B
i = exp(−k3B

i di),

i = 10, . . . , 36 – 3 pairs of molecules with 9 distance pairs each). This is further

illustrated in Fig. 2.62.6. k3B
i (i = 1, . . . , 36) are fit parameters, which are obtained

from the aforementioned quantum chemical calculations after (long-range) three-body

contributions resulting from Eind
TTM4-F (see Eq. (2.592.59)) has been subtracted. s3B(tab) =

s3B(tab(rOaOb)) smoothly deactivates V 3B
short for oxygen-oxygen distances rOaOb > 4.5�A

between the two H2O molecules a and b.

Throughout this thesis, the original parameterisation and implementation of MB-pol

developed by the Paesani group [5454, 5555, 8787] is used.

2.4 Phonons

This section first introduces the harmonic approximation for the total energy of a

crystalline solid. Solving the lattice dynamical equations then yields uncoupled vi-

brational modes (phonons) characterised by frequencies and displacement eigenvectors

as a function of phonon wave vector. The (harmonic) phonon system is then conve-

niently characterised by its density of states and subject to statistical treatment in the

canonical ensemble to describe non-zero temperatures. Afterwards, the quasi-harmonic

approximation is introduced in order to account for thermal expansion. The section

concludes with computational aspects focussing on the finite-displacement technique

that is used throughout in this thesis.

2.4.1 Harmonic Approximation

Not considering any defects, the total internal energy E of a perfect crystal with equi-

librium lattice vectors Req = (aeq,beq, ceq)88 can be expanded around the equilibrium

positions of the atoms. Terminating this expansion after the second order is called the

8i.e., those which yield the lowest total energy of the crystal for atoms in their equilibrium positions

47



“Thesis” — 2022/11/3 — 8:17 — page 48 — #56

CHAPTER 2. THEORY AND METHODS

harmonic approximation

Eharm(u; Req) = E0(Req) + E1(u; Req) + E2(u; Req)

= E(u = 0; Req) +
∑
n,i,α

∂E

∂un,i,α

∣∣∣∣
u=0︸ ︷︷ ︸

=−Fn,i,α(u=0;Req)=0

un,i,α

+
1

2

∑
n,i,α

∑
n′,i′,α′

∂2E

∂un,i,α∂un′,i′,α′

∣∣∣∣
u=0

un,i,α un′,i′,α′

= Eeq +
1

2

∑
n,i,α

∑
n′,i′,α′

Φn
′,i′,α′

n,i,α (u = 0; Req) un,i,α un′,i′,α′ .

(2.65)

Here the summations extend over the infinitely many unit cells of the crystal (n′),

the Ncell atoms within a unit cell (i′ = 1, . . . , Ncell) and their Cartesian coordinates

(α′ = 1, 2, 3). un,i,α denotes the displacement along Cartesian direction α of atom i

in a replica n. When no atoms are displaced (u = 0), only the zeroth order term E0

contributes and thus defines the (constant) equilibrium energy Eeq = E(u = 0; Req) of

the crystal. In the following, Eeq is chosen as energy zero such that it does not need to

be explicitly denoted. The first order term E1 vanishes because all force components

Fn,i,α(u = 0; Req) acting on atom i in a cell n vanish by definition when the atoms are

sitting at their equilibrium positions. This only leaves the second order (or so-called

harmonic) term E2, which is fully defined by the force constants Φn
′,i′,α′

n,i,α (u = 0; Req)

of the material. The equilibrium lattice vectors are explicitly denoted in Eq. (2.652.65) in

preparation of the so-called quasi-harmonic approximation, which is introduced below

in Section 2.4.42.4.4.

2.4.2 Lattice Dynamics

According to Eq. (2.652.65), the forces in the harmonic approximation are given by

F harm
n,i,α = −∂E

harm

∂un,i,α
= −

∑
n′,i′,α′

Φn
′,i′,α′

n,i,α un′,i′,α′ , (2.66)

resulting in the following Newtonian equations of motion

−
∑

n′,i′,α′

Φn
′,i′,α′

n,i,α un′,i′,α′ = Mi
∂2un,i,α
∂t2

(2.67)
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for each atom with mass Mi in the crystal. In principal, the force constant matrix

Φn
′,i′,α′

n,i,α couples the motion of all atoms in the crystal, with the strength of the cou-

plings typically decreasing with increasing distance from a reference atom. Equa-

tion (2.672.67) can be solved by the following plane-wave-like ansatz for the displacement

patterns

un,i,α(q, t) =
A√
Mi

ũi,α(q) exp(i(q·Rn − ω(q)t)) , (2.68)

where the linear combination of lattice vectors Rn = na(n)aeq + nb(n)beq + nc(n)ceq

describes the offset of replica cell n from the (reference) unit cell. The wave vector q

characterizes the periodicity of such a displacement pattern with (angular) frequency

ω(q). All possible displacement patterns can be described by wave vectors that are

contained in the (first) Brillouin zone of the crystal (Wigner-Seitz cell of the reciprocal

lattice). The unit vector ũi,α(q) describes the displacements of each atom in a unit

cell and A is the amplitude of the resulting displacement pattern. Substitution of this

ansatz into Eq. (2.672.67)

ω2ũi,α(q) =
∑
i′,α′

∑
n

1√
MiMi′

Φn
′,i′,α′

n,i,α ũi,α(q) exp(iq·Rn) (2.69)

then allows to determine the frequencies ω(q) and directions of atomic displacements

ũi,α(q) that are described by Eq. (2.682.68). Introducing the so-called dynamical ma-

trix

Di′,α′

i,α (q) =
∑
n

1√
MiMi′

Φn
′,i′,α′

n,i,α exp(iq·Rn) , (2.70)

Eq. (2.692.69) constitutes an eigenvalue problem for this 3j×3j dimensional matrix

ω2ũi,α(q) =
∑
i′,α′

Di′,α′

i,α (q) ũi,α(q) . (2.71)

Since D(q) is Hermitian it can be diagonalized and the 3Ncell different eigenvectors

and concomitant eigenvalues provide solutions for the displacements νb(q) and their

concomitant frequencies ωb(q), respectively, where b = 1, . . . , 3Ncell. Each solution it

describes is a particular phonon state. At each q-point these states are enumerated by

the band index b, and the total amount of bands is determined by the amount of atoms

in the primitive unit cell. In practice, solutions for a discrete set of q-points sampling

the Brillouin zone are being calculated.
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Figure 2.7: Phonon DOS of ice-Ih calculated with the q-TIP4P/F model. Five differ-

ent sets of phonon modes are clearly separated by their respective frequency ranges,

namely hydrogen-bond bending (0 to 150 cm−1), hydrogen-bond stretching (150 to

500 cm−1), librational (500 to 1500 cm−1), H−O−H bending (1500 to 2000 cm−1), and

O−H stretching (2000 to 4000 cm−1).

It is convenient to characterize the phonon spectrum by the amount of states per

frequency and unit cell, which is expressed by the phonon density of states (DOS)

Dphonon(ω) =
V

(2π)3

∑
b

∫
BZ

dq δ(ω − ωb(q)) . (2.72)

V is the volume of the unit cell and the integration extends over the (first) Brillouin

zone (BZ). Figure 2.72.7 shows Dphonon for the most common crystalline ice phase (ice

Ih) as calculated with a particular fixed-charged force field (see Section 2.3.12.3.1).

2.4.3 Vibrational Free Energy

The canonical partition function of the phonon system Zphonon at temperature T is

obtained by summing over all phonon states, which are enumerated by their phonon

wavevectors (q in the first Brillouin zone), band indexes (b) and the amount of vi-

brational quanta (m) that are “stored” in each state. According to the harmonic ap-
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proximation there is no coupling between the different phonon modes. Consequently,

the vibrational partition function factorizes into the contribution of individual phonon

(harmonic) oscillators

Zphonon(T ) =
∏
q,b

∞∑
m=0

exp(−
h̄ωb(q)(m+ 1

2 )

kBT
) =

∏
q,b

exp(− h̄ωb(q)
2kBT

)

1− exp(− h̄ωb(q)
kBT

)
, (2.73)

where kB is the Boltzmann constant. This yields the phonon contribution to the

Helmholtz free energy

Fphonon(T ) = −kBT ln(Zphonon)

=
1

2

∑
q,b

h̄ωb(q)︸ ︷︷ ︸
ZPE

+ kBT
∑
q,b

ln

[
1− exp

(
−h̄ωb(q)

kBT

)]
(2.74)

The first term is the zero-point energy (ZPE), which will be the focus of Chapters 33

and 66. The partition function also yields the vibrational entropy of the phonon sys-

tem

Sphonon(T ) =
1

T

∑
q,b

h̄ωb(q)

exp
(
−h̄ωb(q)
kBT

)
− 1

− kB

∑
q,b

ln

[
1− exp

(
−h̄ωb(q)

kBT

)]
. (2.75)

The internal energy of the phonon system at finite temperature thus becomes

Fvib(T ) = Fphonon(T ) + TSphonon(T )

=
1

2

∑
q,b

h̄ωb(q) +
∑
q,b

h̄ωb(q)

exp
(
−h̄ωb(q)
kBT

)
− 1

,
(2.76)

which at T = 0 K is equal to the ZPE introduced in Eq. (2.742.74).

2.4.4 Quasi-Harmonic Approximation

Thermal expansion is not described by the harmonic approximation, which can be

rationalized by the fact that the expectation value for the position of each phonon

oscillator is zero. That means that even at higher temperatures the vibrational free

energy given by Eq. (2.742.74) still describes a crystal where the atoms are (on average) at

the same equilibrium positions as for zero temperature. Substituting the equilibrium
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Figure 2.8: Schematic representation of (a) the internal energy Eqh(V ) together

with (b) the volume dependence of the phonon contribution to the Helmholtz free

energy F qh
phonon(T ;V ) as well as (c) the total Helmholtz free energy F qh(T ;V ) =

Eqh(V )+F qh
phonon(T ;V ) according to the quasi-harmonic approximation. F qh

phonon(T ;V )

and F qh(T ;V ) are shown for three different temperatures T3 > T2 > T1. ∆V =

V0(T3)− V0(T1) denotes the volume expansion as further detailed in the text.
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lattice vectors Req by general lattice vectors R = (a,b, c) in Eq. (2.652.65) leads to lattice-

vector-dependent force constants Φn
′,i′,α′

n,i,α (u = 0; R). Consequently, the internal energy

Eharm can be written as a function of the unit cell volume V (R) = a · (b× c)

Eqh(u;V (R)) = Eharm(u; R) (2.77)

such that

min
V

Eqh(u = 0;V (R)) = Eharm(u = 0;V eq) = Eeq , (2.78)

with V eq = V (Req). This is called quasi-harmonic approximation (QHA). Eqh(V ) is

schematically depicted in Fig. 2.82.8 (a).99 Obviously, Eqh(V ) alone still does not describe

any thermal expansion.

Together with the force constants also the dynamical matrix and thus the solutions

of the lattice dynamical equations (see Section 2.4.22.4.2) depend on V , i.e., in particular

ω = ω(q;V ). Substitution into the expressions introduced in Section 2.4.32.4.3 results in

a volume dependent phonon contribution to the Helmholtz free energy F qh
phonon(T ;V ),

which is shown schematically in Fig. 2.82.8 (b) for three different temperatures. Ac-

counting for the internal and phonon contributions according to the QHA, the total

Helmholtz free energy becomes

F qh(T ;V ) = Eqh(V ) + F qh
phonon(T ;V ) , (2.79)

which is depicted in panel (c) of Fig. 2.82.8. F qh
phonon(T ;V ) leads to a temperature-

dependent shift of the minimum of Eqh(V ). The equilibrium volume is obtained from

minV F
qh(T ;V ) = F (T ;V0(T )) and changes according to ∆V eq(T ) = V0(T ) − V eq

compared to the T = 0 K. This means that the canonical ensemble given by the QHA

can effectively describe volume expansion due to increasing temperature.

2.4.5 Computational Aspects

The essential computational challenge for phonon calculations is to obtain the force

constants elements Φn
′,i′,α′

n,i,α (see Eq. (2.652.65)), because this defines the computationally

9Assuming that for a given set of lattice vectors R only relaxed atomic coordinates are being

considered (i.e., u = 0), the dependence on the displacements and lattice vectors are no longer

explicitly denoted here and in the following.
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rather simple eigenvalue given in Eq. (2.712.71) the solution of which then yields phonon

frequencies and displacements vectors and thus all thermodynamic properties describe

in Section 2.4.32.4.3. Unfortunately, in particular for electronic structure calculations in pe-

riodic boundary conditions, second derivatives of the total internal energy with respect

to atomic (displacement) coordinates are usually not as “easily” available as the corre-

sponding first derivatives (forces). Density-functional perturbation theory (DFPT) [9797]

has been formulated for that reason, but (obviously) cannot be combined with force

fields. To treat both DFT and force fields at equal footing, all phonon calculations in

this thesis are based on the so-called finite displacement technique [9898, 9999]. The only

systematic drawback of this technique is that it cannot account for the splitting of

longitudinal and transversal optical phonon modes at the Γ-point (known as LO-TO

splitting), which however is negligible for properties that are integrated over the entire

Brillouin zone.

The basic idea behind the finite-displacement technique is to evaluate the elements of

the force constants matrix by using finite differences of the respective force compo-

nents

Φn
′,i′,α′

n,i,α ≈ Fn′,i′,α′(+un,i,α)− Fn′,i′,α′,(−un,i,α)

2∆
. (2.80)

Here Fn′,i′,α′(±un,i,α) is the force component α′ acting on atom i′ in unit cell n′ of the

crystal after only the single atom i in unit cell n has been displaced by ±un,i,α = ±∆

along the Cartesian direction α while all other atoms remain in their equilibrium posi-

tions.1010 Of course, the latter is problematic when forces are calculated within periodic

boundary conditions, because this always results in the displacement of infinitely many

atoms. Using a supercell of the primitive unit cell allows to displace at least a cer-

tain amount of atom pairs ((n′, i′), (n, i)) with (n′, i′) 6= (n, i) independently from each

other. These pairs can be up to a certain maximum distance apart, which is inherent

to the chosen supercell. Assuming that Φn
′,i′,α′

n,i,α = 0 for atom pairs at even larger dis-

tances then allows to obtain a reasonable approximation for the force constant matrix

if the supercell is indeed large enough. This can and needs to be tested in practice by

10For a given set of lattice vectors.
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checking the convergence of calculated phononic properties with respect to the super-

cell. The dynamical matrix resulting from the former is then exact for phonons with

wavevectors q that are commensurate with the supercell, and Eq. (2.692.69) describes a

Fourier interpolation for all other wave vectors. Consequently, for a given force constant

matrix, phonons can be calculated with very modest computational effort throughout

the entire Brillouin zone, and convergence of phononic properties with respect to the

q-grid used for the Brillouin zone sampling can be easily checked.

In principal, the central difference approximation used in Eq. (2.802.80) could also be re-

placed by forward or backward differencing, which both reduce the amount of force

evaluations because only Fn′,i′,α′(+un,i,α) or Fn′,i′,α′(−un,i,α) would be required, re-

spectively. At the same time, however, this results in a numerical truncation error

for Φn
′,i′,α′

n,i,α of order ∆, while it is of order ∆2 with the central difference approxima-

tion. This is of particular importance since the displacement size ∆ cannot be chosen

arbitrarily small due to

1. limitations of floating point arithmetics when evaluating Eq. (2.802.80) and

2. numerical noise making it exceedingly difficult to accurately obtain “small” non-

analytically defined forces (usually the case in electronic structure calculations).

The quasi-harmonic approximation (see Section 2.4.42.4.4) relies on solving lattice dynamics

for harmonic Hamiltonians according to Eq. (2.712.71), but now for a different one for each

different volume. Depending on the volume range to be covered, this comes at only

moderately increased computational costs – in particular when considering alternatives

as, e.g., a fully dynamical description. Furthermore, computer codes for lattice dynam-

ics often already include the QHA or can be rather easily extended otherwise.

In this thesis, the Phonopy package [100100] is employed for all phonon calculations.

Most important for this thesis is that it can be easily coupled to external codes that

perform the force evaluations thanks to the well-structured and documented Python

code base. Phonopy implements the finite displacement method originally introduced

by Parlinski et al. [9999], including an automatic recognition and exploitation of symme-
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try to (potentially) significantly reduce the amount of 2 × 3 × Ncell force evaluations

that are required when symmetry is not considered (or not present in the structure).

Furthermore, it has been extended to enable calculations within the QHA. In the first

step, a set of symmetry-reduced atomic displacements in the requested supercell are

generated. After calculating forces for these structures with the external code (DFT

or force fields in this work), phonopy is again invoked to generate the force constant

matrix in Eq. (2.802.80) and solve the phonon eigenvalue problem (see Eq. (2.712.71)). In the

QHA these steps need to be repeated for a set of different primitive cells each with a

different cell volume. In the last step, e.g. phonon DOSs (Eq. (2.722.72)) or vibrational

free energy (and entropy) contributions can then be calculated.
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