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Abstract

Deep dermal wounds induce skin contraction as a result of the traction forcing exerted by (myo)fibroblasts on their immediate
nvironment. These (myo)fibroblasts are skin cells that are responsible for the regeneration of collagen that is necessary
or the integrity of skin We consider several mathematical issues regarding models that simulate traction forces exerted by
myo)fibroblasts. Since the size of cells (e.g. (myo)fibroblasts) is much smaller than the size of the domain of computation,
ne often considers point forces, modelled by Dirac Delta distributions on boundary segments of cells to simulate the traction
orces exerted by the skin cells. In the current paper, we treat the forces that are directed normal to the cell boundary and
oward the cell centre. Since it can be shown that there exists no smooth solution, at least not in H1 for solutions to the

governing momentum balance equation, we analyse the convergence and quality of approximation. Furthermore, the expected
finite element problems that we get necessitate to scrutinize alternative model formulations, such as the use of smoothed
Dirac Delta distributions, or the so-called smoothed particle approach as well as the so-called ‘hole’ approach where cellular
forces are modelled through the use of (natural) boundary conditions. In this paper, we investigate and attempt to quantify
the conditions for consistency between the various approaches. This has resulted into error analyses in the L2-norm of the
numerical solution based on Galerkin principles that entail Lagrangian basis functions. The paper also addresses well-posedness
in terms of existence and uniqueness. The current analysis has been performed for the linear steady-state (hence neglecting
inertia and damping) momentum equations under the assumption of Hooke’s law.
© 2022 The Author(s). Published by Elsevier B.V. on behalf of International Association for Mathematics and Computers in
Simulation (IMACS). This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Keywords: Point forces; Dirac delta distribution; Singular solution; Immersed boundary approach; “Hole” approach; Smoothed particle approach

1. Introduction

Wound healing is a complicated process of a sequence of cellular events contributing to resurfacing, reconstitution
nd restoration of the tensile strength of injured skin. Significant damage of dermal tissue often leads to skin
ontraction. If the contraction of the skin near a joint is large then it may result into a decrease of functionality, in
hese cases, one speaks of a contracture.
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In order to improve the patient’s quality of life, one aims at reducing the contractile behaviour of the skin.
o reduce the severity of the contraction, one needs to know the physiological dynamics and time evolution of the
nderlying biological mechanisms. According to [8,11,15], the contraction starts developing during the proliferative
hase of wound healing. This proliferative phase sets in after the inflammatory phase, in which the immune system
s clearing up the debris that resulted from the damage. The proliferative phase usually starts from the second day
ost-wounding, and commonly lasts two to four weeks. Besides the closure of the epidermis (that is the top layer of
kin), the proliferative phase is characterized by ingress of fibroblasts from the surrounding undamaged tissue and
ifferentiation to myofibroblasts, and by the regeneration of collagen by the (myo)fibroblasts. Despite the relatively
uick closure of the epidermis, often the restoration of the underlying dermis is still in progress. After closure of the
pidermis, the damaged region in the dermis is referred to as a scar instead of a wound. Next to the regeneration of
ollagen, the (myo)fibroblasts exert contractile forces on their direct surroundings, which will result into contraction
f the scar tissue. In human skin, typically volume reductions of 5%–10% are commonly observed [9].

The current manuscript contains an extension of the work in Koppenol [12], which treats a model for the
ontractile forces exerted by the (myo)fibroblasts. The forces are distinguished into two categories: (1) temporary
orces that are exerted as long as the (myo)fibroblasts are actively pulling; and (2) permanent or plastic forces,
hich are imaginary forces that are introduced to describe the localized plastic deformations of the tissue. This

ormalism was firstly developed by Vermolen and Gefen [22], and later extended by Boon et al. [5]. The formalism
s based on the point forces, which are mathematically incorporated by means of linear combinations of Dirac
elta distributions. The irregular nature of Dirac Delta distributions make the solution to the elliptic boundary
alue problem from the balance of momentum have a singular solution in the sense that for dimensionality higher
han one, no formal solutions in the finite-element space H1 exist. Placidi [18], Yang and Misra [23], Putar

et al. [19], Andreaus et al. [1], among others, consider point forces on edges or corners using high-order gradient
theories that are suitable for the incorporation of nonlinear effects from large strains. Reiher et al. [20] describe a
three-dimensional finite element implementation of point forces along edges or corners that is based on a Hellinger–
Reissner variational principle. The numerical simulations indicate that singularities that would be there if linear
elasticity is used, could be removed by the implementation of linear second-strain gradient elasticity.

Although in classical finite-element strategies, one uses for instance piecewise linear Lagrangian elements, of
which the basis functions are in H1, and therewith one attempts to approximate the solution (which is not in H1) as
well as possibly by a function in H1. Bertoluzza et al. [4] demonstrated the convergence of finite-element solutions
o an elliptic problem with Dirac Delta distributions by means of piecewise linear Lagrangian elements in multiple
imensions. In our earlier studies [16,17], we proved the convergence of solutions obtained by regularization of the
irac Delta distributions, the so-called smoothed particle approach and the so-called ‘hole’ approach to the solution
btained by the Dirac Delta distributions in the one- and two-dimensional cases. In the one-dimensional case, for
he sake of completeness, we start with the presentation of force equilibrium with point forces, the equations are
iven by

−
dσ

dx
= f, Equation of Equilibrium, (1)

ϵ =
du
dx

, Strain–Displacement Relation, (2)

σ = Eϵ, Constitutive Equation. (3)

o simplify the equation, we use E = 1 here, the equations above can be combined to the one-dimensional Poisson
equation:

−
d2u
dx2 = f. (4)

e assume that there is a biological cell with size h and centre position c in the computational domain such that
0 < c − h/2 < c < c + h/2 < L . Then the force is given by f = δ(x − (c − h/2)) − δ(x − (x + h/2)). Combined
with homogeneous Dirichlet boundary conditions:

u(0) = 0, u(L) = 0,
183
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the Galerkin form is given by⎧⎪⎪⎪⎨⎪⎪⎪⎩
Find uh ∈ H 1

0 ((0, L)), such that∫
Ω

u′

hφ
′

hdΩ = φh(c −
h
2

) − φh(c +
h
2

),

for all φh ∈ H 1
0 ((0, L)).

The exact solution is

u(x) =
hx
L

+ (x − (c +
h
2

))+ − (x − (c −
h
2

))+,

here (x)+ = max{0, x}. Note that in one dimension, the solution is piecewise linear and hence in H 1(Ω ), however
ot in H 2(Ω ). Since most conventional errors are expressed in the L2-norm of the second derivative of the solution,

one may not apriorily expect very accurate finite element solutions.
In the current manuscript we extend the results to general dimensionality. The boundary value problem is stated

in Section 2. The ‘hole’ approach and the smoothed particle approach are developed in Section 3. Furthermore, we
prove consistency between all the alternatives and the immersed boundary approach in multi dimensions. Section 5
displays some conclusions and discussions.

2. Elasticity equation with point sources in multi dimensions

Let Ω be a bounded domain in Rn , then we consider the following balance of momentum where inertial effects
have been neglected:

− ∇ · σ = f . (5)

Here σ denotes the stress tensor and f represents a body force that is exerted within Ω . We consider a linear,
homogeneous, isotropic and continuous material; hence, Hooke’s Law is used here for the relation between the
stress and strain tensors:

σ =
E

1 + ν

{
ϵ + tr(ϵ)

[
ν

1 − 2ν

]
I
}

, (6)

here E is the stiffness of the computational domain, ν is Poisson’s ratio of the computational domain and ϵ is the
nfinitesimal Eulerian strain tensor:

ϵ =
1
2

[
∇u + (∇u)T ]

. (7)

Within the domain of computation, Ω , we consider the presence of a biological cell, which occupies the portion
C that is completely embedded within Ω (hence ΩC is a strict subset of Ω ). The boundary of the cell ΓC is divided

into surface elements. On the centre of each surface element, a point force by means of Dirac Delta distributions,
is exerted in the direction of the normal vector that is directed inward into the cell. This results into (see [22]):

f t =

NS∑
j=1

P(x j , t)n(x j )δ(x − x j (t))∆S(x j (t)), (8)

where NS is the number of surface elements of the cell, P(x, t) is the magnitude of the pulling force exerted at
oint x and time t per unit of measure (being area in R3 or length in R2), n(x) is the unit inward pointing normal

vector (towards the cell centre) at position x, x j (t) is the midpoint on surface element j of the cell at time t and
∆S(x j ) is the measure of the surface element j . In the general model where we use this principle, we consider
transient effects due to migration and possible deformation of the cells. However, since we predominantly focus on
the mathematical issues in the current manuscript, we will not consider any time-dependencies and hence t will be
removed from the expressions in the remainder of the paper.

In the n-dimensional case, we are solving the boundary value problems described in Eq. (5), (6) and (7). The

body force is given in Eq. (8). Therefore, the immersed boundary value problem that we are going to consider is

184
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given by

(BV P)

⎧⎪⎪⎨⎪⎪⎩
−∇ · σ (x) =

NS∑
j=1

P(x j )n(x j )δ(x − x j )∆S(x j ), in Ω ,

u = 0, on ∂Ω .

ext to this boundary value problem, we consider the continuous immersed boundary counterpart, given by

(BV P∞)

⎧⎨⎩−∇ · σ (x) =

∫
ΓC

P(x′)n(x′)δ(x − x′)d S(x′), in Ω ,

u = 0, on ∂Ω ,

here we take Ns → ∞. Thus, the body force reads as

f ∞

t =

∫
ΓC

P(x′)n(x′)δ(x − x′)d S(x′). (9)

Due to the irregular nature of the Dirac Delta distributions, the solutions do not exist in H1, see for instance [3],
here fundamental solutions for the two-dimensional linear elasticity equations are given for an unbounded domain.
he idea [10] of having a particular solution in combination with a solution to the homogeneous elasticity equation
ith the fundamental solution as a boundary condition (singularity removal method) can be used to demonstrate this

act. We attempt to approximate the solution by the functions in H1, via the Galerkin form of (BV P) and (BV P∞).
n this manuscript, piecewise linear Lagrangian basis functions are selected and we will demonstrate convergence
f the “Galerkin solutions” of (BVP) and (BVP∞). Further, the convergence of the finite-element solutions for
lliptic problems with a Dirac Delta distribution using linear Lagrangian elements in general dimensionality has
een proved in [4,7,13,21].

To construct the Galerkin form, we introduce the bilinear form a(., .)

a(uh, φh) =

∫
Ω

σ (uh) : ∇φhdΩ =

∫
Ω

σ (uh) : ϵ(φh)dΩ , (10)

here the last step is motivated by symmetry of the stress tensor σ . Since the solution u is not in H1(Ω ), we consider
subspace of H1(Ω ), which is defined as V h(Ω ) = Span{φ1, φ2, . . . ,φN

} [21]. Here, φ i for i = {1, 2, . . . , N } is
he linear Lagrangian basis function, which is piecewise smooth and continuous over Ω . Hence, these basis functions
re in H1. Subsequently, the Galerkin form is

(G F)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Find uh ∈ V h(Ω ), such that

a(uh, φh) = (φh, f t ) =

NS∑
j=1

P(x j )n(x j )φh(x j )∆S(x j ),

for all φh ∈ {φ1, φ2, . . . ,φN
} ⊂ V h(Ω ).

e further consider the solution to the continuous immerse boundary problem, with the following Galerkin form:

(G F∞)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Find uh ∈ V h(Ω ), such that

a(uh, φh) = (φh, f ∞

t ) =

∫
ΓC

P(x′)n(x′)φh(x′)d S(x′),

for all φh ∈ {φ1, φ2, . . . ,φN
} ⊂ V h(Ω ).

Before we proceed to claim the existence and the uniqueness of the Galerkin solution in (G F), we state Korn’s
nequality in multiple dimensions:

emma 1 (Korn’s Second Inequality [6]). Let Ω ⊂ Rn be an open, bounded and connected domain. Then there
xists a positive constant K , such that for any vector-valued function u ∈ H1

0(Ω ),∫
∥ϵ(u)∥2dΩ ⩾ K∥u∥

2
1 .
Ω
H (Ω)

185
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We note that Korn’s Second Inequality can be generalized to cases in which the boundary condition u = 0 is
imposed only on a non-zero measure part of the boundary. Using Korn’s Second inequality gives the following
lemma:

Lemma 2. Let Ω ⊂ Rn be an open, bounded and connected domain. Then there exists a positive constant K ,
such that for any vector-valued function u ∈ H1

0(Ω ),

a(u, u) =

∫
Ω

σ (u) : ϵ(u)dΩ ⩾ K∥u∥
2
H1(Ω).

Proof. The lemma directly follows from the definition of the stress tensor, let u ∈ H1
0(Ω ):

a(u, u) =

∫
Ω

σ (u) : ϵ(u)dΩ

=

∫
Ω

E
1 + ν

{
ϵ(u) + tr(ϵ(u))

ν

1 − 2ν
I
}

: ϵ(u)dΩ

=

∫
Ω

E
1 + ν

∥ϵ(u)∥2
+

Eν

(1 + ν)(1 − 2ν)
(tr(ϵ(u)))2dΩ

⩾
E

1 + ν
K∥u∥

2
H1(Ω).

The last step follows from Lemma 1. Hence, redefining K :=
E

1 + ν
K concludes the proof the lemma. □

Herewith, coerciveness of the linear form a(., .) has been demonstrated, which is needed for the proof of existence
and uniqueness of the Galerkin finite-element solution.

Theorem 1. Let {φ i
} be piecewise Lagrangian basis field functions and let F be a vector in Rn with unit length,

further let P ∈ C(Ω ), and let |P| ⩽ M2 for some M2 > 0. We define V h(Ω ) = Span{φ1, φ2, . . . ,φN
} ⊂ H1

0(Ω ),
hen

• ∃ ! uG
h (x; x′

; F) ∈ V h(Ω ) such that a(uh, φh) = F(x′) · φh(x′) for all φh ∈ V h;
• ∃ ! uh ∈ V h(Ω ) such that

a(uh, φh) =

NS∑
j=1

P(x j )n(x j )φh(x j )∆S(x j ),

for all φh ∈ V h , and

uh =

NS∑
j=1

P(x j )uG
h (x; x j ; n(x j ))∆S(x j );

• ∃ ! uh ∈ V h(Ω ) such that

a(uh, φh) =

∫
ΓC

P(x′)n(x′)φh(x′)d S(x′),

for all φh ∈ V h , and

uh =

∫
ΓC

P(x′)uG
h (x; x′

; n(x′))d S(x′);

roof.

• It is immediately clear that a(., .) is a bilinear form. We have V h ⊂ H1
0(Ω ), and a(., .) is bounded in H1

0(Ω )
(see for instance [2]). Furthermore, Lemma 2 says that a(., .) is coercive in H1

0(Ω ). Regarding the right-hand

side, we have |φh | ≤ M1 for some M1 > 0 since φh is a Lagrangian function, and hence the magnitude of
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N
e

the right-hand side can be bounded from above by

|F · φh(x′)| ⩽ M1.

Note that ∥F∥ = 1. Hence the right-hand side is bounded, since we are looking for a solution in a finite
dimensional space V h , the system

Ac = b,

where the coefficients of the symmetric matrix A are defined by ai j = a(φi , φ j ), and where a limited number
of entries of b are non-zero and given by F · φh(x′), which is finite. Since b is finite, and A is invertible,
existence and uniqueness of uh follow (one could apply Lax–Milgram’s theorem on the space Rn in this
context) from the algebraic system.

• Existence and uniqueness follow analogously, only boundedness of the right-hand side, which is a linear
functional in φh ∈ V h(Ω ) has to be checked:⏐⏐⏐⏐⏐⏐

NS∑
j=1

P(x j )n(x j ) · φh(x j )∆S(x j )

⏐⏐⏐⏐⏐⏐
⩽

NS∑
j=1

|P(x j )|∥n(x j )∥∥φh(x j )∥∆S(x j )

=

NS∑
j=1

|P(x j )|∥φh(x j )∥∆S(x j ) ⩽ M1 M2

NS∑
j=1

∆S(x j ).

Note that n has unit length. The summation gives the polygonal length or polyhedral area of the cell boundary.
Hence the right-hand side is bounded, then by Lax–Milgram’s Lemma, existence and uniqueness follow.
Further by substitution, it follows that

a(uh, φh) = a(
NS∑
j=1

P(x j )uG
h (x, x j , n(x j ))∆S(x j ), φh)

=

NS∑
j=1

P(x j )a(uG
h (x, x j , n(x j )), φh)∆S(x j )

=

NS∑
j=1

P(x j )n(x j ) · φh(x j )∆S(x j ).

The last step uses the first part of the theorem, and finally the assertion is proved similarly to the first assertion.
• We proceed similarly, by boundedness of the right-hand side:⏐⏐⏐⏐∫

ΓC

P(x′)n(x′) · φh(x′)d S(x′)
⏐⏐⏐⏐ ⩽ M1 M2|ΓC |,

where |ΓC | is the measure of the boundary surface of the biological cell. It again shows that the right-hand
side is a bounded linear functional in V h(Ω ). We proceed by substitution:

a(uh, φh) = a(
∫
ΓC

P(x′)uG
h (x, x′, n(x′))d S(x′), φh)

=

∫
ΓC

P(x′)a(uG
h (x, x′, n(x′)), φh)d S(x′)

=

∫
ΓC

P(x′)n(x′) · φh(x′)d S(x′).

ote that, formally, it was not necessary to prove boundedness, since coerciveness implies uniqueness and the
G
xistence was proved by construction and by combining the result for the existence of uh . □
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Note that for the ‘continuous’ weak formulation, there is no solution in H1, hence the above claim demonstrates
he existence and uniqueness of a Galerkin-based approximation in a subset of H1 to a function that is not in H1.
he situation is somewhat comparable to approximating

√
2 /∈ Q arbitrarily accurately by a sequence of successive

approximations in Q. Further in two- and three-dimensional case, the convergence between the solution to (G F)
and (G F∞) can be proved. Similar work has been done in [14] regarding Stokes problem with the Delta distribution
term.

Theorem 2. Let ΓC be a polygon or polyhedron embedded in Ω ⊂ Rn and let P(x) be sufficiently smooth. Further,
let x j be the midpoint of surface element ∆S(x j ). Denote u∆S

h as the Galerkin solution to (G F) and the u∞

h as
the Galerkin solution to (G F∞), respectively. In two dimensions, for any x /∈ ΓC , there exists a positive constant

, such that for each component of u∞

h we have

|u∆S
h − u∞

h | ⩽ C∆S2
max ,

here ∆Smax = max{∆S(x j )} for any j = {1, 2, . . . , NS}. In three dimensions, for any x /∈ ΓC , there exists a
ositive constant C, such that for each component of u∞

h we have

|u∆S
h − u∞

h | ⩽ Ch2
max ,

here hmax is the maximal diameter among all the triangular elements over ΓC .

Proof. Away from ΓC , the function uG
h is smooth, and since P(x) is smooth as well, the integrand, given by

P(x)uG
h is smooth as well. For ease of notation, we set f (x) = P(x)uG

h (x; x′
; n). We start with the 2D-case. Given

he i th boundary element ∆Si on ΓC with the endpoints xi and xi+1 and we denote its midpoint by xi+1/2, where
∈ {1, 2, . . . , NS}. We consider

x(s) = xi+1/2 + s
xi+1 − xi

2
, −1 ⩽ s ⩽ 1.

ence, x(0) = xi+1/2 and x′(s) =
1
2 (xi+1 − x1), and subsequently

∥x′(s)∥ =
1
2
∥xi+1 − x1∥.

We calculate the contribution over ∆Si to the integral, where Taylor’s Theorem and the Mean Value Theorem for
integration are used to warrant the existence of a ŝ ∈ (−1, 1), such that∫

∆Si

f (x)d S =

∫ 1

−1
f (x(s))∥x′(s)∥ds

=
1
2
∥xi+1 − xi∥

∫ 1

−1
f (x(s))ds

(Taylor Expansion) =
1
2
∥xi+1 − xi∥

∫ 1

−1
f (x(0)) + s

xi+1 − xi

2
∇ f (x(s))|s=0

+
1
2

s2(
xi+1 − xi

2
)T H(x(ŝ))(

xi+1 − xi

2
)ds

=
1
2
∥xi+1 − xi∥[2 f (xi+1/2) + 0 +

1
12

(xi+1 − xi )T H(x(ŝ))(xi+1 − xi )]

= ∥xi+1 − xi∥ f (xi+1/2) +
1

24
∥xi+1 − xi∥(xi+1 − xi )T H(x(ŝ))(xi+1 − xi ),

here H(x(s)) is the Hessian matrix of f (x(s)). Therefore, we obtain that⏐⏐⏐⏐∫
∆Si

f (x)d S − ∥xi+1 − x1∥ f (xi+1/2)
⏐⏐⏐⏐

=
1

24
∥xi+1 − xi∥ · |(xi+1 − xi )T H(x(ŝ))(xi+1 − xi )|

⩽
1

∥xi+1 − xi∥K̃∥xi+1 − xi∥
2.
24
188
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F

Since f (x) ∈ C2(Ω ), it follows that there exists a K̃ > 0, such that

|(x, H(x))| ⩽ K̃∥x∥
2.

Therefore, considering the summation of the boundary elements over ∂ΩC ,⏐⏐⏐⏐⏐
∫
∆Si

f (x)d S −

NS∑
i=1

∥xi+1 − x1∥ f (xi+1/2)

⏐⏐⏐⏐⏐ ⩽
NS∑
i=1

1
24

∥xi+1 − xi∥K̃∥xi+1 − xi∥
2

⩽
1

24
K̃∆S2

max

NS∑
i=1

∥xi+1 − xi∥

=
1

24
K̃∆S2

max |ΓC |,

where ∆Smax = maxi∈{1,...,NS} ∥xi+1 − xi∥ is the maximal length of the line segment over ΓC , and |ΓC | is the
perimeter of the polygon ΓC . It can be concluded that there exists a positive constant K , such that

|u∞

h − u∆S
h | ⩽ K∆S2

max .

In three dimensions, the surface element over a manifold is a triangle. We map the triangle in (x, y, z)-space
to the reference triangle in (s, t)-space with points (0, 0), (0, 1) and (1, 0). Suppose there is a surface element e j

with nodal points x1, x2 and x3, then the centre point of e j is xc = (x1 + x2 + x3)/3. The map from the reference
triangle e0 to the physical triangle e j is given by

x(s, t) = x1(1 − s − t) + sx2 + t x3, 0 ⩽ s ⩽ 1, t ⩽ 1 − s.

or any function f (x) ∈ C2(Ω ), the integral over the original triangle is given by∫
e j

f (x)dx =

∫
e0

f (x(s, t))
√⏐⏐det( J T J)

⏐⏐d(s, t),

where J is the Jacobian matrix, and e0 = {(s, t) ∈ R2
: 0 ⩽ s ⩽ 1, 0 ⩽ t ⩽ 1 − s} given by

J =
∂(x, y, z)
∂(s, t)

=

⎛⎝x2 − x1 x3 − x1
y2 − y1 y3 − y1
z2 − z1 z3 − z1

⎞⎠ ,

and
√

| det( J T J)| is twice the area of the original triangle e j , i.e.

|∆ j | :=

√
| det( J T J)| = ∥(x2 − x1) × (x3 − x1)∥.

We conduct the same process as for the two dimensional case, we obtain, where x(
1
3
,

1
3

) = xc coincides with the
midpoint of element e j , and where Taylor’s Theorem for multi-variate functions is used:∫

e j

f (x)dx =

∫
e0

f (x(s, t))|∆ j |d(s, t)

= |∆ j |

∫
e0

f (x(s, t))d(s, t)

= |∆ j |

∫
e0

f (xc) + (x(s, t) − xc) · ∇ f (xc)

+
1
2

(x(s, t) − xc)T H(x(ŝ, t̂))(x(s, t) − xc)d(s, t)

= |∆ j |

[
1
2

f (xc) + 0

+
1
2

∫
e0

(x(s, t) − xc)T H(x(ŝ, t̂))(x(s, t) − xc)d(s, t)
]

.
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Due to f (x) ∈ C2(Ω ), then for the Hessian matrix of f (x), there exists K̃ > 0, such that

|(x, H(x))| ⩽ K̃∥x∥
2.

It yields⏐⏐⏐⏐⏐
∫

e j

f (x)dx −
|∆ j |

2
f (xc)

⏐⏐⏐⏐⏐
⩽

⏐⏐⏐⏐ |∆ j |

2

∫
e0

(x(s, t) − xc)T H(x(ŝ, t̂))(x(s, t) − xc)d(s, t)
⏐⏐⏐⏐

⩽
|∆ j |

4
K̃ h2

max ,

here h2
max is the largest diameter in the original triangle e j . Considering all the surface elements over ΓC , we

ompute⏐⏐⏐⏐⏐⏐
∫
ΓC

f (x)dx −

NS∑
j=1

|∆ j |

2
f (x j )

⏐⏐⏐⏐⏐⏐ ⩽ K̃
4

h2
max

NS∑
j=1

|∆ j |

2
=

K̃
4

h2
max |ΓC |,

where h2
max is the maximal diameter among all the surface element (i.e. triangle) and |ΓC | is the sum of the measures

(area in R3) of all the surface elements over ΓC . Therefore, in three dimensions, we can conclude that there exists
a positive constant K , such that for the unique Galerkin solution to both (G F) and (G F∞),⏐⏐u∞

h − u∆S
h

⏐⏐ ⩽ K h2
max . □

The above proof and theorem can easily be extended to higher dimensionalities.

3. Alternative approaches for elasticity equation with point sources in multi dimensions

3.1. The ‘hole’ approach

A different approach is based on considering cellular forces on the cell boundary by means of a boundary
condition. In this alternative approach, one ‘removes’ the cell region from the domain of computation. Herewith,
one creates a ‘hole’ in the domain. We consider the balance of momentum over Ω \ ΩC . This gives the following
boundary value problem:

(BV PH )

⎧⎪⎨⎪⎩
−∇ · σ = 0, in Ω\ΩC ,

σ · n = P(x)n(x), on ∂ΩC ,
u = 0, on ∂Ω ,

where σ is defined in Eq. (6) with stiffness E . Let D ⊂ Ω , then we introduce the following notation:

aD,E (u, v) :=

∫
D

σ (u) : ϵ(v)dΩ .

Note that the stiffness can be a constant or a function of space over the domain D.
The corresponding weak form is stated below:

(W FH )

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Find uH

∈ H1(Ω \ ΩC ) such that

aΩ\ΩC ,E (uH , φ) =

∫
ΓC

P(x)n(x) · φd S(x),

for all φ ∈ H1(Ω \ ΩC ).

ince φ ∈ H1(Ω \ ΩC ), it follows from the Trace Theorem [6], and by noting that φ|∂Ω = 0, that there is a
1 > 0 such that ∥φ∥L2(ΓC ) ≤ C1∥φ∥H1(Ω), which implies that the right-hand side in the weak form is bounded.
ubsequently one combines Korn’s Inequality with Lax–Milgram’s Lemma to conclude that a unique solution in

H1 exists.
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We compare the immersed boundary method with the ‘hole’ approach by taking β ⩾ 0, then we adjust the
mmersed boundary method such that

E(x) =

{
βE, in ΩC ,

E, in Ω \ ΩC .
(11)

Regarding the adjusted immersed boundary approach where the stiffness is given by Eq. (11), we have the
ollowing Galerkin form

(G Fβ)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Find uβ

h ∈ V h(Ω ) such that

βaΩC ,E (uβ

h , φh) + aΩ\ΩC ,E (uβ

h , φh) =

∫
ΓC

P(x)n(x) · φh(x)d S(x),

for all φh ∈ V h(Ω ),

here V h(Ω ) is defined in Theorem 1 in Section 2.
For the ‘hole’ approach, we have the following Galerkin form

(G FH )

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Find uH

h ∈ V h(Ω \ ΩC ) such that

aΩ\ΩC ,E (uH
h , φh) =

∫
ΓC

P(x)n(x) · φhd S(x),

for all φh ∈ V h(Ω \ ΩC ).

We will prove that the adjusted immersed boundary method is a perturbation of the ‘hole’ approach:

roposition 1. Let uH
h and uβ

h , respectively, satisfy Galerkin forms (G FH ) and (G Fβ), then there is a C > 0 such
hat

∥uH
h − uβ

h ∥H1(Ω\ΩC ) ⩽ C
√

β∥uβ

h ∥
1/2
H1(ΩC )

.

Proof. First we note that, as in the spirit of Theorem 1, we consider Galerkin solutions in a subset of H1 whereas
he solution to the ‘continuous’ weak formulation is not in H1. Formally (G FH ) and (G Fβ) hold for test functions

h from different sets, namely V h(Ω ) and V h(Ω \ ΩC ). If we choose V h(ΩC ) to correspond to Lagrangian basis
unctions associated to internal nodes in ΩC , then these basis functions vanish at ΓC . Furthermore, within the set
f Lagrangian basis functions that are associated with Ω \ΩC , there are Lagrangian basis functions associated with
C , which have a compact, hence limited, support over ΩC and in Ω \ΩC , then let v = uβ

h − uH
h , then subtraction

of problems (G FH ) and (G Fβ) gives

aΩ\ΩC ,E (v, φh) = −βaΩC ,E (uβ

h , φh).

The left-hand side is a bounded and coercive form on which we can apply Korn’s Inequality. Furthermore,
boundedness of the right-hand side in V h(Ω \ΩC ) follows by application of the Cauchy–Schwarz Inequality, hence
there is an L > 0 such that |aΩC ,E (uβ

h , φh)| ⩽ L∥uβ

h ∥H1(ΩC )∥φh∥H1(ΩC ). Herewith, we arrive at

− βL∥uβ

h ∥H1(ΩC )∥φh∥H1(ΩC ) ⩽ aΩ\ΩC ,E (v, φh) ⩽ βL∥uβ

h ∥H1(ΩC )∥φh∥H1(ΩC ),

for all φh ∈ V h(Ω \ ΩC ).

Note that the aΩ\ΩC (v, φh) contains v and φh in Ω \ ΩC , whereas the right-hand side of the inequality contains
norms over ΩC . Using Korn’s Inequality, and upon setting φh = v in Ω \ ΩC , we arrive at

K∥v∥
2
H1(Ω\ΩC ) ⩽ aΩ\ΩC ,E (v, v) ⩽ βL∥uβ

h ∥H1(ΩC )∥φh∥H1(ΩC )

⇒ ∥v∥H1(Ω\ΩC ) ⩽ C
√

β∥uβ

h ∥
1/2
H1(ΩC )

, where C =

√
L
K

∥φh∥
1/2
H1(ΩC )

. □
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For the case of a spring-force boundary condition on ∂Ω one can derive a compatibility condition. To this extent,
e consider the following boundary value problems, for the ‘hole’ problem:

(BV P ′

H )

⎧⎪⎨⎪⎩
−∇ · σ = 0, in Ω\ΩC ,

σ · n = P(x)n(x), on ∂ΩC ,
σ · n + κu = 0, on ∂Ω ,

and for the immersed boundary problem:

(BV P ′

I )

⎧⎨⎩ − ∇ · σ =

∫
ΓC

P(x′)n(x′)δ(x − x′)d S(x), in Ω ,

σ · n + κu = 0, on ∂Ω ,

ext we give a proposition regarding compatibility for the ‘hole’ approach and the immersed boundary method for
he case of a spring boundary condition:

roposition 2. Let uH and uI , respectively, be solutions to the ‘hole’ approach, see (BV P ′

H ) and to the immersed
oundary approach, see (BV P ′

I ). Let ΓC denote the boundary of the cell, over which internal forces are exerted,
nd let ∂Ω be the outer boundary of Ω . Then∫

∂Ω

κuH d S =

∫
∂Ω

κuI d S =

∫
ΓC

P(x)n(x)d S.

roof. To prove that the above equation holds true, we integrate the partial differential equation (PDE) of both
pproaches over the computational domain Ω .

For the immersed boundary approach, we get

−

∫
Ω

∇ · σdΩ =

∫
Ω

NS∑
j=1

P(x j )n(x j )δ(x − x j )∆S(x j )dΩ ,

hen after applying Gauss Theorem on the left-hand side (LHS) and simplifying the right-hand side (RHS), we
btain

−

∫
∂Ω

σ · n(x)d S =

NS∑
j=1

P(x j )n(x j )∆S(x j ).

y substituting the Robin’s boundary condition and letting NS → ∞, i.e. ∆S(x j ) → 0, the equation becomes∫
∂Ω

κu I d S =

∫
ΓC

P(x)n(x)d S. (12)

Subsequently, we do the same thing for the ‘hole’ approach. Then, we get

−

∫
Ω

∇ · σdΩ = 0,

nd we apply Gauss Theorem:

−

∫
∂Ω∪ΓC

σ · n(x)d S = 0,

hich implies

−

∫
∂Ω

σ · n(x)d S −

∫
ΓC

σ · n(x)d S = 0.

sing the boundary conditions, we get∫
κuH d S =

∫
P(x)n(x)d S,
∂Ω ΓC
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which is exactly the same as Eq. (12). Hence we proved that∫
∂Ω

κuH d S =

∫
∂Ω

κuI d S =

∫
ΓC

P(x)n(x)d S. □

Hence, the two different approaches are consistent in the sense of global conservation of momentum and therefore
he results from both approaches should be comparable.

.2. The smoothed particle approach

The Gaussian distribution is used here as an approximation for the Dirac Delta distribution. Hereby, we show
hat in the n-dimensional case, the Gaussian distribution is a proper approximation for the Dirac Delta distribution.

emma 3. For an open domain

Ω = (x1,1, x1,2) × (x2,1, x2,2) × · · · × (xn,1, xn,2) ⊂ Rn, n ⩾ 2,

let

δε(x − x′) =
1

(2πε2)n/2 exp
{
−

∥x − x′
∥

2

2ε2

}
,

here x′
= (x ′

1, . . . , x ′
n) ∈ Ω , then

(i) limε→0+ δε(x − x′) → 0, for all x ̸= x′;
(ii) Let f (x) ∈ C2(Rd ) and ∥ f (x)∥ ⩽ M < +∞, then there is a C > 0 such that⏐⏐⏐⏐∫

Ω

δε(x − x′) f (x)dΩ − f (x′)
⏐⏐⏐⏐ ⩽ Cε2 as ε → 0+.

roof. (i) Since x ̸= x′, limε→0+ exp
{
−

∥x−x′
∥

2

2ε2

}
→ 0. Thus,

lim
ε→0+

δε(x − x′) → 0, for all x ̸= x′.

ii) Now we consider∫
Ω

δε(x − x′) f (x)dΩ

=

∫
Ω

1
(2πε2)n/2 exp

{
−

∥x − x′
∥

2

2ε2

}
f (x)dΩ .

Firstly, we integrate over the infinite domain:∫
Rn

δε(x − x′) f (x)dΩ

=
1

(2πε2)n/2

∫
+∞

−∞

· · ·

∫
+∞

−∞

exp
{
−

∥x − x′
∥

2

2ε2

}
f (x)dxn · · · dx1

=
1

(2πε2)n/2

∫
+∞

−∞

exp
{
−

(x1 − x ′

1)2

2ε2

}
· · ·

∫
+∞

−∞

exp
{
−

(xn − x ′
n)2

2ε2

}
f (x)dxn · · · dx1.

Again let si =
(xi − x ′

i ) −
xi,1+xi,2

2
√

2ε
, and furthermore ξi = si +

xi,1 + xi,2

2
, i = {1, 2, . . . , n}. We denote

x1 = (x1,1, x2,1, . . . , xn,1), x2 = (x1,2, x2,2, . . . , xn,2) and x′
= (x ′

1, x ′

2 . . . , x ′
n). By Taylor Expansion, f (x) can

be rewritten as

f (x) = f
(

√
2εs +

x1 + x2

2
+ x′

)
= f (x′) + ∇ f (x′)

(
√

2εs +
x1 + x2

)

2
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+
1
2!

(
√

2εs +
x1 + x2

2

)T

H(x′)
(

√
2εs +

x1 + x2

2

)
+ O(ε3)

= f (x′) + ∇ f (x′)
√

2ε

(
s +

x1 + x2

2
√

2ε

)
+ ε2

(
s +

x1 + x2

2
√

2ε

)T

H
(

x′)(
√

2εs +
x1 + x2

2
√

2ε

)
+ O(ε3)

= f (x′) + ∇ f (x′)
√

2εξ + ε2ξ T H(x′)ξ + O(ε3)

where H(x′) is Hessian matrix of f (x). For any non-negative integer d ,∫
+∞

−∞

zde−z2
dz =

⎧⎨⎩
0, if d is odd,

Γ

(
d + 1

2

)
, if d is even.

First we calculate∫
Rn

δε(x − x′) f (x)dΩ

=
1

(2πε2)n/2

∫
+∞

−∞

exp
{
−

(x1 − x ′

1)2

2ε2

}
· · ·

∫
+∞

−∞

exp
{
−

(xn − x ′
n)2

2ε2

}
f (x)dxn · · · dx1

=
1

πn/2

∫
+∞

−∞

exp

{(
−s1 +

x1,1 + x1,2

2

)2
}

· · ·

∫
+∞

−∞

exp

{(
−sn +

xn,1 + xn,2

2

)2
}

f
(

√
2εs +

x1 + x2

2
+ x′

)
dsn · · · ds1

=
1

πn/2

∫
+∞

−∞

e−ξ2
1 · · ·

∫
+∞

−∞

e−ξ2
n f (

√
2εξ + x′)dξn · · · dξ1

=
1

πn/2

∫
+∞

−∞

e−ξ2
1 · · ·

∫
+∞

−∞

e−ξ2
n [ f (x′) + ∇ f (x′)

√
2εξ + ε2ξ T H(x′)ξ + O(ε3)]dξn · · · dξ1

=
f (x′)
πn/2

∫
+∞

−∞

e−ξ2
1 · · ·

∫
+∞

−∞

e−ξ2
n dξn · · · dξ1

+

√
2ε

πn/2

∫
+∞

−∞

e−ξ2
1 ξ1 f ′

x1
(x′) · · ·

∫
+∞

−∞

e−ξ2
n ξn f ′

xn
(x′)dξn · · · dξ1

+
ε2

πn/2

∫
+∞

−∞

e−ξ2
1 (

√
2ξ1 + f ′′

x1,x1
(x′))ξ 2

1

+

n∑
i=1,i ̸=1

f ′′

x1,xi
(x′)ξ1ξi · · ·

∫
+∞

−∞

e−ξ2
n (

√
2ξ1 + ( f ′′

xn ,xn
)(x′))ξ 2

n

+

n∑
i=1,i ̸=n

f ′′

xn ,xi
(x′)ξnξi dξn · · · dξ1 + O(ε3)

= f (x′) +
ε2

√
π
Γ

(
3
2

) d∑
i=1

f ′′

xi ,xi
(x′) + O(ε3) → f (x′),

as ε → 0+.

For the integral over the given domain Ω = (x1,1, x1,2) × · · · × (xn,1, xn,2), it can be written as∫ x1,2

x1,1

· · ·

∫ xn,2

xn,1

dxn · · · dx1 =

∫
+∞

−∞

· · ·

∫
+∞

−∞

dxn · · · dx1

−

n∑ ∫ x1,2

· · ·

∫ xi,1

· · ·

∫ xn,2

dxn · · · dx1 −

n∑ ∫ x1,2

· · ·

∫
+∞

· · ·

∫ xn,2

dxn · · · dx1
i=1 x1,1 −∞ xn,1 i=1 x1,1 xi,2 xn,1
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s
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= (
√

2ε)n
[∫

+∞

−∞

· · ·

∫
+∞

−∞

dsn · · · ds1

−

n∑
i=1

∫ s1,2

s1,1

· · ·

∫ si,1

−∞

· · ·

∫ sn,2

sn,1

dsn · · · ds1 −

n∑
i=1

∫ ξ1,2

ξ1,1

· · ·

∫
+∞

ξi,2

· · ·

∫ ξn,2

ξn,1

dξn · · · dξ1

]

= (
√

2ε)n
[∫

+∞

−∞

· · ·

∫
+∞

−∞

dξn · · · dξ1

−

n∑
i=1

∫ ξ1,2

ξ1,1

· · ·

∫ ξi,1

−∞

· · ·

∫ ξn,2

ξn,1

dξn · · · dξ1 −

n∑
i=1

∫ ξ1,2

ξ1,1

· · ·

∫
+∞

ξi,2

· · ·

∫ ξn,2

ξn,1

dξn · · · dξ1

]
,

where ξi,1 =
xi,1 − x ′

i
√

2ε
and ξi,2 =

xi,2 − x ′

i
√

2ε
. Therefore,⏐⏐⏐⏐∫

Ω

δε(x − x′) f (x)dΩ − f (x′)
⏐⏐⏐⏐

=

⏐⏐⏐⏐⏐ f (x′) +
ε2

√
π
Γ

(
3
2

) d∑
i=1

f ′′

xi ,xi
(x′) + O(ε3) −

1
πn/2

[
n∑

i=1

∫ ξ1,2

ξ1,1

e−ξ1 · · ·

∫ ξi,1

−∞

e−ξi

· · ·

∫ ξn,2

ξn,1

e−ξn f (
√

2εξ + x′)dξn · · · dξ1 +

n∑
i=1

∫ ξ1,2

ξ1,1

e−ξ1 · · ·

∫
+∞

ξi,2

e−ξi

· · ·

∫ ξn,2

ξn,1

e−ξn f (
√

2εξ + x′)dξn · · · dξ1

]
− f (x′)

⏐⏐⏐⏐⏐
⩽

⏐⏐⏐⏐⏐ ε2

√
π
Γ

(
3
2

) d∑
i=1

f ′′

xi ,xi
(x′) + O(ε3)

⏐⏐⏐⏐⏐
+

M
2n−1

n∑
j=1

n∏
i=1,i ̸= j

[erf(ξ j,2) − erf(ξ j,1) + 2] × [erf(ξi,2) − erf(ξi,1)]

⩽

⏐⏐⏐⏐⏐ ε2

√
π
Γ

(
3
2

) d∑
i=1

f ′′

xi ,xi
(x′) + O(ε3)

⏐⏐⏐⏐⏐ +
M
2

n∑
j=1

[erf(ξ j,1) − erf(ξ j,2) + 2]

→ 0, as ε → 0+,

ince ∥ f (x)∥ < M < +∞, ξi,1 → −∞ and ξi,2 → ∞ respectively. Using 1 − erf(y) <
2

√
π

exp(−y) for y > 0

and the fact that exp(y) <
1
yα

as y → ∞, we see that the second term approximates zero faster than the first term.

ence, we conclude that there is a C > 0 such that⏐⏐⏐⏐∫
Ω

δε(x − x′) f (x)dΩ − f (x′)
⏐⏐⏐⏐ ⩽ Cε2 as ε → 0+. □

As a remark we add that setting f (x) = 1, immediately shows that there is a C > 0 such that⏐⏐⏐⏐∫
Ω

δε(x − x′)dΩ − 1
⏐⏐⏐⏐ ⩽ Cε2, as ε −→ 0+.

urthermore, the above results are stronger than the convergence in distribution of the Gaussian to the Dirac Delta
istribution. Using the result above, we start with analysing different approaches with only one relatively big cell
n the computational domain. According to the model described in Eq. (8), the forces released on the boundary of
he cell are the superposition of point forces on the midpoint of each surface element. For example, if we use a
quare shape to approximate the biological cell, then the forces are depicted in Fig. 1. Therefore, in n dimensional
195
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t

c

Fig. 1. We consider a square shape cell in two dimensions, with the centre position at (a, b) and side length ∆x . The forces exerted on
he boundary are indicated by arrows.

ase (n > 1), if the biological cell is a n-dimensional hypercube, then the forces can be rewritten as

f t =

NS∑
j=1

P(x j )n(x j )δ(x − x j )∆S(x j )

= P
n∑

i=1

{ei (∆x)n−1[δ(x1 − x ′

1, . . . , xi − (x ′

i +
∆x
2

), . . . , xn − x ′

n)

− δ(x1 − x ′

1, . . . , xi − (x ′

i −
∆x
2

), . . . , xn − x ′

n)]}, (13)

where ei is the standard basis vector with 1 in the i th coordinate and 0′s elsewhere, and ∆x is the length of cell
boundary in each coordinate. For the smoothed force approach, we set δ(x) ≈ δε(x). The force is given by

f ε = P
n∑

i=1

{ei (∆x)n−1[δε(x1 − x ′

1, . . . , xi − (x ′

i +
∆x
2

), . . . , xn − x ′

n)

− δε(x1 − x ′

1, . . . , xi − (x ′

i −
∆x
2

), . . . , xn − x ′

n)]}. (14)

Following the same process in two dimensions [17] and thanks to the continuity of Gaussian distribution, as
∆x → 0, the force converges to

f S = P(∆x)n
∇δε(x − x′). (15)

Theorem 3. Let Ω ⊂ Rn , and let Vh(Ω ) ⊂ H1
0(Ω ), and suppose that uh ⊂ V h(Ω ) is the Galerkin solution to the

problem

(BV P)

⎧⎨⎩
Find uh ∈ V h(Ω ) such that

a(uh, φh) =

∫
f tφhdΩ , for all φh ∈ V h(Ω ),

(16)
Ω
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and let uε
h be the Galerkin solution to

(BV Pε)

⎧⎨⎩
Find uε

h ∈ V h(Ω ) such that

a(uε
h, φh) =

∫
Ω

f εφhdΩ , for all φh ∈ V h(Ω ).
(17)

hen there is an L1 > 0 such that ∥uε
h − uh∥H1(Ω) ⩽ L1 (∆x)(n−1)/2 ε.

roof. Using bilinearity of a(., .) gives upon setting w = uh − uε
h the following equation:

a(w, φh) =

∫
Ω

( f t − f ϵ) · φhdΩ .

sing the result from Lemma 3 and the Triangle Inequality, bearing in mind that ∥ei∥ = 1 and that the basis field
unctions φh are bounded, and after some algebraic manipulations, we can write the right-hand side as⏐⏐⏐⏐∫

Ω

( f t − f ϵ) · φhdΩ
⏐⏐⏐⏐ ⩽ C(∆x)n−1ε2. (18)

oerciveness, see Lemma 2, and using φh = w, gives

K∥w∥
2
H1(Ω) ⩽ a(w, w) ⩽ C(∆x)n−1ε2,

ence there is an L1 > 0 such that

∥w∥H1(Ω) ⩽ L (∆x)(n−1)/2 ε,

hich immediately implies that

∥uh − uε
h∥H1(Ω) ⩽ L1 (∆x)(n−1)/2 ε □

heorem 4. Let Ω ⊂ Rn , and let Vh(Ω ) ⊂ H1
0(Ω ), and suppose that uε

h is the solution to the boundary value
problems in Eq. (17), and let uS

h be the solution to

(BV PS P )

⎧⎨⎩
Find uε

h ∈ V h(Ω ) such that

a(uε
h, φh) =

∫
Ω

f SφhdΩ , for all φh ∈ V h(Ω ).
(19)

hen there is an L2 > 0 such that

1
(∆x)n

∥uS
h − uϵ

h∥H1(Ω) ⩽ L2
(∆x)2

ε3 .

Proof. Using bilinearity of a(., .) gives, upon setting w = uε
h − uS

h , the following equation:

a(w, φh) =

∫
Ω

( f ε − f S) · φhdΩ .

sing Taylor’s Theorem for multivariate functions on smoothed delta distributions, we get the following result for
he right-hand side:∫

Ω

( f ϵ − f S) · φhdΩ =

∫
Ω

P(x′)
48

(∆x)n+2
n∑

i=1

ei
∂3δϵ(x̂ − x′)

∂x3
i

· φhdΩ , (20)

or x̂ between x and x′. The magnitude of the above expression can be estimated from above by⏐⏐⏐⏐∫
Ω

( f ϵ − f S) · φhdΩ
⏐⏐⏐⏐ ⩽ P(x′)

48
(∆x)n+2


n∑

i=1

ei
∂3δϵ

∂x3
i


L∞(Ω)

∥φh∥H1(Ω). (21)

sing Lemma 2, this gives

K∥w∥
2
H1(Ω) ⩽ a(w, w) ⩽

P(x′)
48

(∆x)n+2


n∑

ei
∂3δϵ

∂x3

 ∥φh∥H1(Ω).
i=1 i L∞(Ω)
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Table 1
Parameter values used in the comparison of plasticity and morphoelasticity.

Parameter Description Value

E Substrate stiffness 1
β Factor between the cell stiffness and the substrate stiffness in Eq (11) 10−5

R Length of side of square-shape biological cells 6
ν Poisson’s ratio 0.48
P Magnitude of the temporary forces per unit length 1
x0 Length of the computational domain in x-coordinate 20
y0 Length of the computational domain in y-coordinate 20
wx Length of the wound domain in x-coordinate 10
wy Length of the wound domain in y-coordinate 10

Division by K∥w∥
2
H1(Ω)

gives

∥w∥H1(Ω) ⩽
P(x′)

48
(∆x)n+2


n∑

i=1

ei
∂3δϵ

∂x3
i


L∞(Ω)

.

We bear in mind that ∂3δϵ

∂x3
i

= O(ε−3), this implies that there is an L2 > 0 such that

1
(∆x)n

∥uS
h − uϵ

h∥H1(Ω) ⩽ L2
(∆x)2

ε3 . □

With the two theorems above, we have proved that the solution to (BV Pε) converges to the solution to (BV P),
and the solution to (BV PS P ) converges to the solution to (BV Pε). Hence, we can derive the following theorem:

heorem 5. Let Ω ⊂ Rn , and let Vh(Ω ) ⊂ H1
0(Ω ), and suppose that uh is the Galerkin solution to (BV P) and let

uS
h be the solution to (BV PS P ), let ε = O(∆x)p. If 0 < p < (2 + n)/3 then uS

h converges to uh in the H 1-norm,
and uS

h converges to u in the H 1-norm as ∆x −→ 0..

roof. Denote uh and uS
h to be the Galerkin solution to (BV Pε) and (BV PS P ). Firstly, we consider

∥uh − uS
h∥ = ∥uh − uε

h + uε
h − uS

h∥

⩽ ∥uh − uε
h∥ + ∥uε

h − vε
h∥

⩽ L1(∆x)(n−1)/2ε + L2
(∆x)2+n

ε3

= L1(∆x)(n−1)/2+p
+ L2(∆x)2+n−3p

→ 0,

as ∆x → 0, if 0 < p < (2 + n)/3.

From this inequality, we conclude that the finite element solution of the smooth particle method converges
o the solution of the immersed boundary method upon letting ∆x → 0 and choosing ε = O(∆x)p for
< p < (2 + p)/3. □

. Numerical results in two dimensions

To demonstrate the consistency between the immersed boundary approach and two alternative methods, we
onsider a square-shape cell in the computational domain. A homogeneous boundary condition is imposed for
he exterior boundary of the computational domain. The parameter values are listed in Table 1. All of them are
ducated guesses in this study and they are dimensionless.

According to Proposition 1, to compare the immersed boundary approach and the ‘hole’ approach, the stiffness
nside the biological cell needs to be adjusted, since two approaches are consistent with β → 0. However, in the
mplementation, we can only select a very small positive value instead of β = 0.

Numerical results are presented in Fig. 2, Tables 2 and 3. From the figure, there is no significant difference, except
hat in the smoothed particle approach, the displacement is a little bit larger than in the other two approaches. The
198
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Fig. 2. For the different stiffness inside and outside of the cell, the solution (i.e. the displacement) is showed in each approach. Black curves
show the deformed region of vicinity and the cell, and blue curve represents the cell. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Table 2
The percentage of area change of cell and vicinity region, and time cost of various approaches, if the stiffness
is different inside and outside the biological cell.

The immersed
boundary approach

The ‘hole’
approach

The smoothed
particle approach

Cell Area Reduction Ratio (%) 45.84096 45.71401 45.18525
Vicinity Area Reduction Ratio (%) 14.274671 14.15804 14.16180
Time Cost (s) 0.78643 1.10195 0.75832

reduction ratio of either the vicinity region or the cell appears to yield a tiny difference, which implies that three
approaches are numerically consistent. However, the ‘hole’ approach takes slightly more computation time than the
other two approaches. Therefore and due to the numerical complications in needing adaptive meshes, it will not be
elected when we deal with the displacement and deformation of large number of cells, even though its convergence
rate improves significantly comparing to the immersed boundary approach. As for the smoothed particle approach,
the convergence rate of the L −norm does not improve, while the computational efficiency does.
2
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Table 3
The L2

− norm of the solution (i.e. the displacement) with different mesh size in each approach,
if the stiffness is different inside and outside the biological cell.

The immersed
boundary approach

The ‘hole’
approach

The smoothed
particle approach

h 5.8833092 5.9256424 5.8981846
h/2 5.9302898 5.952170 5.9324678
h/4 5.9484929 5.9593735 5.9486686
Convergence rate 1.36788 1.88060 1.08102

5. Conclusion

For dimensionalities larger than one, the solution to the displacement from linear elasticity with Dirac Delta
istributions is singular. We analyse the solutions based on Galerkin approximations with Lagrangian basis functions
or different approaches that are consistent if cell sizes and smoothness parameters tend to zero. We have shown that
ll the alternative approaches are numerically consistent with the immersed boundary approach. The current paper
as investigated and extended earlier findings to multi dimensionality. The current analysis has been carried out
or simple, linear elasticity. Using the fundamental solution to the elasticity equation in two and three dimensions,
s well as the singularity removing technique, we expect that it is also possible to extend some of our results to
he (non Galerkin-based) exact solution to the elasticity problem. In the future, we plan to extend our findings
o the viscoelasticity equations. This viscoelastic model contains a damping term, and still retains a linear nature.
urthermore, we are also interested in analysing the above considered principles for a morphoelastic model. A
orphoelastic model has the major advantage of incorporating permanent deformations. A major complication is

ts nonlinear nature.
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[19] F. Putar, J. Sorić, T. Lesičar, Z. Tonković, Damage modeling employing strain gradient continuum theory, Int. J. Solids Struct. 120
(2017) 171–185, http://dx.doi.org/10.1016/j.ijsolstr.2017.04.039.

[20] J.C. Reiher, I. Giorgio, A. Bertram, Finite-element analysis of polyhedra under point and line forces in second-strain gradient elasticity,
J. Eng. Mech. 143 (2) (2017) 04016112, http://dx.doi.org/10.1061/(asce)em.1943-7889.0001184.

[21] R. Scott, Finite element convergence for singular data, Numer. Math. 21 (4) (1973) 317–327.
[22] F. Vermolen, A. Gefen, Semi-stochastic cell-level computational modelling of cellular forces: Application to contractures in burns and

cyclic loading, Biomech. Model. Mechanobiol. 14 (6) (2015) 1181–1195.
[23] Y. Yang, A. Misra, Micromechanics based second gradient continuum theory for shear band modeling in cohesive granular materials

following damage elasticity, Int. J. Solids Struct. 49 (18) (2012) 2500–2514, http://dx.doi.org/10.1016/j.ijsolstr.2012.05.024.
201

http://refhub.elsevier.com/S0378-4754(22)00123-9/sb15
http://refhub.elsevier.com/S0378-4754(22)00123-9/sb15
http://refhub.elsevier.com/S0378-4754(22)00123-9/sb15
http://refhub.elsevier.com/S0378-4754(22)00123-9/sb16
http://refhub.elsevier.com/S0378-4754(22)00123-9/sb16
http://refhub.elsevier.com/S0378-4754(22)00123-9/sb16
http://refhub.elsevier.com/S0378-4754(22)00123-9/sb17
http://refhub.elsevier.com/S0378-4754(22)00123-9/sb17
http://refhub.elsevier.com/S0378-4754(22)00123-9/sb17
http://dx.doi.org/10.1007/s00161-014-0338-9
http://dx.doi.org/10.1016/j.ijsolstr.2017.04.039
http://dx.doi.org/10.1061/(asce)em.1943-7889.0001184
http://refhub.elsevier.com/S0378-4754(22)00123-9/sb21
http://refhub.elsevier.com/S0378-4754(22)00123-9/sb22
http://refhub.elsevier.com/S0378-4754(22)00123-9/sb22
http://refhub.elsevier.com/S0378-4754(22)00123-9/sb22
http://dx.doi.org/10.1016/j.ijsolstr.2012.05.024

	Point forces in elasticity equation and their alternatives in multi dimensions
	Introduction
	Elasticity equation with point sources in multi dimensions
	Alternative approaches for elasticity equation with point sources in multi dimensions
	The `hole' approach
	The smoothed particle approach

	Numerical results in two dimensions
	Conclusion
	Declaration of competing interest
	References


