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CHAPTER 1

Introduction

Solid water, commonly referred to as ice, is ubiquitous throughout the universe as a

material with many unique properties. Ice plays an important role for cloud formation

on earth and helping life survive on this planet. Arctic ice regulates its temperature by

reflecting sunlight, and ice glaciers are an important reservoir of fresh water. Without

ice, no aquatic plants and animals would survive throughout the winter months [11,

22]. Furthermore, ice under extreme conditions has received special attention in astron-

omy and planetary science. When searching for life on other planets, detecting ice is

commonly considered to be a prerequisite. Consequently, studying ice is important

for interdisciplinary research, and has been an active field in the physical sciences for

many years. Since ice restructures in different phases under different temperature and

pressure conditions, thermodynamic properties and their roots in chemical bonding are

an interesting subject of study in the physical sciences [33].

1.1 Hydrogen Bond Network in Ice

Chemical bonding in ice is surprisingly complex despite the simple chemical formula

of water (H2O). A water molecule consists of one oxygen atom covalently bound to

two hydrogen atoms forming a bond angle of 104.5°. Since electrons are not equally

1
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shared in these bonds, the O and the H atoms are left with slight negative and positive

charges, respectively. The resulting electrostatic interaction between hydrogen and

oxygen atoms of different water molecules are the most obvious cause for the existence

of hydrogen bonds (HBs). In addition, HBs also share some characteristics of covalent

bonding such as being directional and only involving a limited number of interaction

partners. Each water molecule can form HBs with up to four other molecules: two

through its hydrogen atoms and two through the two lone electron pairs of its oxygen

atom [44]. In other words, each water molecule donates and accepts two HBs. The

strength of HBs largely depends on the relative orientation of the contributing water

molecules. Consequently, hydrogen bonds are typically 10-100 times weaker than cova-

lent bonds but can be about ten times stronger than van der Waals (vdW) interactions

[55]. HBs are thus capable of storing a lot of energy, which results in an unusual high

heat capacity. This property of ice makes the climate more moderate in many parts of

this planet, resulting in more stable conditions for life on earth [66, 77].

In the most common phase of ice on earth, ice Ih, the hydrogen bond network results

in bond angles which come very close to the 109.5° found as vertex-center-vertex angle

in an ideal tetrahedron. Despite the energy cost to deform the bond angle of a water

molecule in gas phase (see above), the tetrahedral bond angle is favourable for the

stability of ice Ih. It also implies a rather “open structure” consisting of non-planar

hexagonal rings, with the oxygen atoms forming a honeycomb structure that becomes

“visible” when cutting ice Ih in the basal plane. Inside those rings there is almost

sufficient space for an additional H2O molecule. This results in the density of ice

Ih being 8.3 % lower than the density of liquid water – and thus the famous and

tremendously important property of the former floating on the latter.

While the oxygen atoms form a periodic lattice, this does not hold for the hydrogen

atoms. According to the ice rules [88], each hydrogen atom is always found between

precisely two oxygen atoms. In 1935 Pauling showed that these ice rules result in

( 3
2 )N possible configurations for N HBs. Assuming equal likelihood for all of these

configurations and thus quasi-random placement of the hydrogen atom yields a very

2
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simple estimate for the so-called residual entropy (S0 = NkB ln( 3
2 )), which was shown

to be surprisingly accurate by the experiments of Giauque and Stout in 1936. Other

experiments [1111, 1212] suggested the existence of a hydrogen-ordered version of ice Ih,

which is depicted as ice XI in Fig. 1.11.1. This figure also shows seven hydrogen-disordered

ice phases. They can transform to hydrogen-ordered phases when being cooled to lower

temperatures or by changing the pressure.

XI
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Figure 1.1: Phase diagram of water and ice as function of pressure and temperature

Salzmann [1313]. Hydrogen-disordered and hydrogen-ordered ice phases are indicated

by red and blue labels, respectively. Measured (extrapolated) phase boundaries are

shown by black dashed (dotted) lines. Gray dotted lines show phase boundaries for

metastable phases, e.g. IV and XII.
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1.2 Modeling Ice Properties

For a long time, experimental techniques have been the only way to obtain scientific

insights about structural and thermodynamic properties of ice. X-ray or neutron scat-

tering experiments for example have provided significant insights to understand how

the water molecules are arranged in different ice phases and thus allowed to unravel

the importance of hydrogen bond networks. Remarkably, it was Pauling’s theoretical

work that proposed for the first time that four water molecules are connected in a

tetrahedral arrangement in ice Ih [77, 99]. This structural model was confirmed by a

neutron diffraction scattering experiment afterwards [1414]. Nowadays, the knowledge

obtained from computational modeling and experiments is considered complementary

to each other. Ideally, calculations allow to quantitatively understand measurements

and thus provide insights as well as stimulate new experiments. The improvement of

computational facilities and algorithms used for computational modeling during the

last decades has increased the scope for the latter, which allows to address questions

like the structure of ice under extreme conditions. For instance, studying the enor-

mous geophysical pressure produced by planetary cores demands considerable efforts

in real experiments, while calculations can easily take a pV -term into account in a

thermodynamic context [1515, 1616].

For any atomistic computational modeling, an interaction potential is mandatory to

calculate properties of ice. In the simplest case, such a potential only depends on the

nuclear coordinates and relies on empirically motivated and parametrized expressions

for different contributions to the bonding. Interatomic pair potentials with fixed atomic

charges are the prime example of this approach [1717–1919]. More accurate models have

been developed by accounting for (atomic or molecular) polarizability [2020–2222], which

is particularly relevant for long-range electrostatic interactions that play an important

role in ice. In so-called first-principles approaches, electrons are explicitly included

in the description of the inter- and intramolecular interactions of water molecules.

The electron structure thereby implicitly mitigates all different kind of (molecular)

many-body effects among the nuclei. For extended systems like ice, density functional

4
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theory (DFT) is often the only viable computational option to model sufficiently large

unit cells. Although DFT is in principle exact, any practical calculation requires an

approximation for the so-called exchange-correlation (xc) functional. In the context of

hydrogen bond networks, accurate accounting for long-ranged van der Waals (vdW)

interactions in the context of DFT requires special attention.

H2O
D2O
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lu
m
e	
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3)
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128.75

129.00
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130.25

130.50

Temperature	(K)
0 50 100 150 200 250

Figure 1.2: Measured unit cell volume of ice Ih comprised of H2O (blue) and D2O

(red) molecules as a function of temperature based on high-precision neutron scattering

experiments [2323].

Apart from the interaction potential, modeling ice can also be challenged by having to

take nuclear quantum effects (NQEs) into account [2424–3030]. NQEs result from the fact

that in particular the hydrogen atoms behave more like quantum mechanical rather

than classical particles. Likewise, vibrational modes are better described by quantum

mechanical rather than classical (harmonic) oscillators, which immediately gives rise

to zero-point energy (ZPE). Without NQEs, ice would have considerable smaller heat

5
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capacity. It would thus take much less energy to melt ice [3131] – with obvious con-

sequences for everyday life. Figure 1.21.2 depicts two other (subtle) manifestations of

NQEs in ice: negative thermal expansion (NTE) and the volume isotope effect (VIE).

Normal materials expand their volume upon increasing the temperature. Ice Ih on the

other hand is anomalous in this respect and keeps shrinking for (increasing) temper-

atures between 0 to 50 K (for both H2O and D2O isotopologues), which is referred to

as NTE. Most materials show a normal VIE, which means substitution with heavier

isotopes results in a smaller volume at temperatures approaching the absolute zero.

Handwavingly, in a classical picture, this can be rationalized by the smaller vibrational

amplitude ascribed to a heavier nucleus experiencing the same chemical interaction

potential at the same temperature. For instance, the lattice vector of 22Ne is by 0.6 %

smaller than 20Ne at 0 K [3232]. Quite the opposite, although Ne and H2O have the very

similar masses, the volume of H2O isotopologue of ice Ih is 0.1 % smaller than D2O

(see Fig. 1.21.2) [2424, 3333, 3434]. As seen in Fig. 1.21.2, this difference persists and even increases

further up to the boiling point [3535, 3636]. The fact that ice features this anomalous VIE

illustrates that the aforementioned rationalization is too simple and demands more

elaborate computational modeling.

1.3 Aims and Scope of this Thesis

The following questions are being addressed in this thesis:

1. How important is the contribution of zero-point energy to thermodynamical prop-

erties of ice phases?

2. How accurately do available interaction potentials allow to model (small) differ-

ence in H2O and D2O ices related to nuclear quantum effects?

3. Do interaction potentials need to be improved when nuclear quantum effects in

ice are taken into account?

6
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Chapter 22 It summarizes the theoretical background of the methods used in this

thesis. Starting from the Born-Oppenheimer approximation, interaction potentials

used for modeling ice in the following are grouped into two categories: DFT and force

fields. In the DFT section, a brief description of xc functionals is given, including special

attention to vdW corrections because of their important role in modeling hydrogen-

bond networks in ice. The force field section describes a set of particular interaction

potentials ranging from simple fixed-charge pair potentials to accounting for many-body

contributions by including polarizability at atomic sites and for entire H2O molecules as

well as additional short-range effects. This chapter concludes with a concise description

of phonons and their relevance for thermodynamic properties in the harmonic and

quasi-harmonic approximation (QHA).

Chapter 33 To set the stage for subsequent chapters, the importance of zero-point

energy is quantified for crystalline ice phases using several commonly used fixed-charge

pair potentials in comparison to several state-of-the-art exchange-correlation function-

als within DFT.

Chapter 44 Calorimetric experiments for the ice II to ice Ic phase transition have

revealed a surprising isotope effect. The concomitant transition enthalpy is endother-

mic for H2O and exothermic for D2O, albeit with only a small difference of about

180 J mol−1. Such a sign change upon isotope substitution is unprecedented in ice re-

search, and I have accepted the challenge to rationalise this finding by computational

modeling.

Chapter 55 The original single center multipole expansion (SCME) model [3737, 3838], a

physically motivated force-field including molecular polarizability (up to the quadrupole-

quadrupole level), does not allow to describe intramolecular vibrations. Shifts of the

latter due to the interaction with other water molecules cannot be accounted for, mak-

ing it impossible to properly describe zero-point energy-related effects. Motivated by

the results of Chapter 33, SCME is extended to “self-consistently” include ZPE in the

parametrization procedure.

7
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Chapter 66 The anomalous volume isotope and non-thermal expansion effects are

investigated by making use of the extended SCME model from the previous chapter

and compared to other force field and density-functional theory-based results. Both

of these nuclear quantum effects are very challenging for computational modeling: the

former could so far be obtained when using particular exchange-correlation functionals

[3939].

1.4 Main Results

The main scientific results of Chapters 33 to 66 are summarized here:

Chapter 33 : Importance of ZPE for crystalline ice phases

A systematic comparison for seven hydrogen-ordered crystalline ice phases (Ih, IX,

II, XIII, XIV, XV, VIII) between many commonly-used fixed-charge pair potentials

and density functional theory based on various exchange-correlation functionals is

presented. The latter includes some recently developed meta-GGA functionals and

accounting for vdW interactions. Starting from space-group-constrained relaxed struc-

tures for all ice phases, highly-accurate phonon calculations within the QHA are carried

out. The resulting zero-point energies have a much stronger effect on the cohesive en-

ergies and equilibrium volumes for the force fields than for DFT and result in better

agreement with experimental data for the former. When including ZPE the force fields

yield equilibrium volumes and cohesive energies that are in better agreement with ex-

perimental data than most density functionals. This is further analyzed in detail by i)

a decomposition of the cohesive energies into intramolecular deformation, electrostatic

and vdW contributions and ii) a comparison of O−H-stretching-mode shifts due to

volume changes to available experimental data from Raman spectroscopy.

Chapter 44 : Calorimetric Signature of Deuterated Ice II

The transition enthalpy of ice II to ice Ic are measured by calorimetry as +40 J mol−1

for H2O and −140 J mol−1 for D2O, resulting in an isotope effect of about 180 J mol−1.

A hierarchy of theoretical expressions for the transition enthalpy is used to account

8



“Thesis” — 2022/11/3 — 8:17 — page 9 — #17

1.4. MAIN RESULTS

for more and more (subtle) contributions. Apart from zero-point energy, also the

usually neglected configurational entropy is ultimately taken into account because ice

II is a hydrogen-order and ice Ic is a hydrogen-disordered phase. The expressions are

evaluated computationally using two force fields, q-TIP4P/F and MB-pol, that are

known to perform well for calculating the cohesive energy and vibrational properties of

different ice phases. To that end, highly-accurate phonon calculations in the QHA are

carried out. Considering the fact that the measured transition enthalpies are one to two

order of magnitude smaller than what is commonly considered as chemical accuracy

(4 kJ mol−1) in computational modeling, it is not surprising that the sign change cannot

be reproduced. However, both force fields yield the isotope effect due to (dominantly)

the zero-point energy differences between the H2O and corresponding D2O ice phases

in reasonable agreement with the measurements: q-TIP4P/F is able to account for

about 3/4 of the isotope effect, while MB-pol only catches about 1/3.

Chapter 55 : Transferable Potential Function for Flexible H2O

The single center multipole expansion (SCME) model [3737, 3838] is extended towards

flexible water molecules, resulting in a new model called SCME/f. To that end, the co-

ordinate dependence of the quadrupole moment tensor of a single H2O molecule needs

to be fitted to high-level quantum-chemistry calculations for small water cluster. Other

parameters from the original SCME formulation are readjusted as well to incorporate

ZPE corrections for lattice energies of ice Ih – enabling a proper incorporation of exper-

imental data. This requires to carry out computationally demanding phonon calcula-

tions within the quasi-harmonic approximation “on-the-fly” for the reparametrization

candidates in an iterative procedure. The resulting best fit is a significant improve-

ment over the original SCME potential function – as evidenced also by comparing the

energetics of “rigid” water cluster structures. Finally, the importance of accurately

describing the variation of the quadrupole moment tensor with molecular structure is

analyzed by comparison to simpler models.

Chapter 66 : Volume Isotope Effect of Ice Ih

This chapter demonstrates that a polarizable force field is able to model the anomalous

9
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VIE of ice Ih, which has hitherto been deemed impossible. The state-of-the-art MB-pol

force field also describes the NTE more accurately than most DFT-based approaches.

In the subsequent analysis, the short-range three-body contributions (involving three

water molecules) as described by MB-pol are found to play a very important role for

the proper description of the VIE, whereas they are of minor importance e.g. for

the cohesive energy. This could be a reason for why the SCME/f model performs

slightly worse. Furthermore, a phonon mode decomposition of the so-called zero-point

pressure (PZP) illustrates that the librational and stretching are the most important

phonon modes responsible for the anomalous VIE, which could be verified by future

experiments.

1.5 Outlook

In all chapters included in this thesis NQEs have been explicitly included in the com-

putational modeling of different ice phases. Obviously, measurements always implicitly

include these effects. Whalley has already estimated and emphasized in his pioneer-

ing work in the 1950s that they can have a very sizeable influence on “intermolecular

forces” [4040, 4141]. Parameters for many interaction potentials have been obtained by

fitting “extrapolated” experimental data with ZPE contributions semi-empirically re-

moved. However, the ZPE given by the semi-empirical correction and directly obtained

from the interaction potential “a posteriori” do then not necessarily agree. Fitting to

the “raw” data requires to calculate ZPEs during the parametrisation procedure and

thus comes with a significantly higher computational effort. In Chapter 55 it is demon-

strated this is possible nowadays, resulting in an improved SCME model. Therefore,

the same strategy could also be applied to other interaction potentials for water in the

future.

Apart from using NQEs to systematically improve the quality of the interaction po-

tentials, the accuracy of the quasi-harmonic approximation employed in this work also

deserves further attention. This holds in particular for Chapter 44, where very small

energy scales (J mol−1) are relevant for the transition enthalpy of ice II to ice Ic.

10
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Path-integral molecular dynamics (PIMD) allows to include anharmonic effects in the

modeling of NQEs. Although PIMD comes at much higher computational cost than

the quasi-harmonic approximation, it would be very interesting to carry out PIMD

simulations for the same interaction potentials and investigate whether this could yield

better agreement with the absolute transition enthalpies reported in Chapter 44 – ideally

reproducing the water-isotopolgue-related sign change.

In both Chapter 33 and Chapter 66 the experiments by Minceva-Sukarova et al. [4242] are

being invoked. The authors of that study have measured Raman spectra of different

ice phases as a function of temperature and pressure. Since the latter is related to

expansion and compression of the unit cell volume of an ice crystal, it can be compared

to the corresponding predictions vibrational frequency shifts (and concomitant changes

of the phonon density of state) obtained from calculations with different interactions

potentials. These frequency shifts are crucial in the context of ZPE and the VIE as

detailed in Chapter 33 and Chapter 66, respectively. The aforementioned experiments

only report results for stretching modes of different water isotopologues. It would

be very important to also have experimental data for the other modes (translation,

librational and bending) in the future, because this is the only way to verify whether

interaction potentials for water can predict NQEs (like the VIE and NTE in particular)

accurately and for the right reason – and thus provide fundamentally important insights

about the latter.

Ultimately, intriguing vibrational properties of ice (Ih) do not stop in the bulk, but have

also been observed for ice surfaces. For example, low-energy electron diffraction and

helium scattering experiments have suggested largely enhanced vibrational amplitudes

related to water molecules at the surface [4343–4545] and dispersionless surface phonon

bands [4545]. It remains to be seen whether future work that builds on the calculations

carried out in this thesis might elucidate those enigmatic vibrational features of ice

surfaces.

11
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CHAPTER 2

Theory and Methods

Atomistic modelling of water in its condensed form can be done at very different levels

of theory. Here, those which are relevant to this thesis are briefly described, including

some numerical and computational details where appropriate. First, the stage is set

in Section 2.12.1 by the Born-Oppenheimer approximation, which is most fundamental

for the description of interactions and dynamics at the atomic scale. After that, Sec-

tion 2.22.2 introduces density functional theory (DFT) as one of the most popular and

successful first-principles methods for inter- and intramolecular interactions between

individual water molecules. Given the importance of van-der-Waals interactions for

the latter, this chapter also pays special attention on how these interactions can be ac-

counted for in the context of DFT. Coarse-graining away the electronic structure, force

fields are another commonly-used approach for modelling water-water interactions as

presented in Section 2.32.3. Those which are used in this thesis can be grouped into two

categories, fixed-charged and polarizable force fields of different complexity. Since the

main goal of this thesis is studying properties of crystalline forms of water ice which are

heavily affected by the lattice vibrations of the latter, this chapter ends with concise

descriptions of phonons in Section 2.42.4. In particular, their relation to the Helmholtz

free energy is described and the so-called quasi-harmonic approximation is presented

in order to account for thermal expansion.
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2.1 Born-Oppenheimer Approximation

The description of a chemical system from first principles starts from the quantum me-

chanical many-body problem that is given in its time-independent form by the electron-

nuclear Schrödinger equation

ĤΨ = EΨ . (2.1)

E is the ground state (total) energy of the system (at zero temperature), Ψ is the

electron-nuclear wave function that describes the spatial coordinates {RA}MA=1 of M

nuclei and the spatial and spin coordinates {ri, σi}Ni=1 of N electrons. The Hamilton

operator is given by

Ĥ = −
N∑
i=1

∇2
i

2
−

M∑
A=1

∇2
A

2MA
+

N∑
i=1

N∑
j>i

1

|ri − rj |
+

M∑
A=1

M∑
B>A

ZAZB
|RA −RB |

−
N∑
i=1

M∑
A=1

ZA
|ri −RA|

(2.2)

in Hartree atomic units. MA and ZA are the mass and charge of a nucleus A, respec-

tively, ∇A (∇i) denotes the Laplacian operator with respect to nuclear (electronic)

coordinates. The first and third term are the kinetic energy of and Coulomb repulsion

between the electrons, and the second and fourth term describe the same for the nuclei.

The last term accounts for the Coulomb attraction between electrons and nuclei.

Exact analytical solutions of Eq. (2.22.2) are possible only for very few chemically relevant

systems. Also numerically it is enormously difficult to calculate the full electron-nuclear

wave function. Instead, electrons and nuclei are usually decoupled from each other

according to the Born-Oppenheimer approximation [11], which is based on the large

mass difference between the former: even for the lightest atom MA is already about

2000 times larger than the electron mass. The electronic part of Ĥ is given by

Ĥelec = −
N∑
i=1

∇2
i

2
+

N∑
i=1

N∑
j>i

1

|ri − rj |
−

N∑
i=1

M∑
A=1

ZA
|ri −RA|

, (2.3)

which yields an electronic Schrödinger equation analogous to Eq. (2.22.2)

ĤelecΨelec = EelecΨelec (2.4)
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with energy Eelec for the electronic ground state. This equation is easier to solve than

Eq. (2.22.2), but still approximations are needed for chemically interesting systems. One

of the most popular approximations is described in Section 2.22.2.

The Born-Oppenheimer approximation allows to express the total (potential) energy

of a chemical system for a set of nuclear positions ({RA}MA=1) as

Etotal = Eelec +

M∑
A=1

M∑
B>A

ZAZB
|RA −RB |

. (2.5)

The real-valued function Etotal({RA}MA=1) of 3M variables constitutes the system’s

potential energy surface (PES). Instead of solving Eq. (2.42.4), a PES can also be con-

structed (semi-)empirically based on physical-chemical properties of the system and

thus without explicitly accounting for the electrons – which is commonly referred to as

a force field. There are many such force fields for water, and those which are relevant

in the context of this thesis are described in Section 2.32.3.

2.2 Density Functional Theory

One of the most popular and successful approaches for solving the electronic Schrödinger

equation (Eq. (2.42.4)) is density functional theory. According to the Hohenberg-Kohm

theorem it is fundamentally possible to write Eelec as a functional of the electron den-

sity n(r) [22]. Unfortunately, a universal (Hohenberg-Kohn) density functional is not

known. However, Kohn and Sham have suggested to use an auxiliary system of non-

interacting electrons as a starting point for to approximate this functional. This system

has a well-defined kinetic energy

Ts({φi}) =

∫
dr τs(r) = −1

2

∑
i

∫
drφ∗i (r)∇2 φi(r) , (2.6)

where φi are the single-particle (so-called Kohn-Sham) orbitals and τs(r) is the con-

comitant kinetic energy density. The Kohn-Sham orbitals yield the electron density 11

1The sums in Eqs. (2.62.6) and (2.72.7) extend over an appropriate amount of orbitals depending on the

treatment of electron spin.
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as

n(r) =
∑
i

|φi|2 . (2.7)

Ts constitutes a large contribution to Eelec, and the same holds for the classical elec-

trostatic repulsion

EHartree[n(r)] =

∫
dr

∫
dr′

n(r)n(r′)

|r− r′|
(2.8)

and electron-nuclear attraction

Eext[n(r)] = −
M∑
A=1

∫
dr

n(r)ZA
|r−RA|

(2.9)

energies. This results in the decomposition

Eelec[n] = Ts{φi} + EHartree[n(r)] + Eext[n(r)] + Exc[n(r)] , (2.10)

which is employed by the vast majority of practical DFT calculations nowadays. The so-

called exchange-correlation functional Exc[n(r)] is supposed to capture all the quantum-

mechanical contributions of the actual system of interacting electrons that are missed

by the other terms. Again, the exchange-correlation functional is not known exactly,

but since it is a much smaller contribution to Eelec than the Hohenberg-Kohn func-

tional, much simpler approximations can thus yield very accurate results. Minimizing

Eq. (2.102.10) with respect to the electron density yields the Kohn-Sham equations, which

are Schrödinger-like equations for the Kohn-Sham orbitals. This equations need to be

solved self-consistently due to the relation between the latter and the electron density

given by Eq. (2.72.7).

2.2.1 Exchange-Correlation Functionals

Nowadays there are many different exchange-correlation functionals available. They

are usually categorized according to their complexity by the scheme originally suggest

by John Perdew [33]. This Jacob’s ladder (see Fig. 2.12.1) is comprised of several rungs

starting from the Hartree approximation, i.e., only accounting for exchange (“earth”)

and ascending to the exact exchange-correlation functional (“heaven”). The simplest

and therefore most common approximations for Exc (first three rungs) are used in
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Hartree Theory

 1st : LDA  

 2nd : GGA  

 3rd : meta-GGA  

 5th : exact exchange + exact 
partial correlation 

 4th : hybrid GGA and hybrid 
meta-GGA  

Heaven of Chemical Accuracy

Figure 2.1: Jacob’s ladder for categorizing different approximations for Exc according

to Perdew et al. [33]

the scope of this thesis (see Chapter 33 in particular) and therefore described in the

following subsections.

2.2.1.1 Local Density Approximation

In the local density approximation (LDFA) for Exc the electron density at each point

(r) is taken to define a homogenous electron gas (HEG), so that the corresponding

exchange-correlation functional is obtained as the superposition

ELDA
xc [n] =

∫
drn(r)

(
εHEG
x [n(r)] + εHEG

c [n(r)]
)

. (2.11)

The exchange energy density of the HEG is known analytically

εHEG
x [n] = −3

4

3

√
3n(r)

π
. (2.12)

For the correlation energy density of the HEG εHEG
c [n] accurate Quantum Monte Carlo

energy are available for a large range of electron densities [44, 55]. Historically, these re-

sults have been interpolated differently by, e.g. Vosko-Wilk-Nusair (VWN) [66], Perdew

and Zunger (PZ) [77] as well as Perdew and Wang (PW) [88], which has led to numeri-
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cally (but not conceptually) different LDAs. The differences are very small so that one

usually still refers to “the LDA”.

In general, for inhomogeneous systems, the LDA underestimates the correlation and

overestimates the exchange energy so that the total balance, ELDA
xc , benefits from error

cancellation. Since LDA satisfies several so-called sum rules [99, 1010], this error cancel-

lation is not accidental but systematical. Still, the cohesive energies of ice and water

clusters are overestimated by more than 50 % [1111–1313]. In addition, the LDA completely

misses long-range van der Waals interactions due to its strictly local dependence on

the electron density.

2.2.1.2 Generalized Gradient Approximation

Generalized gradient approximations (GGAs) for the exchange-correlation energy are

based on the general form

EGGA
xc [n] =

∫
drn(r) εHEG

xc [n(r)] FGGA
xc [n(r),∇n(r)] . (2.13)

In the spirit of a Taylor expansion the so-called gradient enhancement factor FGGA
xc

depends not only on the density but also on its gradient at a point r, which is why

GGAs are also called semi-local functionals. There is no unique way how to construct

FGGA
xc , which has resulted in a variety of different GGA functionals. Some examples are

the GGAs developed by Lee, Yang and Parr (LYP) [1414], Perdew and Wang (PW91) [1515]

and Perdew, Burke and Ernzerhof (PBE) [1616]. In general, they are more accurate for

chemical systems because the density varies strongly when covalent bonds are formed,

and they come at essentially the same computational cost as the LDA.

2.2.1.3 Meta-generalized Gradient Approximation

Meta-generalized gradient approximations (MGGAs) for Exc sit on the third rung of

Jacob’s ladder. This class of exchange-correlation functionals take the second derivative

of the electron density (∇2n(r)) and/or the kinetic energy density (see Eq. (2.62.6)) into

account. Previous studies indicate that meta-GGAs such as TPSS [1717] and SCAN [1818]

can improve the accuracy for numerous systems, including (small) water clusters and
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ice [1919–2222] The computational cost for meta-GGAs is slightly higher than for GGAs,

which is mainly because it is more difficult to achieve self-consistency when solving the

Kohn-Sham equations.

2.2.2 Van der Waals Interactions

Van der Waals (vdW) interactions can appear (with different meaning) in the context

of electrostatic, induction, and dispersion interactions. In the following, the focus is

on the latter, i.e. the attractive interaction caused by fluctuating dipoles which are

constituted by the correlated motion of electrons in individual atoms. This kind of

interaction primarily contributes at the long range and therefore none of the exchange

correlation functionals described in the previous section can properly account for them.

Nowadays there are many different approaches available that can account for van der

Waals interactions in DFT calculations [2323–2626]. Those which have been employed in

this thesis are described very briefly in the following subsections.

2.2.2.1 C6 Correction and Many-Body Dispersion

Dispersion interactions were introduced by London [2727] as so-called London forces. Us-

ing the second-order quantum mechanical perturbation theory, the concomitant energy

can be expanded as

EABvdW = −
∞∑
n≥6

CABn
RnAB

, (2.14)

where CABn are dispersion coefficients for the interaction between a pair of atoms A and

B at distance RAB from each other. Focusing on the first non-zero term, an accurate

determination of the CAB6 coefficient becomes the primary target for all DFT-based

vdW methods described in the remainder of this section. It is calculated according to

the Casimir-Polder equation [2828]

CAB6 =
3

π

∫ ∞
0

dω αA(iω)αB(iω) , (2.15)

where αA,B are the dipole polarizabilities of the respective atoms due to an external

electric field. Accurate calculations of α(iω) are challenging because a large amount of
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accurately described electronically excited states are required. Dipole polarizabilities

can also be obtained experimentally in the condensed or gas phase from measurements

of the dielectric function [2929], Rayleigh scattering [3030] and molecular beam [3131] exper-

iments.

C6 correction schemes, which are also commonly referred to as DFT+vdW or DFT-D

schemes, add an additional term to the total energy of a DFT calculation that is of

the form

EvdW = −
∑
A

∑
B>A

fdamp(RAB)
CAB6

R6
AB

. (2.16)

Maintaining the short range interaction between two atoms A and B at the DFT level,

the damping function fdamp(RAB) smoothly switches off the dispersion interactions at

small distances. Obviously, Eq. (2.162.16) can be easily evaluated after the actual DFT

calculation and therefore comes at hardly any additional computational cost on top of

the former.

In this thesis, the so-called TS correction scheme suggested by Tkatchenko and Scheffler

[3232] is used. It is based on accurate TD-DFT calculations of C6 coefficients for the vdW

interactions between individual atoms, C6,0, by Chu and Dalgarno [3333]. To account for

changes for atoms in molecules (or in a solid), these coefficients are rescaled to

CAA6,eff = vAA[n] CAA6,0 . (2.17)

Here the scaling factor vAA[n] describes the change of atomic volume based on Hirshfeld

partitioning [3434] of the electron density n that is obtained from the DFT calculation

for the “non-free” atoms A. The corresponding C6 coefficients for heteronuclear pairs

of atoms are obtained from

CAB6,eff =
2CAA6,eff C

BB
6,eff

α0,B

α0,A
CAA6,eff +

α0,A

α0,B
CBB6,eff

, (2.18)

where the (static dipole) polarizabilities of the free atoms α0 are also taken from

the work of Chu and Dalgarno [3333]. fdamp(RAB) is chosen as a Fermi-type damp-

ing function with parameters that are optimized to the S22 database from Jurečka

et al. [3535].
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The TS scheme provides a surprisingly accurate description of van der Waals interac-

tions in the DFT context in particular for molecular systems. However, it struggles with

accounting for (long-range) screening in the condensed phase, which has been addressed

by an extension to the TS scheme Tkatchenko et al. [3636]. This so-called many-body

dispersion scheme (MBD) replaces Eq. (2.162.16) by a quantum mechanical many-body

expression for a system of coupled dipole oscillators with frequency-dependent polar-

izabilities α(iω), which for the “non-free” atoms are again obtained from Hirshfeld

partitioning. MBD still comes at moderate computational costs compared to the un-

derlying DFT calculation and therefore can easily be applied to condensed phases of

water.

2.2.2.2 van der Waals Density Functionals

Van der Waals density functionals (vdW-DFs)22 add a long-range contribution typically

to semi-local exchange-correlation functionals

Exc[n] = EGGA
x [n] + E0

c [n] + Elr
c [n] . (2.19)

Usually, the exchange energy is taken from a particular GGA [3838, 3939], and the short-

range correlation energy E0
c is treated at the LDA level [2626]. The simplest expression

for the long-range correlation energy is

Elr
c =

1

2

∫
dr

∫
dr′ n(r) Φ(r, r′)n(r′) . (2.20)

Φ(r, r′) is the non-local kernel, for which different expressions have been suggested [3838,

4040, 4141] and some of them been applied to water [4242] and ice [4343] systems.

From a computational point of view, the straightforward numerical implementation

of Eq. (2.202.20) by evaluating the six dimensional integral is computationally expensive.

However, many DFT codes employ the technique suggested by Román-Pérez and Soler

[4444]. This technique significantly reduces the computational effort and thus enables

self-consistent calculations which come at almost the same cost as calculations with

GGA functionals.
2Acknowledging the work of two pioneers in their development, they also referred to as Langreth-

Lunqvist functionals. [3737–3939]
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2.2.3 Computational Aspects

In principal, all-electron calculations for condensed phases of water can nowadays be

carried out very accurately and computationally conveniently based by using numerical

atom-centered basis sets. However, in practice, not all exchange-correlation functionals

have been available in the code implementing the latter, which is why it was necessary

to resort to plane-waves basis sets for some of the DFT calculations in this thesis.

2.2.3.1 Numerical Atom-Centered Basis Sets

One type of basis sets employed in this thesis are all-electron numerical atom-centered

orbitals (NAO) as implemented in the FHI-aims code [4545], which can be written

as

ψi(r) = ψi(r, θ, ϕ) =
ui(r)

r
Ylimi(θ, ϕ) . (2.21)

Here Yl(i),m(i) is a spherical harmonic function with (atomic angular momentum in-

dexes) l and m that implicitly depend on the basis function index i. ui(r) is obtained

as numerical solution of Schrödinger-like radial equation[
−1

2

d2

dr2
+
li(li + 1)

r2
+ vi(r) + vcut(r)

]
ui(r) = εi ui(r) (2.22)

for a particular (radial) potential vi(r) and a reasonably chosen confining potential

vcut(r). vi(r) determines the shape of the concomitant basis function. To construct

the minimal basis set it is taken from a DFT calculation for the free neutral (and

non-spin-polarized) atom of a given chemical element using the exchange-correlation

functional selected for the target system. This way, core electrons are described very

accurately and efficiently because their orbitals hardly change due the formation of

chemical bonds. Additional basis functions are added by using vi(r) from free hydrogen-

like atoms or ions, analogous to polarization functions in Gaussian basis sets. In FHI-

aims these basis functions are ranked and grouped into tiers for each element based on

how much they reduce the total energy for dimers at different bond distances covering

the binding curve for that element [4545]. vcut(r) is a steeply increasing potential that

ensures ui(r) quickly goes to zero beyond a certain distance, which is usually chosen
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to be between 4 to 5�A for light elements. This allows to minimize the computational

effort for numerical operations involving the basis functions (e.g. integrations), ideally

resulting in linear scaling of the latter with respect to the amount of atoms. Predefined

choices for basis set tiers and parameters determining the numerical accuracy of the

basis set representation (including vcut(r)) are available in FHI-aims in form of the

so-called light, tight and very tight settings [4545]. In this thesis, adequate settings have

been selected based on thorough convergence tests.

2.2.3.2 Plane-Wave Basis Sets

According to Bloch’s theorem electronic states φn,k(r) in a crystalline solid with band

index n at point k in the first Brillouin zone can be described exactly by the Fourier

expansion

φn,k(r) =
∑
G

Cn,G+k exp(i(G + k)r) . (2.23)

The discrete set of plane wave vectors G are given by the reciprocal lattice of the

crystal. For numerical applications of Eq. (2.232.23) in a computer code, the plane-wave

expansion needs to be cut off to keep the amount of basis set coefficients Cn,G+k finite.

In practice, this is achieved by choosing a cut-off energy Ecut such that

1

2
|G + k|2 ≤ Ecut . (2.24)

Obviously, the choice of the cut-off energy determines the numerical accuracy of a

plane-wave DFT calculation. Core electrons require very large values for Ecut because

they are strongly localised at a particular nucleus and cause the radial parts of the

corresponding valence electrons to oscillate in this core redion in order to maintain

orthogonality. Since the computational effort increases significantly with increasing

Ecut, practical plane-wave calculations freeze the core electrons into the nuclei to avoid

the two aforementioned problems. Each chemical element is thus represented by a

so-called pseudopotential.

In this thesis, the Vasp code is used for all plane-wave DFT calculations, which also

provides a set pre-constructed pseudopotentials. The latter and concomitant Ecut have
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been chosen carefully based on convergence tests and comparison with FHI-aims for

each system under investigation.

2.2.3.3 Reciprocal Space Sampling

For a crystalline solid many quantities, like e.g. the electron density, are obtained by

integration over the first Brillouin zone Since the electronic wave-functions for different

k-points are very similar33, it is possible to approximate the integrals by a summation

over a discrete set of k-points. Throughout this thesis, uniform k-point grids as sug-

gested by Monkhorst and Pack [4646] are used, and convergence of the results with respect

to the grid density has been carefully checked.

This method generates a uniform k points mesh along three lattice vectors in reciprocal

space. It is worth noting that an inadequate k point sampling can lead to inaccurate

results. Nevertheless, setting a denser set of k points can solve this problem. There-

fore, it is crucial to check the number of k points for having accurate and converged

results.

2.3 Force Field Methods for Modeling Ice

The potential energy surface that the nuclei experience after the electronic problem

has been solved separately according to the Born-Oppenheimer approximation (see

Section 2.12.1) can be describe by a so-called force field model, which is given by a par-

ticular (often physically motivated) functional form together with a set of parameters.

The construction of such force fields for modelling water in both the liquid and solid

phase has a long history. As a result, there are now several tens of such water models

available, many of which have been demonstrated to provide an accurate description

of many physical properties of water and ice. [4949, 5757–5959].

Figure 2.22.2 provides an overview of the particular force fields used in this thesis, grouped

according to their complexity. The simplest ones, i.e., the SPC/E [6060] and TIPnP

3See Eq. (2.232.23), but this also hold for an appropriate expansion of Block states in atom-centered

basis sets.
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Fixed-Charge Force Fields
SPC/E
 TIP3P

    TIP4P/2005
TIP4P/ice
q-TIP4P/F

AMOEBA

Polarizable Force Fields
MB-pol
SCME

Figure 2.2: Spectrum of the complexity of water force fields. The force fields used

in this thesis are SPC/E [4747], TIP3P [4848], TIP4P/2005 [4949], TIP4P/ice [5050], and q-

TIP4P/F [5151], AMOEBA [5252, 5353], MB-pol [5454, 5555], and SCME [5656].

families of potentials [4848], at the left side of this spectrum use fixed point charges for

modelling electrostatic and Lennard-Jones potentials (for approximating van der Waals

interactions, the latter of which have been discussed earlier in Section 2.2.22.2.2 in the con-

text of DFT). The resulting electrostatic and vdW pair potentials are parametrized to

reproduce the properties of liquid water or ice. Consequently, the so obtained empirical

parameters of these two-body interactions also need to approximately account for any

interactions involving three or more water molecules that are not included systemati-

cally. The majority of these force fields treat a single water molecule as a rigid monomer

– assuming that the energy cost to deform individual water molecules is much larger

than intermolecular interactions. SPC/fW [6161] and q-TIP4P/F [5151] are two examples

where flexibility has been added. The explicit expressions and parameters of all the

fixed-charged pair potentials used in this thesis are summarized in Section 2.3.12.3.1.

Force fields towards the right of Fig. 2.22.2 all explicitly include (higher) electrostatic

multipole moments as well as polarization effects. The latter implicitly accounts for

many-body interactions in the electrostatics. Both provide a well-defined classical

limit for the interaction between water molecules at large distances, which is relevant
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for modelling many delicate properties of water and ice correctly [5252, 5454, 5555, 6262, 6363].

The common approach for including polarization effects is the Appliquès polarizable

point dipole model [6464]. This approach is further extended by Thole [6565] to address

the polarization catastrophe. Some of known Thole-type polarization force fields are

TTM3-F [6666], TTM4-F [6262], AMOEBA [5252, 5353], SCME [5656] and MB-pol [5454, 5555], the

last three of which are being employed in this thesis. Other examples for polarizable

force fields are DPP2 [6767], CC-pol [6868, 6969] and WHBB [7070]. They have not been

considered here because they cannot be used for large systems as they are primarily

targeted for water in the gas-phase [7171] or because they are rigid water models (DPP2

and CC-pol). In its original formulation, the latter also partially holds for SCME [5656],

but lifting this limitation completely is part of this thesis (see Chapter 55). The main

difference between AMOEBA, SCME and MB-pol is how the quantum mechanical

many-body contributions to dispersion and repulsion between water molecules at the

short range are being accounted for. As described in Section 2.3.22.3.2, AMOEBA is empir-

ically parametrized similar to fixed-charge force fields, but it includes atomic multipole

moments (up to quadrupoles) and polarizabilites (up to dipoles). In contrast, both

SCME and MB-pol rely on highly accurate ab initio quantum chemistry calculations.

The main difference is that SCME primarily tries to capture as much as possible by

including high-order molecular electrostatic contributions (up to permanent molecular

hexadecapoles and induced quadrupoles), which leads to a still fairly small amount of

parameters (see Section 2.3.32.3.3). On the other hand, MB-pol utilizes a rather complex

mathematical construct to fit the contributions to the intermolecular interactions at

short distances involving (up to) three water molecules directly to quantum chemical

data (see Section 2.3.42.3.4).

2.3.1 Fixed-Charge Pair Potentials

The first fixed-charge water model was proposed by Bernal and Fowler [7272] in 1933.

Nowadays there are now several tens of these models available, among which the ex-

tended single charge model (SPC/E [4747]) and some of the members of the family of

transferable intermolecular potential (TIP) models are employed in this thesis. These
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Figure 2.3: Three-site (left) and four-site (right) geometries of fixed-charge water force

field. The oxygen atom is shown in red, hydrogen in white, and the virtual site in

yellow. req represents the equilibrium bond distance between oxygen and hydrogen,

θeq is the equilibrium H−O−H bond angle, and rO-M shows the distance between

oxygen and virtual site in case of four-site force fields.

models are either based on three (TIP3P [4848]) or four (TIP4P/2005 [4949]) atomic sites

per water molecule as show in Fig. 2.32.3. They have been modified specifically for ice

(TIP4P/ice [5050]) or to effectively account for quantum effects while introducing molec-

ular flexibility (q-TIP4P/F [5151]).

All of these force fields models describe the total energy based on four energy terms:

Etotal = Eelec + EvdW︸ ︷︷ ︸
intermolecular

+ Ebond + Eangle︸ ︷︷ ︸
intramolecular

(2.25)

Here, the electrostatic (Eelec) and van der Waals (EvdW) contributions constitute the

intermolecular, and the O−H bond stretching (Ebond) and H−O−H angle bending

(Eangle) constitute the intramolecular contributions.

The electrostatic interactions are described by pairwise Coulomb potentials between

the sites i and j that carry the electric charges qi and qj :

Eelec =
1

4πε0

∑
i

∑
j>i

qi qj
|ri − rj |

if |ri − rj | < rc,elec (2.26)

ε0 is the electric constant. In the simplest case, to decrease computational cost, only

interactions between sites at distances |ri − rj | smaller than the the cut-off radius
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Table 2.1: Electrostatic and Lennard-Jones parameters for SPC/E, TIP3P,

TIP4P/2005, TIP4P/ice, and q-TIP4P/F force fields. Maintaining charge neutral-

ity for each water molecule, the oxygen and hydrogen partial charges for the three-site

models is +q and −q/2, respectively. In four-site models (TIP4P/2005, TIP4P/ice,

and q-TIP4P/F), +q is located at the virtual site (see Fig. 2.32.3). The Lennard-Jones

potentials only act between oxygen atoms and thus only εO−O and σO−O in Eq. (2.272.27)

are non-zero. The only exception to that is TIP3P, which is why the corresponding

parameters are listed separately in Table 2.22.2.

q(e) εO−O(kcal mol−1) σO−O(�A)

SPC/E 0.8200 0.1553 3.1660

TIP3P 0.8300 [see Table 2.22.2]

TIP4P/2005 1.1128 0.1852 3.1589

TIP4P/ice 1.1794 0.2108 3.1668

q-TIP4P/F 1.1128 0.1852 3.1589

Table 2.2: Lennard-Jones parameters for the intermolecular interactions between O−O,

O−H and H−H pairs in the TIP3P model.

O−O O−H H−H

ε (kcal mol−1) 0.1521 0.0836 0.0460

σ (�A) 3.1507 1.7753 0.4000

rc,elec are taken into account. Contributions from sites beyond the latter can be effi-

ciently accounted for by reciprocal space techniques like for example Ewald summation

[7373].

EvdW accounts for Pauli repulsion at small and van der Waals attraction at large

distances (see Section 2.2.22.2.2 for a discussion of the latter in the DFT context). It is

given by:

EvdW =
∑
i

∑
j>i

4εij

[(
σ

ri − rj

)12

−
(

σ

ri − rj

)6
]

if |ri − rj | < rc,vdW (2.27)
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Figure 2.4: SPC/E electrostatic, van der Waals and total energy without intramolec-

ular contribution in kcal mol−1 unit when two single water molecules oriented on their

hydrogen-bond network.

Here 6
√

2σ is the equilibrium distance that yields −εij , i.e. the depth of the potential

well. Again, for computational convenience, pairs at distances larger than the cut-off

distance rc,vdW are usually neglected. Unlike for the Coulomb potential, the use of

reciprocal space techniques is usually not necessary due the much faster decay of this

6-12 Lennard-Jones potential as a function of distance. The relevance of EvdW for the

bonding in different ice phases is analyzed in Chapter 33.

Table 2.12.1 compiles the parameters related to intermolecular interactions (q, ε, and σ)

as introduced in Eqs. (2.262.26) and (2.272.27) above for each force field. SPC/E force field is

a result of the re-parametrization of the original SPC [7474] potential. Fig. 2.42.4 shows the

SPC/E electrostatic energy (Eq. (2.262.26)), Lennard-Jones energy (Eq. (2.272.27)), and total

energy without intra-molecular contribution when two single molecule are interacting

on their hydrogen-bond side. TIP3P is very similar to the SPC/E model but with

some minor modifications. One of the main changes is adding additional Lennard-Jones
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Table 2.3: Geometry parameters for five fixed-charge water models used in this work.

The req, θeq, rO-M are illustrated in Fig. 2.32.3.

Water models req(�A) rO-M(�A) θeq(degree)

SPC/E 1.000 n/a 109.5

TIP3P 0.957 n/a 104.5

TIP4P/2005 0.957 0.155 104.5

TIP4P/ice 0.957 0.158 104.5

q− TIP4P/F 0.942 0.155 107.4

parameters for the interactions between hydrogen-hydrogen and oxygen-hydrogen pairs,

which are compiled in Table 2.22.2. In the four-site models TIP4P/2005, TIP4P/ice,

q-TIP4P/F, the negative charge of the oxygen atom is located on an additional virtual

site on the bisector of the H−O−H angle. Figure 2.32.3 illustrates this construction, and

the model-specific distances from the oxygen atom rO-M are listed in Table 2.32.3. This

way, the (continuous) electron density as obtained by a quantum mechanical description

is mimicked better than with a three-site model. As evidenced by Table 2.12.1, the

parameters related to intermolecular interactions are the same for TIP4P/2005 and q-

TIP4P/F. They were obtained in a way to reproduce the phase-diagram of water and

ice [4949, 5151]. TIP4P/ice results from a subsequent reparametrization to better match

thermodynamic properties of ice. For example, TIP4P/ice can accurately describe the

melting temperature of ice [5050].

Intramolecular energy contributions in Eq. (2.252.25) have not been included in the original

SPC/E, TIP3P, TIP4P/2005, TIP4P/ice models, i.e. they all describe rigid

water molecules. In order to account for intramolecular vibrations, in this thesis I

have adapted the common approach to add flexibility by employing simple harmonic

potentials. Bond stretching is described by the harmonic potential

Ebond =
∑
i

Kr

[
(ri,1 − req)2 + (ri,2 − req)2

]
(2.28)

where ri,1 and ri,2 are the two O−H bond lengths of a single water molecule and req

is the model-specific equilibrium bond distance provided in Table 2.32.3. The same bond
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force constant Kr = 450.372 kcal mol−1 �A
−2

obtained from the measured Raman spec-

trum of liquid water [7575] is employed for all of the aforementioned models. Equivalently,

bending is described by

Eangle =
∑
i

Kθ(θi − θeq)2 (2.29)

where θi is the H−O−H angle of each water molecule and θeq is the model-specific

equilibrium bond angle given in Table 2.32.3. Again, the same bending force constant

Kθ = 55 kcal mol−1 rad−2 obtained from experimental data is used for all the models

mentioned above.

q-TIP4P/F is a flexible water model “by design” [5151]. The bond stretching is ac-

counted for based on a Morse potential

Ebond =
∑
i

EMorse(ri,1) + EMorse(ri,2) (2.30)

which is approximated according to

EMorse(r) ≈ Dr

[
α2
r(r − req)2 − α3

r(r − req)3 +
7

12
α4

r (r − req)4

]
(2.31)

Thanks to this anharmonic potential, q-TIP4P/F is able to capture the anharmonic

and anticorrelation effects between the O−H bond and the hydrogen bonding. [5151] The

bending contribution to the intramolecular interactions is a harmonic potential like in

Eq. (2.292.29) above. The corresponding parameters, Dr = 116.09 kcal mol−1 and αr =

2.287�A
−1

as well as Kθ = 43.925 kcal mol−1 rad−2, respectively, are optimized such

that path integral molecular dynamics simulations yield best possible agreement with

the experimental absorption spectrum, diffusion constant, and vibrational properties

of liquid water [5151].

In this thesis, all of the fixed-charge pair potentials described in this section are em-

ployed via the Lammps MD package [7676].

2.3.2 AMOEBA

Ren and Ponder [5252] have developed the so-called Atomic Multipole Optimized Energies

for Biomolecular Applications (AMOEBA), which includes polarization effects as well
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Table 2.4: Parameters for the electrostatic interactions in the AMOEBA model. For

the dipole and quadrupole moments of oxygen atoms, the H−O−H bisector is chosen

as z-axis and the x-axis is in the plane defined by the H2O molecule. For hydrogen, the

z-axis is aligned along the O−H bond direction, and the x-axis lies in the molecular

pointing towards the other H atom. In both cases, the y-axis is added such that

right-handed coordinate systems are completed. Only non-zero components in these

reference frames of both multipole moments are listed here.

O H

charge qO = −0.426 16 e qH = +0.213 08 e

dipole moment µO,z = +0.062 51 e a0 µH,x = −0.101 17 e a0

µH,y = −0.271 71 e a0

quadrupole moment ΘO,xx = +0.175 76 e a0
2 ΘH,xx = +0.122 83 e a0

2

ΘO,yy = −0.231 60 e a0
2 ΘH,yy = +0.089 50 e a0

2

ΘO,zz = +0.055 84 e a0
2 ΘH,zz = −0.212 33 e a0

2

ΘH,xy = −0.069 89 e a0
2

polarizability αO = +0.920�A
3

αH = +0.539�A
3

= +6.209 · 4πε0a3
0 = +3.637 · 4πε0a3

0

as intramolecular flexibility. In this thesis, the most recent parameterization for water

given in 2014 by Laury et al. [7777] (AMOEBA14) is used. The total energy expression

of AMOEBA consists of the following terms:

Etotal = Eperm
elec + Eind

elec + EvdW︸ ︷︷ ︸
intermolecular

+ Ebond + Eangle + EUB︸ ︷︷ ︸
intramolecular

(2.32)

In contrast to the fixed-charge models described in the previous section, the electro-

static contribution takes both permanent (Eperm
elec ) and induced (Eind

elec) atomic multi-

pole moments into account. The permanent electrostatic moments include monopoles,

dipoles, and quadrupoles obtained from high-level electronic structure calculations for

the hydrogen and oxygen atomics sites (see Table 2.42.4) enumerated by i, which are writ-

ten conveniently in poly-tensorial notationMi = [qi, µi,x, µi,y, µi,z,Θi,xx,Θi,xy, . . . ,Θi,zz]
T .
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This allows to write

Eperm
elec =

∑
i,j
j>i

qi [T ij , T ijx , T
ij
y , T

ij
z , T

ij
xx, T

ij
xy, . . . , T

ij
zz]Mj

+
∑
i,j
j>i

∑
α

µi,α [T ijα , T
ij
αx, T

ij
αy, T

ij
αz, T

ij
αxx, T

ij
αxy, . . . , T

ij
αzz]Mj

+
∑
i,j
j>i

∑
α,β

Θi,αβ [T ijαβ , T
ij
αβx, T

ij
αβy, T

ij
αβz, T

ij
αβxx, T

ij
αβxy, . . . , T

ij
αβzz]Mj ,

(2.33)

where the left parts of the “scalar-products” with Mj are the multipole interaction

tensor elements in Stone’s [7878] notation

T =
1

R
(2.34)

Tα = −Rα
R3

(2.35)

Tαβ =
1

R5

[
3RαRβ −R2δαβ

]
(2.36)

Tαβγ =
1

R7

[
15RαRβRγ − 3R2 (Rαδβγ +Rβδαγ +Rγδαβ)

]
(2.37)

Tαβγδ =
1

R9
[105RαRβRγRδ (2.38)

− 15R2 (RαRβδγδ +RαRγδβδ +RαRδδβγ +RβRγδαδ +RγRδδαβ)

+3R4 (δαβδγδ + δαγδβδ + δαδδβγ)
]

Here R denotes the distances between two sites and the site indicators i and j have

been omitted for brevity.

Since AMOEBA includes polarizabilities of hydrogen and oxygen atoms as given in

Table 2.42.4, a smeared charge distribution

ρ =
3a

4π
exp(−au3) (2.39)

with dimensionless width parameter a = 0.39 is used in practice, where u = Rij(αiαj)
− 1

6 .

This has originally been suggested by Thole [6565, 7979] in order to avoid a polarization

catastrophy at short-distances. Consequently, the multipole interaction tensor elements

T... need to be replaced by their damped counterparts TD
..., which include additional

weights for the individual terms resulting from Eq. (2.392.39) but are otherwise of equiva-

lent form [5252].
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Table 2.5: Parameters for the intermolecular vdW interactions between O−O, O−H

and H−H pairs in the AMOEBA model.

O−O O−H H−H

ε (kcal mol−1) 0.1512 0.0263 0.0105

R0 (�A) 3.5791 3.2001 2.1176

Induced dipoles are calculated via the product of the polarizabilities and the electric

field Fi = (F ix, F
i
y, F

i
z) at atomic site i

µind
i,α = αi F

i
α = αi

∑
{j}

[T ijα , T
ij
αx, T

ij
αy, T

ij
αz, T

ij
αxx, T

ij
αxy, . . . , T

ij
αzz]Mj

+
∑
{j′}

[T ij
′

αx , T
ij′

αy , T
ij′

αz ] · [µind
j′,x, µ

ind
j′,y, µ

ind
j′,z]

T .
(2.40)

Fi has two contributions. The first one results from the permanent multipole mo-

ments of all the water molecules surrounding the molecule containing the atomic site

i (summation over {j}). The second one is from the induced dipoles of all other

atomic sites except site i (summation over {j′}) Equation (2.402.40) is solved iteratively

to yield a self-consistent solution for all the µind
i,α [5252]. Substituting µi,α + µind

i,α for

µi,α in Eq. (2.332.33) yields additional terms which define the induced electrostatic energy

contribution Eind
elec.

Also in contrast to the fixed-charge models, the van der Waals intermolecular inter-

actions (EvdW) are based on the buffered 14-7 potential originally suggested by [8080].

Dudek and Ponder [8181] showed that when combined with quadrupole moments, this

potential allows to better reproduce reference energetics obtained from ab initio cal-

culations – in particular in the repulsive regime when two interacting sites approach

each other. In the AMOEBA14 parametrization the buffered 14-7 potential is given

by

Eijvdw = εij

(
1.07

ρij + 0.07

)7
(

1.12

ρ7
ij + 0.12

− 2

)
, (2.41)

where εij is the minimum energy at distance R0
ij for the interacting sites i and j. ρij =

Rij
R0
ij

describes the rescaled distance between this pair. Like in TIP3P (see Section 2.3.12.3.1)
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all oxygen and hydrogen atomic sites contribute, and the parameters are tabulated in

Table 2.52.5.

The intramolecular interactions in Eq. (2.322.32) consist of bonding (Ebond =
∑
i,oE

i,o
bond),

H−O−H bending (Eangle =
∑
iE

i
angle), and the Urey-Bradley (EUB =

∑
iE

i
UB) con-

tributions.

Ebond is based on an anharmonic potential, which includes deviations of the O−H bond

length r from its equilibrium value r0 = 0.9565�A up to fourth order

Ei,obond = Kr(ri,o − r0)2
[
1− 2.55(ri,o − r0)− 3.793125(ri,o − r0)2

]
(2.42)

where Kr = 556.82 kcal mol−1 �A
−2

is the stretching force constant i enumerates the

water molecules and o = 1, 2 the O−H bonds in each molecule.

Eangle is described by

Eiangle = Kθ (θi − θ0)2 η(θi, θ0) (2.43)

where Kθ = 48.98 kcal mol−1 rad−2 is the bending force constant and

η(θ, θ0) = 1− 0.014(θ − θ0) + 5.6 · 10−5(θ − θ0)2

+ 7.0 · 10−7(θ − θ0)3 + 2.2 · 10−8(θ − θ0)4
(2.44)

accounts for anharmonicity up to second order deviations from the equilibrium bond

angle θ0 = 107.91°.

EUB is based on the simple harmonic expression

EiUB = Kl(li − l0)2 (2.45)

where l0 is the ideal length of virtual bond between the two hydrogens inside a single

water molecule and Kl = −7.6 kcal mol−1 �A
−2

is the force constant associated with

this virtual bond.

The implementation of AMOEBA14 available in the TINKER package [5353, 8282] is used

in this thesis.

37



“Thesis” — 2022/11/3 — 8:17 — page 38 — #46

CHAPTER 2. THEORY AND METHODS

Table 2.6: Parameters for the electrostatic interactions in the SCME model. The

multipole moments are with respect to the center of mass of a H2O molecule. The

H−O−H bisector is chosen as the negative z-axis and the x-axis is in the plane defined

by the H2O molecule. The y-axis is added such that right-handed coordinate system

is completed. Only non-zero components in this reference frames are listed here.

dipole moment (e a0)

µz = −0.729 81

quadrupole moment (e a0
2)

Θxx = +1.955 32 Θyy = −1.858 67 Θzz = −0.096 65

octupole moment (e a0
3)

Ωxxy = −3.271 90 Ωyyz = +1.366 06 Ωzzz = +1.905 85

hexadecapole moment (e a0
4)

Φxxxx = −0.949 03 Φxxyy = −3.384 90 Φxxzz = +4.333 93

Φyyyy = +4.098 35 Φyyzz = −0.713 45 Φzzzz = −3.620 48

2.3.3 SCME

The Single Center Multipole Expansion (SCME) is a water model that in its original

formulation by Wikfeldt et al. [5656] is based on rigid water molecules. Chapter 55 of

this thesis describes an extension that adds flexibility and thus intramolecular energy

contributions. Unlike AMOEBA, SCME employs permanent molecular multipole mo-

ments which are defined with respect to the center of mass of a H2O molecule up to

and including hexadecapoles. Like in AMOEBA, polarizability is accounted for, but

also including induced molecular quadrupoles instead of only atomic dipoles. The total

energy used by SCME

Etotal = Eperm+ind
elec + Edisp + Erep︸ ︷︷ ︸

intermolecular

(2.46)

consists of permanent and induced electrostatic (Eperm+ind
elec ), dispersion (Edisp) as well

as short-range repulsion (Erep) contributions.
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Table 2.7: Same as Table 2.62.6, but for polarizabilities.

dipole–dipole polarizability (4πε0a
3
0)

αxx = +10.31146 αyy = +9.54890 αzz = +9.90656

dipole–quadrupole polarizability (4πε0a
4
0)

Ax,xz = −8.42037 Ay,yz = −1.33400 Az,xx = −2.91254

Az,yy = +4.72407 Az,zz = −1.81153

quadrupole–quadrupole polarizability (4πε0a
5
0)

Cxx,xx = +12.11907 Cxx,yy = −6.95326 Cxx,zz = −5.16582

Cxy,xy = +7.86225 Cxz,xz = +11.98862 Cyy,yy = +11.24741

Cyy,zz = −4.29415 Cyz,yz = −6.77226 Czz,zz = +9.45997

The electrostatic energy component is given by

Eperm+ind
elec = −1

2

∑
i

(
µiαF̃

i
α +

1

3
Θi
αβF̃

i
αβ +

1

15
ΩiαβγF̃

i
αβγ +

1

105
ΦiαβγδF̃

i
αβγδ

)
,

(2.47)

where the prefactor of 1
2 avoids double counting. For the remainder of this section, the

Einstein convention is being employed, i.e. doubly occurring Cartesian components (x,

y, z), which are denoted by Greek letters, are being summed over. The summation

over different water molecules on the other hand is written out explicitly. Dipole,

quadrupole, octopole and hexadecapole moments of a particular water molecule i are

denoted by µi, Θi, Ωi and Φi, respectively. The dipoles and quadrupoles are based

on measured values [8383, 8484], whereas the higher multipoles have been obtained from

quantum chemical calculations at the MP2 level [8585]. They are all defined with respect

to the center of mass of a H2O molecule and compiled in Table 2.62.6. F̃ iα is the α-

component of the electric field, caused by all the other molecules except for molecule

i and scaled by a switching function f sw that depends on the center-of-mass distance

rcom
ij between molecules i and j:

F̃ iα =
∑
j
j 6=i

f sw(rcom
ij )F ijα (2.48)

F ijα is the multipole expansion of the electric field caused by water molecule j at the
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center of mass of molecule i

F ijα = T ijαβ

(
µjβ + ∆µjβ

)
− 1

3
T ijαβγ

(
Θj
βγ + ∆Θj

βγ

)
+

1

15
T ijαβγδ Ωjβγδ −

1

105
T ijαβγδε Φjβγδε ,

(2.49)

where again Stone’s T notation is used for the multipole interaction tensors as in the

previous Section 2.3.22.3.2 (see Eqs. (2.342.34) to (2.382.38))44. The derivatives of this multipole

expansion (with respect to Cartesian directions) are denoted by adding additional

(Greek) indices, i.e. n additional indices for the n-th derivative:

F ijα...δ =
∂

∂rβ
· · · ∂

∂rδ
F ijα (2.50)

These derivatives also define F̃ iα...δ by substituting F ijα in Eq. (2.482.48) accordingly. The

induced dipole (∆µiα) and quadrupole (∆Θi
αβ) moments of water molecule i are ob-

tained self-consistently from

∆µiα = αiαβ F̃
i
β +

1

3
Aiα,βγ F̃

i
βγ (2.51)

∆Θi
αβ = Aiγ,αβ F̃

i
γ + Ciγδ,αβ F̃

i
γδ . (2.52)

Here αiαβ , Aiα,βγ and Ciαβ,γδ are the corresponding dipole-dipole, dipole-quadrupole

and quadrupole-quadrupole polarizabilities, respectively. Again, the values compiled

in Table 2.72.7 are based on experiments (ααβ) and quantum chemical calculations (Aα,βγ

and Cαβ,γδ) [5656]. Equations (2.512.51) and (2.522.52) together with Eqs. (2.482.48) and (2.492.49) (and

their multi-subscripts counterparts) are solved iteratively until all components of the

electric field and its gradients as well as the induced multipole moments are converged

up to certain threshold.55 f sw smoothly switches off any electrostatic interactions at

short (rcom
ij < 5�A) and long (rcom

ij > 11�A) distances.66 The overlap of electron densities

associated with different water molecules at short distances leads to strong repulsion

due to quantum mechanical effects (Pauli repulsion), which is captured by the Erep

term in Eq. (2.462.46) (vide infra). Like for the simplest water force fields described in

Section 2.3.12.3.1, the long-range cut-off included in f sw is an approximation that makes

4Tαβγδε = ∇εTαβγδ
510−7 a.u. in the original work of Wikfeldt et al. [5656].
6See Wikfeldt et al. [5656] for details on the definition of f sw.
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Table 2.8: Parameters for the dispersion and repulsion interactions in the SCME model.

All values are giving in atomic units matching to Eqs. (2.532.53) to (2.572.57)

damping

τd = 2.32837906

dispersion

C6 = 46.44309964 C8 = 1141.70326668 C10 = 33441.11892923

repulsion

A = 1857.45898793 C = 1.68708507 · 106

b = 1.44350000 c = 1.83402715 d = 0.35278471

a0 = +1.02508535 · 10−1 a1 = −1.72461186 · 10−4 a2 = +1.02195556 · 10−7

a3 = −2.60877107 · 10−11 a4 = +3.06054306 · 10−15 a5 = −1.32901339 · 10−19

the evaluation of the SCME computationally convenient, in particular when dealing

with infinitely extended (bulk) ice structures.

The dispersion and repulsion energies are obtained by only considering the oxygen-

oxygen distances rOO
ij between different water molecules. The dispersion energy is

given by

Edisp = −
∑
i,j
j>i

[
fTT

6 (rOO
ij )

C6

(rOO
ij )6

+ fTT
8 (rOO

ij )
C8

(rOO
ij )8

+ fTT
10 (rOO

ij )
C10

(rOO
ij )10

]
,

(2.53)

with coefficients Cn (n ∈ {6, 8, 10}) compiled in Table 2.82.8 and the Tang-Toennies [8686]

damping function

fTT
2n (rOO

ij ) = 1 − exp(−τd rOO
ij )

2n∑
k=0

(τd r
OO
ij )k

k!
, (2.54)

The damping factor τd is physically motivated by the inverse decay length of the charge

density in a water monomer (see Table 2.82.8).

The original formulation of SCME [5656] employs a modified Born-Mayer potential for
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the repulsion energy

Erep = A
∑
i,j
j>i

[1 +B(ρj) +B(ρi)] (rOO
ij )−b exp(−c · rOO

ij ) , (2.55)

where

B(ρi) =


0 if ρi ≤ 1600∑5
n=0 anρ

n
i if 1600 < ρi < 8000

0.0875 if 8000 ≤ ρi .

(2.56)

ρi is the superposition of the electron densities of all water molecules surrounding a

given molecule i

ρi =
∑
j
j 6=i

exp(−d · rOO
ij )

C

(rOO
ij )3

(2.57)

The eleven parameters A, C, an (n = 0, 1, . . . , 5), b, c and d compiled in Table 2.82.8

have been obtained by Wikfeldt et al. [5656] via fitting to quantum chemical calculations

for small water clusters (consisting of up to six H2O molecules, at the MP2 level).

Finally, in the extension of SCME for flexible water molecules that is presented in

Chapter 55 of this thesis, the Born-Mayer term needed to be substituted by a different

expression.

2.3.4 MB-pol

The MB-pol potential has been developed by Paesani and coworkers [5454, 5555, 8787]. Com-

pared to the AMOEBA and SCME models described in the two previous subsections,

MB-pol relies on a much larger number of parameters, which are consequently obtained

by fitting to accurate quantum chemical calculations at the CCSD(T) level [8888, 8989].

Therefore, in the interest of conciseness and unlike in the previous sections, not all ana-

lytical expressions are provided here. Instead, only the essential concepts are explained

and compared to AMOEBA and SCME wherever relevant.

Like all water force fields described in the preceding sections, MB-pol is based on

the notion that interactions between water molecules can be separated into different

contributions of varying relevance at different separation distances [7878]. The electron

42



“Thesis” — 2022/11/3 — 8:17 — page 43 — #51

2.3. FORCE FIELD METHODS FOR MODELING ICE

densities of individual molecules hardly overlap in the long-range part, which is there-

fore dominated by dispersion and electrostatic interactions. MB-pol (only) considers

pair-wise contributions to the dispersion interactions – analogous to the fixed-charge

force fields, AMOEBA and SCME. For the electrostatic interactions, MB-pol employs a

Thole-type model (TTM) [6565], which is based on (smeared) atomic charges and includes

polarization and thus many-body effects at the long range similar to AMOEBA but

rather different from SCME. Building on earlier work resulting in the so-called HBB2-

pol force field [8888, 8989], MB-pol explicitly accounts for quantum mechanical many-body

effects involving up to three water molecules at the short range. This is a unique feature

compared to all other force fields considered so far. Going beyond three-body terms

has not been found to be necessary for achieving chemical accuracy [9090–9393]. Since no

“simple” analytical form is known for the concomitant short-range two- and three-body

potentials, these are heavily parametrised based on a large dataset generated by the

aforementioned quantum chemical calculations.

Consequently, the total energy of the MB-pol model

Etotal = Eelec + E2B
short + E3B

short︸ ︷︷ ︸
intermolecular + intramolecular

+ Edisp︸ ︷︷ ︸
intermolecular

+ E1B︸︷︷︸
intramolecular

(2.58)

is decomposed into permanent and induced electrostatic (Eelec), dispersion (Edisp),

short-range two-body (E2B
short) and three-body (E3B

short) intermolecular contributions.

The intramolecular contribution that accounts for the flexibility of a single water

molecule (one-body term E1B) is taken “as is” from Partridge and Schwenke [9494].

The electrostatic energy in MB-pol is based on the so-called TTM4-F model as orig-

inally constructed by Burnham et al. [6262], Burnham et al. [9595], and Burnham and

Xantheas [9696]. This bares similarities to the AMOEBA model presented in 2.3.22.3.2, i.e.,

it accounts for permanent and induced electrostatic intermolecular interactions

Eelec = ETTM4-F = Eperm
TTM4-F + Eind

TTM4-F , (2.59)

with smeared charges and induced dipoles located on the H and shifted slightly away

from O atomic sites of a H2O molecule. Only charge-charge, charge-dipole and dipole-
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dipole interactions (the latter also intramolecular) are included in Eq. (2.592.59), i.e., un-

like in SCME (higher order) molecular multipole moments are not considered explicitly.

The dependence of the atomic charges on the geometry of a single water molecule is ob-

tained from the dipole moment surface (DMS) by Partridge and Schwenke [9494]. Babin

et al. [5454] use the same values for the polarizabilities and charge (Thole) smearing pa-

rameters as given by Burnham et al. [6262], except for a reduced dipole-dipole interaction

related smearing width.77

The expression for the dispersion energy

Edisp =
∑
a>b

V6,8(xa,xb) = −
∑
a>b

∑
i∈a
j∈b

[
fTT

6 (δij6 rij)
Cij6
r6
ij

+ fTT
8 (δij8 rij)

Cij8
r8
ij

]
(2.60)

is similar to SCME. xa and xb denote all the atomic positions belonging to water

molecules a and b. V6,8 obviously contributes to two-body interactions at the long

range as it includes summation over all atomic sites i and j in two different H2O

molecules a and b, respectively, with concomitant distances rij only considered up to

r−8
ij . fTT

6 is the Tang-Toennies damping function already given by Eq. (2.542.54). The

parameters δHH
6,8 , δOH

6,8 , δOO
6,8 and CHH

6,8 , COH
6,8 , COO

6,8 for Eq. (2.602.60) are obtained from

fitting to the results from the aforementioned quantum chemical calculations.

The short-range two-body energy contribution

E2B
short =

∑
a>b

V 2B
short(xa,xb) (2.61)

is based on the short-range two-body potential

V 2B
short(xa,xb) = s2B(rOaOb)V

2B
poly(ξ2B

1 , . . . , ξ2B
31 ) , (2.62)

which involves all the atomic positions xa and xb of two different water molecules plus

two oxygen lone-pair sites each. These two additional sites L1 and L2 are schemati-

cally depicted for one water molecule in Fig. 2.52.5. Babin et al. [5454] have represented

V 2B
poly(ξ2B

1 , . . . , ξ2B
31 ) by permutationally invariant polynomials up to fourth degree in the

variables ξ2B
i , which are based on the six intramolecular distances (ξ2B

i = exp(−k2B
i di),

7It has been set identical to its intermolecular counterpart.
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O

H1

H2

L1

L2

Figure 2.5: Oxygen lone-pair sites L1 and L2 used in the short-range two-body potential

V 2B
short (see Eq. (2.622.62)).

i = 1, . . . , 6), nine intermolecular Coulomb-like terms (ξ2B
i = exp(−k2B

i di)/di, i =

7, . . . , 15) and the sixteen intermolecular distances involving the aforementioned oxy-

gen lone-pair sites (ξ2B
i = exp(−k2B

i di), i = 16, . . . , 31). Here di denote actual distances

between sites and k2B
i (i = 1, . . . , 31) are fit parameters, which are obtained from the

aforementioned quantum chemical calculations after (long-range) two-body contribu-

tions resulting from Eelec and Edisp have been subtracted. s2B smoothly switches on

V 2B
short in a range 5.5�A < rOaOb < 7.5�A based on the distance rOaOb between the two

oxygen atoms of the molecules a and b.

The short-range three-body energy contribution

Eshort
3B =

∑
a>b>c

V 3B
short(xa,xb,xc) (2.63)

is based on the short-range three-body potential

V 3B
short(xa,xb,xc) =

[
s3B(tab)s

3B(tac) + s3B(tab)s
3B(tbc) + s3B(tac)s

3B(tbc)
]

V 3B
poly(ξ3B

1 , . . . , ξ3B
36 ) ,

(2.64)

involving the atomic positions of three different water molecules (xa,xb,xc). Babin

et al. [5555] have constructed V 3B
poly in similar to V 2B

poly by using permutationally invariant

polynomials up to fourth degree in the variables ξ3B
i . All monomials contributing to

V 3B
poly are based on the 9 intramolecular distances (ξ3B

i = exp(−k3B
i di), i = 1, . . . , 9
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Figure 2.6: Schematic representation of four particular distances d10, d25 (both red),

d36 (blue), and d1 (green) between atoms of the three depicted H2O molecules a,

b and c. The corresponding variables ξ3B
i = exp(−k3B

i di), i ∈ {1, 10, 25, 36} yield

monomials that contribute to V 3B
poly (see Eq. (2.642.64)), i.e., V 3B

poly = . . .+ξ10ξ25+ξ10ξ25ξ36+

ξ10ξ25ξ36ξ01 + . . .
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– 3 pairs each per H2O) and the 27 intermolecular distances (ξ3B
i = exp(−k3B

i di),

i = 10, . . . , 36 – 3 pairs of molecules with 9 distance pairs each). This is further

illustrated in Fig. 2.62.6. k3B
i (i = 1, . . . , 36) are fit parameters, which are obtained

from the aforementioned quantum chemical calculations after (long-range) three-body

contributions resulting from Eind
TTM4-F (see Eq. (2.592.59)) has been subtracted. s3B(tab) =

s3B(tab(rOaOb)) smoothly deactivates V 3B
short for oxygen-oxygen distances rOaOb > 4.5�A

between the two H2O molecules a and b.

Throughout this thesis, the original parameterisation and implementation of MB-pol

developed by the Paesani group [5454, 5555, 8787] is used.

2.4 Phonons

This section first introduces the harmonic approximation for the total energy of a

crystalline solid. Solving the lattice dynamical equations then yields uncoupled vi-

brational modes (phonons) characterised by frequencies and displacement eigenvectors

as a function of phonon wave vector. The (harmonic) phonon system is then conve-

niently characterised by its density of states and subject to statistical treatment in the

canonical ensemble to describe non-zero temperatures. Afterwards, the quasi-harmonic

approximation is introduced in order to account for thermal expansion. The section

concludes with computational aspects focussing on the finite-displacement technique

that is used throughout in this thesis.

2.4.1 Harmonic Approximation

Not considering any defects, the total internal energy E of a perfect crystal with equi-

librium lattice vectors Req = (aeq,beq, ceq)88 can be expanded around the equilibrium

positions of the atoms. Terminating this expansion after the second order is called the

8i.e., those which yield the lowest total energy of the crystal for atoms in their equilibrium positions
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harmonic approximation

Eharm(u; Req) = E0(Req) + E1(u; Req) + E2(u; Req)

= E(u = 0; Req) +
∑
n,i,α

∂E

∂un,i,α

∣∣∣∣
u=0︸ ︷︷ ︸

=−Fn,i,α(u=0;Req)=0

un,i,α

+
1

2

∑
n,i,α

∑
n′,i′,α′

∂2E

∂un,i,α∂un′,i′,α′

∣∣∣∣
u=0

un,i,α un′,i′,α′

= Eeq +
1

2

∑
n,i,α

∑
n′,i′,α′

Φn
′,i′,α′

n,i,α (u = 0; Req) un,i,α un′,i′,α′ .

(2.65)

Here the summations extend over the infinitely many unit cells of the crystal (n′),

the Ncell atoms within a unit cell (i′ = 1, . . . , Ncell) and their Cartesian coordinates

(α′ = 1, 2, 3). un,i,α denotes the displacement along Cartesian direction α of atom i

in a replica n. When no atoms are displaced (u = 0), only the zeroth order term E0

contributes and thus defines the (constant) equilibrium energy Eeq = E(u = 0; Req) of

the crystal. In the following, Eeq is chosen as energy zero such that it does not need to

be explicitly denoted. The first order term E1 vanishes because all force components

Fn,i,α(u = 0; Req) acting on atom i in a cell n vanish by definition when the atoms are

sitting at their equilibrium positions. This only leaves the second order (or so-called

harmonic) term E2, which is fully defined by the force constants Φn
′,i′,α′

n,i,α (u = 0; Req)

of the material. The equilibrium lattice vectors are explicitly denoted in Eq. (2.652.65) in

preparation of the so-called quasi-harmonic approximation, which is introduced below

in Section 2.4.42.4.4.

2.4.2 Lattice Dynamics

According to Eq. (2.652.65), the forces in the harmonic approximation are given by

F harm
n,i,α = −∂E

harm

∂un,i,α
= −

∑
n′,i′,α′

Φn
′,i′,α′

n,i,α un′,i′,α′ , (2.66)

resulting in the following Newtonian equations of motion

−
∑

n′,i′,α′

Φn
′,i′,α′

n,i,α un′,i′,α′ = Mi
∂2un,i,α
∂t2

(2.67)
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for each atom with mass Mi in the crystal. In principal, the force constant matrix

Φn
′,i′,α′

n,i,α couples the motion of all atoms in the crystal, with the strength of the cou-

plings typically decreasing with increasing distance from a reference atom. Equa-

tion (2.672.67) can be solved by the following plane-wave-like ansatz for the displacement

patterns

un,i,α(q, t) =
A√
Mi

ũi,α(q) exp(i(q·Rn − ω(q)t)) , (2.68)

where the linear combination of lattice vectors Rn = na(n)aeq + nb(n)beq + nc(n)ceq

describes the offset of replica cell n from the (reference) unit cell. The wave vector q

characterizes the periodicity of such a displacement pattern with (angular) frequency

ω(q). All possible displacement patterns can be described by wave vectors that are

contained in the (first) Brillouin zone of the crystal (Wigner-Seitz cell of the reciprocal

lattice). The unit vector ũi,α(q) describes the displacements of each atom in a unit

cell and A is the amplitude of the resulting displacement pattern. Substitution of this

ansatz into Eq. (2.672.67)

ω2ũi,α(q) =
∑
i′,α′

∑
n

1√
MiMi′

Φn
′,i′,α′

n,i,α ũi,α(q) exp(iq·Rn) (2.69)

then allows to determine the frequencies ω(q) and directions of atomic displacements

ũi,α(q) that are described by Eq. (2.682.68). Introducing the so-called dynamical ma-

trix

Di′,α′

i,α (q) =
∑
n

1√
MiMi′

Φn
′,i′,α′

n,i,α exp(iq·Rn) , (2.70)

Eq. (2.692.69) constitutes an eigenvalue problem for this 3j×3j dimensional matrix

ω2ũi,α(q) =
∑
i′,α′

Di′,α′

i,α (q) ũi,α(q) . (2.71)

Since D(q) is Hermitian it can be diagonalized and the 3Ncell different eigenvectors

and concomitant eigenvalues provide solutions for the displacements νb(q) and their

concomitant frequencies ωb(q), respectively, where b = 1, . . . , 3Ncell. Each solution it

describes is a particular phonon state. At each q-point these states are enumerated by

the band index b, and the total amount of bands is determined by the amount of atoms

in the primitive unit cell. In practice, solutions for a discrete set of q-points sampling

the Brillouin zone are being calculated.
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Figure 2.7: Phonon DOS of ice-Ih calculated with the q-TIP4P/F model. Five differ-

ent sets of phonon modes are clearly separated by their respective frequency ranges,

namely hydrogen-bond bending (0 to 150 cm−1), hydrogen-bond stretching (150 to

500 cm−1), librational (500 to 1500 cm−1), H−O−H bending (1500 to 2000 cm−1), and

O−H stretching (2000 to 4000 cm−1).

It is convenient to characterize the phonon spectrum by the amount of states per

frequency and unit cell, which is expressed by the phonon density of states (DOS)

Dphonon(ω) =
V

(2π)3

∑
b

∫
BZ

dq δ(ω − ωb(q)) . (2.72)

V is the volume of the unit cell and the integration extends over the (first) Brillouin

zone (BZ). Figure 2.72.7 shows Dphonon for the most common crystalline ice phase (ice

Ih) as calculated with a particular fixed-charged force field (see Section 2.3.12.3.1).

2.4.3 Vibrational Free Energy

The canonical partition function of the phonon system Zphonon at temperature T is

obtained by summing over all phonon states, which are enumerated by their phonon

wavevectors (q in the first Brillouin zone), band indexes (b) and the amount of vi-

brational quanta (m) that are “stored” in each state. According to the harmonic ap-
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proximation there is no coupling between the different phonon modes. Consequently,

the vibrational partition function factorizes into the contribution of individual phonon

(harmonic) oscillators

Zphonon(T ) =
∏
q,b

∞∑
m=0

exp(−
h̄ωb(q)(m+ 1

2 )

kBT
) =

∏
q,b

exp(− h̄ωb(q)
2kBT

)

1− exp(− h̄ωb(q)
kBT

)
, (2.73)

where kB is the Boltzmann constant. This yields the phonon contribution to the

Helmholtz free energy

Fphonon(T ) = −kBT ln(Zphonon)

=
1

2

∑
q,b

h̄ωb(q)︸ ︷︷ ︸
ZPE

+ kBT
∑
q,b

ln

[
1− exp

(
−h̄ωb(q)

kBT

)]
(2.74)

The first term is the zero-point energy (ZPE), which will be the focus of Chapters 33

and 66. The partition function also yields the vibrational entropy of the phonon sys-

tem

Sphonon(T ) =
1

T

∑
q,b

h̄ωb(q)

exp
(
−h̄ωb(q)
kBT

)
− 1

− kB

∑
q,b

ln

[
1− exp

(
−h̄ωb(q)

kBT

)]
. (2.75)

The internal energy of the phonon system at finite temperature thus becomes

Fvib(T ) = Fphonon(T ) + TSphonon(T )

=
1

2

∑
q,b

h̄ωb(q) +
∑
q,b

h̄ωb(q)

exp
(
−h̄ωb(q)
kBT

)
− 1

,
(2.76)

which at T = 0 K is equal to the ZPE introduced in Eq. (2.742.74).

2.4.4 Quasi-Harmonic Approximation

Thermal expansion is not described by the harmonic approximation, which can be

rationalized by the fact that the expectation value for the position of each phonon

oscillator is zero. That means that even at higher temperatures the vibrational free

energy given by Eq. (2.742.74) still describes a crystal where the atoms are (on average) at

the same equilibrium positions as for zero temperature. Substituting the equilibrium
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Figure 2.8: Schematic representation of (a) the internal energy Eqh(V ) together

with (b) the volume dependence of the phonon contribution to the Helmholtz free

energy F qh
phonon(T ;V ) as well as (c) the total Helmholtz free energy F qh(T ;V ) =

Eqh(V )+F qh
phonon(T ;V ) according to the quasi-harmonic approximation. F qh

phonon(T ;V )

and F qh(T ;V ) are shown for three different temperatures T3 > T2 > T1. ∆V =

V0(T3)− V0(T1) denotes the volume expansion as further detailed in the text.
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lattice vectors Req by general lattice vectors R = (a,b, c) in Eq. (2.652.65) leads to lattice-

vector-dependent force constants Φn
′,i′,α′

n,i,α (u = 0; R). Consequently, the internal energy

Eharm can be written as a function of the unit cell volume V (R) = a · (b× c)

Eqh(u;V (R)) = Eharm(u; R) (2.77)

such that

min
V

Eqh(u = 0;V (R)) = Eharm(u = 0;V eq) = Eeq , (2.78)

with V eq = V (Req). This is called quasi-harmonic approximation (QHA). Eqh(V ) is

schematically depicted in Fig. 2.82.8 (a).99 Obviously, Eqh(V ) alone still does not describe

any thermal expansion.

Together with the force constants also the dynamical matrix and thus the solutions

of the lattice dynamical equations (see Section 2.4.22.4.2) depend on V , i.e., in particular

ω = ω(q;V ). Substitution into the expressions introduced in Section 2.4.32.4.3 results in

a volume dependent phonon contribution to the Helmholtz free energy F qh
phonon(T ;V ),

which is shown schematically in Fig. 2.82.8 (b) for three different temperatures. Ac-

counting for the internal and phonon contributions according to the QHA, the total

Helmholtz free energy becomes

F qh(T ;V ) = Eqh(V ) + F qh
phonon(T ;V ) , (2.79)

which is depicted in panel (c) of Fig. 2.82.8. F qh
phonon(T ;V ) leads to a temperature-

dependent shift of the minimum of Eqh(V ). The equilibrium volume is obtained from

minV F
qh(T ;V ) = F (T ;V0(T )) and changes according to ∆V eq(T ) = V0(T ) − V eq

compared to the T = 0 K. This means that the canonical ensemble given by the QHA

can effectively describe volume expansion due to increasing temperature.

2.4.5 Computational Aspects

The essential computational challenge for phonon calculations is to obtain the force

constants elements Φn
′,i′,α′

n,i,α (see Eq. (2.652.65)), because this defines the computationally

9Assuming that for a given set of lattice vectors R only relaxed atomic coordinates are being

considered (i.e., u = 0), the dependence on the displacements and lattice vectors are no longer

explicitly denoted here and in the following.
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rather simple eigenvalue given in Eq. (2.712.71) the solution of which then yields phonon

frequencies and displacements vectors and thus all thermodynamic properties describe

in Section 2.4.32.4.3. Unfortunately, in particular for electronic structure calculations in pe-

riodic boundary conditions, second derivatives of the total internal energy with respect

to atomic (displacement) coordinates are usually not as “easily” available as the corre-

sponding first derivatives (forces). Density-functional perturbation theory (DFPT) [9797]

has been formulated for that reason, but (obviously) cannot be combined with force

fields. To treat both DFT and force fields at equal footing, all phonon calculations in

this thesis are based on the so-called finite displacement technique [9898, 9999]. The only

systematic drawback of this technique is that it cannot account for the splitting of

longitudinal and transversal optical phonon modes at the Γ-point (known as LO-TO

splitting), which however is negligible for properties that are integrated over the entire

Brillouin zone.

The basic idea behind the finite-displacement technique is to evaluate the elements of

the force constants matrix by using finite differences of the respective force compo-

nents

Φn
′,i′,α′

n,i,α ≈ Fn′,i′,α′(+un,i,α)− Fn′,i′,α′,(−un,i,α)

2∆
. (2.80)

Here Fn′,i′,α′(±un,i,α) is the force component α′ acting on atom i′ in unit cell n′ of the

crystal after only the single atom i in unit cell n has been displaced by ±un,i,α = ±∆

along the Cartesian direction α while all other atoms remain in their equilibrium posi-

tions.1010 Of course, the latter is problematic when forces are calculated within periodic

boundary conditions, because this always results in the displacement of infinitely many

atoms. Using a supercell of the primitive unit cell allows to displace at least a cer-

tain amount of atom pairs ((n′, i′), (n, i)) with (n′, i′) 6= (n, i) independently from each

other. These pairs can be up to a certain maximum distance apart, which is inherent

to the chosen supercell. Assuming that Φn
′,i′,α′

n,i,α = 0 for atom pairs at even larger dis-

tances then allows to obtain a reasonable approximation for the force constant matrix

if the supercell is indeed large enough. This can and needs to be tested in practice by

10For a given set of lattice vectors.
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checking the convergence of calculated phononic properties with respect to the super-

cell. The dynamical matrix resulting from the former is then exact for phonons with

wavevectors q that are commensurate with the supercell, and Eq. (2.692.69) describes a

Fourier interpolation for all other wave vectors. Consequently, for a given force constant

matrix, phonons can be calculated with very modest computational effort throughout

the entire Brillouin zone, and convergence of phononic properties with respect to the

q-grid used for the Brillouin zone sampling can be easily checked.

In principal, the central difference approximation used in Eq. (2.802.80) could also be re-

placed by forward or backward differencing, which both reduce the amount of force

evaluations because only Fn′,i′,α′(+un,i,α) or Fn′,i′,α′(−un,i,α) would be required, re-

spectively. At the same time, however, this results in a numerical truncation error

for Φn
′,i′,α′

n,i,α of order ∆, while it is of order ∆2 with the central difference approxima-

tion. This is of particular importance since the displacement size ∆ cannot be chosen

arbitrarily small due to

1. limitations of floating point arithmetics when evaluating Eq. (2.802.80) and

2. numerical noise making it exceedingly difficult to accurately obtain “small” non-

analytically defined forces (usually the case in electronic structure calculations).

The quasi-harmonic approximation (see Section 2.4.42.4.4) relies on solving lattice dynamics

for harmonic Hamiltonians according to Eq. (2.712.71), but now for a different one for each

different volume. Depending on the volume range to be covered, this comes at only

moderately increased computational costs – in particular when considering alternatives

as, e.g., a fully dynamical description. Furthermore, computer codes for lattice dynam-

ics often already include the QHA or can be rather easily extended otherwise.

In this thesis, the Phonopy package [100100] is employed for all phonon calculations.

Most important for this thesis is that it can be easily coupled to external codes that

perform the force evaluations thanks to the well-structured and documented Python

code base. Phonopy implements the finite displacement method originally introduced

by Parlinski et al. [9999], including an automatic recognition and exploitation of symme-
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try to (potentially) significantly reduce the amount of 2 × 3 × Ncell force evaluations

that are required when symmetry is not considered (or not present in the structure).

Furthermore, it has been extended to enable calculations within the QHA. In the first

step, a set of symmetry-reduced atomic displacements in the requested supercell are

generated. After calculating forces for these structures with the external code (DFT

or force fields in this work), phonopy is again invoked to generate the force constant

matrix in Eq. (2.802.80) and solve the phonon eigenvalue problem (see Eq. (2.712.71)). In the

QHA these steps need to be repeated for a set of different primitive cells each with a

different cell volume. In the last step, e.g. phonon DOSs (Eq. (2.722.72)) or vibrational

free energy (and entropy) contributions can then be calculated.
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CHAPTER 3

Importance of Zero-point Energy for Crystalline Ice

Phases

This chapter is based on:

S. Rasti and J. Meyer, Importance of zero-point energy for crystalline ice phases: A

comparison of force fields and density functional theory, J. Chem. Phys. 150, 234504

(2019).

61



“Thesis” — 2022/11/3 — 8:17 — page 62 — #70

CHAPTER 3. IMPORTANCE OF ZERO-POINT ENERGY FOR CRYSTALLINE
ICE PHASES

Abstract

Density functional theory (DFT) including van der Waals (vdW) interactions and ac-

counting for zero-point energy (ZPE) is believed to provide a good description of crys-

talline ice phases [B. Pamuk et al., Phys. Rev. Lett. 108, 193003 (2012)]. Given

the computational cost of DFT, it is not surprising that extensive phonon calculations,

which yield the ZPE, have only been done for a limited amount of ice structures. Com-

putationally convenient force fields on the other hand are the method of choice for large

systems and/or dynamical simulations e.g. of supercooled water. Here I present a sys-

tematic comparison for seven hydrogen-ordered crystalline ice phases (Ih, IX, II, XIII,

XIV, XV, VIII) between many commonly-used non-polarizable force fields and density

functionals, including some recently developed meta-GGA functionals and accounting

for vdW interactions. Starting from the experimentally determined crystal structures,

I perform space-group-constrained structural relaxations. These provide the starting

point for highly-accurate phonon calculations that yield effectively volume-dependent

ZPEs within the quasi-harmonic approximation. In particular when including ZPE, the

force fields show a remarkably good performance for equilibrium volumes and cohesive

energies superior to many density functionals. A decomposition of the cohesive ener-

gies into intramolecular deformation, electrostatic and vdW contributions quantifies

the differences between force fields and DFT. Results for the equilibrium volumes and

phase transition pressures for all studied force fields are much more strongly affected

by ZPE than all studied density functionals. I track this down to significantly smaller

shifts of the O-H-stretch modes and compare with experimental data from Raman

spectroscopy.

3.1 Introduction

Ice is a condensed phase of water which plays an important role in different fields

including astrophysics and planetary sciences [11–44] as well as cryobiology [55]. It occurs

in many different phases due to the large variety of forming different hydrogen bonds
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between the individual H2O molecules. With increasing pressure these ice phases get

more close packed [66], which makes their phase diagram and their structures more

unusual [77]. From the 17 known ice phases [88] seven are proton ordered and thus have

a well-defined crystal structure. These ice phases (ice Ih, ice IX, ice II, ice XIII, ice

XIV, ice XV, ice VIII) capture a wide range of local coordination and thus (hydrogen)

bonding scenarios between individual H2O molecules in solid water. They are listed

together with their space groups and depicted in Table 3.13.1 and Fig. 3.13.1, respectively,

ordered by increasing pressures at which they form. The geometric structure and

relative stability of these different ice phases can be conveniently model using small unit

cells and periodic boundary conditions in order to compare to available experimental

data.

Ice-Ih Ice-IIIce-IX Ice-VIIIice-XIII Ice-XIV Ice-XV

Figure 3.1: The unit cell of seven proton ordered ice structures. The oxygen and

hydrogen atoms are shown in red and white colors, respectively.

Despite more than 30 years of computer simulations of water, chemical interaction

models are still challenged to accurately describe the phase diagram of water [99–1111]

due to the complex interplay between hydrogen bonding [1212, 1313], van der Waals (vdW)

[1414–1818] and other non-local exchange-correlation effects [1010, 1111, 1919–2121]. Density func-

tional theory (DFT) can capture many of these contributions with varying accuracy

for different exchange correlation functionals [1010, 1111, 1616–1919] and so can force fields de-

pending on the sophistication of their parametrization [2222]. Furthermore, vibrational

properties can also play an important role, but this has so far been investigated only for

a small amount of ice phases [1717, 1818, 2323–2626]. For example, zero-point energy associated

with the lattice vibrations has been found to be responsible for the anomalous volume

isotope effect (VIE) of ice Ih [1818, 2727] as well as isotope effects for phase transitions

[2828].

63



“Thesis” — 2022/11/3 — 8:17 — page 64 — #72

CHAPTER 3. IMPORTANCE OF ZERO-POINT ENERGY FOR CRYSTALLINE
ICE PHASES

It is the goal of this study to provide an extensive comparison between off-the-shelve

(non-polarizable) force fields, most of which have been fitted to experimental data

for liquid water, and state-of-the-art density functionals for the aforementioned seven

proton-ordered ice phases (Table 3.13.1 and Fig. 3.13.1). Given the computational efficiency

and good performance in previous studies of ice Ih, II and III [1818, 2424, 2828] compared

to path integral molecular dynamics [2323], lattice dynamics combined with the quasi

harmonic approximation has been used to obtain the ZPE and account for its influ-

ence on equilibrium structures and cohesive energies. I find a large effect on structural

properties in case of the force fields and almost none for DFT, which are related to

a different description of the O-H-stretch frequency shifts upon compression and ex-

pansion. Likewise, I identify qualitatively different trends for the contributions to the

cohesive energies.

Table 3.1: Bravais lattice, space group, number of water molecules N per unit cell and

formation conditions (minimum and maximum pressures Pmin and Pmax, respectively)

of the crystalline ice phases considered in this work.

Ice Bravais Lattice Space group N Pmin . . . Pmax (GPa)

Ih Hexagonal P63cm
a 12 0.0 . . . 0.2 b

IX Tetragonal P41212 c 12 0.2 . . . 0.4b,d

II Trigonal R3̄ e 12 0.3 . . . 0.5 b,f

XIII Monoclinic P21/a
d 28 0.5 . . . 1.1 b

XIV Orthorombic P212121
d 12 1.1 . . . 1.3 b

XV Triclinic P 1̄ f 10 1.2 . . . 1.5 b

VIII Tetragonal I41/amd
g 8 1.5 . . . 2.5 b,h

aFrom Ref. [2929] bFrom Ref. [3030] cFrom Ref. [3131] dFrom Ref. [3232] eFrom Ref. [3333]

f From Ref. [3434] gFrom Ref. [3535] hFrom Ref. [3636]

This chapter is structured as follows: In Section 3.23.2 the theoretical methods and com-

putational details are briefly described. Subsequently, results for the relaxed structures

(Section 3.3.13.3.1), the cohesive energies for these structures together with a decomposi-

tion into different bonding contributions (Section 3.3.23.3.2) and phase transition pressures
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(Section 3.3.33.3.3) are presented. This is followed by a detailed analysis of the ZPE (Sec-

tion 3.3.43.3.4). The chapter ends with conclusions and a short outlook on future work in

Section 3.43.4.

3.2 Methodology

3.2.1 Total energy calculations

The Lammps code has been used [3737] in order to calculate total energies, forces and

stress tensors for the SPC/E [3838], TIP3P [3939], TIP4P/2005 [4040], TIP4P/ice [4141] and

q-TIP4P/F [4242] force fields (FF), that have been parametrized and are commonly

used for simulations of water. Harmonic potentials were added to SPC/E, TIP3P,

TIP4P/2005 and TIP4P/ice in order to enable intramolecular OH-bond stretching

(ωstretch = 3357cm−1) and HOH-angle bending (ωbend = 1610 cm−1) based on experi-

mental data [4343] for the corresponding vibrational modes of liquid water. q-TIP4P/F

already describes flexible water molecules by construction [4242]. The Lennard-Jones

parts of these force fields have been truncated at a cut-off distance of 9 Å. Long-range

Coulomb interactions are accounted for via Ewald summation [4444].

DFT calculations at the LDA [4545] and GGA [4646] level have been carried out with the

FHI-aims package [4747, 4848] using the standard tight settings. For the latter, pairwise

dispersion interactions were added to the PBE exchange-correlation functional [4646]

using the Tkatchenko-Scheffler (PBE+TS) [4949] as well as the many body dispersion

correction (PBE+MBD) [5050] methods. Calculations at meta-GGA level (and beyond)

were performed with the Vasp code [5151, 5252] using the hard projector-augmented-wave

(PAW) potentials [5353] for hydrogen and oxygen included with VASP [5454] together with a

plane-wave cut-off energy of 900 eV. The SCAN [5555] and SCAN+rVV10 [5656] exchange-

correlations functionals have been used, where the latter includes the non-local rVV10

van der Waals functional [5757, 5858] on top of the SCAN meta-GGA. In all cases a 4×4×4

Monkhorst-Pack grid [5959] is used for Brillouin zone sampling.
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For the force fields the total energy EFF can be decomposed according to

EFF = Emol + Eelec + ELJ-r + ELJ-a︸ ︷︷ ︸
ELJ

, (3.1)

where Emol is the sum of all intramolecular (stretching and bending) contributions and

Eelec is the electrostatic (Coulomb) energy. ELJ-r denote the repulsive and ELJ-a the

attractive part of the Lennard-Jones potential (ELJ), that is employed in all of the force

fields used in this study in order to account for intermolecular Pauli-repulsion and van

der Waals (vdW) interactions, respectively. Likewise, for the DFT calculations, it is

straightforward to decompose the total energy EDFT(+vdW) into

EDFT(+vdW) = Ekin+XC + Eelec (+EvdW) . (3.2)

Here Ekin+XC is the sum exchange-correlation and kinetic, Eelec is the Hartree and

EvdW the vdW energy.

Data obtained from neutron diffraction experiments [3131–3535, 6060] has been used in order

to generate the initial structures of proton ordered ice phases compiled in Fig. 3.13.1

and Table 3.13.1. As originally suggested by Hamann [2929], ice Ih has been modeled with

a unit cell containing 12 molecules. In order to simultaneous relax the lattice vectors

and the internal coordinates of each ice structure while constraining its space group,

the algorithm suggested by Pfrommer et al. [6161] has been implemented into the Atomic

Simulation Environment [6262]. Using this implementation with the stress tensor and

forces obtained from the FF and DFT calculations, space-group constrained equilibrium

structures with equilibrium unit cell volume V0 could be obtained. A tight (generalized)

maximum force threshold of 10−4 eV/Å has been used as convergence criterion for the

geometry optimizations. This ensures (vide infra) high-quality phonon calculations. In

order to obtain bulk moduli B0, energy-volume curves E(V ) are fitted to 13 structures

within ±4% of the isotropically contracted and expanded V0 using the Rose-Vinet [6363]

equation of state (EOS), performing geometry optimizations of the internal coordinates

for each of them. Based on the optimized structures, cohesive energies are obtained

according to

Ecoh = Emol − 1
Nice

Eice (3.3)
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in the usual way, where Emol is the total energy of an isolated H2O molecule, Eice is

the total energy of the optimized unit cell of the ice phase with Nice water molecules

therein.

3.2.2 Inclusion of Zero-Point Energy Effects

The quasi-harmonic approximation (QHA) has been used in order to evaluate the

Helmholtz free energy

F (V, T ) = E(V ) + Fphonon(V, T ) (3.4)

with

Fphonon(V, T ) =
1

2

∑
q,b

h̄ωq,b(V )︸ ︷︷ ︸
EZPE

+kBT
∑
q,b

ln

[
1− exp

(
−h̄ωq,b(V )

kBT

)]
(3.5)

Here kB is the Boltzmann constant and ωq,b is the phonon frequency at wavevector q

for band b. The zero-point energy (ZPE) is (equivalently) given by the first moment

of the phonon density of states (DOS) nphonon

EZPE = Fphonon(V, T = 0) = h̄
2

∫ ∞
0

dωω nphonon(ω) (3.6)

where nphonon(ω) =
∑

q,b δ(ω−ωq,b). Because of the volume dependence of the phonon

frequencies and the ZPE the minimum of Fphonon(V, T ) with respect to V can be

shifted compared E(V ), resulting in equilibrium volumes V ZPE
0 , bulk moduli BZPE

0 and

cohesive energies EZPE
coh that account for ZPE effects. These are obtained by calculating

phonons for the same 13 structures that have been used for the E(V ) curves before.

The Parlinski-Li-Kawazoe finite-displacement method [6464] has been employed for the

phonon calculations (with displacement of 0.001 Å), and F (V, T = 0)-curves fitted

employing the Rose-Vinet [6363] EOS, both as implemented in the phonopy package

[6565]. Exploiting symmetry, the Brillouin zone has been sampled by 30× 30× 30 grids

for those calculations, which is equal to at least 1456 irreducible q-points for each

structure.
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3.2.3 Determination of Phase-Transition Pressures

Transition pressures PA→B, at which an ice phase A goes over into a phase B, are

obtained at T = 0 using three different approximations:

1. The ∆-approximation yields the transition pressure as the negative slope of the

common tangent between the E(V )-

P∆
A→B = −∆E

∆V0
= −EB − EA

VB − VA
(3.7)

or the F (V, T = 0)-curves

P∆,ZPE
A→B = − ∆F0

∆V ZPE
0

= −
F (V ZPE

0,B , T )− F (V ZPE
0,A , T )

V ZPE
0,B − V ZPE

0,A

∣∣∣∣∣
T=0

(3.8)

of the two ice phases A and B. Obviously, the latter includes ZPE effects.

2. The effect of contraction and expansion can also be included directly in the ther-

modynamic description by adding the PV to E(V ) and minimizing the resulting

enthalpy with respect to the volume

H(P ) = min
V

[E(V ) + PV ] . (3.9)

The crossing point of H(P ) for two ice phases A and B then defines the corre-

sponding transition pressure PHA→B

HA(PHA→B) = HB(PHA→B) . (3.10)

3. Also accounting for the phonon contributions within the QHA, the Gibbs free

energy

G(T, P ) = min
V

[E(V ) + Fphonon(V, T ) + PV ] (3.11)

is calculated in the same fashion H(P ) above. The zero-temperature transition

pressure PGA→B is then defined as the pressure where the Gibbs free energies of

two ice phases A and B are equal

GA(PGA→B, T )
∣∣
T=0

= GB(PGA→B, T )
∣∣
T=0

. (3.12)
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3.3 Results and Discussions

3.3.1 Equilibrium Structures

The detailed results from the structural optimization with all interaction models are

provided in the Section 3.A3.A. Figure 3.23.2 highlights the relative differences of the calcu-

lated equilibrium volumes with respect to measured data. Without considering ZPE

(Fig. 3.23.2 (a)), q-TIP4P/F shows the best agreement with experiments for all ice phases

among the force fields. It yields the smallest average deviation of about 3%, which in-

creases in the order q-TIP4P/F < TIP4P/ice < TIP4P/2005 < TIP3P < SPC/E to

almost 8%.

As expected from previous studies for selected ice phases, LDA shows the worst per-

formance among all DFT methods [1111]. The PBE-based results are in good agreement

with results from previous calculations [1919]. PBE shows an overall good performance,

while including the TS and MBD corrections to account for vdW-interactions improve

the PBE structures for high-pressure ice phases. On the other hand, the equilibrium

volumes of the low-pressure ice phases (ice Ih in particular) are better described by

TIP3P and q-TIP4P/F. The more compact forms of the high-pressure ice phases thus

pose a much bigger challenge to the force fields to properly account for molecular

deformation, vdW interactions hydrogen bonding networks. On average though, the

deviation of the equilibrium volumes for all PBE-based methods is comparable to the

TIP4P-family FFs. Quite in contrast, SCAN and (even worse) SCAN+RVV10 show

significantly larger deviations from the experimentally determined structures than all

force fields.

Figure 3.23.2 (b) shows the results for the equilibrium volumes including ZPE. Apart from

PBE, the volumes for all DFT methods increase very little towards the corresponding

experimental data. ZPE-corrected PBE also yields enlarged unit cells, but these now

become too large. The ZPE-corrected equilibrium volumes for all FFs increase much

more and become significantly closer to the experimental data. Consequently, the

average deviations for the latter become less than 3% and thus outperform all DFT
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methods. The importance of individual phonon modes for this result will be analyzed

in more detail in Section 3.3.43.3.4.
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Figure 3.2: Relative differences of calculated V0 (a) and V ZPE
0 (b) from experimental

data (black dashed line at 0) for the unit cell volumes of the various ice phases. Lines

are meant to guide the eye only, with differently colored dashed (solid) lines marking

force fields (density functionals).

3.3.2 Cohesive Energies

The cohesive energy per H2O molecule allows to characterize the relative stability of

the different ice phases. Experimental data is available ice Ih, IX, II and VIII from

Whalley [6666] without and with ZPE. ZPE is excluded from the latter in a linear fashion,

and ice IX, II, VIII are less stable than ice Ih by 5, 1 and 33 meV/H2O, respectively.

This data is shown together with the results of the calculations from this work without

(with) ZPE in Fig. 3.33.3 (a)(Fig. 3.33.3 (b)). The sequence of increasingly compressed ice

structures listed in Table 3.13.1 is therefore expected to decrease in stability and thus
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Figure 3.3: Cohesive energies per water molecule for the various ice phases without (a)

and with (b) account for ZPE. Lines are meant to guide the eye only, with differently

colored dashed (solid) lines marking force fields (density functionals). Experimental

data from Whalley [6666] is shown by blue squares, without (a) and with (b) ZPE cor-

rection suggested as part of that work. Due to the strong overbinding of LDA relative

to the experimental reference, results are not shown here, but provided in the supple-

mentary material together with all other numerical values.

yield decreasing cohesive energies.

Without ZPE (see Fig. 3.33.3 (a)) all methods correctly predict ice Ih (ice VIII) to be

most (least) stable. Only the SCAN functional yields the relative cohesive energies in

outstanding quantitative agreement with experiments. It is therefore the only method

that is able to predict that ice II is more stable than ice IX, as has been observed

before by Sun et al. [2121]. In addition to SCAN, the near degeneracy between ice

Ih and ice II is only captured correctly with DFT functionals that explicitly account

for vdW interactions (PBE+TS, PBE+MBD, SCAN+rVV10). Still, all DFT methods
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functionals overbind the structures by more than 50 meV per water molecule with LDA

being significantly further away. Absolute cohesive energies are on average much better

described by all the FFs, except for TIP4P/ice, which surprisingly shows the largest

offset with respect to the experimental data. The relative stability can be problematic

(in particular for TIP3P). Like for the equilibrium volumes q-TIP4P/F performs best

overall by predicting even the absolute cohesive energies very accurately.

Including ZPE reduces the cohesive energy in all calculations (see Fig. 3.33.3 (b)) as

expected according to the ZPE correction employed by Whalley [6666]. Consequently,

the superiority of the FFs for the prediction of the absolute cohesive energies does not

change. q-TIP4P/F remains the best choice among the FFs and TIP4P/ice remains

the worst. The prediction of relative stability does not improve or even gets worse for

TIP3P. For the DFT methods LDA gains the biggest improvements due to ZPE but

still shows the worst description. The cohesive energies of PBE and PBE+TS improve

slightly for ice VIII. For the SCAN functional on the other hand, the inclusion of ZPE

very slightly worsens the predicted relative stability of the ice phases.

In order to analyze where the differences of the cohesive energies come from, Fig. 3.43.4

shows a decomposition into the total-energy contributions described in Section 3.2.13.2.1.

As shown by the negative sign of Emol
coh + ELJ-r

coh for the FFs (Fig. 3.43.4 (a)) and Ekin+xc
coh

for almost all DFT methods (Fig. 3.43.4 (d)) these contributions decrease the absolute

cohesive energy of each ice phase due to structural deformation in the crystal compared

to the gas phase. LDA as well as SCAN for ice VIII and PBE+TS are noteworthy

exceptions to this trend by yielding positive Ekin+xc
coh . Overall, for both DFT and

FFs, the destabilization decreases for the more compact ice phases with increasing

pressure.

In contrast, the electrostatic contributions Ecoul
coh shown in Fig. 3.43.4 (b) and Fig. 3.43.4 (e)

for FFs and DFT, respectively, stabilize each ice phase, and the stabilization reduces

from ice Ih to ice VIII. For LDA, the magnitude of the stabilization can be up to

two times larger than for TIP4P/ice, which has the largest Ecoul
coh among the force

fields.
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Figure 3.4: Decomposition of cohesive energy without ZPE for the various ice phases

(see 3.33.3 (a)) into contributions to the total energies for FFs ((a)-(c), see Eq. (3.13.1)) and

DFT ((d)-(f), see Eq. (3.23.2)). Lines are meant to guide the eye only, with differently

colored dashed (solid) lines marking force fields (density functionals).

Naturally, the contributions to the cohesive energies related to the attractive part of

the Lennard-Jones potential ELJ-a
coh in case of the FFs (Fig. 3.43.4 (c)) and van der Waals

energies EvdW
coh for PBE+TS and PBE+MBD (Fig. 3.43.4 (f)), stabilize each ice phase.

The latter two DFT methods, which explicitly separate EvdW, show a monotonously

increasing stabilization from ice Ih to ice VIII. In particular, as already discussed by

Santra et al. [1616], the EvdW
coh for PBE+TS stabilizes ice VIII about two times more

than ice Ih. Figure 3.43.4 (f) shows that PBE+MBD yields almost the same result. ELJ-a
coh

for the FFs is of very similar magnitude, but, quite in contrast, this does not show

such a monotonous trend. This is mirrored by the fact that the Pauli repulsion, which
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Figure 3.5: The solid lines show the accumulated the Lennard-Jones potential ELJ for

TIP4P/2005 (this work, (a)) and van der Waals energies EvdW for PBE+TS (data from

Santra et al. [1616], (b)), when more and more pairs contribute with increasing oxygen-

oxygen distance R. Different ice phases are shown by the differently colored lines. In

panel (b), the attractive part of the Lennard-Jones potential ELJ-a for TIP4P/2005 is

indicated by dashed lines for comparison.

is described by the repulsive part of the Lennard-Jones potential, does not decrease

monotonously when going from ice Ih to ice VIII as shown in Fig. 3.53.5 for TIP4P/2005

as representative example. Inspired by the analysis of Santra et al. [1616], Fig. 3.53.5 (a)

shows ELJ as a function of contributing pairs in growing neighbor shells that can be

characterized by maximum oxygen-oxygen distances R. For TIP4P/2005 and equiva-

lently for all the other FFs, the first neighbor shell at ≤ 3Å is in the repulsive regime

of the Lennard-Jones potentials used for the FFs (e.g. σ = 3.1668 Å for TIP4P/2005

[4141]). Only subsequent neighbor shells then accumulate attractive contributions ELJ-a

to ELJ. Compared to PBE+TS (Fig. 3.53.5 (b)) (for which all neighbors yield attractive

contributions to EvdW by construction), the ELJ-a contributions to TIP4P/2005 are

much smaller at comparable distances. Altogether, since the parameters of ELJ of the

FFs have been fitted without separating ELJ-r and ELJ-a, it is not surprising that ELJ-a
coh

and EvdW
coh show different trends.
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3.3.3 Phase Transition Pressures
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Figure 3.6: Phase transition pressures at which ice Ih goes over into the other six

ice phases (IX, II, XIII, XIV, VIII) considered in this work as obtained by the ∆-

approximation (a) without and (b) ZPE (see Eq. (3.73.7) and Eq. (3.83.8) in Section 3.2.33.2.3,

respectively). Lines are meant to guide the eye only, with differently colored dashed

(solid) lines marking force fields (density functionals). The blue filled squares show

experimental data extrapolated to the zero temperature including error bars where

available as given by Whalley [6666].

Since phase transition pressures for two ice phases A and B are generally influenced

both by structural and energetic effects, it is interesting to calculate the latter using the

different techniques described in Section 3.2.33.2.3 and compare with experimental reference

values [3030, 3232, 3434, 3636]. Figure 3.63.6 shows the results for the ∆-approximation. No values

are shown when the transition pressure turn out to be negative. As observed by Santra

et al. [1919] before, without taking ZPE into account (Fig. 3.63.6 (a)) PBE largely overes-

timates P∆
A→B, but can be significantly improved by accounting for vdW interactions

in PBE+MBD and (even more) PBE+TS. LDA benefits from error canceling for both

the equilibrium volumes and cohesive energies and does slightly better than PBE, but
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Figure 3.7: Same as 3.63.6, but for phase transition pressures obtained from (a) enthalpy

and (b) Gibbs free energy (see Eq. (3.103.10) and Eq. (3.123.12) in Section 3.2.33.2.3, respectively).

not as good PBE+MBD. The SCAN functional performs even better than PBE+TS,

and SCAN+rVV10 (likewise with account for vdW) yields the best results. Due to the

problems with the relative stability of the ice phases discussed in Section 3.3.23.3.2, only q-

TIP4P/F, again the best among the FFs, yielding meaningful results for all transitions

which are comparable to PBE+TS. Including ZPE (Fig. 3.63.6 (b)) does not change most

of the DFT results except for SCAN+rVV10, which now yields positive P∆,ZPE
A→B for all

transitions. The same happens for all force fields apart from SPC/E. Their agreement

with the available experimental data is not as good as for SCAN+rVV10, but still

much better than LDA, SCAN and all PBE-based methods.

Transition pressures obtained based on the enthalpy and Gibbs free energy, PHA→B and

PGA→B shown in Fig. 3.73.7 (a) and Fig. 3.73.7 (b), respectively, which the latter includes

ZPE, follow the same qualitative trends. However, in case of PHA→B more DFT methods

and FFs than for P∆,ZPE
A→B failed to predict a positive values or simply yield results that

are out of the range plotted in Fig. 3.73.7 (a). Results based on the Gibbs free energy on

the other hand are comparable to the ZPE-corrected ∆-approximation. Furthermore,
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those results for PGA→B shown in Fig. 3.73.7 (b) are only mildly affected by temperature,

i.e. the change in the worst case by about 0.08 GPa at T = 200 K.

3.3.4 Analysis of Zero-Point Energy Effects
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Figure 3.8: Phonon densities of states for ice II obtained with TIP4P/ice (a) and

PBE + TS (c). Black, red and blue lines show the phonon DOSs at the corresponding

equilibrium volumes (V0) as well as isotropically compressed (0.96 · V0) and expanded

(1.04 · V0) structures, respectively. Experimental data for the stretching frequencies is

indicated by the black vertical lines. Internal energy E(V ) (dark green) and Helmholtz

free energy F (V, T = 0) (light green) are plotted for TIP4P/ice (b) and PBE + TS

(d) using E(V0,TIP4P/ice) and E(V0,PBE+TS) as energy zeros, respectively. V0,TIP4P/ice

(V ZPE
0,TIP4P/ice) and V0,PBE+TS (V ZPE

0,PBE+TS) are the corresponding equilibrium volumes

without (with) taking ZPE into account, which are indicated by black vertical lines.

As observed in Sections 3.3.13.3.1 to 3.3.33.3.3, ZPE has much more pronounced effects on the

results of FF compared to DFT calculations. These effects originate from the influence
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of the QHA (see Section 3.2.23.2.2) on the equation of state for the different ice phases,

i.e. phonon frequencies must change significantly differently for these two families of

interaction potentials when compressing or expanding the unit cell. Focusing on ice II,

Fig. 3.83.8 illustrates the reason for these differences by taking TIP4P/ice and PBE+TS

as representative examples for the respective families. The other family members show

the same qualitative trend for ice II and also the other ice structures.

In ascending order, the phonon frequencies can be grouped into crystal modes (0 to

500 cm−1, a.k.a. hydrogen-bond bending and stretching), librational modes (500 to

1500 cm−1) and finally intramolecular bending (1500 to 2000 cm−1 as well as stretch-

ing (2000 to 4000 cm−1) modes.11 Upon compression, the phonon DOS for TIP4P/ice

(Fig. 3.83.8 (a)) shows strong shifts towards higher frequencies for the crystal and libra-

tional. The intramolecular bending and stretching modes on the other hand are hardly

affected. Consequently, the first moment of the phonon DOSs (i.e. EZP,TIP4P/ice(V ),

see Eq. (3.63.6)) is monotonously increasing for V < V0, and thus the minimum of

FTIP4P/ice(V, T = 0) (see 3.53.5) shifts to the right as shown in Fig. 3.83.8 (b). This is

in good agreement with the microscopic Grüneisen parameters (γi = − V
ωi

∂ωi
∂V ) that

Ramı́rez et al. [2424] have calculated for ice II using the q-TIP4P/F model.

For PBE+TS these upwards shifts of the crystal and librational modes due to compres-

sion are almost the same as for TIP4P/ice (Fig. 3.83.8 (c)). However, only the bending

modes remain unaffected, whereas the stretching modes shift in the exact opposite

way. This almost compensates the effect of the low-frequency modes on the first mo-

ment of the phonon DOS, so that EZP,PBE+TS(V ) is almost constant and the minima of

EPBE+TS(V ) and FPBE+TS(V, T = 0), V0,PBE+TS and (V ZPE
0,PBE+TS), practically coincide

as shown in Fig. 3.83.8 (d).

According to the Raman spectra measured by Minceva-Sukarova et al. [6767] the change

of O-H stretch frequencies with pressure ∂ν
∂P is about 80cm−1/GPa for most crystalline

ice phases for a wide range of temperatures between 250 and 0 K. Given a bulk modulus

B0 between 12 and 16.5 GPa in this temperature range for ice II [6868], this allows us to

1See also Fig. 2.72.7 in Section 2.4.22.4.2 for ice Ih.
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estimate the expected frequency change ∆ν ≈ −B0

V0

∂ν
∂P ∆V0 ≈ ±38 to 53cm−1 for the

volume change ∆V0 = ±0.04 · V0 considered in Fig. 3.83.8. The average frequency shifts

according to the data presented in that figure are 10 cm−1 and 116 cm−1 for TIP4P/ice

and PBE + TS, respectively, thus revealing slightly larger relative errors for the FF

considering the fact that the simulations have been carried out for 0 K. The better

description of the equilibrium volumes by the FFs thus appears to be fortuitous error

canceling. This is consistent with the failure of q-TIP4P/F to describe the anomalous

volume isotope effect for ice Ih [1818] as well as isotope dependence of the ice XI-ice

Ih phase transition temperature [2828], which, however, is also quite challenging to be

modeled correctly by first-principles-based techniques [2727].
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Figure 3.9: Same as Fig. 3.83.8, but for q-TIP4P/F-h ((a) and (b)) and q-TIP4P/F ((c)

and (d)). In q-TIP4P/F-h the Morse potential describing the intramolecular OH bond

has been replaced by the harmonic potential that is identical to the Morse potential

up to second order.

In order to analyze how much harmonic potential used together with TIP4P/ice for
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the intramolecular O-H-bond (see Section 3.2.13.2.1) affects the results shown in Fig. 3.83.8, I

turn to q-TIP4P/F, where these bonds are described by a Morse potential. Approxi-

mating the latter by a second-order Taylor expansion and keeping all other parameters

unchanged (force field labeled q-TIP4P/F-h), I have recalculated the phonon DOS for

ice II. The results are shown in Fig. 3.93.9 (a) in comparison to conventional q-TIP4P/F

shown in Fig. 3.93.9 (b). As expected by construction, only the O-H stretching modes in

the phonon DOS are different. The harmonic potential in q-TIP4P/F-h yields much

more rigid O-H bonds than the Morse potential in q-TIP4P/F, as evidenced by their po-

sition and much smaller shift upon compression and expansion. In fact, for q-TIP4P/F

the corresponding average frequency shifts of 87 cm−1 (53 cm−1) for 4% compression

(4% expansion) fit very nicely to the aforementioned values suggested by the Raman

experiments. The strong influence of the Morse potential can be understood by con-

sidering its second derivative with respect to the O-H bond distance rOH

∂2V Morse

∂r2
OH

= 2Dα2 e−α∆rOH
(

2e−α∆rOH

− 1
)

, (3.13)

where D is the well depth, α is the width and ∆rOH = rOH−rOH
0 is the deviation from

the equilibrium O-H bond length rOH
0 for a single H2O molecule. Despite the small

changes of the latter in the ice crystal (i.e. 0 < ∆rOH � 1), the exponential terms

in Eq. (3.133.13) show that vibrational frequencies are very sensitive to ∆rOH. Quite in

contrast, the second derivative of the harmonic potential is constant, i.e. completely

unaffected by ∆rOH.

3.4 Conclusion

I have performed a comprehensive study on seven crystalline (proton-ordered) ice

phases with a wide range of DFT functional, including the recently developed meta-

GGAs SCAN and SCAN+RVV10, and commonly-used off-the-shelve (non-polarizable)

water force fields. A particular focus has been on accurate phonon calculations within

the quasi-harmonic approximation, which has been found to be very successful for

ice structures [2323, 2424], in order to account for zero-point energy effects. Looking at
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equilibrium volumes, cohesive energies and phase transition pressure, the force fields

show an overall good or even better performance than DFT. q-TIP4P/F is the clear

winner among the FFs considered in this study with 5 % error in equilibrium volume

and quite accurate cohesive energy and transition pressures in particular when ZPE is

taken into account. Quite in contrast, the DFT results are much less affected by ZPE.

The DFT functionals struggle much more with a simultaneously good description for

all these properties as already discussed in earlier studies: PBE+MBD deviates from

the cohesive energy by more than 100 meV/H2O, but shows the best agreement with

the experimental volumes [1919]. The SCAN functional underestimates the equilibrium

volume by 10 % and overestimates the absolute cohesive energy by 60 meV/H2O, but

yields relative cohesive energies and relative equilibrium volumes that are in remarkable

agreement with experiment [5555].

Our decomposition of the cohesive energies reveals that intramolecular deformation is

over-compensated by electrostatics and the attrative part of the Lennard-Jones po-

tentials in case of the FFs. The electrostatics are also the dominant and typically

even larger bonding contribution for the DFT methods. In case of PBE+TS and

PBE+vdW van der Waals interactions stabilize the crystals additionally. While the

latter monotonously increase from ice Ih to ice VIII this is not the case for the attra-

tive part of the Lennard-Jones potentials. Our analysis of phonon DOSs has revealed

that the smaller redshift (blueshift) of the O-H stretch vibrations upon compression

(expansion) of the crystal (i.e. the corresponding Grüneisen parameters) obtained with

all FFs compared to all DFT functionals considered here is responsible for the larger

effect of ZPE for the FFs. This is in line with previous work for a few ice structures [1818,

2424]. Comparison to Raman spectra measured as function of pressure [6767] indicates that

neither shifts are accurate when the intramolecular O-H stretching is described with a

harmonic potential in case of the FFs. I have clearly identified the Morse potential in

q-TIP4P/F to yield a significant improvement. Future work with state-of-the polariz-

able force fields [2222] could provide valuable insights for both the bonding contributions

and the vibrational frequency shifts.
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3.A Appendix

3.A.1 Data for Equilibrium Ice Structures

Tables 3.23.2 to 3.83.8 list the optimum lattice parameters for the seven proton-ordered ice

phases (see Table 3.13.1 and Fig. 3.13.1) as obtained using different force fields (SPC/E

[3838], TIP3P [3939], TIP4P/2005 [4040], TIP4P/ice [4141] and q-TIP4P/F [4242]) and exchange-

correlation functionals (LDA [4545], PBE [4646], PBE+TS [4949], PBE+MBD [5050], SCAN

[5555], SCAN+rVV10 [5656]). Corresponding volumes per water molecule V0 (V ZPE
0 ), bulk

moduli B0 (BZPE
0 ) and cohesive energies Ecoh (EZPE

coh ) without (with) zero-point en-

ergy taken into account are given as well. Experimental data is included for compari-

son.

Table 3.2: Data for ice Ih.
SPC/E TIP3P TIP4P q-TIP4P TIP4P LDA PBE PBE PBE SCAN SCAN Exp.

/2005 /F /ice +TS +MBD +rVV10

Ice Ih, P63cm

a (Å) 7.60 7.78 7.67 7.74 7.71 7.19 7.67 7.58 7.63 7.51 7.42 7.78a

c (Å) 7.10 7.17 7.10 7.24 7.12 6.80 7.24 7.15 7.18 7.11 7.04 7.33a

V0 (Å3) 29.63 31.33 30.16 31.33 30.58 25.37 30.72 29.64 30.13 28.91 27.98

V ZPE
0 (Å3) 31.37 33.07 31.99 32.44 32.31 24.57 30.46 29.21 29.19 28.51 28.18 32.05a

B0 (GPa) 20.53 18.61 19.36 17.76 21.03 29.05 14.54 16.48 16.55 17.26 18.28

BZPE
0 (GPa) 14.95 13.42 14.99 14.20 16.52 24.63 12.53 14.08 14.20 18.23 20.58 9.2b

Ecoh (eV) 0.635 0.598 0.700 0.619 0.769 1.168 0.630 0.717 0.778 0.687 0.709 0.609c

EZPE
coh (eV) 0.505 0.436 0.514 0.487 0.574 1.059 0.501 0.583 0.654 0.618 0.596 0.491c

a10 K, from Ref. [6969]. b248 K, from Ref. [7070].

c0 K, from Ref. [6666].
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Table 3.3: Data for ice IX.
SPC/E TIP3P TIP4P q-TIP4P TIP4P LDA PBE PBE PBE SCAN SCAN Exp.

/2005 /F /ice +TS +MBD +rVV10

Ice IX, P41212

a (Å) 6.68 6.91 6.57 6.59 6.60 6.18 6.60 6.49 6.56 6.46 6.39 6.72a

c (Å) 6.43 6.22 6.79 6.84 6.83 6.49 7.50 6.80 7.31 6.55 6.36 6.79a

V0 (Å3) 23.92 24.78 24.42 24.74 24.77 20.67 27.22 23.88 26.21 22.79 21.63

V ZPE
0 (Å3) 25.30 26.10 25.83 25.59 26.13 20.42 27.41 24.17 25.17 23.41 22.13 25.63a

B0 (GPa) 14.97 15.51 13.83 12.24 14.83 21.53 11.77 15.68 11.88 14.30 17.28

BZPE
0 (GPa) 9.74 10.27 8.60 9.84 9.82 22.06 10.29 13.92 12.87 14.71 14.11 7.55b

Ecoh (eV) 0.638 0.617 0.691 0.613 0.759 1.131 0.588 0.708 0.755 0.674 0.710 0.607c

EZPE
coh (eV) 0.514 0.458 0.512 0.485 0.572 1.020 0.460 0.575 0.636 0.601 0.593 0.487c

a30 K, from Ref. [3131].

b253 K, for ice III (i.e. proton-disordered ice IX), Ref. [7171].

c0 K, from Ref. [6666].

Table 3.4: Data for ice II.
SPC/E TIP3P TIP4P q-TIP4P TIP4P LDA PBE PBE PBE SCAN SCAN Exp.

/2005 /F /ice +TS +MBD +rVV10

Ice II, R3̄

a (Å) 7.49 7.62 7.63 7.68 7.67 7.14 7.70 7.57 7.66 7.47 7.39 7.78a

α (◦) 112.98 113.10 113.17 113.15 113.17 112.92 112.81 113.02 112.87 113.08 113.17 113.10 a

V0 (Å3) 22.80 23.86 23.79 24.34 24.15 19.85 25.03 23.50 24.58 22.47 21.60

V ZPE
0 (Å3) 24.11 25.13 25.11 25.26 25.39 19.74 25.35 23.92 23.54 22.60 22.08 24.97b

B0 (GPa) 25.40 25.18 24.46 20.69 26.69 35.73 15.83 20.66 20.03 22.19 24.03

BZPE
0 (GPa) 19.60 19.67 19.10 16.85 20.75 32.73 13.34 17.22 11.45 17.66 24.29 16.18c

Ecoh (eV) 0.645 0.631 0.681 0.604 0.748 1.123 0.562 0.700 0.743 0.677 0.716 0.609d

EZPE
coh (eV) 0.522 0.472 0.510 0.479 0.570 1.007 0.435 0.564 0.616 0.601 0.599 0.490d

a200 K, from Ref. [3333]. b0 K, from Ref. [6666].

c0 K, from Ref. [6868]. d0 K, from Ref. [6666].
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Table 3.5: Data for ice XIII.
SPC/E TIP3P TIP4P q-TIP4P TIP4P LDA PBE PBE PBE SCAN SCAN Exp.

/2005 /F /ice +TS +MBD +rVV10

Ice XIII, P21/a

a (Å) 9.22 9.43 9.24 9.35 9.28 8.51 9.22 8.94 8.96 8.88 8.74 9.24a

b (Å) 7.05 6.99 7.32 7.37 7.36 6.94 7.52 7.39 7.41 7.25 7.17 7.47a

c (Å) 9.93 10.10 10.04 10.13 10.09 9.54 10.30 10.01 10.04 9.91 9.77 10.29a

β (◦) 108.01 107.82 109.77 110.38 109.83 109.97 109.25 109.04 109.06 109.53 109.28 109.70 a

V0 (Å3) 21.92 22.63 22.79 23.37 23.13 18.91 24.05 22.30 22.50 21.48 20.65

V ZPE
0 (Å3) 23.11 23.79 24.02 24.24 24.29 18.85 24.33 22.66 22.16 21.67 21.09 23.91a

B0 (GPa) 23.61 21.03 22.60 20.05 24.53 34.42 15.11 21.66 20.10 21.53 23.62

BZPE
0 (GPa) 18.16 16.22 18.62 17.19 20.63 31.82 12.94 18.06 21.93 17.71 21.76 13.2 b

Ecoh (eV) 0.619 0.606 0.672 0.598 0.738 1.111 0.551 0.698 0.740 0.668 0.711

EZPE
coh (eV) 0.502 0.451 0.500 0.473 0.559 0.997 0.426 0.568 0.618 0.589 0.593

a80 K, from Ref. [3232].

b248 K, for ice V (i.e. proton-disordered ice XIII), Ref. [7070].

Table 3.6: Data for ice XIV.
SPC/E TIP3P TIP4P q-TIP4P TIP4P LDA PBE PBE PBE SCAN SCAN Exp.

/2005 /F /ice +TS +MBD +rVV10

Ice XIV, P212121

a (Å) 7.83 7.84 8.05 8.17 8.09 7.74 8.45 8.25 8.33 8.07 7.94 8.35a

b (Å) 8.35 8.61 8.31 8.28 8.35 7.60 8.22 8.01 8.09 7.80 7.67 8.14a

c (Å) 3.85 3.87 3.85 3.92 3.87 3.73 4.02 3.93 3.96 3.94 3.91 4.08a

V0 (Å3) 20.98 21.78 21.47 22.11 21.78 18.28 23.28 21.61 22.23 20.70 19.83

V ZPE
0 (Å3) 22.19 22.99 22.70 22.94 22.93 18.22 23.68 22.03 21.31 20.92 20.41 23.12a

B0 (GPa) 27.14 25.29 27.34 24.31 30.02 38.91 15.82 21.92 21.85 23.49 25.87

BZPE
0 (GPa) 20.52 19.06 20.57 20.07 23.22 35.46 13.51 18.31 32.68 21.05 22.91

Ecoh (eV) 0.610 0.595 0.679 0.604 0.746 1.104 0.538 0.692 0.732 0.666 0.709

EZPE
coh (eV) 0.490 0.440 0.502 0.477 0.561 0.990 0.412 0.557 0.612 0.587 0.594

a80 K, from Ref. [3232].
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Table 3.7: Data for ice XV.
SPC/E TIP3P TIP4P q-TIP4P TIP4P LDA PBE PBE PBE SCAN SCAN Exp.

/2005 /F /ice +TS +MBD +rVV10

Ice XV, P 1̄

a (Å) 6.00 6.01 6.14 6.21 6.17 5.76 6.24 6.13 6.20 6.01 5.94 6.23a

b (Å) 5.99 6.00 6.12 6.20 6.15 5.78 6.24 6.13 6.21 6.00 5.92 6.24a

c (Å) 55.74 5.91 5.63 5.65 5.65 5.35 5.85 5.69 5.77 5.62 5.52 5.79a

α (◦) 87.93 85.95 89.63 90.22 89.65 89.93 90.09 90.30 90.24 90.08 89.98 90.10a

β (◦) 86.57 84.60 88.49 88.84 88.53 89.90 89.57 89.83 89.79 89.85 89.94 89.90a

γ (◦) 87.97 86.54 89.27 89.72 89.31 90.52 90.61 90.50 90.50 90.70 90.731 89.90a

V0 (Å3) 20.58 21.14 21.13 21.75 21.43 17.82 22.80 21.33 22.24 20.24 19.40

V ZPE
0 (Å3) 21.74 22.29 22.29 22.53 22.50 17.81 23.24 21.80 21.26 20.56 20.01 22.53a

B0 (GPa) 27.71 26.75 27.52 24.49 30.46 40.27 16.26 22.09 21.22 24.29 26.74

BZPE
0 (GPa) 20.87 20.35 21.03 20.27 23.80 36.89 13.68 18.40 22.64 19.58 24.53 13.08b

Ecoh (eV) 0.601 0.593 0.664 0.590 0.730 1.088 0.520 0.680 0.715 0.658 0.706

EZPE
coh (eV) 0.487 0.441 0.495 0.467 0.553 0.973 0.395 0.544 0.598 0.582 0.591

a80 K, from Ref. [3434].

b253 K, for ice VI (i.e. proton-disordered ice XV), Ref. [7171].

Table 3.8: Data for ice VIII.
SPC/E TIP3P TIP4P q-TIP4P TIP4P LDA PBE PBE PBE SCAN SCAN Exp.

/2005 /F /ice +TS +MBD +rVV10

Ice VIII, I41/amd

a (Å) 4.48 4.38 4.63 4.74 4.65 4.44 4.86 4.79 4.81 4.63 4.57 4.57a

c (Å) 7.44 7.76 7.17 7.01 7.20 6.38 7.03 6.96 7.00 6.70 6.60 6.77a

V0 (Å3) 18.66 18.64 19.22 19.70 19.52 15.75 20.73 19.93 20.27 17.98 17.23

V ZPE
0 (Å3) 19.83 19.78 20.33 20.57 20.57 16.17 21.65 20.55 19.63 18.97 19.80 20.09b

B0 (GPa) 29.00 28.31 29.37 26.05 31.63 46.01 15.61 18.11 22.60 28.23 31.23

BZPE
0 (GPa) 21.19 19.49 21.68 20.97 23.33 41.56 11.73 16.24 85.57 48.04 6.92 24.3 c

Ecoh (eV) 0.519 0.532 0.588 0.531 0.646 1.042 0.453 0.620 0.663 0.643 0.704 0.577d

EZPE
coh (eV) 0.420 0.391 0.437 0.415 0.488 0.910 0.328 0.488 0.556 0.550 0.574 0.458d

a10 K, from Ref. [3535]. b0 K, from Ref. [6666].

c87 K, from Ref. [7272]. d0 K, from Ref. [6666].
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Calorimetric Signature of Deuterated Ice II

This chapter is based on:

V. Fuentes-Landete, S. Rasti, R. Schlögl, J. Meyer and T. Loerting, Calorimetric Sig-

nature of Deuterated Ice II: Turning an Endotherm to an Exotherm, J. Phys. Chem.

Lett. 11, 8268 (2020).
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Abstract

Calorimetric studies on ice II reveal a surprising H2O/D2O isotope effect. While the

ice II to ice Ic transition is endothermic for H2O, it is exothermic for D2O samples.

The transition enthalpies are +40 J mol−1 and −140 J mol−1, respectively, where such

a sign change upon isotope substitution is unprecedented in ice research. In order

to understand the observations, force field calculations are employed using two water

models known to perform well for H2O ice phases and their vibrational properties.

These simulations reveal that the isotope effect can be traced back to zero-point energy.

q-TIP4P/F fares better and is able to account for about 3/4 of the isotope effect, while

MB-pol only catches about 1/3. Phonon and configurational entropy contributions are

necessary to predict reasonable transition enthalpies, but do not have an impact on the

isotope effect. This study suggests to use these calorimetric isotope data as benchmark

for water model.
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4.1 Introduction

The first high-pressure form of ice, ice II, was discovered in 1900 by Tammann [11].

In the 1960s the structure of ice II has been determined to be hydrogen-ordered [22–
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55]. Within the framework of the Bernal-Fowler rules [66] ice II is a phase of zero

configurational entropy, where configurational entropy is solely based on the number of

microstates differing in terms of H-atom positions. By contrast, hexagonal ice (ice Ih)

is geometrically frustrated, showing a disordered network of H atoms. Ice Ih is hence

a phase of non-zero configurational entropy. In fact, ice II is thermodynamically more

stable than hexagonal ice even at ambient pressure because the entropy of ice Ih is

smaller at low temperatures. The idea that the high-pressure phase ice II is the ground

state at 0 K and ambient pressure had to be abandoned years later, after the discovery

of the hydrogen-ordered counterpart of hexagonal ice, ice XI [77]. In 1963 Bertie, Calvert

and Whalley examined the transformations that occur when heating high-pressure ices

from liquid nitrogen temperatures at ambient pressure [88]. The thermal analysis was

made by using a small silvered-glass vacuum flask as a calorimeter. The heating curve

of ice II shows a small break in the heat capacity around 170 to 175 K. Two possible

interpretations consistent with the observations were given: (i) A first-order phase

transition involving an undetectably small heat, but associated with a large decrease

of heat capacity, and (ii) a continuous transition involving decrease in heat capacity.

25 years later, in 1988, Handa and Klug [99] demonstrated that actually interpretation

(i) is correct, by detecting the heat involved in the transition to cubic ice (ice Ic).

They reported a weak endotherm when heating ice II in their Tian-Calvet calorimeter

at 10 K h−1 with an onset temperature at 161 K and enthalpy of transformation (∆H)

of +54± 5 J mol−1 [99]. That makes ice II the only example of a high-pressure ice

converting endothermically to ice Ic at 1 bar. For comparison other high-pressure ice

phases such as ice V, ice VI or ice XII show pronounced exotherms of −926± 20 J mol−1

[1010], −1523± 16 J mol−1 [1111] and −1233± 23 J mol−1 [1212], respectively.

This is explained by taking into account that the heat of transformation is composed

of two contributions. The first contribution is an enthalpic term arising from the trans-

formation from high density (ice II) to low density (ice Ic). The restructuring from

ice II to ice Ic involves a density change from 1.21 g/cm3 to 0.94 g/cm3 [1313]. In spite

of this 22 % density decrease, the structural motif of hexagonal channels is conserved.

Up to 7/12 of all hydrogen bonds are retained at the irreversible cooperative II → Ic
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transition [1414]. Just like for all other high-pressure ice phases this enthalpic term is

exothermic [99]. The second contribution is an entropic term arising from the trans-

formation of hydrogen-ordered (ice II) to hydrogen-disordered (ice Ic). This change in

the H-atom subnetwork is also responsible for the increase in heat capacity observed

in the calorimetry scans - the number of degrees of freedom and hence heat capacity

is smaller in an H-ordered ice. This entropic term is endothermic, just like for all dis-

ordering transformations, e.g., melting. In sum the two contributions result in a very

weak overall endotherm associated with the ice II→ ice Ic transformation at 1 bar. By

contrast, ices V, VI and XII are all hydrogen-disordered. On their phase transitions to

hydrogen-disordered ice Ic only the enthalpic term plays a role, but not the entropic

term. The presence of both terms makes the ice II → ice Ic transition a particularly

challenging case, also of great interest for simulations and benchmarking water models.

Studies with deuterated samples are of high importance since these are required to de-

duce the crystal structure from neutron diffraction data. The thermal behavior of sev-

eral deuterated ice samples has been investigated by differential scanning calorimetry

[1111, 1212, 1515–1717]. Deuteration usually translates into a more exothermic transformation

to ice Ic. Specifically, the exotherm increases by 107 and 175 J mol−1 after deuteration

of ices VI and XII, respectively [1111, 1212]. Although ice II was discovered more than a

century ago, no calorimetric data for D2O ice II have been available up to now. This

chapter reports the thermal behavior of recovered D2O ice II and compare it with the

one for H2O. Our study reveals an exothermic ice II to ice Ic transition for D2O, con-

trary to the endothermic nature for H2O. This represents the first example in which

the calorimetric signature changes from endothermic to exothermic upon deuteration.

To rationalize these findings the transition is analyzed based on lattice energy and

phonon calculations.
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4.2 Methods

4.2.1 Experimental Methods

The ice II samples were prepared in the piston-cylinder apparatus by using a computer-

ized universal testing machine (Zwick, model BZ100/TL3S). This study used 600 µL of

H2O or D2O, which were pipetted into an indium container inside the high-pressure ap-

paratus for compression. Indium containers were employed to avoid unwanted pressure

drops during experiments [1818]. Two different protocols were followed for the prepara-

tion of ice II samples. The first protocol is taken from Bauer et al. [1919] and consists

of the direct polymorphic transformation of ice Ih to ice II by slow compression to

0.40 GPa at 198 K. The rather low compression rate of 10 MPa min−1 between 0.20 to

0.40 GPa ensures that no parallel polymorphic transformation takes place [1919]. The

second protocol used to produce ice II is adapted from the work of Salzmann et al.

[2020]. By heating ice Ih at 0.50 GPa, a chain of polymorphic transformations to ice III,

ice II and ice V takes place up to ∼ 250 K. By isobaric heating of Ih at 0.50 GPa to

∼ 200 K ice II is obtained.

In both routes the pressurized ice II sample is then quenched in liquid nitrogen, and the

pressure released to recover ice II at ambient pressure. No transformations take place

upon quench-recovery. In spite of hexagonal ice being the stable phase at 77 K, no

transformation back to hexagonal ice takes place while storing the sample at ambient

pressure and 77 K. At 77 K the kinetics of O-atom restructuring is immeasurably slow.

The restructuring of the network of O atoms only proceeds at measurable rates above

about 150 K.

Typically, a mass of 10 to 20 mg was cut from the cylindrical ice II sample of 600 mg in

total. The grains of ice II were then transferred under liquid nitrogen into an aluminum

crucible and covered with a lid. These crucibles were cold loaded into our differential

scanning calorimeter (DSC 8000 Perkin Elmer) and subsequently heated two times at

30 K min−1. The first scan, heated to 253 K, shows the polymorphic transitions first

to ice Ic and ultimately yielding hexagonal ice Ih. The second one, to 313 K, shows
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the endotherm due to the melting of hexagonal ice Ih. From the melting peak the

mass of the sample have been calculated based on the known heat of fusion of D2O,

6280 J mol−1 [2121] (or 6012 J mol−1 in case of H2O). All calorimetry scans were recorded

at ambient pressure. This procedure is identical to the established procedure reported

in earlier work from Gasser et al. [2222] and Fuentes-Landete et al. [2323, 2424]

4.2.2 Computational Details

The computational setup is almost identical to the one used in Chapter 33. Briefly, the

q-TIP4P/F water model [2525] has been evaluated using the Atomic Simulation Envi-

ronment (ASE) [2626] with the Lammps code [2727] via the available calculator, whereas a

new calculator has been implemented in order to interface with the MB-pol model11 as

developed and implemented by the Paesani group [2828–3030]. Data obtained from neutron

diffraction experiments [3131, 3232] has been used with the Genice package [3333] in order

to generate the initial structures of ice II and I.

ASE is employed for all geometry optimizations22 with a tight maximum force threshold

of 10−4 eV�A
−1

. Vibrational properties have been calculated for the different ice phases

based on the Parlinski-Li-Kawazoe finite-displacement method [3535] (using displace-

ments of 10−3 �A) as implemented in the phonopy package [3636]. Very tight 30×30×30

reciprocal space grids have been used for the evaluation of Eq. (4.54.5), resulting in at

1MB-pol calculations are based on an in-house ASE-calculator building on

the MB-pol plugin for OpenMM (Release 1.1.2), available from the Paesani

group (https://github.com/paesanilab/mbpol_openmm_plugin)https://github.com/paesanilab/mbpol_openmm_plugin). This implementation can only

handle periodic boundary conditions for orthogonal cells of a certain minimum size. For this reason,

a 3x3x3 (3x2x7) supercell of ice Ih (ice II) has been constructed internally in our ASE-MB-pol

calculator.
2The calculations reported here are based on structure optimizations that do not constrain the space

group. The structure optimizations have also been repeated for ice Ih using the in-house space-group

constraint (SPGC) discussed in more details in Chapter 33. Briefly, in order to simultaneous relax the

lattice vectors and the internal coordinates of each ice structure while constraining its space group,

the algorithm suggested by Pfrommer et al. [3434] has been implemented into the Atomic Simulation

Environment (ASE) [2626]. At Tables 4.54.5 and 4.64.6, the results were compared from these calculations to

the corresponding ones in Tables 4.24.2 and 4.34.3
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least 1456 points in the irreducible wedge of the Brillouin zone for which vibrational

frequencies have been calculated. In these calculations, ice Ih has been used in place

of ice Ic since these two ice phases are energetically almost degenerate, with hexagonal

ice being more stable by a margin close to zero, even difficult to measure in calorimetry

scans. Fig. 4.14.1 shows a very small baseline change near 210 K that corresponds to the

ice Ic to ice Ih transition - this exotherm is smaller than 10 J/mol and negligible in the

present context. Engel et al. [3737] have suggested that the proper energetic ordering of

ices Ih and Ic can only be described by taking anharmonic affects into account, which

is beyond the scope of the present work. Furthermore, ice Ic and ice Ih have almost

indistinguishable spectral properties from the microwave to the ultraviolet. For this

reason they are commonly both denoted as ice I, where the difference between ice Ic

and ice Ih is the stacking-sequence. Specifically, all vibrational transitions have long

been thought to be identical for ice Ic and ice Ih [3838]. Also the intermolecular phonon

modes in the far-infrared spectral range barely reveal any difference. [3939, 4040] Subtle

differences based on different polytypes of ice Ih containing different hexagonal and

cubic stacking sequences have only been noted recently by Carr et al. [4141]. In a very

recent work the transition from a pure cubic stacking sequence to a pure hexagonal

stacking sequence was identified, where only very small shifts, e.g., of about 2 cm−1 in

the translational band mark the transition [4242].

4.3 Results and Discussion

4.3.1 Experiments

Figure 4.14.1 shows the representative scans of ice II for H2O and D2O. For each iso-

topologue two different scans are reported which correspond to the two distinct routes

followed for preparation of the ice II samples (for details see “Computational details”

above). The H2O calorimetric signature represented here in blue agrees well with the

one published by Handa and Klug [99]. Table 4.14.1 shows the enthalpy and onset values

for the ice II to ice Ic transition calculated in this study. Note that the heating rate
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Figure 4.1: DSC heating scans recorded at 30 K min−1 and ambient pressure for H2O

(blue) and D2O (red) ice II. The signal is normalized to 1 mol.

employed by Handa and Klug [99] is 10 K h−1 while here 30 K min−1 is employed, thus

explaining the onset temperature shift of about ∼ 10 K. The D2O scans in Fig. 4.14.1

in red represent the first measurements for deuterated ice II shown in literature. The

exothermic nature of this transition can be easily recognized. Whereas the transi-

tion is endothermic for the two preparation protocols for H2O (+33± 11 J mol−1 and

+48± 9 J mol−1, respectively), it is exothermic for D2O ice II (−132± 36 J mol−1 and

−149± 50 J mol−1, respectively) [1919, 2020]. That is, the ice II→ ice Ic transition is more

exothermic by about 180± 20 J mol−1 in D2O than in H2O. In the present work, the

enthalpy values are averages of at least ten different scans for each preparation route.

In Fig. 4.14.1, only one representative DSC scan is shown. This isotope effect on the

enthalpy difference to ice Ic is not unusual. Similar differences were found for other

high-pressure polymorphs, too. As mentioned above, the transition from ice XII to Ic

is about 175 J mol−1 more exothermic for D2O than for H2O[1212].

In addition, the onset temperatures for the transition in hydrogenated and deuterated
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samples are shown in Table 4.14.1. The difference in onsets is 7 to 10 K. This is sub-

stantially more than the usual difference between structural transitions in H2O and

D2O. For instance, all the triple points in the phase diagram are higher in D2O than

in H2O by between 2.2 K (for the liquid-ice V-ice VI triple point) and 3.8 K (for the

liquid-ice Ih-gas triple point) [4343, 4444]. By contrast, dynamic transitions have larger

isotope effects. D2O–H2O isotope effects of 6 to 8 K were found for the orientational

glass transitions in the H-subnetwork of ices IV, V, VI and XII [2424]. This suggests

that dynamics plays a crucial role for the ice II → ice Ic transition as well. While it

is H-atom dynamics in case of the orientational glass transitions, this study here mea-

sures the isotope effect on the O-atom restructuring. This restructuring takes place in

an out-of-equilibrium situation, since ice II is kinetically stable at 77 K and 1 bar, but

not thermodynamically. Similarly, also for the case of the ice XII → ice Ic and ice IV

→ ice Ic transitions the isotope effect on the onset temperature amounts to 7± 1 K at

heating rates of 30 K min−1 [1212]. Reducing the heating rate to 5 K min−1 the isotope

effect is reduced to 4± 1 K [1212]. That is, the onset temperature of the transition is

kinetically controlled.

4.3.2 Calculations

In order to better understand the observed isotope effect on the transition enthalpy,

calculations with two different water models have been performed, q-TIP4P/F [2525] and

MB-pol [2828–3030]. Both of them involve flexible water molecules, which allow to calculate

vibrational properties including all inter- and intramolecular contributions. It is found

in previous work that including zero-point energy (ZPE) with q-TIP4P/F provides a

very good description of experimental data for a plethora of different crystalline ice

phases – outperforming several density functionals despite its simplicity [4545]. This

study has also included the state-of-the-art polarizable many-body force field MB-pol

given its excellent description of vibrational properties of ice [4646, 4747].

Periodic boundary conditions have been used in order to model the different ice phases

and relax the structures while constraining the space group symmetry as suggested
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by Pfrommer et al. [3434]. Absolute lattice energies Elat are calculated as differences of

total energies between the ice phase with Nice molecules in the unit cell after relaxation

(Eice) and the corresponding constituent molecules at infinite separation (Emol)

Elat =
1

Nice
Eice − Emol . (4.1)

Calculating vibrational frequencies then allows to include the missing ZPE effects ac-

cording to

EZPE
lat =

1

Nice
(Eice + EZPE

ice )− (Emol + EZPE
mol ) (4.2)

In order to compare with the measured enthalpies for the ice II → Ic transition and

analyze the isotope effect, the following (free) energy differences has been considered,

decreasing the number of approximations in each step:

1. Our starting point is the lattice energy difference

∆Elat = Elat(I)− Elat(II) , (4.3)

which is of course identical for H2O and D2O.

2. Isotope effects at T = 0 K are accounted for when including the (slightly) different

ZPE corrections to the lattice energies for each ice phase

∆EZPE
lat = EZPE

lat (I)− EZPE
lat (II) . (4.4)

3. Since the ice II → ice Ic transformation occurs at ambient pressure in the ex-

periments, the contribution of the pV -term in the Gibbs free energy related to

the density decrease during the transformation is negligible. On the other hand,

T � 0 K and so the temperature dependence of the vibrational contribution to

the Gibbs free energy cannot a priori be neglected:

Fphonon(V, T ) =
1

2

∑
q,b

h̄ωq,b(V )︸ ︷︷ ︸
EZPE

+kBT
∑
q,b

ln

[
1− exp

(
−h̄ωq,b(V )

kBT

)]
(4.5)

Here kB is the Boltzmann constant and ωq,b is the phonon frequency at wavevec-

tor q for band b. This results in

∆H̃(T ) = ∆Elat + Fphonon(T ; I)− Fphonon(T ; II) , (4.6)

98



“Thesis” — 2022/11/3 — 8:17 — page 99 — #107

4.3. RESULTS AND DISCUSSION

4. Finally, the configurational entropy Sconf has been also accounted for that results

from the number of possible microstates in the H-subnetwork of the ice. This

also includes the temperature dependence to the enthalpies according to

∆H(T ) = ∆H̃(T ) + TSconf . (4.7)

The expression R ln( 3
2 ) = 3.37 J mol−1 K for Sconf is used as given by Pauling [4848]

throughout in this work. This expression is based on the number of microstates

allowed according to the Bernal-Fowler ice rules [66], where only one central water

molecule and four tetrahedrally connected water molecules are considered. Con-

sidering the actual structure of ice Ih and using a more rigorous approach, the

Pauling expression has been corrected to R ln(1.507) = 3.40 J mol−1 K [4949–5252]. In

spite of neglecting long-range effects such as ring closures, the Pauling approach

is accurate to better than 1% for all ice structures. This accuracy is much better

than chemical accuracy aimed for here.

It is noted that ∆H(T = 0 K) = ∆H̃(T = 0 K) = ∆EZPE
lat , i.e. Eqs. (4.44.4), (4.64.6)

and (4.74.7) are identical at T = 0 K. Furthermore, Eqs. (4.24.2), (4.44.4), (4.64.6) and (4.74.7)) has

been evaluated based on the quasi-harmonic approximation (QHA). For T � 0 K this

study thus accounts for the thermal expansion due to the dependence of ωi on the unit

cell volume. The QHA has been very successful to account for nuclear quantum effects

in different ice phases [5353, 5454] and found to be very accurate for T ≤ 200 K for ice Ih

and ice II [5555].

Lattice energies without and with ZPE for ice Ih and ice II are listed in Table 4.24.2. Elat

is identical for H2O and D2O, whereas EZPE
lat differs for both isotopologues. Within the

experimental uncertainties both models reproduce the available data for Elat and EZPE
lat

within 1.5 kJ mol−1, which is much better than chemical accuracy (4.2 kJ mol−1).

Table 4.34.3 compiles the transition enthalpies for the ice II→ ice Ih transition. Based on

Elat alone (given in the first column) the transition is calculated to be strongly exother-

mic, where q-TIP4P/F predicts a much stronger exothermicity than MB-pol (−1466

vs. −801 J mol−1). This alone does not match the experiments, which are weakly en-
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Table 4.1: Summary of the onset temperatures To and enthalpies ∆H for H2O and D2O

samples obtained from DSC measurements for the ice II → ice Ic transition following

different preparation routes.

Isotope effect on

Preparation method Ice II To (K) ∆H (J mol−1) To (K) ∆H (J mol−1)

Bauer et al. [1919]
H2O 172± 1 +33± 11

7.0± 1.4 −165± 38
D2O 179± 1 −132± 36

Salzmann et al. [2020]
H2O 170± 2 +48± 9

10.0± 2.2 −197± 51
D2O 180± 1 −149± 50

dothermic in the H2O case and weakly exothermic in the D2O case (see Table 4.14.1). The

exothermicity is significantly reduced when including the ZPE in ∆EZPE
lat (second col-

umn in Table 4.34.3). Yet, even after consideration of ZPE the transitions are still clearly

exothermic for both models and both isotopes (between −561 and −732 J mol−1). q-

TIP4P/F predicts a somewhat stronger influence of ZPE than MB-pol does. Also

when including the vibrational correction in ∆H̃ this picture does not change very

much (third column in Table 4.34.3). In fact, the vibrational correction at 150 K is almost

identical for both H2O and D2O. It amounts to about 2 J mol−1 for the MB-pol model,

and about 30 J mol−1 for q-TIP4P/F. The closest match with experiment is reached

when also including the Pauling correction for the configurational entropy in ∆H (last

column in Table 4.34.3). After this correction the ice II → Ic transition is exothermic by

−105 J mol−1 for the D2O case and the MB-pol model. This is very close to the exper-

imental value given in Table 4.14.1. However, the switch from endothermic to exothermic

cannot be accounted for. Both models show the ice II → Ic transition to be slightly

exothermic for the H2O case, by −57 J mol−1 for the MB-pol model. This transition

enthalpy is very close to zero, just like the experimental value, but on the exothermic

side. Considering the accuracy with which both water models reproduce the lattice

energies in Table 4.24.2, it is not surprising that they fail to predict the absolute transition

enthalpies correctly. On the other hand, the difference that quantifies the isotope effect

on the ice II → Ic transition introduces some cancellation of errors, which leads to a
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Table 4.2: Lattice energies for ice Ih and ice II in kJ mol−1 as defined in Eqs. (4.14.1)

and (4.24.2). Experimental values have been obtained by extrapolating experimental

values for the vibrational frequencies back to 0 K and calculating the zero-point energy

therefrom [5656, 5757].

Elat EZPE
lat

H2O D2O

ice Ih

q-TIP4P/F −59.782 −47.216 −49.885

MB-pol −59.464 −46.756 −49.552

experiments −58.82a −47.341(15)a,b −48.611(615)b

ice II

q-TIP4P/F −58.316 −46.621 −49.153

MB-pol −58.663 −46.195 −48.975

experiments −58.88(10)a −47.400(100)a

aref. [5757]; bref. [5656].

better agreement with the experimental value of −180± 20 J mol−1. The q-TIP4P/F

model fares somewhat better, predicting an isotope effect of −135 J mol−1 as opposed

to −48 J mol−1 in case of MB-pol. Since the configurational entropy is exactly the same

and the vibrational correction is almost identical for H2O and D2O, they cancel each

other when considering the differences of ∆H̃ and ∆H, which thus yield essentially the

same result as ∆EZPE
lat . That is, the main reason for the isotope effect noticed in this

work is ZPE.

4.4 Conclusions

In summary, this study reports calorimetry scans for the high-pressure phase ice II

at ambient pressure. These scans feature (i) the transition to cubic ice (ice Ic) at

170± 2 K, (ii) the very subtle transition from ice Ic to hexagonal (ice Ih) near 210 K
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Table 4.3: Energy differences for the ice II → ice Ih transition in J mol−1 as defined

by Eqs. (4.34.3), (4.44.4), (4.64.6) and (4.74.7).

∆Elat ∆EZPE
lat ∆H̃(T = 150 K) ∆H(T = 150 K)

H2O D2O H2O D2O H2O D2O

q-TIP4P/F −1466 −595 −732 −627 −762 −121 −256

Isotope effect −137 −135 −135

MB-pol −801 −561 −612 −563 −611 −57 −105

Isotope effect −51 −48 −48

and (iii) melting of ice Ih at 273 K (not shown in Fig. 4.14.1). Upon deuteration the onset

temperature of the ice II → ice Ic transition shifts to 180± 1 K. This shift of about

10 K is clearly a kinetic effect and reflects the fact that the transition is from kinetically

stable ice II to metastable ice Ic at ambient pressure. The enthalpy associated with the

transition changes sign upon isotope substitution, from an endotherm of +40 J mol−1

in case of H2O to an exotherm of −140 J mol−1 in case of D2O. This represents, to the

best of our knowledge, the first observation of sign change upon isotope substitution,

at least in the thermal study of ice phases. That is, our findings show how isotope

effects may change stability and how a metastable material may become stable upon

isotope exchange.

Lattice energy calculations based on two flexible water models (q-TIP4P/F and MB-

pol) were carried out to explain this finding. The observed isotope effect on the enthalpy

can be traced back to the difference of lattice energies including ZPE. ZPE alone results

in a difference of 137 J mol−1 for the ice II→ ice Ih transition for q-TIP4P/F, which is

close to the experimental value of 180 J mol−1. By contrast, MB-pol shows a difference

of only 50 J mol−1, clearly underestimating the ZPE. The vibrational contribution has

been also considered at 150 K and the configurational entropy contribution related to

the H-order in ice II and H-disorder in ice Ic. Both of these are important for obtaining

good values on the absolute transition enthalpy for the ice II→ ice Ic transition in H2O.

However, these effects are similar for D2O and H2O, and accordingly not of relevance
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in explaining the isotope effect. Future water models are challenged to reproduce the

experimentally observed sign change of the ice II → ice Ic transition enthalpy. It

might be necessary to include zero-point energies of different ice phases directly in the

construction of these models. This study suggests the isotope effects on the melting

transition of ice Ih (6012 vs 6280 J mol−1) and the isotope effects on the transformation

from high-pressure ices II (see Table 4.14.1), VI [1111] and XII [1212] to ice Ic as benchmark

data, for which reliable calorimetric studies are available for both D2O and H2O. The

ice II→ice Ic transition is particularly challenging because this polymorphic transition

involves both entropy and enthalpy changes. They are both of similar size but opposed

sign, and so it is highly challenging to reproduce whether an endotherm or an exotherm

results in sum.
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4.A Appendix

Table 4.4: Thermal expansion at T = 150 K relative to T = 0 K in percent as calculated

according to the quasi-harmonic approximation (QHA). See main text and [4545] for

details.

H2O D2O

ice Ih

q-TIP4P/F 0.05 0.08

MB-pol 0.24 0.31

ice II

q-TIP4P/F 0.82 0.85

MB-pol 1.16 1.25
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Table 4.5: Lattice energies for ice Ih in kJ mol−1 as defined in Eqs. (4.34.3) and (4.44.4).

Experimental values have been obtained by extrapolating experimental values for the

vibrational frequencies back to 0 K and calculating the zero-point energy therefrom [5656,

5757].

Elat EZPE
lat

H2O D2O

ice Ih

q-TIP4P/F −59.782 −47.216 −49.885

q-TIP4P/F (SPGC) −59.645 −46.911 −49.600

MB-pol −59.464 −46.756 −49.552

MB-pol (SPGC) −59.390 −46.817 −49.609

experiments −58.82a −47.341(15)a,b −48.611(615)b

aref. [5757]; bref. [5656].

Table 4.6: Energy differences for the ice II → ice Ih transition in J mol−1 as defined

by Eqs. (4.34.3), (4.44.4), (4.64.6) and (4.74.7)

∆Elat ∆EZPE
lat ∆H̃(T = 150 K) ∆H(T = 150 K)

H2O D2O H2O D2O H2O D2O

q-TIP4P/F −1466 −595 −732 −627 −762 −121 −256

Isotope effect −137 −135 −135

q-TIP4P/F (SPGC)−1379 −290 −477 −662 −809 −156 −303

Isotope effect −187 −147 −147

MB-pol −801 −561 −612 −563 −611 −57 −105

Isotope effect −51 −48 −48

MB-pol (SPGC) −875 −622 −669 −673 −715 −167 −209

Isotope effect −47 −42 −42
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Transferable Potential Function for Flexible H2O

This chapter is based on:

E. Ö. Jónsson, S. Rasti, M. Galynska, J. Meyer and H. Jónsson, Transferable Potential

Function for Flexible H2O Molecules Based on the Single Center Multipole Expansion,

submitted to the Journal of Chemical Theory and Computation (JCTC)

The submitted version of is available at arXiv:2007.06090v2 [physics.comp-ph]arXiv:2007.06090v2 [physics.comp-ph].
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Abstract

A potential function is presented for describing a system of flexible H2O molecules

based on the single center multipole expansion (SCME) of the electrostatic interac-

tion. The model, referred to as SCME/f, includes the variation of the molecular

quadrupole moment as well as the dipole moment with changes in bond length and

angle so as to reproduce results of high level electronic structure calculations. The

multipole expansion also includes fixed octupole and hexadecapole moments, as well as

anisotropic dipole-dipole, dipole-quadrupole and quadrupole-quadrupole polarizability

tensors. The model contains five adjustable parameters related to the repulsive inter-

action and damping functions in the electrostatic and dispersion interactions. Their

values are adjusted to reproduce the lowest energy isomers of small clusters, (H2O)n

with n = 2 − 6, as well as measured properties of the ice Ih crystal. Subsequent

calculations of the energy difference between the various isomer configurations of the

clusters show that SCME/f gives good agreement with results of electronic structure

calculations and represents a significant improvement over the previously presented

rigid SCME potential function. Analysis of the vibrational frequencies of the clusters

and structural properties of ice Ih crystal show the importance of accurately describing

the variation of the quadrupole moment with molecular structure.
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5.1 Introduction

The most commonly used potential energy functions for describing water molecules

and their interaction are based on simple pairwise additive functions with fixed point

charges [11–44], such as the well known TIPnP and SPC force fields. Extensions of

these potential functions to describe flexible molecules have been developed, such as

aSPC/Fw [55] and q-TIP4P/F [66], and they offer, for example, the possibility to include

the effect of zero point energy. The point charge potential functions are typically

parameterized in such a way as to reproduce a few thermally averaged properties of

liquid water. The properties of water molecules are, however, strongly environment

dependent as illustrated by the molecular dipole moment, which is 1.8 D in the gas

phase and 3.1 D in ice Ih [77]. This large environment dependence needs to be modeled

accurately in order to develop a transferable potential function applicable, for example,

to small clusters and crystal structures as well as liquid water.

Such environment dependence is best described using well established physical laws,

since empirical fitting to some limited set of data is likely not going to work well when

the potential function is applied to configurations that are significantly different from

the ones used in the fitting process. A systematic multipole expansion up to and

including the hexadecapole, with dipole and quadrupole polarizability, has been shown

to reproduce well the electrostatics in water clusters and ice [88]. A potential function

based on this approach has been presented for rigid molecules and is referred to as the

single center multipole expansion (SCME) potential function [99, 1010]. In the present

work, this approach is extended to flexible molecules.

By expanding the electrostatics around a single center on each molecule, the introduc-

tion of point charges is avoided and the correct long range distance dependence of the

Coulomb potential built in naturally. The leading term, the dipole potential, decays

as 1/R3, and combined with the polarization response of the molecules this makes it

possible to use a long range cut-off for the electrostatic interaction between molecules

in typical condensed matter simulations. [77]

111



“Thesis” — 2022/11/3 — 8:17 — page 112 — #120

CHAPTER 5. TRANSFERABLE POTENTIAL FUNCTION FOR FLEXIBLE H2O

Hybrid simulation schemes, where part of the system is simulated using a potential

function while another part is described using electronic structure calculations, the so-

called quantum mechanics / molecular mechanics (QM/MM) simulations, have been

used in important simulation studies in various fields such has biochemistry [1111–1515],

medicine [1616], photochemistry [1717] and solvation dynamics [1818–2121], nanostructures [2222],

and materials science [2323]. In most cases, such simulations make use of fixed point

charge models [2424–2727], thereby neglecting the mutual polarization of the charges in the

MM subsystem by the QM subsystem – an effect that was, however, included in the

inceptive work initiating the QM/MM approach [2828]. The use of fixed point charge

models to represent water molecules in the MM region results in errors that limit the

applicability of the QM/MM method.

Several H2O potential functions that include some level of polarizability exist [2929–3131].

These include the Thole-type multipole models such as the TTMn series [3232–3535], and

HBB2-pol [3636, 3737]. The MB-pol [3838–4040] potential function has arguably reached the

highest precision as it includes an explicit treatment of two-body and three-body in-

teractions through an intricate permutationally invariant polynomial fit to data bases

constructed with high level quantum chemistry calculations. However, inclusion of

such explicit many body terms makes the interfacing with a QM region more challeng-

ing. Instead, simpler polarizable MM potential functions based on pair-wise potentials

to describe the short-range interactions are used in so-called polarizable embedding

QM/MM (PE-QM/MM) approach [2626, 4141–7171]. The PE-QM/MM approach can be

used to study the effects of solvation and solvent response to excitations and charge

transfer in solvated species. However, such simulations have typically included only

the molecular dipole-dipole response and make use of atomic point charges.

Here, an extension of the single-center multipole expansion [99, 1010] (SCME) potential

function is described, which has recently been integrated in a PE-QM/MM scheme [7272,

7373]. The extended potential function, SCME/f, includes flexibility of the internal geom-

etry of the water molecules while still maintaining the single center description of the

electrostatic interaction in terms of molecular moment tensors. The SCME/f model in-
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cludes variable dipole and quadrupole moment tensors that depend on the geometry of

the H2O molecule. The dipole is described by the well established Partridge-Schwenke

model, [7474] but a new, geometrical model based on four sites is presented here for the

quadrupole moment. It reproduces results of high-level multireference electronic struc-

ture calculations of the quadrupole moment to within 1.6% RMS over a broad range

in its magnitude. This model for the quadrupole moment is found to provide better

description than the so-called M-site models that have been used previously. [22, 3232–4040,

7575–7878]

There are five adjustable parameters in the description of the intermolecular interac-

tion. They include parameters relating to the pair-wise repulsive interaction as well

as damping parameter in the dispersion interaction and a screening parameter for the

electrostatic interaction tensors. These parameters are optimized in such a way that

the SCME/f reproduces the binding energy and intermolecular distance of the dimer,

the interaction energy of the lowest energy conformation of water clusters (H2O)n with

n ranging from 3 to 6, calculated at the level of RI-MP2 with CCSD(T) corrections

[7979] and full CCSD(T) at the complete basis set limit [8080] as well as measured prop-

erties of crystalline ice Ih taking into account the zero-point energy. The resulting

parametrization of the model reproduces nicely trends in the relative energy of the

conformers of the hexamer obtained from high level quantum chemistry calculations.

Some discrepancies, however, exist in the series of pentamer isomers. An analysis of

the frequency of vibrational modes of the various clusters and the structure of ice Ih

crystal highlights the importance of an accurate model for the molecular quadrupole

moment.

The article is organized as follows: The SCME/f potential function is described in

Section 5.25.2. The dipole and quadrupole surfaces are presented in Section 5.35.3 and

the calculation of atomic forces is described in Section 5.45.4. The fitting of the five

adjustable parameters is described in Section 5.55.5 and comparison with ab initio data

on the cluster conformer energy and vibrational frequencies of small clusters is described

in Section 5.65.6. Discussion and conclusions are in Section 5.75.7.
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5.2 Flexible SCME Model

eX

eY

eZ

A
B

C

Figure 5.1: The definition of the principal vectors and local reference frame for the

water molecule used in the SCME/f model. The black circle denotes the expansion

center, chosen here to be at the center of mass. Black arrows show the three prin-

cipal vectors A, B and C pointing from the oxygen and the hydrogen atoms to the

expansion center. The gray opaque arrows show the local reference frame basis vectors

{eX , eY , eZ}. The principal vectors B and C define a local-to-global reference frame

rotation matrix. Due to symmetry specific indexing of the atoms is omitted, and po-

sitions and scales are exaggerated for clarity.

Fig. 5.15.1 shows the principal vectors which define both the position of the expansion

center and the local-to-global reference frame rotation matrix for the flexible water

molecule. The local frame origin is placed at the center of mass (COM). In SCME/f

each water molecule is ascribed a molecular dipole and quadrupole moments in terms

of variable partial charges based on the internal geometry, µiα({ria}) and θiαβ({ria}),

respectively, where {ria} = {riO, riH1 , riH2}, and is the set of position vectors for atoms

a in molecule i in the global reference frame. The details of the dipole moment and

quadrupole moment surfaces are described in Section 5.35.3. The index i is used to denote

both the specific water molecule, as well as the corresponding COM site. Furthermore,

each water molecule is ascribed, in the local reference frame, a fixed octupole, Ωi
′

αβγ , and
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hexadecapole, Φi
′

αβγδ, moment tensors, as well as polarizability tensors including dipole-

dipole, αi
′

αβ , dipole-quadrupole, Ai
′

αβγ , and quadrupole-quadrupole, Ci
′

αβγδ, induction

terms.

Lipparini et al. [8181] describe commonly used local reference frames and associated

rotation matrices. The derivation here follows closely their work, with some obvious

sign changes. The expansion center is placed at the COM

ri =

ni∑
a

ria
Ma

M i
(5.1)

where ni denotes the atomic sites {O,H1,H2} of molecule i, and Ma and M i is the

mass of the atom and molecule, respectively. The principal vectors used to define the

rotation are

Bi = ri − riH1 , Ci = ri − riH2 , (5.2)

where in general, i.e. for a flexible H2O molecule, Bi 6= Ci. Unit basis vectors are in

terms of the principal vectors given by

eiZ =
BiCi + CiBi

|BiCi + CiBi|

eiX =
Bi − (Bi · eiZ)eiZ

|Bi − (Bi · eiZ)eiZ |

eiY =eiZ × eiX (5.3)

where eiZ is, as defined above, the bisector between the two oxygen-hydrogen bonds.

In terms of the unit basis vectors a unitary local-to-global reference frame rotation

matrix is

Ri =


eiXx eiXy eiXz

eiYx eiYy eiYz

eiZx eiZy eiZz

 (5.4)

Given the rotation matrix for each molecule the fixed moment and polarizability ma-

trices are rotated into the global reference frame for each COM site i11

1Throughout this work Einstein notation was used, i.e. Cartesian vector spaces are indexed with

Greek letters, α = β = · · · = ν ∈ {x, y, z}, and repeated Greek indices are to be summed over.
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M i
α...δ = Riηα . . . R

i
σδM

i′

η...σ (5.5)

where M i
α...δ is a generalized tensor of order t, requiring t rotation operations (e.g.

αiαβ = RiηαR
i
τβα

i′

ητ ). With the definitions above atomic forces are derived (see the

Supplementary Information) from the contribution of the fixed moments and polariz-

abilities to the electrostatic interactions involving the single expansion center on each

molecule.

General formulation, and notation, of the perturbative expansion of the electrostatic

intermolecular interaction – resulting in the multipole moment model – can be found

elsewhere [8282]. Here only the main expressions are presented which are used to arrive

at a self-consistent solution to polarized molecular moments at sites i in response to

the external field due to all other neighboring molecules j(6= i).

Given the external field, V iα (negative of the electric field), and the field gradient, V iαβ ,

at the COM of i, the molecules are polarized resulting in induced dipole and quadrupole

moments

∆µiα = −αiαβV iβ −
1

3
AiαβγV

i
βγ (5.6)

∆θiαβ = −AiγαβV iγ − CiγδαβV iγδ (5.7)

where the external field is given by

V iα =

n∑
j 6=i

V ijα (5.8)

and the contribution to the external field at site i due to site j is given by

V ijα =− T ijαβ(µjβ({rjb}) + ∆µjβ) +
1

3
T ijαβγ(θjβγ({rjb}) + ∆θjβγ)

− 1

15
T ijαβγδΩ

j
βγδ +

1

105
T ijαβγδεΦ

j
βγδε (5.9)

The field gradient – and higher order gradients – are given by the subsequent use of

the gradient operator, ∇βV iα = V iαβ , ∇γV iαβ = V iαβγ .

At the start the external field and field gradient due to the intrinsic moments is eval-

uated at each site. This results in an induced dipole and quadrupole moment, which
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in turn results in a change in the external field and field gradient. A self-consistent

solution to the non-linear relation between Eq. (5.65.6)–Eq. (5.95.9) is achieved with an

iterative procedure and a suitable convergence threshold of the induced moments to

achieve energy-force consistency (see the Supplementary Information).

As the point moments come close the multipole moment expansion breaks down – re-

sulting in the so-called polarization catastrophe. [8383] In order to avoid this screened in-

teraction tensors are introduced [8383–8888] which effectively smear out the point moments.

To zeroth order the Coulomb interaction tensors in Eq. (5.95.9) are defined as

T ij =
1

|rj − ri|
λ0(r) =

1

r
λ0(r) (5.10)

where λ0(r) is a short-range electrostatic interaction screening function. The gradi-

ent operators act to increase the order of the screened interaction tensors, for exam-

ple

∇αT ij =T ijα ≡ −
rα
r3
λ1(r) (5.11)

∇βT ijα =T ijαβ ≡ 3
rαrβ
r5

λ2(r)− δαβ
r3

λ1(r) (5.12)

where rα = (rj − ri)α.

Most commonly used interaction tensor screening functions in the context of polar-

izable force fields are based on exponential decay of the point charges resulting in

the Thole-type damped tensors. [8383] Here we make use of screening functions derived

from considering the overlap and resulting Coulomb electrostatic screening of Gaussian

charge densities and multipoles. [8787] In the equations above they are

λ1(r) = erf(S)− 2√
π
Se−S

2

(5.13)

λ2(r) = erf(S)− 2√
π

(
S +

2

3
S3

)
e−S

2

(5.14)

where S is the screened distance, S = r/g, and g is the screening length – describing

the spatial extent of the Gaussian functions.

In the SCME/f model the total energy is a functional of the external field, V iα, at each
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molecular COM site i and is given by

Etot[{V iα}] = Eelst[{V iα}] + Enon−elst + Emon (5.15)

where the terms on the right hand side are, Eelst[{V iα}], the total electrostatic energy

functional, the non-electrostatic terms, Enon−elst, which includes a pair-wise repulsive

and a dispersion potential, and Emon, which is a sum of the internal energies described

by the Partridge-Schwenke potential energy surface (PS–PES) of the water monomer.

[7474]

More explicitly the first term on the right hand side of Eq. (5.155.15) can be further

separated into three terms describing the inter- and intramolecular contributions to

the total electrostatic energy of the system, namely

Eelst[{V iα}] = Ein[{V iα}] + Epol[{V iα}] + Eself [{V iα}] (5.16)

where Ein[{V iα}] is the electrostatic interaction between the intrinsic molecular mo-

ments and Epol[{V iα}] is the field-induced polarization energy. At self-consistency these

terms combine to give

Ein+pol[{V iα}] =
1

2

n∑
i

(
(µiα({ria}) + ∆µiα)V iα +

1

3
(θiαβ({ria}) + ∆θiαβ)V iαβ

+
1

15
ΩiαβγV

i
αβγ +

1

105
ΦiαβγδV

i
αβγδ

)
(5.17)

Eself is the on-site self-energy, given by

Eself [{V iα}] = −1

2

n∑
i

(
∆µiαV

i
α +

1

3
∆θiαβV

i
αβ

)
(5.18)

and accounts for the change in internal energy required to polarize the molecules.

The non-electrostatic term is composed of two intermolecular pair-wise potentials cen-

tered on the oxygen atom

Enon−elst = Erep + Edisp (5.19)

describing repulsion, Erep, and dispersion Edisp. In the following expressions for the

potentials the distance r refers to the oxygen-oxygen distance between pair i and j, or

r = |rjO − riO|.
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Making use of the same dispersion coefficients as in the original SCME model [8989]. The

dispersion energy is

Edisp = −
n∑
i

n∑
j<i

(
C6

r6
t6(r) +

C8

r8
t8(r) +

C10

r10
t10(r)

)
(5.20)

with isotropic coefficients up to tenth order from Wormer and Hettema [9090]. At short

range the interaction is smoothly switched off with a Tang-Toennies damping function

[9191]

tm(r) = 1− e−τdr
m∑
k=0

(τdr)
k

k!
(5.21)

where the parameter τd represents the inverse decay length of the charge density.

In the rigid SCME [8989] model a modified Born-Mayer potential is used, which includes

a term which scales the magnitude of the repulsion depending on the local environ-

ment around the repulsion center – a molecular density dependent term. With the

introduction of the Gaussian type interaction tensor screening function we find the

molecular density dependence unnecessary and revert back to the basic Born-Mayer

type potential. The pair-wise repulsion is

Erep =

n∑
i

n∑
j<i

Arepr
−ke−hr (5.22)

The parameters of the non-electrostatic terms, τd, Arep, k and h, are optimized to work

with the new SCME/f model. The optimization also includes the screening length

parameter g of Eq. (5.145.14). The fitting is described in Section 5.55.5.

5.3 The Dipole and Quadrupole Moment Surfaces

The internal energy as described by the PS-PES includes analytical atomic force com-

ponents, [7474] as well as an accurate mapping of the dipole moment surface (DMS) for

an isolated water molecular as a function of the internal geometry. The DMS is given

by

µiα(riO, riH1 , riH2) = qiH1riH1
α + qiH2riH2

α + qiOriOα (5.23)
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where qiO = −(qiH1 + qiH2) and the partial charges of the two hydrogens are in turn a

function of the internal geometry, fitted to recreate the calculated DMS. For example

qiH1 = qiH1(rOH1 , rOH2 , cos(θHOH)), where rOH1 and rOH2 are the internal bond lengths

between the oxygen and the two hydrogens, and θHOH the HOH angle. This mapping

is used, and it was left unchanged.

The DMS partial charges are not suitable to describe a quadrupole moment surface

(QMS) without modification. Instead the charge site associated with the oxygen is split

up into two components and placed within a plane perpendicular to the symmetry plane

of the hydrogens and oxygens. The sites are denoted L1 and L2, where the site positions

are directly related to the length of the hydrogen bond lengths indexed H1 and H2,

and the HOH angle. See Fig. 5.25.2. The QMS is written as

θiαβ(riO, riH1 , riH2) =

n′
i∑
a

3

2

{
qia
(

(ria − ri)α(ria − ri)β −
δαβ
3
||ria − ri||

)}
(5.24)

where n′i denotes the sites {H′1,H′2,L1,L2} associated with molecule i. The apostrophe

on the hydrogen is used to discern their role in the QMS from their role in the DMS

since the charges qiHl
′

are different from the DMS charges, and are

qiHl
′

= AqiHl + BqH
eq (5.25)

and for the L-sites they are

qiLl = CqiHl + DqH
eq (5.26)

where qH
eq is the DMS charge of the hydrogen in the equilibrium monomer configura-

tion.

The position of the L1 and L2 charge sites is related to the atomic positions of each

water molecule through a rotation operator times a scaling factor which controls the

length of the rotated vector. A translation operator translates the vector to the COM

position of molecular site i for completeness. Explicitly this operation is

riLlα = RiLlηα e
iZ
η f(rHl) + riα (5.27)

We make use of the unit basis vectors previously used to define the local-to-global

rotation matrices in Eq. (5.15.1)–Eq. (5.35.3). The rotation matrices for the L1 and L2 sites
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are

RiL1 =
(

cos(f(θ))I− sin(f(θ))
[
eiX
]
×

)
(5.28)

RiL2 =
(

cos(f(θ))I + sin(f(θ))
[
eiX
]
×

)
(5.29)

and is a simplification of the general Rodrigues’ rotation operator [9292] in terms of the

local orthonormal basis vectors (shown in Fig. 5.15.1).

In order to allow for flexibility of the L-sites and correlate their positions to the change

in the positions of the hydrogens, both the angle factor and length scale factor are

defined in terms of the OH bond lengths and HOH angle through

f(rHl) =a + b(|riO − riHl | − req) + c(|riO − riHl | − req)2 (5.30)

f(θ) =d + e(θ − θeq) (5.31)

where req and θeq are the equilibrium hydrogen to oxygen bond length and HOH angle

of the isolated PS–PES water molecule, respectively, see Fig. 5.25.2. It is found that a

second order polynomial in terms of the change in bond length, and a linear term for

the change in bond angles is adequate to capture the QMS with good accuracy. The

charge scaling parameters A, B, C and D, and the geometric parameters a, b, c, d, e

are fitted parameters, described below.

5.3.1 Ab initio QMS Calculations and Fit

The dipole and quadrupole moment is mapped using the ab initio quantum chemistry

software ORCA [9393, 9494]. An iterative-configuration expansion configuration interaction

(ICE-CI) method is used, with the aug-cc-pvqz basis set and the energy convergence

threshold is set to 10−8 Eh. Eight correlated electrons are included and the active

orbitals were chosen by including MP2 orbitals of natural orbital occupation numbers

ranging between 1.99999 and 0.00001. The ICE-CI method is related to the CIPSI

technique [9595]. Note that this level of theory is necessary to accurately determine the

dipole and quadrupole moment using their well defined charge density based operators,

instead of resorting to energy based schemes to estimate these quantities. For exam-

ple, it is found that coupled-cluster at the CCSD(T)/aug-cc-pvqz level of theory and
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eY

eZ

f(θ)

f(rH )l

H1 H2

L2 L1

Figure 5.2: L-site placement (yellow) in the water monomer structure. The re-

lationship of the angle to the unit basis vectors which describe the local reference

frame is shown, Eq. (5.315.31) and eqs Eq. (5.285.28)–Eq. (5.295.29). For example, operat-

ing with the rotation vector corresponding to hydrogen indexed 1 on eiZα results in(
cos(f(θ))eiZα − sin(f(θ))eiYα

)
. Due to symmetry specific indexing of the atoms is com-

pletely interchangeable, and either pair of H and L in the Figure above can serve as

pair 1 or 2. The distance from the oxygen to a L-site, controlled with f(rHl) is a second

order polynomial function depending on the position of one of the hydrogens (while

the position of the other L-site depends on the other hydrogen), Eq. (5.305.30). Positions

and scales are exaggerated for clarity.

orbital optimized coupled-cluster theory OOCCSD(T)/aug-cc-pvdz, did not provide a

satisfactory agreement with the DMS of the PS-PES, when using the dipole moment

operator µα =
∫
ρ(r)rαdr. See the Supporting Information for more details.

Starting from the ground state geometry in the local-frame as shown in Fig. 5.15.1 the

internal bond lengths and HOH angle are systematically changed and range from 0.7

to 1.3�A, and 60 to 175°, respectively. These intervals broadly represent the variation

in the bond lengths and the angle of the water molecule in the liquid phase at am-

bient conditions. Fig. 5.35.3 shows a comparison between the internal energy change of

each configuration as calculated by the ICE-CI method compared to the PS-PES. The
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agreement is excellent, and justifies the use of the ab initio data to fit the QMS while

retaining the original PS-PES energy mapping to describe the internal energy change

and resulting atomic forces in our model. Fig. 5.45.4, left, presents a comparison between

the ICE-CI DMS and the PS-PES DMS, again in an excellent agreement.

0 1 2 3 4 5 6 7
Ab initio [eV]

0

1

2

3

4

5

6

7

PS
-P

ES
 [e

V]

Eint

Figure 5.3: The relative internal energy difference between the different monomer

configurations used in the QMS fit, compared between the ab initio results and the

PS–PES. The good agreement between the two methods implies that the use of the

ICE-CI data to fit the QMS justifies the use of the original PS–PES to represent internal

energy changes and resulting atomic forces, as both potential energy surfaces are close

with RMSD of 0.022 eV, within chemical accuracy (∼0.51 kcal/mol).

The QMS model parameters associated with the charges in eqs Eq. (5.255.25)–Eq. (5.265.26),

A, B, C and D, as well as the geometric parameters of eqs Eq. (5.305.30)–Eq. (5.315.31), a,

b, c, d and e, are fitted to best reproduce the principal quadrupole moment compo-

nent. Considering the water molecule in the ground state configuration the symmetric
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quadrupole moment tensor can be written as

θ =


θT −∆ 0 0

0 −θT −∆ 0

0 0 2∆

 (5.32)

where θT = (θxx − θyy)/2.
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Figure 5.4: Left: comparison of the dipole z- and x-components, µz and µx respectively,

as predicted by the DMS, Eq. (5.235.23) and compared to the ICE-CI µz and µx. Note that

due to a choice of local reference frame the µy component is always numerically zero.

The DMS of the PS-PES and ICE-CI are in an excellent agreement, with a RMSD of

0.004 D and within 0.5% on average. Right: comparison of the θT component mapped

by the QMS, Eq. (5.245.24), with the ab initio ICE-CI data. The geometric QMS model of

this work, which is fitted to best reproduce the ab initio results, captures the results to

a good degree with low scatter, a mean absolute error of 0.04 DÅ, and an average RMS

difference of around 1.6% (see Supplementary Information for the RMSD analysis).

The values of the QMS parameters are determined by carrying out a least-squares opti-

mization, using a module freely available in the scientific computing package SciPy. [9696]

Table 5.15.1 presents the numerical values and units of the resulting best fit parameters,

and Fig. 5.45.4, right, shows the resulting fit of the θT components, compared between

the QMS fit and ab initio ICE-CI values. The overall fit is in good agreement with

the ab initio values over a broad range of θT values, with very low scatter. The largest
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deviation is found where θT is lowest, i.e. where the quadrupole moment interaction

strength is the weakest.

Table 5.1: Numerical values and units of the quadrupole moment surface function,

Eq. (5.245.24).

Geometry Charges

a [Å] 0.5149 A 0.9763

b −1.1271 B 0.6418

c [Å−1] 0.5146 C 0.7251

d [rad] 3.5908 D −1.0603

e −0.1081 qH
eq 0.3310

req [Å] 0.9578

θeq [rad] 1.8240

5.4 Forces

With the various expressions given in the preceding section analytical atomic force

components can be obtained and are derived from the negative gradient of the total

energy expression, Eq. (5.155.15), with respect to the position of atom a in molecule i,

or

F iaα =− dEtot

driaα

=− ∂Eelst

∂riaα
− ∂Enon−elst

∂riaα
− ∂Emon

∂riaα
(5.33)

The first term on the right hand side result in several contributing factors to the

atomic forces due to the definition of the principal axes, choice of expansion center and

the DMS and QMS. The atomic forces resulting from the simple pair-wise potentials

describing the non-electrostatic terms are omitted for the sake of brevity, and the

atomic forces due to the monomer energy expression – the PS-PES – are accounted for

in their original work. [7474]
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The first term on the right hand side of Eq. (5.335.33), the total intermolecular electrostatic

interaction, can be further divided into four contributions

−∂Eelst

∂riaα
=− ∂Eelst

∂µjβ({rjb})
∂µjβ({rjb})

∂riaα
− ∂Eelst

∂θjβγ({rjb})
∂θjβγ({rjb})

∂riaα

− ∂Eelst

∂V jβγδε...η

∂V jβγδε...η
∂riaα

− ∂Eelst

∂Rjηβ

∂Rjηβ
∂riaα

(5.34)

which are, in order, the partial derivative of the DMS and QMS, partial derivative of

the external field and gradients thereof, and partial derivatives of the local-to-global

rotation matrices as defined in Eq. (5.15.1)–Eq. (5.45.4).

At self-consistency of the iterative process which minimizes the energy in terms of the

polarized moments the following conditions apply

∂Eelst

∂∆µiα
=

∂Eelst

∂∆θiαβ
=
∂Eself

∂∆µiα
=

∂Eself

∂∆θiαβ
= 0

There are no explicit force contributions from the self-energy terms due to the on-site

external field as the self-energy can be written solely in terms of the on-site induced

moments (see the Supplementary Information). This results in a non-trivial additional

condition
∂Eself

∂V jβγδε...η
= 0 (5.35)

Due to these conditions of the self-energy a single force contribution arises and is due

to the local-to-global transformation of the fixed polarizability tensors

− ∂Eself

∂riaα
= −∂Eself

∂Rjηβ

∂Rjηβ
∂riaα

(5.36)

The total force contribution due to the intermolecular electrostatic interaction and

intramolecular self-energy is then

−
(
∂Ein+pol

∂riaα
+
∂Eself

∂riaα

)
=− ∂Ein+pol

∂µjβ({rjb})
∂µjβ({rjb})

∂riaα
− ∂Ein+pol

∂θjβγ({rjb})
∂θjβγ({rjb})

∂riaα

− ∂Ein+pol

∂V jβγδε...η

∂V jβγδε...η
∂riaα

−

(
∂Ein+pol

∂Riηβ
+
∂Eself

∂Riηβ

)
∂Riηβ
∂riaα

(5.37)
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The terms in the expression above are given explicitly in the Supporting Information.

It is noted that in order to evaluate the first term on the right hand side, explicit partial

charge derivatives with respect to atomic positions of the DMS are required, which were

not included in the original work on the PS–PES. [7474] These are provided by Burnham

and Xantheas, first used in the development of a flexible Thole-type multipole moment

expansion potential. [3232]

5.5 Flexible Model Fit

With the introduction of the DMS and QMS, the Gaussian type interaction tensor

screening functions, as well as the changes to the pair-wise repulsion function, all of

the five model parameters which affect the intermolecular interactions g, τd, Aref , k

and h are re-fitted. The fitting is performed with the same least-squares optimization

module used for the QMS fit. The same numerical values are used for the fixed octupole

and hexadecapole, as well as the dipole-dipole, dipole-quadrupole and quadrupole-

quadrupole polarizability as in the original SCME model. [8989] The Fortran based

SCME/f code is freely available online [9797], and includes an interface to the Python

based Atomic Simulation Environment [9898, 9999] library. The data set used for the fitting

Figure 5.5: The lowest lying water cluster (H2O)n isomers for n=2-6 used in the fitting

procedure for the model parameters. From left to right; dimer (Cs), trimer (UUD),

quadromer (S4), pentamer (cyclic, CYC) and hexamer (prism, PRI).

includes several points around the minimum of the dimer binding curve with the energy

minimum and oxygen-oxygen distance corresponding to CCSD(T) calculations. [8080] A

single interaction energy for the lowest lying trimer, tetramer, pentamer and hexamer
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is included. Fig. 5.55.5 shows the geometry of the lowest-lying water clusters (H2O)n

in the range n = 2 − 6. The reference calculations which are used here include the

complete basis set limit CCSD(T) energies of the low-lying water hexamer structures

by Bates and Tschumper. [7979] For the other cluster sizes – trimers, tetramers and

pentamers – complete basis set limit RI-MP2 calculations, with CCSD(T) corrections,

are used. [8080]

Table 5.2: Properties of crystal ice Ih evaluated with SCME [99, 1010] and SCME/f,

compared to experimental values. 〈rOO〉 is the average oxygen-oxygen distance, a, b, c

the lattice parameters for a dipole-free orthorhombic cell (containing eight molecules).

V ZPE
0 (V0) is the optimized cell volume, EZPE

lat (Elat) and BZPE
0 (B0) are the lattice

energy and bulk modulus with (and without) zero-point energy correction, all expressed

per molecule.

Property SCME SCME/f Exp.1

〈rOO〉 [Å] 2.742 2.751 2.751

a [Å] 4.470 4.478 4.497

b [Å] 7.747 7.777 7.789

c [Å] 7.287 7.331 7.321

V0 [Å3] 31.55 30.38

V ZPE
0 [Å3] 31.98 32.05

Elat [eV] −0.611 −0.645 −0.611

EZPE
lat [eV] −0.489 −0.491

B0 [GPa] 11.4 15.0

BZPE
0 [GPa] 12.2 10.9

1 Experimental values: average oxygen-oxygen distance is from Bjerrum [100100], lattice parameters

from Röttger et al. [101101] (and resulting V ZPE
0 ), enthalpy of vaporization (EZPE

lat ) and lattice energy

(Elat) from Whalley [102102], and bulk modulus from Hobbs [103103].

In addition to the clusters, properties of hexagonal ice (ice Ih) have been considered,

which is the most common ice phase. There are no high-level first-principles calcula-

tions with sufficient accuracy to serve as reference values. Instead, experimental data
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for lattice constants, unit cell volume, bulk modulus and lattice energies need to be

used, which generally include zero-point energy (ZPE) effects – and these effects are

quite sizeable. [102102, 104104–106106] Consequently, I have performed phonon calculations

with the SCME/f model for proton disordered units cells of ice Ih containing 96 water

molecules using the Parlinski-Li-Kawazoe finite-displacement method [107107] as imple-

mented in the phonopy package [108108] using 3 × 3 × 3 supercells and a displacement

of 0.01 Å. For a unit cell with fixed cell vectors a geometry relaxation has been per-

formed, which employs the analytical SCME/f forces with a force threshold of 10−3

eV/Å. Then, using a 10× 10× 10 q-point sampling for the Brillouin zone integration,

A numerically converged phonon density of states g(ω) has been obtained, the first

moment of which provides the ZPE

EZPE = h̄
2

∫ ∞
0

ω g(ω) dω . (5.38)

Considering the dependence of the phonon frequencies on the unit cell volume ω = ω(V )

within the so-called quasi-harmonic approximation yields a ZPE-corrected energy-

volume curve

Etot+ZPE(V ) = Etot(V ) + EZPE(V ) , (5.39)

where the energy zero is such that it describes infinitely separated (non-bound) indi-

vidual water molecules. By fitting the Rose-Vinet equation of state [109109] the minimum

EZPE
lat = Etot+ZPE(V ZPE

0 ) of that curve together with the ZPE-corrected bulk modulus

BZPE
0 has been obtained (see supporting information for more details), which can be

compared against accurate experimental data. [101101–103103] In order to include this data

in the fitting process, an initial Etot+ZPE(V ) was calculated based on the SCME/f pa-

rameters first determined by fitting the data set derived from the water clusters. Then,

Etot(V ) was improved by further parameter adjustments such that the expected ZPE

correction would bring it close to the experimental values.

This trial and error scheme was found necessary since the phonon calculations are sig-

nificantly more expensive than the calculation of the cluster properties. The end results

based on a new set of phonon calculations is presented in Table 5.25.2 and shows good

agreement with the experimental target properties. (The concomitant energy-volume
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Table 5.3: Intermolecular interaction model parameters, numerical values and units.

Damping Repulsion

τd [Å−1] 7.5548 Arep [eV] 8149.63

g [Å] 1.1045 k 0.5515

h [Å−1] 3.4695

curves are shown in the supporting information.) Table 5.35.3 compiles the concomitant

final optimized parameters of the SCME/f model.

Table 5.45.4 shows the resulting interaction energy and relative interaction energy ver-

sus the reference CCSD(T) calculations of the lowest lying isomers used in the fit.

This includes a structural analysis comparing the relaxed SCME/f structure to the

CCSD(T) reference structures, where the RMS deviation of nearest neighbor oxygen-

oxygen distances, 〈drOO〉, intramolecular oxygen-hydrogen bond lengths of the donor

hydrogens, 〈drOH〉, hydrogen bonding (H-bond) bond lengths, 〈drO···H〉, and angles

between oxygen-hydrogen-oxygen in H-bonds, 〈d6 OHO〉, are presented. The overall

RMSD of the atomic positions is also presented, 〈dra〉, and is evaluated with the Kabsch

algorithm [110110]. The interaction energies for the different cluster sizes are reproduced

to a reasonable degree, with sub kcal/mol difference compared to the CCSD(T) results,

except for the prism isomer of the hexamer where the interaction energy is overesti-

mated by 1.18 kcal mol−1. The resulting relaxed structures are in an overall very good

agreement with the reference structures, with small variations in the second decimal

in terms of atomic distances. Similarly, the angles between OHO in H-bonds are in a

good agreement with the reference. The largest deviation is found in the angle between

the donor-acceptor in the dimer.

5.6 Model Validation

For further validation of the new model the interaction energies and relative energy

differences of all higher lying isomers of the pentamers and hexamers are calculated,

which are not included in the fitting data set, and compared to the relative energies from
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Table 5.4: Interaction energy (kcal/mol) and distances (Å) between atoms in the

most stable configuration of clusters (H2O)n with n=2,· · · ,6. Eint is the SCME/f cal-

culated interaction energy of the clusters and ∆Eint (kcal/mol) the difference with

respect to the CCSD(T) values. 〈drOO〉, 〈drOH〉 and 〈drO···H〉 are the RMSD of the

oxygen-oxygen neighbour distances, intramolecular oxygen-hydrogen bond lengths of

the donor-hydrogen and bonding oxygen· · · hydrogen bond length distances, respec-

tively, compared to the CCSD(T) obtained structures. [7979, 8080] 〈dra〉 is the overall

RMSD of the relaxed SCME/f structure evaluated using the Kabsch algorithm [110110].

〈d6 OHO〉 is the RMSD of the angle (in degrees) between the oxygen-hydrogen-oxygen

in hydrogen bonds.

(H2O)n Eint ∆Eint 〈drOO〉 〈drOH〉 〈drO···H〉 〈dra〉 〈d6 OHO〉

2-Cs −4.85 +0.18 0.011 0.000 0.017 0.017 5.923

3-UUD −15.16 +0.54 0.035 0.010 0.037 0.037 2.489

4-S4 −27.51 −0.11 0.005 0.014 0.006 0.045 1.382

5-CYC −36.72 −0.71 0.014 0.015 0.003 0.046 0.369

6-PRI −47.10 −1.18 0.017 0.012 0.035 0.033 4.564

the quantum chemistry references. [7979, 8080] The trends are shown in Figs. 5.65.6 and 5.75.7,

and the trend predicted with the rigid SCME is shown for comparison. All structures

are relaxed with a force tolerance of 10−4 eV�A
−1

, and results collected in Table 5.55.5,

which also presents the RMS difference between the relaxed SCME/f structures and

the quantum chemistry reference structures.

For the pentamers, Fig. 5.65.6, most of the relative energy difference trend is captured

with the exception of isomer FRA, whose relative stability is underestimated. Another

key difference between SCME/f and the reference calculations is the series of CAA-

CAB isomers, which have a cagelike structure. In particular the cage structure of

isomers CAA and CAB are not stable and rearrange to isomers which are more akin to

the fused ring structures of the FRA-FRC isomers. The resulting SCME/f structures

of CAA and CAB are near identical, with an interaction energy difference of only 0.01
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Table 5.5: Energies and relative energy and structural properties of the pentamer and

hexamer isomers. See the caption of Table 5.45.4 for the definition of the table entries.

(H2O)n Eint ∆Eint 〈drOO〉 〈drOH〉 〈drO···H〉 〈dra〉 〈d 6 OHO〉

5-FRB −35.60 −0.72 0.026 0.012 0.041 0.036 4.008

5-CAC −35.50 −0.81 0.053 0.012 0.089 0.136 8.548

5-CAA −35.07 −0.53 0.060 0.012 0.053 0.254 9.281

5-CAB −35.06 −1.23 0.065 0.011 0.080 0.237 6.107

5-FRC −33.56 −1.12 0.025 0.013 0.026 0.043 1.859

5-FRA −32.91 0.22 0.025 0.013 0.032 0.059 1.731

6-CAG −46.44 −0.74 0.013 0.017 0.019 0.054 1.607

6-BK1 −46.37 −1.09 0.014 0.015 0.009 0.033 2.346

6-BK2 −46.26 −1.35 0.014 0.016 0.008 0.038 3.433

6-BAG −45.90 −1.52 0.015 0.017 0.012 0.065 3.826

6-CYR −45.36 −1.00 0.012 0.015 0.006 0.018 3.913

6-CB1 −44.57 −1.23 0.013 0.015 0.003 0.031 2.924

6-CB2 −44.49 −1.20 0.013 0.015 0.005 0.025 2.284

1 Pentamers; fused-ring-B (FRB), cage-C (CAC), cage-A (CAA), cage-B (CAB), fused-ring-C

(FAC) and fused-ring-A (FRA); and the hexamers; cage (CAG), book-1 (BK1), book-2 (BK2),

bag (BAG), cyclic-ring (CYR), cyclic-boat-1 (CB1) and cyclic-boat-2 (CB2).

kcal/mol. Only the CAC isomer keeps its cagelike structure, but one of the H-bonds

is not stable (between a donor acceptor oxygen with distance greater than 3.0 Å),

resulting in a rotation of one of the water monomers. Compared to the rigid SCME

predecessor this represents an improvement, in particular for the FRB, CAC and CAA

isomers, whose stability is greatly underestimated relative to the CYC isomer.

For the hexamers, Fig. 5.75.7, the overall trend in the relative interaction energies is

captured to a good degree compared to the CCSD(T) reference, and is a substantial

improvement over the rigid SCME model, which greatly underestimates the stability

of the prism isomer relative to all other isomers. The bond lengths and angles of
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the hexamer isomers are all in very good agreement with the reference structures,

with small differences in the second or third decimal in terms of the bond lengths,

and the H-bonded OHO angles deviate by only 2-4◦. Tables 5.65.6 and 5.75.7 presents

vibrational frequency analysis of the lowest lying isomers, including the cyclic ring

isomer of the hexamer. The RMS deviation from near-CBS CCSD(T) calculations

[111111, 112112] are presented for the different classes of modes. These are intermolecular low-

energy vibrarional modes (10-1000 cm−1), intramonomer bending modes (1600-1800

cm−1) and H-bonded and non-bonded OH stretching modes (ca. 3200-3900 cm−1).

For comparison, the same analysis is performed for the SCME/f model, but with the

quadrupole moment fixed and corresponding to the numerical value of the quadrupole

moment for the ground state monomer configuration.

With the inclusion of the QMS (left column Tables 5.65.6 and 5.75.7) the low-energy vi-

brational modes and, in particular, the bending modes are in a good agreement with

the reference calculations. The RMS deviation ranges from 18 to 23 cm−1 and 7 to

14 cm−1 for the two classes of modes, respectively. The maximum difference in the

bending modes does not exceed 20 cm−1 for any of the clusters analyzed. The red shift

of the H-bonded OH stretches is, however, not captured by our model, resulting in an

overestimation of these modes, which becomes systematically larger with cluster size.

This is due to the underlying monomer potential energy surface, whose limit in terms

of hydrogen dissociation is OH· + H· whereas should be in the condensed phase OH–

+ H+. The model potential does not describe this important change, and the resulting

weakening of oxygen-hydrogen bonds in H-bonding OH. The high-frequency modes for

the dimer are though in a reasonable agreement with the reference calculations.

A comparison to the same vibrational frequency analysis is performed with the quadrupole

moment fixed (right column, Tables 5.65.6 and 5.75.7). Fixing the quadrupole moment re-

sults in a drastic change in the difference between all of the types of modes and for all

cluster sizes, with for example a RMS deviation of up to three times greater for the

bending modes. The overall agreement with the reference calculations of all modes is

consistently worse, in particular for the larger cluster, n=4-6. Only the low-frequency
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Table 5.6: Relative vibrational properties of three lowest lying water clusters (H2O)n

with n=2,3,4 (Cs, UUD, S4). The entries for each system correspond from top to

bottom, the low-frequency intermolecular vibrational modes (l, 10 to 1000 cm−1), in-

tramonomer bending (b, 1600 to 1800 cm−1) and high frequency stretching of H-bond

OH and non-bonded OH bonds (h, 3200 to 3900 cm−1). 〈∆cm−1〉 is the RMSD be-

tween the frequencies in the low, medium and high range, as predicted with SCME/f

compared to near-CBS CCSD(T) reference calculations. [111111, 112112] The last entry is

RMSD for the total frequency range (t), where the value in the parenthesis excludes the

overestimated H-bond OH stretches. max|∆cm−1 | is the maximum absolute difference

for each entry. The two columns on the right are for the SCME/f model potential with

the quadrupole moment set to a fixed value corresponding to the ground state water

monomer configuration.

quadrupole moment surface fixed quadrupole moment

(H2O)n 〈∆cm−1〉 max|∆cm−1 | 〈∆cm−1〉 max|∆cm−1 |

2-Cs l 17.52 41.50 15.33 23.10

b 6.71 9.10 9.18 12.70

h 28.55 36.10 50.41 70.30

t 17.23 23.56

3-UUD l 23.03 49.20 34.43 71.70

b 7.75 12.20 18.41 23.90

h 68.09 89.30 153.65 190.40

t 31.20 (24.98) 64.02 (29.19)

4-S4 l 20.87 44.40 29.43 58.10

b 10.74 12.80 25.69 29.40

h 155.58 200.20 266.11 334.10

t 59.19 (21.06) 100.25 (26.49)
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Table 5.7: Same as Table 5.65.6, but for different water clusters (H2O)n with n=5,6 (CYC,

CYR, PRI).

quadrupole moment surface fixed quadrupole moment

(H2O)n 〈∆cm−1〉 max|∆cm−1 | 〈∆cm−1〉 max|∆cm−1 |

5-CYC l 18.47 35.20 35.08 65.30

b 14.22 19.60 26.44 34.40

h 179.34 229.60 282.41 358.10

t 66.02 (20.13) 105.22 (31.38)

6-CYR l 21.10 44.30 35.16 75.40

b 11.55 13.10 32.53 40.00

h 185.38 239.30 280.06 356.30

t 67.75 (23.24) 103.48 (32.56)

6-PRI l 21.70 87.60 27.74 56.20

b 9.86 18.30 35.16 45.80

h 208.58 408.60 313.99 571.80

t 75.79 (24.60) 113.85 (36.40)
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Figure 5.6: Relative energy difference for the lowest lying pentamers water cluster

isomers. The results for the rigid version of SCME [99, 8989] and SCME/f are com-

pared. Relative energy differences from high level quantum chemistry calculations are

also shown. RI-MP2 energies at the complete basis set limit with CCSD(T) correc-

tions [8080] (MP2/CBS+∆CCSD(T)). The acronyms from left to right are the different

isomers: Cyclic (CYC), fused-ring-B (FRB), cage-C (CAC), cage-A (CAA), cage-B

(CAB), fused-ring-C (FAC) and fused-ring-A (FRA).

modes of the Cs dimer seem improved by fixing the quadrupole moment. While the

parametrization of the intermolecular interaction parameters is with the QMS included,

the structural properties and interaction energy of the small clusters are not drastically

changed with the quadrupole moment fixed (see Supplementary Information).

It is also of interest to analyze the structure of the monomers in crystal ice Ih with or

without the QMS included. Table 5.85.8 presents the average internal HOH angle of each

water monomer in the crystal lattice, extracted at volume V ZPE
0 , and compares to the

experimental value of the angle for the isolated monomer and in crystal ice Ih. The
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Figure 5.7: The same as Fig. 5.65.6 but for hexamer water cluster isomers. CCSD(T)

energies at the complete basis set limit (CCSD(T)/CBS) [7979]. The acronyms from left

to right are the different isomers: Prism (PRI), cage (CAG), book-1 (BK1), book-2

(BK2), bag (BAG), cyclic-ring (CYR), cyclic-boat-1 (CB1) and cyclic-boat-2 (CB2).

experiments show a clear widening of the monomer HOH angle by about 3.5 degrees

(104.5◦–108.1◦) going from the gas to crystal phase. Without the QMS the trend is

opposite, with the angle favoring lower values by about 4.5 degrees (104.5◦–99.95◦),

where the dipole moment is high. The correct trend is captured again with the inclu-

sion of the QMS, with the angle widening by about 2 degrees (104.5◦–106.51◦). The

QMS correctly balances the magnitude of the dipole moment and principal quadrupole

moment in the lattice, and in such a way that a widening of the angle is favoured.

5.7 Discussion and Conclusions

An extension of the SCME potential function has been presented for water molecules

to allow for distortion of the molecular structure. In addition to the dipole moment
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Table 5.8: Average intramolecular HOH angles (in degrees) for the SCME/f model

with and without the QMS. Experimental angles for the isolate water molecule (gas)

and in crystal ice Ih (Ih) are presented for comparison.

Exp (gas) Exp (Ih) SCME/f SCME/f no QMS

〈6 HOH〉 104.5 108.1 106.51 99.95

surface, this flexible potential function, SCME/f, includes a mapping of the quadrupole

moment surface which has not been previously included at this level of detail to our

knowledge. A simpler model for the quadrupole moment that has been used in both

rigid and flexible point charge based potential functions [22, 7575–7878], as well as more

sophisticated polarizable models [3232–4040], make use of the so-called M-site. We now

digress in a brief comparison between the QMS model described in this work and the

M-site model.

In the M-site model the partial charge associated with the oxygen is moved off the

atomic center to a position behind the oxygen and on to the bisector defined by the

two OH bond vectors. The position of the M-site in the global coordinate frame is

written as [113113–115115]

rM = (1− γ)rO +
γ

2
(rH1 + rH2) (5.40)

where 0 < γ ≤ 1. For any finite value of γ the partial charges are re-scaled according

to

qHγl =
qHl

1− γ
, qM = −qHγ1 − qHγ2 (5.41)

such that the dipole moment remains unchanged in the M-site frame, and a single set

of three partial charges describes both the dipole and quadrupole moment.

More importantly, a value of γ can be derived such that the ∆ component in Eq. (5.325.32)

vanishes, resulting in the compactly written moment tensor

θ =


θT 0 0

0 −θT 0

0 0 0.

 (5.42)

138



“Thesis” — 2022/11/3 — 8:17 — page 139 — #147

5.7. DISCUSSION AND CONCLUSIONS

This illustrates that the principal quadrupole moment component θT is origin inde-

pendent, and is the rational for placing the partial charge on the M-site and not on

the oxygen center. The strength of the quadrupole moment interaction is determined

by θT . For the ground state PE-PES water monomer configuration used in this work

a γ = 0.4071 results in a compact tensor of the form in Eq. (5.425.42) (see the Supplemen-

tary Information). Similar values for γ are reported in potential functions based on

the M-site. While such a three site partial charge model can capture both the dipole

and principal quadrupole moment for a fixed ground state monomer configuration, the

question is how the model holds up in the case of a flexible water monomer.
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Figure 5.8: M-site model making use of a fixed charge (γ − qH
eq, red) in the ground

state monomer configuration or the DMS charges (γ − DMS, green). The fixed point

charge model (red) tends to underestimate the strength of the quadrupole moment

over the whole range, whereas when based on the DMS charges (green) the quadrupole

moment is underestimated in the lower region and overestimated in the higher region

(> 3.0 DÅ).

Using the ab inito ICE-CI quadrupole moment data four M-site models are considered

and compared, and are representative of M-site models encountered in the literature.
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Figure 5.9: M-site model making use of scaled charge (γ−qH∗
eq , magenta) and a combi-

nation of scaled DMS and fixed charges as in Eq. (5.255.25) (γ− (DMS + qH
eq)∗, blue). The

overall trend is better captured in Figs. 5.85.8 and 5.95.9, but the scatter is still substantial

for the scaled fixed charge model (magenta). The agreement is improved substantially

with the mixture of fixed charges and variable DMS charges (blue) compared to the

other models, and the scatter is more concentrated in the region of low θT . See the

Supplementary Information for details on the M-site models.

The details of the models and parameters are presented in the Supplementary Infor-

mation. The first two models, Fig. 5.105.10 left, make use of γ = 0.4071 and a set of

fixed partial charges (γ − qH
eq) – corresponding to the partial charges of the ground

state monomer configuration – or scaled ground state charges (γ − qH,∗
eq ). The scaling

parameter is fit such that the model best captures θT over the whole range. The fixed

point charge model tends to underestimate the strength of the quadrupole moment

over the whole range, whereas the scaling of the charge results in a change in the slope

and overall better agreement. However, in both cases the scatter is substantial and the

RMS difference between the trace components of the quadrupole moment versus the

ab inito values is > 10% on average (see the Supplementary Information).
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Figure 5.10: M-site models. See the Supplementary Information for details on the

individual models. Left: M-site models making use of a fixed charge (γ − qH
eq, red)

corresponding to the ground state monomer configuration or scaled charge (γ − qH,∗
eq ,

cyan). The fixed point charge model (red) tends to underestimate the strength of the

quadrupole moment over the whole range, whereas the scaling results in a change in

the slope and an overall better agreement. Right: M-site models making use of variable

DMS charges (γ−DMS, green) and scaled DMS charges (γ−DMS∗), magenta). Both

model tend to underestimate the strength of the quadrupole moment in region of low

strength, whereas overestimate in the region of large strength. The agreement is only

slightly improved with the scaled DMS model, corresponding to a shift of the M-site

to γ = 0.3838.
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In the third and fourth model, Fig. 5.105.10 right, the charge are described with the DMS

charge. In the third model the optimal γ value is used (γ − DMS) and in the fourth

model the DMS charges are scaled (γ−DMS∗) to best capture θT over the whole range.

The qualitative trend is the same in both cases, with the strength of the quadrupole

moment underestimated in the region of low strength, and overestimated in the region

of large strength, and the overall agreement is only slightly improved with a change in

the slope. Similar to the fixed charge models the scatter is substantial, and the RMS

difference is found to be ≈ 10%, on average.

While the simple M-site models capture the overall qualitative trend in the change of

the principal quadrupole moment over a broad range of configurations, an analysis of

the RMS difference of the quadrupole moment components shows that they deviate

significantly for monomer configurations different than the ground state configuration.

Neither the fixed charge or DMS charge M-site models (scaled or not) seem to better

capture the principal quadrupole component over the other, and in all cases the RMS

difference is around 10% or greater. This illustrates that a three site model based on

the M-site principle is not able to capture the variation of the quadrupole moment in

a flexible water potential model to a good degree. The four site QMS model developed

in this work, which captures the principal quadrupole moment with a mean absolute

error of 0.04 DÅ, similarly has low scatter throughout the range with an average

RMS difference of 1.6%, with greatest discrepancy in the region where the quadrupole

moment interaction is the weakest.

Furthermore, the intermolecular interactions of the SCME/f model only depend on

five parameters. The parameters have been fitted to reproduce high level quantum

chemistry calculations for the water dimer energy surface near the equilibrium geom-

etry and interaction energy of the lowest-lying water clusters up to and including the

hexamer, as well as the properties of the Ih ice crystal – and in such a way that ex-

perimental values are reproduced to a good degree after including zero point energy

corrections.

The simple parameterization of the flexible model and the use of a single center for
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the electrostatic interactions allows for the seamless integration into our recently im-

plemented PE-QM/MM interface [7272, 7373].

The calculated energy of the higher lying energy isomers of hexamer water cluster are

found to be in a reasonable agreement with the results of CCSD(T) calculations in

the complete basis set limit. [7979] The relative trend in the energy differences between

the isomers, as well as the overall structures are captured to a good degree. This

represents a significant improvement over the rigid SCME potential function and is

on par with the trend predicted with the HBB2-pol [3636, 3737] potential function, which

explicitly models the N-body expansion up to the three-body terms in the interaction

energy and is the predecessor of the MB-pol potential function. [3838–4040] However,

discrepancies are present in the series of pentamer isomers, in particular the cage-like

isomers. H-bonds in bonds where the distance is greater than 3 Å are found to be

unstable, leading to a rearrangement of some of the SCME/f structures compared to

the reference structures.

Analysis of the vibrational modes of the small water clusters reveal a substantial im-

provement with the QMS mapping included (as opposed to a fixed value). In particular

are the intramolecular bending modes in the range 1600 to 1800 cm−1, with maximum

absolute deviation consistently less than 20 cm−1 with the QMS included, compared

to near-CBS CCSD(T) calculations. [111111, 112112] Importantly, including the DMS only

results in the opposite trend of the intramolecular angle widening in crystal ice Ih com-

pared to the gas phase. The inclusion of the QMS recovers the correct trend due to the

balance between the magnitude of the dipole and principal quadrupole moment which

are functions of the internal geometry and strongly dependent on this angle.

While the results presented here represent an important step forward in the develop-

ment of a single center multipole expansion model for water, there is room for improve-

ment, and this will be addressed in future work. A natural next step to the mapping of

the dipole and the quadrupole is to incorporate a mapping of the polarizability tensors.

Work is ongoing to incorporate the intramolecular geometry dependent mapping of the

dipole-dipole, dipole-quadrupole and quadrupole-quadrupole polarizability tensors by
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Loboda et al. [116116]. It has been suggested that a critical part of the H-bond OH soften-

ing lies in the correct mapping of the polarizability surface of the individual monomers.

[3535]

In particular, and in order to further address the overestimated H-bonded OH stretches,

an improvement of the underlying water monomer potential energy surface – whose

limit in terms of hydrogen dissociation is OH· + H· – must be made when there are

neighboring water molecules such that it approaches to some degree the dissociation

limit in a condensed phase which is OH– + H+. In order to capture this one could

modify the DMS and QMS charges to better represent this limit, and in a way which

depends on the environment. Modifying the charge of the DMS has, for example,

previously been considered in water potentials in order to capture the charge delocal-

ization and resulting softening of the H-bond, such as in the TTM3-F model. [3434]

Further improvements to this flexible SCME model that are being pursued include a

more elaborate repulsive part including deviations from spherical symmetry.

144



“Thesis” — 2022/11/3 — 8:17 — page 145 — #153

5.A. APPENDIX

5.A Appendix

The supporting information includes a detailed derivation of the atomic forces corre-

sponding to contributions presented in Eq. (5.375.37), as well as a comparison between

the numerical and analytical forces as the convergence criteria of the induced mo-

ments is varied. The parameters used for the model M-site description of the principal

quadrupole moment are presented, followed by an analysis of the RMSD between ab

initio versus the QMS quadrupole as well as model M-site quadrupoles with respect to

geometrical variation of the monomer. Binding energies and relative structural prop-

erties of the lowest-lying water clusters are given for the case where the quadrupole

moment is set to a fixed value corresponding to the ground state monomer configu-

ration. Finally, the evaluation of the bulk properties from fitting the energy-volume

relation – with and without zero-point energy corrections – is described.

5.A.1 Analytical Forces

We further apply the chain rule considering the main electrostatic plus induction force

expression in the main text

−
(
∂Eele+ind

∂riaα
+
∂Eself

∂riaα

)
=− ∂Eele+ind

∂µjβ({rjb})
∂µjβ({rjb})

∂riaα
− ∂Eele+ind

∂θjβγ({rjb})
∂θjβγ({rjb})

∂riaα

− ∂Eele+ind

∂V jβγδε...η

∂V jβγδε...η
∂riaα

−
(
∂Eele+ind

∂Rjνo
+
∂Eself

∂Rjνo

)
∂Rjνo
∂riaα

(5.43)

The last term on the right hand side describes the force contribution due to the defini-

tion of the local-to-global reference frame transformation, and is the only term which

includes an explicit contribution to the atomic forces due to the self-energies. To see

this we first write the MM induced dipoles and quadrupoles as

∆µiα = −ααβV iβ −
1

3
Aα,βγV

i
βγ = ∆µiα(α) + ∆µiα(A) (5.44)

∆θiαβ = −Aγ,αβV iγ − Cγδ,αβV iγδ = ∆θiαβ(A) + ∆θiαβ(C) (5.45)
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where on the right hand side of the second equality the contribution from the external

field and field gradient due to the on-site potential is split up. With these definitions

it is easy to relate the external field and field gradient at site i to the self-consistent

moments of molecule i

V iβ =− ∆µiα(α)

ααβ
(5.46)

V iγ =−
∆θiαβ(A)

Aγ,αβ
(5.47)

and

V iγδ =−
∆θiαβ(C)

Cγδ,αβ
(5.48)

V iβγ =− ∆µiα(A)

Aα,βγ
. (5.49)

The self-energy of an induced dipole in linear response theory is

Eµself = −
∫ ∆µi

0

V iβd∆µi. (5.50)

It gives the energy cost of inducing a first order moment in the potential field at site i.

By inserting the relation in Eq. (5.465.46) into the equation above, and by considering only

(for the moment) the induced dipole in in response to an external field gives

Eµself =

∫ ∆µi(α)

0

∆µiα(α)

ααβ
d∆µi =

1

2

∆µiα(α)∆µiβ(α)

ααβ
. (5.51)

For isotropic atomic polarization this becomes

Eiso
self =

1

2

(∆µi)2

α
. (5.52)

This form is most frequently encountered in MM work based on isotropic atomic po-

larization and induced dipole in response to an external field. Similarly for the induced

quadrupole

Eθself = −1

3

∫ ∆θi

0

V iβγd∆θi (5.53)

which expresses the energy cost of inducing a second order moment in the field gradient

at site i. The factor of 1/3 follows from the definition of the traceless Cartesian moments
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[8282] used in SCME. The total self-energy for a single site i in SCME is then

Eself =Eµself + Eθself

=

∫ ∆µi

0

∆µiα(α)

ααβ
d∆µi +

1

3

∫ ∆θi

0

∆θiαβ(C)

Cγδ,αβ
d∆θi

=
1

2

∆µiα(α)

ααβ

(
∆µiβ(α) +

1

3
∆µiβ(A)

)
+

1

6

∆θiαβ(C)

Cγδ,αβ

(
∆θiγδ(C) + ∆θiγδ(A)

)
=

1

2

∆µiα(α)∆µiβ(α)

ααβ
+

1

3

∆µiα(α)∆θiβγ(C)

kα,βγ
+

1

6

∆θiαβ(C)∆θiγδ(C)

Cγδ,αβ
(5.54)

where the relations in Eqs. (5.465.46) and (5.495.49) are used. The matrix k is given by

k =
αC

A
(5.55)

This expression for the self-energies is very useful at self-consistency (SCF). First and

foremost it shows that there are no force contributions arising from partial derivatives

of the on-site potential field and field gradients when considering the self-energy terms,

since at SCF we have
∂Esys

tot

∂∆µiα
=
∂Esys

tot

∂∆θiα
= 0, (5.56)

which implies
∂Eself

∂V jbβγδε...η
= 0 (5.57)

Contributions arise from the static octupole and static hexadecapole, as well as the

dipole-dipole, dipole-quadrupole quadrupole-quadrupole polarizability matrices. The

general contributions are of the following form

∂E

∂Rjνo

∂Rjνo
∂riaα

→ δijδνo,βγ (5.58)

resulting in for the static moments

∂Eele+ind

∂Rjνo

∂Rjνo
∂riaα

=
1

15

(
∂Riηβ
∂riα

RiτγR
i
κδ +Riηβ

∂Riτγ
∂riα

Riκδ +RiηβR
i
τγ

∂Riκδ
∂riα

)
Ωi

′

ητκV
i
βγδ

+
1

105

(
∂Riηβ
∂riaα

RiτγR
i
κδR

i
ση +Riηβ

∂Riτγ
∂riaα

RiκδR
i
ση

+RiηβR
i
τγ

∂Riκδ
∂riaα

Riση +RiηβR
i
τγR

i
κδ

∂Riση
∂riaα

)
Φi

′

ητκσV
i
βγδε (5.59)
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and for the polarizability matrices the contributions are(
∂Eele+ind

∂Rjνo
+
∂Eself

∂Rjνo

)
∂Rjνo
∂riaα

= −1

2

(
∂Riηβ
∂riα

Riτγ +Riηβ
∂Riτγ
∂riα

)
αi

′

ητV
i
βV

i
γ

− 1

3

(
∂Riηβ
∂riα

RiτγR
i
κδ +Riηβ

∂Riτγ
∂riα

Riκδ +RiηβR
i
τγ

∂Riκδ
∂riα

)
Ai

′

ητκV
i
βV

i
γδ

− 1

6

(
∂Riηβ
∂riα

RiτγR
i
κδR

i
ση +Riηβ

∂Riτγ
∂riα

RiκδR
i
ση

+RiηβR
i
τγ

∂Riκδ
∂riα

Riση +RiηβR
i
τγR

i
κδ

∂Riση
∂riα

)
Ci

′

ητκσV
i
βγV

i
δη (5.60)

where the factors 1/2, 1/3 and 1/6 are due to the self-energy terms – i.e. the contri-

bution from the electrostatic plus induction interaction is reduced exactly by one-half

due to net cancellation by the self-energy terms.

Different choices of local frames and principal vectors, as well as atomic force contribu-

tions, are detailed in the work of Lipparini et al. [8181] The specific choices in this work

which define the rotation matrix RiΛλ result in obvious sign changes compared to their

work, so the atomic contributions are detailed below in compact form. We require the

derivatives of the rotation matrix with respect to the atomic coordinates which can be

written as

∂RiΛλ
∂riaα

=


∂eiXx
∂riaα

∂eiXy
∂riaα

∂eiXz
∂riaα

∂eiYx
∂riaα

∂eiYy
∂riaα

∂eiYz
∂riaα

∂eiZx
∂riaα

∂eiZy
∂riaα

∂eiZz
∂riaα

 (5.61)

The COM and principal vectors used to define the rotation are

ri =
∑
a∈i

ria
Ma

M i
, Bi = ri − riH1 , Ci = ri − riH2 (5.62)

Defining

Di = BiCi + CiBi (5.63)

such that

eiZ =
Di

Di
(5.64)
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where Bi, Ci and Di are the euclidean norms of the vectors, the terms in the derivative

of the rotation matrix, Eq. (5.615.61), are then

∂eiZλ
∂riaα

=
∂eiZλ
∂Di

β

(
∂Di

β

∂riγ

∂riγ
∂riaα

+
∂Di

β

∂riaα

)
(5.65)

∂eiXλ
∂riaα

=
∂eiXλ
∂Biβ

(
∂Biβ
∂riγ

∂riγ
∂riaα

+
∂Biβ
∂riaα

)
+
∂eiXλ
∂eiZβ

∂eiZβ
∂riaα

(5.66)

∂eiYλ
∂riaα

=
∂eiYλ
∂eiXβ

∂eiXβ
∂riaα

+
∂eiYλ
∂eiZβ

∂eiZβ
∂riaα

(5.67)

where the leading terms are as follows

∂eiZλ
∂Di

β

=

(
I

Di
− Di ⊗Di

(Di)3

)
λβ

(5.68)

∂eiXλ
∂Biβ

=

(
I− eiZ ⊗ eiZ − eiX ⊗ eiX

| Bi − (Bi · eiZ)Bi |

)
λβ

(5.69)

∂eiXλ
∂eiZβ

=

(
(Bi · eiZ)eiX ⊗Bi

| Bi − (Bi · eiZ)Bi |2
− (Bi · eiZ)I + eiZ ⊗Bi

| Bi − (Bi · eiZ)Bi |

)
λβ

(5.70)

∂eiYλ
∂eiZβ

=ελστδβσe
iX
τ (5.71)

∂eiYλ
∂eiXβ

=ελστe
iZ
σ δβτ (5.72)

where I is the 3×3 identity matrix and εαβγ the Levi-Civita symbols. The latter terms

are

∂Di
β

∂riγ

∂riγ
∂riaα

=

(
(Bi + Ci)I +

Bi ⊗Ci

Ci
+

Ci ⊗Bi

Bi

)
βγ

δγα
Ma

M i
(5.73)

∂Di
β

∂riH1
α

=−
(
BiI +

Bi ⊗Ci

Ci

)
βα

(5.74)

∂Di
β

∂riH2
α

=−
(
CiI +

Ci ⊗Bi

Bi

)
βα

(5.75)

∂Biβ
∂riγ

∂riγ
∂ria

=δβγδγα
Ma

M i
(5.76)

∂Biβ

∂riH1
α

=− δβα (5.77)
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For the DMS (see the main text) the first term on the right hand side is

∂Eele+ind

∂µjβ({rjb})
=

(
∂Eele+ind

∂µjβ({rjb})
+
∂Eele+ind

∂V kγδ...η

∂V kγδ...η

∂µjβ({rjb})

)
=

1

2
V jβ +

1

2

n∑
k

δjkV
k
β

(5.78)

∂µjβ({rjb})
∂riaα

=

(
∂qjb

∂riaα
+
∂rjb

∂riaα

)
= δji

(
ni∑
b

∂qjb

∂riaα
rjbβ + δbaq

jbδβα

)
(5.79)

∂Eele+ind

∂µjβ({rjb})
∂µjβ({rjb})

∂riaα
=qiaV iα +

ni∑
b

∂qib

∂riaα
ribβ V

i
β (5.80)

The derivatives of the DMS, ∂qib

∂riaβ
, with respect to the atomic positions are derived by

Burnham and Xantheas [3232] and are available in open source repositories.

For the force contribution due to the QMS we first rewrite the following expres-

sion

θiαβ(riO, riH1 , riH2) =

H′
1,H

′
2,L1,L2∑
a

3

2

{
qia
(

(ria − ri)α(ria − ri)β −
δαβ
3
||ria − ri||

)}
(5.81)

noting that the position of the L-sites in the global frame are

riLlα = RiHlηα e
iZ
η f(rHl) + riα (5.82)

we remove redundant terms and the expression for the QMS becomes

θiαβ(riO, riH1 , riH2) =
3

2

{H′
1,H

′
2∑

a

qia
(

(ria − ri)α(ria − ri)β −
δαβ
3
||ria − ri||

)

+

1,2∑
l

qiLl
(
driLlα driLlβ −

δαβ
3
||driLl ||

)}
(5.83)

where

driLlα = RiHlηα e
iZ
η f(rHl) (5.84)
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Similar to the DMS we have

∂Eele+ind

∂θjβγ({rjb})
=

(
∂Eele+ind

∂θjβγ({rjb})
+
∂Eele+ind

∂V kδκ...η

∂V kδκ...η

∂θjβγ({rjb})

)
=

1

6
V jβγ +

1

6

n∑
k

δjkV
k
βγ

(5.85)

∂θjβγ({rjb})
∂riaα

=
3

2
δji

{H′
1,H

′
2∑

b

∂qjb

∂riaα

(
(rjb − rj)β(rjb − rj)γ −

δβγ
3
||rjb − rj ||

)

+

1,2∑
l

∂qjLl

∂riaα

(
drjLlβ drjLlγ − δβγ

3
||drjLl ||

)

+

H′
1,H

′
2∑

b

qjb

(
δβα

(
δba −

nj∑
c

δca
M c

M j

)
(rjb − rj)γ

+ (rjb − rj)βδγα

(
δba −

nj∑
c

δca
M c

M j

)

+ δβγ
2

3

(
δba −

nj∑
c

δca
M c

M j

)
δαδ(r

jb − rj)δ

)

+

1,2∑
l

qjLl

(
δβα

∂drjLlβ

∂riaα
drjLlγ + drjLlβ δγα

∂drjLlγ

∂riaα

+ δβγ
2

3

∂rjLlδ

∂riaα
drjLlδ

)}
(5.86)

The terms involving the partial derivative of the charges for each site are readily avail-

able since through the definition of the QMS charges we have

qiH
′
l =AqiHl + BqiHleq (5.87)

qiLl =CqiHl + DqiHleq (5.88)
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and hence the expression reduces to

∂Eele+ind

∂θjβγ({rjb})
∂θjβγ({rjb})

∂riaα
=

1

2

1,2∑
l

{
∂qiHl

∂riaα

(
A

(
driHlβ driHl

γ − δβγ
3
||driHl ||

)

+ C

(
driLlβ driLlγ −

δβγ
3
||driLl ||

))

+ qiH
′
l

(
2

(
δba −

ni∑
c

δca
M c

M i

)
driHl
γ δβα

− 2

3

(
δba −

ni∑
c

δca
M c

M i

)
driHlα δβγ

)

+ qiLl

(
2
∂driLlβ

∂riaα
driLlγ −

2

3

∂driLδ
∂riaα

driLlδ δβγ

)}
V iβγ (5.89)

where

driHlα = (riHl − ri)α (5.90)

The only unknowns are the derivatives of the position of the L-sites in the local frame

reference. Applying the rotation operators

RiL1 =
(

cos(θ′)I− sin(θ′)
[
eiX
]
×

)
(5.91)

RiL2 =
(

cos(θ′)I + sin(θ′)
[
eiX
]
×

)
(5.92)

on eiZ in the case of L1 and L2 the expression for the local frame vectors becomes

driL1
α =

(
cos(θ′)eiZα − sin(θ′)eiYα

)
f(riH1) (5.93)

driL2
α =

(
cos(θ′)eiZα + sin(θ′)eiYα

)
f(riH2) (5.94)

Derivatives of the expressions above are of the form

∂driLlβ

∂riaα
=
∂driLlβ

∂eiZγ

∂eiZγ
∂riaα

+
∂driLlβ

∂eiYγ

∂eiYγ
∂riaα

+
∂driLlβ

∂f(rHl)

∂f(rHl)

∂riaα

+

(
∂driLlβ

∂cos(θ′)

∂cos(θ′)

∂θ′
+

∂driLlβ

∂sin(θ′)

∂sin(θ′)

∂θ′

)
∂θ′

∂riaα
(5.95)
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For l = 1 as an example the leading terms are

∂driLlβ

∂eiZγ
=cos(θ′)f(riH1)δβγ (5.96)

∂driLlβ

∂eiYγ
=− sin(θ′)f(riH1)δβγ (5.97)

∂driL1

β

∂f(rH1)
=
(
cos(θ′)eiZβ − sin(θ′)eiYβ

)
(5.98)

∂driLlβ

∂cos(θ′)

∂cos(θ′)

∂θ′
=eiZβ (sin(θ′)) f(riH1) (5.99)

∂driLlβ

∂sin(θ′)

∂sin(θ′)

∂θ′
=eiYβ (−cos(θ′)) f(riH1) (5.100)

and the two remaining latter terms are

∂f(rH1)

∂riH1
α

=− b (rO − rH1)α
| rO − rH1 |

− 2cf(rH1)
(rO − rH1)α
| rO − rH1 |

(5.101)

∂θ′

∂riH1
α

=
1√

1− x2

(
− (rO − rH2)α
| rO − rH1 || rO − rH2 |

+ x
(rO − rH1)α
| rO − rH1 |2

)
(5.102)

where

x =
(rO − rH1) · (rO − rH2)

| rO − rH1 || rO − rH2 |
and

θ′ = arccos(x) (5.103)

Finally, the third term on the right hand side in the force expression of equation 5.435.43

is the partial derivatives of the external field at each site with respect to the atomic

positions. It is of the general form

∂Eele+ind

∂V jβγδε...η

∂V jβγδε...η
∂rkδ

∂rkδ
∂riaα

→ Oiβγδε...ηV
i
αβγδε...η

Ma

M i
(5.104)

where Oiβγδε...η is the (n − 1)th ranked moment tensor (static plus induced) and

V iαβγδε...η the corresponding nth ranked external potential gradient. Considering the

electrostatic plus induction interaction expression (see the main text), this leads to

∂Eele+ind

∂V jβγδε...η

∂V jβγδε...η
∂rkδ

∂rkδ
∂riaα

=

(
(µiβ({ria}) + ∆µiβ)V iαβ +

1

3
(θiβγ({ria}) + ∆θiβγ)V iαβγ

+
1

15
ΩiβγδV

i
αβγδ +

1

105
ΦiβγδεV

i
αβγδε

)
Ma

M i
(5.105)
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The energy-force consistency of the formulation is checked against numerical forces,

and at different convergence criteria of the induced moments, see figure 5.115.11.

Figure 5.11: C2v isomer configuration for the water dimer (top left), used for the

numerical versus analytical forces at different convergence criteria ranges for one of the

right hydrogens, HR (top right), as well as the left and right oxygen, OL (bottom left)

and OR (bottom right). The convergence of the force components is shown versus the

magnitude of the convergence criteria, CC, which is defined as
∑
i | ∆µin+1 −∆µin |≤

CC, and similarly for the induced quadrupole moment. Good energy-force consistency

is reached reliably at a criteria of 1e-6 D for the dipole (or DÅ for the quadrupole).
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5.A.2 Deviation of M-site Models

The general expression for the %RMS difference is given by

%RMS =

√∑x,y,z
i (θii − θab initio

ii )2∑x,y,z
i (θab initio

ii )2
× 100% (5.106)

and reveals if there is a large deviation from the individual components of the quadrupole

moment along the trace, {θxx, θyy, θzz}, relative to the trace norm. While a quadrupole

model may capture the principal quadrupole component θT , such as the M-site based

γ−(DMS−qH
eq)∗ model, to a reasonable degree this can simply be due to a net cancella-

tion of errors in the individual components. The QMS model captures both the θT and

the ∆ component on average at around 1.6% evaluated over the whole range. There is

no systematic correlation in the deviation of the quadrupole components of the QMS

models and the RMSD of the monomer geometry from the equilibrium geometry. The

RMSD of the geometry is evaluated with the Kabsch algorithm [110110].

To solve for the γ factor and hence the position of the M-site such that ∆ vanishes

(see main text), one considers the water monomer in the equilibrium configuration

with the oxygen placed at the origin. In this configuration and frame of reference the

quadrupole moment tensor only has components along the trace {θxx, θyy, θzz}, where

θzz = 2∆. This component, in terms of the charges and positions of the hydrogens and

the M-site, is given by [117117]

θzz = qH(−(rH
x )2 + 2(rH

z )2 − 2(rM
z )2) (5.107)

which is trivial to solve in order for ∆ to vanish, by using the generalization of this

expression in the global coordinate frame [113113–115115]

rM = (1− γ)rO +
γ

2
(rH1

+ rH2
) (5.108)

5.A.3 Energy-Volume Curves for Ice Ih

Fig. 5.135.13 shows energy-volume curves without (Etot(V ), blue) and with zero-point-

energy correction according to the quasi-harmonic approximation (Etot+ZPE(V ), red).

155



“Thesis” — 2022/11/3 — 8:17 — page 156 — #164

CHAPTER 5. TRANSFERABLE POTENTIAL FUNCTION FOR FLEXIBLE H2O

0.00 0.05 0.10 0.15 0.20 0.25
RMS Geometry [Å]

0

10

20

30

40

50

%
RM

S 
M

om
en

ts

DMS
(DMS + qH

eq) *

QMS

Figure 5.12: Root-mean-square percentage difference between the three diagonal com-

ponents of the quadrupole moment tensors of two M-site models and the QMS model

versus the ab initio (ICE-CI) quadrupole moment tensor respectively. The ab initio

and the average RMS percentage QMS difference is around 1.6%. The largest devi-

ation corresponds to the numerically lowest θT . There is no correlation between the

magnitude of the relative geometrical change relative to the ground state monomer

geometry and the deviation of the quadrupole moment.

The indicated 6 data points are the direct results from the calculations with the opti-

mized (final) parameters for SCME/f described in the main article around the equilib-

rium volume. The lines are the results of least-square fits to the Rose-Vinet equation

of state

E(η) = E0 +
2B0 V0

(B′ − 1)2
·
[
2− (5 + 3B′ (η − 1)− 3η) · exp

(
−3

2
(B′ − 1) (η − 1)

)]
(5.109)

as implemented in the PHONOPY package [108108], where η = V
V0

and E0 = −Elat. The

corresponding fit parameters compiled in Table 5.95.9. We have verified that adding more

points does not yield significant changes for the fit parameters, in particular those that

are directly compared against experimental data (E0, V0 and B0).
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Figure 5.13: Energy-volume curves without (Etot(V ), blue) and with zero-point-energy

correction (Etot+ZPE(V ), red) obtained with the optimized (final) parameters for

SCME/f. Energies and volumes are per water molecule.

E0 (eV) V0 (Å3) B0 (eV/Å3) B0 (GPa) B′

Etot 0.645 30.38 0.094 15.0 5.39

Etot+ZPE 0.489 31.98 0.076 12.2 5.68

Table 5.9: Fit parameters for the Rose-Vinet equation (Eq. (5.1095.109)) for the fits to

Etot(V ) and Etot+ZPE(V ) shown in Fig. 5.135.13. All quantities are given per water

molecule.
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CHAPTER 6

Volume Isotope Effect of Ice Ih

This chapter is based on:

S. Rasti, E. Ö. Jónsson, H. Jónsson and J. Meyer, New Insights into the Volume

Isotope Effect of Ice Ih from polarizable many-body Potentials, to be submitted
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Abstract

The volume-isotope effect (VIE) of ice Ih is studied computationally. Nuclear quan-

tum effects in the Helmholtz free energy are accounted for based on the quasi-harmonic

approximation and evaluated by extensive phonon calculations. Focusing on recently

developed polarizable many-body potentials as interaction models, one of them (MB-

pol) is found to yield the anomalous VIE in very good agreement with the most recent

high-resolution neutron diffraction measurements – much better than DFT calculations

with the PBE functional. Using the MB-pol energy partitioning, a surprisingly large

influence of the cooperative interaction between three water molecules for the VIE and

its temperature dependence up to 200 K is being revealed. The interaction models

are further scrutinized by decomposing the zero-point pressure into contributions from

different vibrational mode groups. MB-pol’s remarkable performance is confirmed by

comparing to a hitherto unconsidered benchmark value for the intramolecular stretch-

ing modes of H2O ice Ih obtained from Raman spectroscopy data. This unveils the

delicate competition between the librational and intramolecular stretching modes upon

substitution of hydrogen by deuterium as the driving force behind the VIE – mitigated

by three-body effects.

6.1 Introduction

Nuclear quantum effects can manifest themselves quite prominently in macroscopic

thermodynamic properties, like for example phase transition enthalpies [11], negative

thermal expansion (NTE) or density change at low temperatures upon substitution of

a light by a heavier isotope [22]. The latter is called the volume isotope effect (VIE)

and originates from the zero-point energy of the lattice vibrations (phonons). Most

materials show a normal VIE, which means substitution with heavier isotopes results in

a smaller volume per unit cell at temperatures approaching the absolute zero. A hand-

waving rationalization in a classical picture is that the larger vibrational amplitude and

concomitant volume ascribed to a lighter isotope compared to heavier isotope, which
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both experience the same chemical interaction potential at the same temperature. In ice

Ih, the most common form of solid water on earth, the VIE is anomalous, resulting in a

smaller unit cell volume of the H2O compared to the D2O isotopologue (about 0.1 % up

to 200 K [33, 44]). Despite its small magnitude, the effect has been very well quantified

experimentally. Only recently, high-resolution neutron diffraction measurements [44]

have reduced the uncertainties for the unit cell volumes of ice Ih compared to earlier

work [33] over a wide temperature range and thus provide an excellent benchmark for

atomistic interaction models that can be employed in computational studies.

Computational modeling of the VIE is very challenging. So far, water force fields

ranging from simple fixed point charge up to sophisticated polarizable models have all

predicted a normal VIE for ice Ih [55–77]. Density functional theory on the other hand

is able to model the VIE of different ice phases [77–99]. However, even a qualitatively

correct description depends very strongly on the computational settings, in particular

the choice of the exchange-correlation functional [77]. Quantification of the VIE using

embedded-fragment ab initio second-order many-body perturbation (MP2) theory has

been faring somewhat better [1010]. But also here, the results are very sensitive to

computational details like the basis set size and the embedding field. This also holds for

the individual contributions of the different groups of phonon modes to the zero-point

pressure, which are ultimately responsible for the VIE [88, 1010]. These contributions are

commonly expressed in form of the mode-specific Grüneisen parameters and have not

been benchmarked against experimental data. Consequently, a detailed understanding

of the VIE’s origin in terms of the competition of different contributions to the chemical

interaction potential has been elusive so far.

In this work, that understanding is provided based on recently developed polarizable

many-body potentials as interaction models. Building on recent studies (see Chapters 33

and 55), the quasi-harmonic approximation is employed to account for nuclear quantum

effects in the Helmholtz free energy by means of extensive phonon calculations. The

MB-pol interaction model, whose short-range part is rooted in coupled-cluster calcu-

lations, yields the anomalous VIE of ice Ih in better agreement with the experimental
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reference value than DFT calculations with the PBE functional. A decomposition of the

zero-point pressure into contributions from different vibrational mode groups together

with a hitherto unconsidered benchmark value obtained from Raman spectroscopy [1111]

allows to scrutinize this further. According to the MB-pol total energy parititioning,

the delicate competition between the librational and intramolecular stretching modes

driven by a surprisingly large influence of three-body effects is responsible for the

anomalous VIE of ice Ih.

6.2 Methods

For the quantification of the VIE, this work employs the quasi-harmonnic approxima-

tion (QHA), which has been used successfully for the same purpose in the past [77–

1010, 1212]. According to the QHA, the Helmholtz free energy of the ice crystal is given

by

F (V, T ) = U(V ) +
1

2

∑
i

h̄ωi(V )︸ ︷︷ ︸
EZP(V )

+ kBT
∑
i

ln

(
1− exp

(
−h̄ωi(V )

kBT

))
(6.1)

and is conveniently evaluated per molecule. U is the internal energy that describes

the interaction between molecules in the crystal. ωi are the vibrational modes, which

determine the second (zero-point energy Ezp) and temperature-dependent third term

of F . For the sake of simplicity, they are denoted by a collective index i that stands for

both wave-vector and band indices of the corresponding phonon modes (see Section 2.42.4

for more details). The internal energy U and the vibrational modes ωi depend on the

unit cell volume V , so that the minimum of F with respect to V at a given temperature

is generally different for H2O and D2O isotopologues. The corresponding volumes are

labeled VH2O(T ) and VD2O(T ) in the following. V0 minimizes U(V ), with the zero-

reference of the latter defined such that the lattice energy Elat = U(V0).

In this work, calculations with different interaction models are performed11, employ-

ing and extending the Atomic Simulation Environment (ASE) [1313] for interfacing

1More details about these models are given in Sections 2.22.2 and 2.32.3 of this thesis.
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their respective implementations. This includes the fixed-point-charges-based force

fields q-TIP4P/F [1414, 1515] (as available in LAMMPS [1616]), the polarizable force fields

AMOEBA14 [1717, 1818] (as implemented in Tinker [1919]), SCME/f [2020] (and Chapter 55)

and MB-pol (as implemented in the MBX package) [2121–2323]. All-electron density func-

tional theory (DFT) calculations with the PBE exchange-correlation functional [2424]

are carried out with FHI-aims code [2525, 2626], using the same high-accuracy settings

thoroughly verified [2727] and employed [2828, 2929] for ice Ih in previous work (see Sec-

tion 6.A.16.A.1 for details). The DFT calculations mimic proton disorder with a simulation

cell containing 12 molecules [3030]. A 96 molecule cell or supercells of this cell have been

used for the force field interaction models to ensure the same level of convergence for

V0 (±0.01�A
3

per molecule [2727]). For all interaction models, V0 is calculated with ASE

as in our earlier work by a combined optimization of the cell vectors and the molecular

degrees of freedom preserving the space group [2929] with a maximum force threshold of

1.0× 10−3 eV�A
−1

.

A continuous representation of U(V ) is obtained by least-square fitting to the Rose-

Vinet [3131] equation of state. Isotropic contraction and expansion of V0 by±4 % yields 11

structures for each interaction model, for which again all molecular degrees of freedoms

have been relaxed. Phonon calculations have been carried out for all of these structures

with the phonopy code [3232], using a finite displacement [3333] of 0.02�A in 3 × 3 × 3

supercells of the original simulation cell. The Brillouin zone has been sampled by

30× 30× 30 and 10× 10× 10 grids of phonon wave vectors in the 12 molecule and 96

molecule simulation cells, respectively. The implementation of the QHA in phonopy

then yields a continuous representation of the volume-dependent second and third

terms in Eq. (6.16.1) and thus VH2O(T ), VD2O(T ), VIE(T ) =
VD2O

VH2O
− 122 and the phonon

mode-dependent Grüneisen parameters γi. Convergence checks for the VIE can be

2This work uses the same convention as in the recent work Fortes [44] to quantify the volume

isotope effect, i.e., VIE =
VD2O−VH2O

VH2O
, whereas others have used VIE’ =

VH2O−VD2O

VD2O
, which leads

to almost the same absolute numbers but flips the sign. Both expressions are related according

to VIE = − VIE’
1+VIE’

and VIE’ = − VIE
1+VIE

, respectively. For the sake of brevity, the temperature

dependence has been omitted.
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found in Section 6.A.26.A.2.

6.3 Results and Discussion

Table 6.16.1 compiles experimental data and results from calculations for V0, VH2O, VD2O

and the VIE for ice Ih. A positive (negative) value corresponds to an anomalous

(normal) VIE. The most recent results from the high-resolution neutron diffraction

measurements by Fortes [44] yield an even smaller and more accurately determined

anomalous VIE (+0.050± 0.002 %) than the earlier data from the work of Röttger

et al. [33] (+0.090± 0.015 %). In both studies, the lowest temperature at which mea-

surements have been performed is 10 K. For that reason, we have calculated VH2O and

VD2O at both 0 and 10 K to confirm that this has no effect on any of the numbers pre-

sented in Table 6.16.1. As demonstrated only recently, errors related to the treatment of

core and valence electrons in different DFT codes can be sizeable for the calculation of

energy-volume curves U(V ) [3434] and could thus significantly affect results for the VIE.

This is the most likely reason for the difference of 0.07 % between earlier DFT results

obtained with the same exchange-correlation functional (PBE) [77, 1212]. Our own PBE

calculations eliminate this source of error and perfectly reproduce the value for V0 ob-

tained in earlier work [2727, 2828]. In combination with our meticulous convergence tests for

the phonon calculations with respect to the VIE (see Section 6.A.26.A.2), we can therefore

confirm without any further doubts the conclusions from earlier work [77, 1212], namely

that the PBE functional reproduces the experimentally observed anomalous VIE but

overestimates it. Likewise, our computational setup also confirms that the q-TIP4P/F

force field, which is based on fixed point charges (see Section 2.3.12.3.1) yields a normal

VIE for ice Ih [77]. The same holds for the two polarizable force fields AMOEBA14 and

the recently established SCME/f (see Chapter 55). The results for VH2O and also for

VD2O obtained with SCME/f show the best agreement with the experimental values.

SCME/f is followed by MB-pol, which also yields VH2O < VD2O and consequently a

correct description of the anomalous VIE. The absolute value of +0.14 % is even in

much better agreement with the experimental data than (our) PBE results. This re-
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Table 6.1: Volumes V0, VH2O and VD2O for ice Ih (in �A
3

per molecule, rounded to

two decimals). The volume isotope effect is quantified by VIE =
VD2O

VH2O
− 1 (in percent,

calculated using more decimals). The experimental data for VH2O, VD2O and VIE have

been measured at T = 10 K [33, 44]. Calculations from this work with all interaction

models at 0 and 10 K do not yield any differences in the second decimal.

V0 VH2O VD2O VIE

Experiments

Fortes [44] 32.06 32.07 +0.05

Röttger et al. [33] 32.05 32.08 +0.09

Calculations – DFT with PBE functionala

this work 30.78 31.03 31.14 +0.36

Pamuk et al. [77]b 29.98 30.09 30.19 +0.33

Murray and Galli [1212] 30.50 30.57 30.67 +0.40

Calculations – polarizable force fields

MB-pol 31.07 31.44 31.49 +0.14

MB-pol w/o 3B 29.14 30.18 30.06 −0.39

SCME/f 30.38 31.98 31.68 −0.90

AMOEBA14 31.82 33.35 33.12 −0.67

Calculations – fixed-charge force field

q-TIP4P/Fc 31.24 32.83 32.63 −0.61
aSee Section 6.A.16.A.1 in the appendix to this chapter for a collection of other values for

V0 obtained with the PBE exchange-correlation functional in previous work.

bValue obtained with the QHA and a k-mesh of 729 points, which is most comparable

to the present work.

cNote that these values differ slightly from the results obtained by Pamuk et al. [77] due

to differences in the computational setups.
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Figure 6.1: Lattice energy Elat and its contributions according to the total energy

decomposition of the MB-pol force field [2121, 2222, 3535] (all in eV per molecule). The

intramolecular (1B) as well as intermolecular short-range two-body (2B), three-body

(3B) electrostatic (elec) and dispersion (disp) contributions add up to Elat (total).

Violet, red and blue bars depict equilibrium (V0) and isotropically compressed (0.96·V0)

and expanded (1.04 ·V0) lattice configurations, respectively, as encountered during the

phonon calculations for the determination of the VIE according to the QHA.

markable result also bares the opportunity to better understand what contributions to

the chemical bonding in the ice Ih crystal are responsible for the VIE. Among all the

force fields considered here, MB-pol is the only one which explicitly accounts for short-

range interactions involving triples of water molecules, which have been parameterized

to quantum-chemical CCSD(T) calculations [2121] (see also Section 2.3.42.3.4). Indeed, omit-

ting these terms (MB-pol w/o 3B in Table 6.16.1) yields a normal VIE.

At first glance, the strong influence of these terms is surprising, because they do not

constitute a large contribution to the cohesive (lattice) energy according to the decom-

position of the internal energy at the equilibrium volume U(V0) in the MB-pol force

field [3636]. This does not change when moving away from V0 as shown in Fig. 6.16.1. Com-

pression of the ice Ih lattice leads to an increase of the repulsive short-range interactions

between pairs of water molecules (two-body terms), which is almost compensated by

the increase of the long-range electrostatic and dispersion contributions. The opposite
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holds when expanding the volume. The one-body (i.e., deformation of individual water

molecules) and three-body terms play hardly any role.33
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Figure 6.2: Relative volume changes (a) vH2O(T ) =
VH2O(T )

VH2O
− 1 and (b) vD2O(T ) =

VD2O(T )

VH2O
−1 of ice Ih, both with respect to VH2O from Table 6.16.1 for the same interaction

models except AMOEBA14. (c) shows the resulting temperature dependence of the

volume isotope effect VIE(T ) =
VD2O(T )

VH2O(T ) − 1 =
vD2O(T )+1

vH2O(T )+1 − 1. Error indicators for the

experimental data from Röttger et al. [33] (gray) are hardly visible, and even less so for

the data from Fortes [44] (black), whereby lines are meant to guide the eye.

To investigate the importance of the three-body contributions (in MB-pol) for the

VIE more closely, it is instructive to evaluate VH2O and VD2O over a wider range of

temperatures, which has recently been remeasured with higher accuracy by Fortes [44]

as well. This is illsutrated in form of the relative volume changes vH2O(T ) and vD2O(T )

up to T ≤ 200 K in Fig. 6.26.2(a) and Fig. 6.26.2(b), respectively. The experimental data

for H2O and D2O ice Ih shows a negative slope for T ≤ 70 K. This negative thermal

expansion (NTE) has been modeled successfully before [1010, 3737] and is also reproduced

by all methods considered here, except for SCME/f. This leads to a small offset in the

relative volume change for H2O between SCME/f and the experimental data at higher

temperatures, which remains almost constant. Apart from that, SCME/f captures

the shape of the experimental curve for vH2O(T ) very well, i.e. better than any other

3Because polarizability is accounted for in MB-pol, the electrostatics are long-range many-body

interactions, see Section 2.3.42.3.4.
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method considered here (except for MB-pol w/o 3B). MB-pol yields a slightly worse

description of vH2O(T ) similar to PBE. For vD2O(T ) on the other hand, it provides

by far the best possible description of the relative volume change (followed by PBE).

Consequently, MB-pol also provides the best possible description of the VIE over the

entire temperature range considered here. Not including the three-body effects in

MB-pol improves the shape of vH2O(T ) but significantly worsens results for VIE(T ),

resulting in the prediction of a normal volume isotope effect. Both SCME/f and q-

TIP4P/f yield an even worse shape for vH2O(T ) compared to the experimental data. q-

TIP4P/f describes a too strong NTE over a too large temperature interval (T ≤ 100 K)

for both H2O and D2O, error canceling ultimately results in a better description of

VIE(T ) compared to SCME/f.

According to the QHA (see Eq. (6.16.1)) the temperature dependence of the equilibrium

volume is completely determined by the vibrational modes. As demonstrated in previ-

ous work [55, 77, 88, 1010], their change upon compression and expansion can be analyzed

in detail by means of the mode-dependent Grüneisen parameters γi = − V
ωi

∂ωi
∂V , which

define the zero-point pressure

PZP = −∂EZP

∂V
= − h̄

2V

∑
i

∂ωi
∂V

=
h̄

2V

∑
i

ωiγi . (6.2)

Positive (negative) values for PZP yield expansion (contraction) of the volume due to

zero-point energy effects.44 Figure 6.36.3(a) and (b) show that all methods yield a positive

total zero-point pressure for both H2O or D2O, respectively, as to be expected accord-

ing to the results compiled in Table 6.16.1. For an anomalous (normal) VIE (at 0 K),

the total PZP needs to be smaller (larger) for H2O than for D2O. The corresponding

differences are shown in Fig. 6.36.3(c), and indeed only for PBE and MB-pol comes out

P
H2O
ZP − P

D2O
ZP < 0. Figure 6.36.3 also shows a decomposition of the zero-point pres-

sure into contributions from the five different vibrational mode groups characterized

by hydrogen-bond bending (HB) and stretching (HS), librations (L), intramolecular

bending (B) and stretching (S). Unlike the differences of the total PZP, which unfor-

4PZP is an intensive quantity. For its proper evaluation in practical calculations, ∂EZP
∂V

must be

evaluated for the same reference volume as U(V ), i.e., per molecule in this work.
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Figure 6.3: Total zero-point pressure PZP (rightmost bars) and its decomposition

according to Eq. (6.26.2) into the vibrational mode groups comprised of hydrogen-bond

bending (HB, 0 to 125 cm−1), hydrogen-bond stretching (HS, 125 to 500 cm−1), libra-

tions (L, 500 to 1500 cm−1 (425 to 900 cm−1) in H2O (D2O) ice Ih), intramolecular

bending (B, 1500 to 2000 cm−1 (900 to 1300 cm−1) in H2O (D2O) ice Ih) and in-

tramolecular stretching (S, 3000 to 4000 cm−1 (2000 to 3000 cm−1) in H2O (D2O) ice

Ih) modes in (a) H2O and (b) D2O) ice Ih. Results are shown using the same inter-

action models as in Fig. 6.26.2. Panel (c) illustrates the differences between (a) and (b)

(PZP(H2O) − PZP(D2O)). An estimate for P S
ZP based on experimental data for H2O

ice Ih is indicated in panel (a) (see text and Section 6.A.36.A.3 for details).
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tunately cannot be measured directly, the differences between the contributions from

the mode groups vary much more when considering different interaction models. The

PZP contribution from the HB and HS groups is hardly affected by H-D substitution

(see Fig. 6.36.3)(c)), which is not surprising because both of these mode groups involve

the frustrated translation of entire H2O and D2O molecules. Likewise, all methods

suggest that the B modes contribute very little to the VIE, and that it is the delicate

balance between the expansive PZP of the L modes (frustrated rotations) and the con-

tractive PZP of the S modes, which predominantly determine the sign of the zero-point

pressures difference between both isotopologues.

Salim et al. [1010] have already pointed that the subtle interplay of the Pzp contributions

from different mode groups makes it additionally challenging to determine whether a

particular interaction model captures the VIE correctly and for the right reason. We

have already noted in our earlier work [2929] that the measurements by Minceva-Sukarova

et al. [1111] of the pressure dependence of the Raman peak for the S mode group in H2O

ice Ih at 246 K play a key role in this context. As further detailed in Section 6.A.36.A.3,

this allows us to obtain a good estimate for the contribution by the S mode group

P S
zp ≈ −0.548± 0.051 GPa, which is based on experimental data alone. Fig. 6.36.3(a)

includes this value as black horizontal line. Considering that error estimates are lower

bounds, MB-pol almost reproduces this value exactly (−0.66 GPa) and clearly comes

much closer than PBE (−1.32 GPa) and MB-pol w/o 3B (−0.33 GPa). This confirms

that three-body effects play indeed a very important role for the correct atomistic

description of the VIE.

Unfortunately, Minceva-Sukarova et al. [1111] have not measured the S mode group fre-

quency shift for the D2O isotopologue of ice Ih. Since all interaction models suggest a

strongly localized character of the S modes, the outcome of such a measurement can

be estimated based on the reduced masses associated with the O−H and O−D bonds

as 0.728 · P S
zp ≈ −0.399 GPa (see Section 6.A.36.A.3), which is consequently again excellent

agreement with the MB-pol value in Fig. 6.36.3(b) (−0.47 GPa). While it would be good

to see this value confirmed in future experiments, the outstanding performance of MB-
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pol and the concomitant understanding would be better scrutinized by experimental

data for the L modes. Ideally, such data could also be measured at temperatures much

lower than 246 K, to avoid systematic errors related to mode softening effects in future

comparisons of experiments and theory.

6.4 Conclusion and Outlook

In summary, this study provides new insights into the volume isotope effect of ice

Ih based on calculations within the quasi-harmonic approximation by employing a

variety of different interaction models. All-electron DFT calculations with the PBE

exchange-correlation functional provide a reference value and confirm that PBE yields

an anomalous VIE but largely overestimates its magnitude. Among the three state-of-

the-art polarizable force fields only MB-pol yields an anomalous VIE the magnitude

of which is in significantly better agreement with the most recent experimental data

than PBE. A detailed analysis based on the MB-pol energy partitioning reveals a sur-

prisingly large influence of the cooperative interaction between three water molecules

for the VIE and the temperature dependence of the volume of H2O and D2O ice Ih

up to 200 K. Finally, the zero-point pressure is decomposed into contributions from

different vibrational mode groups, and an estimate from experimental data for the con-

tribution from the intramolecular stretching modes of H2O ice Ih is extracted, which

is completely independent from all measurements related to the VIE. Among all in-

teraction models considered here, this is in best agreement with MB-pol – while being

significantly overestimated by PBE and underestimated by all other force fields. This

suggests that MB-pol yields the anomalous VIE of ice Ih for the right reason. It thus

also enables unprecedented quantification and atomic-scale understanding of its driv-

ing force, namely the delicate competition between the expansive librational and con-

tractive intramolecular stretching modes upon substitution of hydrogen by deuterium,

mitigated by three-body effects. Future computational studies should investigate other

ice polymorphs. However, before embarking on this endeavor, it would be highly de-

sirable to have experimental benchmark data for contribution from other vibrational
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mode groups to the zero-point pressure, ideally with smaller error bars and for both

H2O and D2O isotoplogues. This bares the exciting prospect of obtaining fundamental

insights about volume isotope effects in those other polymorphs as well, and to estab-

lish a delicate benchmark that can be used for the further development of interaction

models targeting condensed forms of water.

6.A Appendix

6.A.1 Comparison to Previous DFT Calculations

Table 6.2: Volumes V0 for ice Ih (see main text for definition) as obtained “directly”

from DFT calculations (i.e., without considering ZPE effects) with the PBE exchange-

correlation functional. Results from this work, Pamuk et al. [77] and [1212] are already

given in Table 6.16.1. Equivalent results for ice VIII are shown to further illustrate

difference between all-electron calculations and those which employ approximations

for core and valence electrons. All values are in �A
3

per molecule.

V0(ice Ih) V0(ice VIII)

all-electron calculations

this work 30.78 20.73

Santra et al. [2727] and Sun et al. [2828] 30.79 20.74

calculations with approximations for core and valence electrons

Pamuk et al. [77] 29.98

Murray and Galli [1212] 30.50 20.44

Umemoto and Wentzcovitch [3838] 20.12

Feibelman [3939] 30.65

Brandenburg et al. [4040] 30.15 20.36

Liu and Ojamäe [4141] 30.3 20.5

All DFT calculations in this work employ the PBE exchange-correlation functional

[2424]. They have been carried out the with the all-electron DFT code FHI-aims [2525,
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2626], which employs numerically tabulated atom-centered orbitals as basis set. The

standard tight settings and tier-2 and tier-3 basis sets for hydrogen and oxygen atoms,

respectively. A 4 × 4 × 4 Monkhorst-Pack grid [4242] is employed for Brillouin zone

sampling. These settings are the same as those established by Santra et al. [2727], whose

thorough convergence tests gave an estimate of ±0.01�A
3

for the numerical accuracy of

V0 with respect to these settings. Sun et al. [2828] have used the same settings afterwards,

As to be expected and shown in Table 6.26.2, all three calculations agree perfectly within

the aforementioned accuracy margin.

Table 6.26.2 also reveals that DFT-PBE calculations with approximations for the treat-

ment of core and valence electrons (pseudopotentials) systematically underestimate V0

for both ice Ih and ice VIII. A more detailed investigation of this interesting finding is

outside the scope of this work.

6.A.2 Convergence Tests for the VIE Calculations

Three sets of convergence tests have been carried out, to scrutinize the accuracy of the

results reported in Table 6.16.1 for VH2O and VD2O (and thus VIE) with respect to the

following three parameters:

1. Accuracy of geometry optimization for the water molecules in the simulation cell.

This is quantified by the force threshold Fmax criterion that is used to stop the

relaxation. Smaller values for Fmax yield for accurate results.

2. Finite displacement in phonon calculations ∆disp. For force fields where analytic

formulations of forces are available, smaller values of ∆disp reduce the error for

the second derivatives in the phonon calculations. However, in DFT calculations,

forces (usually) come with a numerical error, the reduction of which requires

additional computational effort (i.e., increasing the accuracy of the self-conistent

field cycle). Therefore, a small value that is as large as possible not to affect

VH2O and VD2O (and thus VIE) is sought after here.

3. Range of isotropic contraction and expansion of V0 used for the construction
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of a continuous representation of the volume-dependent terms required for the

quasi-harmonic approximation (QHA) given by Eq. (6.16.1). Different intervals

[(1 − smax)V0; (1 + smax)V0] have been considered, which are all discretized by

11 equidistant points. For too small intervals the numerical noise in the volumes

gains a too large influence on the fit, while too large intervals leave the regime of

validity for the QHA.

For reasons of computational convenience, all calculations for these convergence tests

have been carried with the AMOEBA14 force field. All the results are compile in

Table 6.36.3. Accurate results can be obtained with Fmax = 10−3 eV�A
−1

, ∆disp = 0.02�A

and smax = 4 %. As described in the main text, this is what has been used for all

interaction models throughout this work.

6.A.3 Zero-point Pressures from Experimental Data

Using Raman spectroscopy Minceva-Sukarova et al. [1111] measured the shift of the

intramolecular stretching mode peak in the H2O-isotopologue of ice Ih at 246 K when

applying external pressure

∂νS

∂P
= −78.0± 7.2 cm−1 GPa−1 , (6.3)

which yields

h
∂νS

∂P
= 1.549± 0.143× 10−21 J GPa−1 (6.4)

(1h cm−1 = 1.9863× 10−23 J). This allows us to obtain an estimate based on ex-

perimental data for the zero-point pressure of the intramolecular stretching mode

group

P S
zp ≈ −

∑
i∈S

h̄

2

∂ωi
∂V

=
1

2

B0

V0
h
∑
i∈S

∂νi
∂P

, (6.5)

where ∂ω
∂V = ∂P

∂V
∂ω
∂P = −2πB0

V0

∂ν
∂P . In the following, it is assumed that ∂νS

∂P does not

change significantly with temperature.

The highly accurate experimental values for the bulk modulus B0 = 11.33 GPa (ex-

trapolated to 0 K) [4343] and the unit cell volume V0 = 32.05�A
3

per H2O molecule [44]
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Table 6.3: Results of convergence tests with respect to the three parameters Fmax,

∆disp and smax as defined in the text. Note that the volumes VH2O and VD2O (for ice

Ih) are rounded to two decimals, and that VIE =
VD2O

VH2O
− 1 is calculated using more

decimals.

Fmax ∆disp smax VH2O VD2O VIE

(eV�A
−1

) (�A) (%) (�A
3
/H2O) (�A

3
/D2O) (%)

Force threshold criterion for geometry optimizations

1.0× 10−4 0.02 4.0 33.35 33.12 −0.67

1.0× 10−3 0.02 4.0 33.35 33.12 −0.67

2.5× 10−3 0.02 4.0 33.36 33.12 −0.69

5.0× 10−3 0.02 4.0 33.37 33.13 −0.69

Finite displacement for phonon calculations

1.0× 10−3 0.01 4.0 33.35 33.12 −0.67

1.0× 10−3 0.02 4.0 33.35 33.12 −0.67

1.0× 10−3 0.03 4.0 33.36 33.12 −0.68

1.0× 10−3 0.06 4.0 33.37 33.13 −0.68

1.0× 10−3 0.08 4.0 33.38 33.14 −0.69

Maximum expansion and contraction of cell volume for the QHA

1.0× 10−3 0.02 0.2 33.23 33.02 −0.60

1.0× 10−3 0.02 0.5 33.21 33.02 −0.56

1.0× 10−3 0.02 1.0 33.26 33.07 −0.54

1.0× 10−3 0.02 2.0 33.29 33.10 −0.60

1.0× 10−3 0.02 3.0 33.33 33.11 −0.68

1.0× 10−3 0.02 4.0 33.35 33.12 −0.67

1.0× 10−3 0.02 5.0 33.35 33.12 −0.67
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(at 10 K), result in
1

2

B0

V0
= 0.177 GPa�A

−3
. (6.6)

Assuming the same shift for both symmetric and antisymmetric stretching modes and

neglecting dispersion (∂νi∂P = ∂νS
∂P ), which is consistent with the Raman experiments of

Minceva-Sukarova et al. [1111]55, result in

h
∑
i∈S

∂νi
∂P
≈ 2 · h∂νS

∂P
≈ −3.099± 0.286× 10−21 J GPa−1 (6.7)

where the factor of two comes from the summation over both stretching modes per

molecule. This leads to the final value

P S
zp ≈ −0.548± 0.051 GPa (6.8)

(1 J�A
−3

= 1030 Pa). Due to aforementioned approximations, the indicated errors

should be considered as lower bounds.

Unfortunately, Minceva-Sukarova et al. [1111] do not report ∂νS
∂P for D2O ice Ih, and to

the best of our knowledge no such measurement is available. Despite the relatively

strong hydrogen bonding in ice Ih [4444], the S modes are still largely dominated by

the local intramolecular potential along a single O−H bond. This leads to a simple

one-dimensional picture, where the relative shift of the corresponding O−D stretching

mode is (approximately) given by

α =
ν

D2O
S

ν
H2O
S

≈ µO−H

µO−D
=

√
mH

mD

mO +mD

mO +mH
≈ 0.728 , (6.9)

where µO−X = mX·mO

mX+mO
(X ∈ {H,D}) is the reduced mass of the corresponding O−X

bond with mH = 1.0078 u, mD = 2.0141 u, mO = 15.999 u. The calculations with all

interaction models considered in this work leads to values between 0.726 and 0.730 for

α, which confirms that deviations from this one-dimensional picture are very small.

In fact, Minceva-Sukarova et al. [1111] do provide the average stretching mode for both

H2O (νOH(H2O) = 3138 cm−1) and D2O (νOD(D2O) = 2316 cm−1) ice Ih at 246 K, which

yields α = 0.738. Considering a Morse oscillator at this temperature, ν
H2O
S should be

5These experiments only yield results for the Γ-point.
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reduced more strongly compared to its value at 0 K than ν
D2O
S . Since temperature

effects are neglected in Eq. (6.96.9), it is thus not surprising that the measured relative

frequency shift is underestimated. On the other hand, measurements at 0 K should

yield

∂ν
D2O

S

∂P ≈ ∂(αν
H2O

S )

∂P ≈ 0.728 · ∂ν
H2O

S

∂P (6.10)

for the shift of the intramolecular stretching mode peak in the D2O-isotopologue of ice

Ih.
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Samenvatting

IJs, de vaste vorm van water, speelt een belangrijke rol op onze planeet en in het hele

universum. Ondanks het feit dat een individuele watermolecuul een zeer eenvoudige

structuur heeft, kan de chemische binding van het molecuul in de vaste fase verrassend

complex zijn. Tegenwoordig maken atomistische computermodellen het mogelijk deze

eigenschappen te beschrijven en te begrijpen op een manier die lange tijd niet mogelijk

was. Chemische interactiepotentialen vormen de kern van deze atomistische modellen.

In oplopende volgorde van complexiteit zijn deze potentialen gebouwd op basis van

eenvoudige paarpotentialen, polariseerbare krachtvelden, en berekeningen met dicht-

heidsfunctionaaltheorie (DFT). Het is een voortdurende wetenschappelijke uitdaging

om deze potentialen verder te verbeteren en te testen. Dit proefschrift tracht een ant-

woord te geven op de volgende onderzoeksvragen: (i) Hoe belangrijk is de bijdrage

van de nulpuntsvibratieënergie aan de thermodynamische eigenschappen van de fasen

van ijs? (ii) Hoe nauwkeurig kunnen de beschikbare interactiepotentialen het (kleine)

verschil in ijskristallen met betrekking tot nucleaire kwantumeffecten modelleren? (iii)

Moeten interactiepotentialen worden verbeterd wanneer rekening wordt gehouden met

nucleaire kwantumeffecten in ijs?

Hoofdstuk 3 presenteert een systematische vergelijking van veel gebruikte vaste-la-

dingpaarpotentialen en DFT op basis van van verschillende uitwisselingcorrelatiedicht-

heidsfunctionalen (UC-DF) voor zeven waterstof-geordende kristallijne ijsfasen (Ih, IX,

II, XIII, XIV, XV, VIII). De UC-DF’s omvatten de zogenaamde “local density ap-

proximation” (LDA-), “generalized gradient approximation” (GGA-) en meta-GGA-

functionalen, alsmede verschillende uitbreidingen om rekening te houden met van der
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Waals-interacties. Uitgaande van ruimte-groep-beperkte geoptimaliseerde structuren

voor alle ijsfasen, worden zeer nauwkeurige fononberekeningen uitgevoerd in de quasi-

harmonische benadering. De resulterende nulpuntsenergieën (NPE’s) hebben een veel

sterker effect op de cohesie-energieën en evenwichtsvolumes voor de krachtvelden dan

voor DFT en resulteren in een betere overeenkomst met experimentele gegevens voor

de eerstgenoemden. Wanneer NPE’s worden meegenomen, leveren de krachtvelden

evenwichtsvolumes en cohesie-energieën op die beter overeenkomen met experimentele

gegevens dan de meeste dichtheidsfunctionalen. Om dit verder te analyseren is een de-

compositie van de cohesie-energieën in intramoleculaire deformatie-, elektrostatische-

en vdW-bijdragen uitgevoerd. Deze decompositie laat zien dat intramoleculaire de-

formatie wordt overgecompenseerd door elektrostatica en het attractieve deel van de

Lennard-Jones potentialen in het geval van de krachtvelden. De elektrostatica is ook

de dominante en typisch de grootste bindingsbijdrage voor de DFT-methoden. De

bijdragen aan de nulpuntsenergie worden verder geanalyseerd door vergelijking van

de frequentieverschuivingen in de OH-trillingen als gevolg van volumeveranderingen

met beschikbare experimentele gegevens van Raman-spectroscopie. Alle krachtvelden

geven een kleinere roodverschuiving van deze vibraties bij compressie dan alle hier be-

schouwde UC-DF’s, en dit is verantwoordelijk voor het grotere effect van de NPE’s op

de energie-volume curves.

Zoals bediscussiëerd in hoofdstuk 4 is de overgangsenthalpie van ijs II naar ijs Ic met

behulp van calorimetrie gemeten als +40 J mol−1 voor H2O en −140 J mol−1 voor D2O,

resulterend in een isotoopeffect van ongeveer 180 J mol−1. Een hiërarchie van theoreti-

sche uitdrukkingen voor de overgangsenthalpie wordt gebruikt om rekening te houden

met meer, en met subtielere bijdragen. Naast de nulpuntenergie wordt uiteindelijk ook

rekening gehouden met de gewoonlijk verwaarloosde configurationele entropie, om-

dat ijs II een waterstof-gordende fase en ijs Ic een waterstof-ongeordende fase is. De

uitdrukkingen worden rekenkundig geëvalueerd met behulp van twee krachtvelden, q-

TIP4P/F en MB-pol, waarvan bekend is dat ze goed presteren voor de berekening van

de cohesie-energie en de vibratie-eigenschappen van verschillende fasen van ijs. Daartoe

worden zeer nauwkeurige fononberekeningen onder gebruik van de quasi-harmonische
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benadering (QHB) uitgevoerd. Aangezien het feit dat de gemeten overgangsenthalpie

één tot twee orden van grootte kleiner zijn dan wat gewoonlijk wordt beschouwd als

chemische nauwkeurigheid (4 kJ) in computermodellen, is het niet verrassend dat de

tekenverandering niet kan worden gereproduceerd. Beide krachtvelden geven echter het

isotoopeffect als gevolg van voornamelijk de nulpuntenergieverschillen tussen de H2O

en overeenkomstige D2O fasen van ijs, en wel in redelijke overeenstemming met de me-

tingen: q-TIP4P/F kan ongeveer 3/4 van het isotoopeffect verklaren, terwijl MB-pol

slechts ongeveer 1/3 er van beschrijft.

In hoofdstuk 5 wordt een potentiële energie-functie voor de beschrijving van een sys-

teem van flexibele H2O moleculen ontwikkeld op basis van de enkelvoudige centrum-

multipoolexpansie van de elektrostatische interactie (afkorting SCME in het Engels).

Dit SCME/f genoemde model bevat de variatie van het moleculaire kwadrupoolmo-

ment en het dipoolmoment met veranderingen in bindingslengte en -hoek om de resul-

taten van ”high-levelëlektronische structuurberekeningen te kunnen reproduceren. De

multipooluitbreiding omvat ook vaste oktupool- en hexadecapoolmomenten, alsmede

anisotrope dipool-dipool-, dipool-kwadrupool- en kwadrupool-quadrupool polarisatie

tensoren. Het model bevat vijf aanpasbare parameters die betrekking hebben op de af-

stotende interactie en dempingsfuncties in de elektrostatische en dispersie-interacties.

Hun waarden worden aangepast om de laagste energie-isomeren van kleine clusters,

(H2O)n met n = 2 − 6, te reproduceren, evenals gemeten eigenschappen van het Ih

ijskristal. Berekeningen van het energieverschil tussen de verschillende isomeerconfigu-

raties van de clusters laten zien dat SCME/f goede overeenstemming geeft met resulta-

ten van elektronische structuurberekeningen en een aanzienlijke verbetering betekent

ten opzichte van de eerder gepresenteerde starre SCME-potentiaalfunctie. Analyse van

de trillingsfrequenties van de clusters en de structurele eigenschappen van ijs Ih-kristal

tonen het belang aan van een nauwkeurige beschrijving van de variatie van het kwa-

drupoolmoment met de moleculaire structuur.

In hoofdstuk 6 wordt het volume-isotoopeffect (VIE) van ijs Ih komputationeel bestu-

deerd. Nucleaire kwantumeffecten in de Helmholtz-vrije energie worden meegenomen
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op basis van de QHB en geëvalueerd via uitgebreide berekeningen aan de fononen.

De nadruk ligt op de recent ontwikkelde polariseerbare ”many body”potentialen als

interactiemodellen. Een daarvan (MB-pol) blijkt de VIE van ijs Ih in zeer goede over-

eenstemming te beschrijven met de meest recente neutrondiffractiemetingen - veel beter

dan DFT-berekeningen met het PBE-functionaal. Met behulp van de MB-pol energie-

decompositie is een verrassend grote invloed van de coöperatieve interactie tussen drie

watermoleculen op het VIE en de temperatuurafhankelijkheid daarvan gevonden. Een

decompositie van de bijdragen tot de nulpuntsdruk samen met een tot nu toe niet

meegenomen Raman spectroscopie meetwaarden betreffende OH-trillingen in H2O-ijs

Ih onthullen de drijvende kracht achter de VIE: de delicate competitie tussen OH-

trillingen en de zogenaamde libratie modes.
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• E. Ö. Jónsson, S. Rasti, M. Galynska, J. Meyer and H. Jónsson, Transferable

Potential Function for Flexible H2O Molecules Based on the Single Center Mul-

tipole Expansion, submitted to the Journal of Chemical Theory and Computation

(JCTC)
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