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Abstract: Apoptosis signaling pathways, drug resistance, and metastasis are important targets to
develop new cancer treatments. We developed cholesterol-coated Poly(d,l-Lactide-co-Glycolic Acid)
(PLGA) nanoparticles for effective encapsulation and delivery of retinoic acid and oxaliplatin to
analyze their antitumor activity in colorectal cancer. The cell viability and proliferation of tumoral
cells lines (CT-26 and SW-480) decreased when compared to control in vitro after treatment with
the nanoparticles. In addition, apoptosis of CT-26 cells increased. Importantly, cytoprotection
of nontumor cells was detected. Expression of pro-apoptotic proteins was upregulated, while
anti-apoptotic proteins were downregulated either in vitro or in vivo. In addition, drug resistance
and metastasis factors were downregulated in vivo. Human colorectal tumors that highly expressed
BCL-2 and Ki-67 had a greater tendency towards death within 60 months. Our results show that
loading oxaliplatin combined with retinoic acid and cholesterol in a nanoparticle formulation enables
determination of optimal antitumor activity and subsequent treatment efficacy.

Keywords: PLGA nanoparticles; oxaliplatin; colorectal cancer; drug resistance; apoptosis

1. Introduction

Colorectal cancer (CRC) is the third most commonly occurring malignancy around the world with
significant morbidity and mortality rates. Every year, 1.2 million people are diagnosed with CRC [1–4].
Evasion of apoptosis is one of the hallmarks of cancer, in general, and correlated to drug resistance and
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metastatic spread, which urges the development of new drugs [5–7]. Apoptosis occurs through the
extrinsic pathway or intrinsic pathway. Both pathways converge at the activation of caspase-3, which then
induces other caspases downstream of caspase-3 and eventually leads to apoptosis of the cancer cells [6,8].

Oxaliplatin (OXA) is used to treat CRC, in combination with other drugs. OXA binds to nucleophilic
molecules and forms adducts that inhibit gene transcription [9,10]. Unfortunately, tumor resistance to
OXA treatment is not uncommon and can occur via a mutation in the intrinsic apoptosis pathway,
which results in metastatic spread [7,11]. In addition, toxic effects are also observed. Neurotoxicity
through reversible sensory neuropathy or chronic cumulative neuropathy is frequently observed [12].

To overcome these limitations of OXA, a drug delivery system (DDS) that can increase efficacy
and reduce adverse effects by increasing the circulation time and bioavailability of the drug can be
used [13]. This would result in a high resistance to clearance and increased concentration of the
drug in the target tissues, thus, requiring lower doses of drugs [14]. One of the most widely used
DDSs is the biodegradable and biocompatible copolymer poly (d,l-lactic-co-glycolic acid) (PLGA)
due to its metabolite monomers: Lactic acid and glycolic acid. This polymer is approved by the
Food and Drug Administration (FDA) and the European Medicine Agency (EMA) in several clinically
applied DDS [15]. Nanoparticles (NPs) are a form of DDS. The commonly utilized techniques
for the preparation of NPs are the nanoprecipitation technique [16], the emulsification solvent
extraction/evaporation method [17,18], the emulsification solvent diffusion [19,20], and the double
emulsion solvent evaporation [21]. The choice of a particular method of encapsulation is mainly
determined by the solubility and molecular stability of the drug. In this study, we prepared NPs made
from PLGA using the emulsification solvent extraction/evaporation method.

Cholesterol (CHO) is involved in the endocytosis of materials as well as cancer proliferation and
metastasis. Different types of cells have different amounts of cholesterol in their membranes. This
difference becomes clearer when comparing healthy cells with cancer cells. Cancer cells have a high
proliferation rate. Thus, the membranes of these cells are synthesized rapidly, which requires more
nutrients and leads to higher CHO content of the membrane [22,23].

Retinoic acid (RA) binds to the heterodimers of the retinoic acid receptor (RARs) and the retinoid
X receptor (RXRs) present in the nuclear membrane of cancer cells, which leads to growth inhibition,
differentiation, or apoptosis in these cells. Studies have shown that, when used in combination with
chemotherapeutic agents such as OXA, those characteristics of RA lead to increased cytotoxicity and
decreased side effects via synergistic action of therapeutic agents [24–26].

In this study, PLGA, OXA, CHO, and RA were combined to formulate distinct NPs for the
delivery of drugs to targeted cells. It is expected that CHO-coated PLGA NPs have an enhanced
tumor-targetability when compared to exclusive PLGA NPs. Therefore, the aim of the present work
was to evaluate the biological efficacy of OXA against CRC cells when co-encapsulated with RA in
CHO-coated PLGA NPs.

2. Materials and Methods

2.1. Preparation of PLGA Nanoparticles

The PLGA NPs were synthesized using a solvent extraction/evaporation method [27,28].
We hypothesized the emulsification solvent extraction/evaporation technique could result in better
encapsulation yield of hydrophilic (OXA) and hydrophobic (RA) molecules simultaneously. Briefly,
100 mg of PLGA (Corbion, Amsterdam, The Netherlands) were dissolved in 3 mL of dichloromethane
(DCM). Depending on the PLGA NPs, the following substances were added: 20 mg of OXA (European
Pharmacopoeia Reference Standards), 0.5 mg of IR-780 iodide (Sigma-Aldrich, St. Louis, MO, USA),
and/or 20 mg of RA (Sigma-Aldrich, St. Louis, MO, USA). The solution containing the NPs constituents
was added dropwise to 25 mL of aqueous 2.5% (w/v) polyvinyl alcohol (PVA) and emulsified using
a sonicator (250 watt, Sonifier 250; Branson, Danbury, CT, USA). PVA acted as a surfactant molecule,
which stabilized the emulsion nanoparticles, avoided aggregation, and prevented them from coalescing
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with each other. In addition, PVA acted as an effective stabilization and the PVA surfactant molecules
allowed us to achieve small particle size and narrow size distribution. A very low concentrations of
PVA remained on the surface of nanoparticles [29]. The solution was transferred to a new vial that
contained an air-dried solution of 20 mg CHO (Avati Polar Lipids, Alabaster, AL, USA), dissolved
in 0.4 mL of chloroform, and homogenized by sonication. After evaporating the solvent, the NPs
were collected by centrifugation and lyophilized for 3 days. The concentration of each encapsulated
constituent was determined by reverse phase high-performance liquid chromatography (RP-HPLC),
as described elsewhere [30,31].

2.2. Physicochemical Properties of PLGA NPs

PLGA NPs were characterized by average size, polydispersity index, and surface charge
(zeta-potential) by dynamic light scattering. PLGA NP samples were measured for size using
a Zetasizer (Nano ZS, Malvern Ltd., Worcestershire, UK), and were analyzed for surface charge by
laser Doppler electrophoresis on the same device.

2.3. Atomic Force Microscope (AFM)

The shape and surface of PLGA NPs were visualized by AFM. The nanoparticle dispersion was
deposited and left to dry overnight on the mica for analysis using a JPK NanoWizard® 3 NanoOptics
AFM System (JPK BioAFM Business, Berlin, Germany) with intermittent contact mode cantilevers
(70 kHz). Raw data (height (measured) trace) obtained from the microscope were processed with
JPKSPM Data Processing software using the plane flattening algorithm.

2.4. Viability Assay

An initial screening was performed by adding free OXA (5 µg/mL, 10 µg/mL, 25 µg/mL, 50 µg/mL,
100 µg/mL, and 200 µg/mL) to the CT-26 plated in a 96-well plate. Then a second assay was performed
using free OXA as well as all PLGA NPs formulation systems (Table 1) at concentrations of 5 µg/mL,
10 µg/mL, and 25 µg/mL. Culture medium without drug (negative) and 25% DMSO (positive) were
used as controls. After incubation for 24, 48, or 72 h, 20 µL/well of MTS [3-(4,5-dimethylthiazol-2-yl)-
5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt] (Promega Corporation,
Madison, WI, USA) solution was added and incubated for 3 h. Absorbance was measured at 490 nm.

Table 1. Physicochemical properties of Poly(D,L-Lactide-co-Glycolic Acid) (PLGA) nanoparticles (NPs).
Determination of retinoic acid (RA) and oxaliplatin (OXA) content, size distribution, and zeta-potential
of PLGA NPs. Particles were characterized by Dynamic Light Scattering (DLS) and zeta-potential
measurements. Particle size data represent the mean value ± standard deviation (SD) of dynamic
light scattering data. Zeta-potential data represent the mean value ± SD of 10 readings. OXA and
RA contents of PLGA NPs were determined by particle digestion and measured by reversed-phase
high-performance liquid chromatography (RP-HPLC) analysis.

Samples
Loading Oxaliplatin

Efficiency
(µg/mg NPs)

Loading Retinoic
Acid Efficiency

(µg/mg NPs)

Size ± SD
(nm)

PDI
(Polydispersity

Index)

Zeta Potential
± SD (mV)

NPs 1 (OXA, RA)-CHO 44 40 801.7 ± 165.4 0.598 −21.4 ± 8.4
NPs 2 (OXA)-CHO 48 – 678.3 ± 118.5 0.694 −25.8 ± 15.9
NPs 3 (RA)-CHO 46 539.8 ± 87.6 0.438 −28.5 ± 16.1

NPs 4 (empty)-CHO – – 443.1 ± 27.1 0.253 −23.6 ± 9.13
NPs 5 (empty) – – 496.7 ± 35.35 0.255 −28.8 ± 8.6
NPs 6 (OXA) 55 – 391.5 ± 60.53 0.182 −29.6 ± 9.9

NPs 7 (OXA, RA) 46 44 505.6 ± 64.30 0.199 −27.6 ± 42.1
NPs 8 (RA) – 50 514.8 ± 106.7 0.136 −25.7 ± 10.8

For SW-480 cells, Hoechst labelling and flow cytometric analysis were performed. The cells were
cultured in a 96-well plate for 24 h. Next, free OXA (5 µg/mL, 25 µg/mL, 50 µg/mL), NPs 1, and NPs 2
(5 µg/mL, 25 µg/mL, 50 µg/mL) were added and incubated for 24 and 48 h. Afterwards, the cells were
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labelled with Hoechst, measured with a flow cytometer BD LSR II (BD Biosciences, San Jose, CA, USA)
and analyzed with FlowJo (version 10.1, BD Life Sciences, Franklin Lakes, NJ, USA).

2.5. Detection of Cell Death and Proliferation by Flow Cytometry

CT-26 was arranged in 24-well plates and treated with free OXA and PLGA NPs (NPs 1,
NPs 2, NPs 6, and NPs 7, 5 µg/mL and 25 µg/mL) for 24 and 48 h. For 3T3 cells, the same
experimental design was performed during the 48 h of treatment. At each time point, the cells were
labeled with Annexin V- fluorescein isothiocyanate (FITC) (BD Biosciences, San Jose, CA, USA) and
4,6-diamidino-2-phenylindole (DAPI) (Thermo Fisher Scientific, Cambridge, MA, USA), and analyzed
with a flow cytometry.

For proliferation analyses, CT-26 and SW-480 cells were seeded in 12-well plates. The following
day, the cells were treated with 25 µg/mL of free OXA and 5 µg/mL of PLGA NPs (NPs 1 and NPs 2) for
48 h. After treatment, the cells were incubated with the allophycocyanin (APC)-conjugated anti-mouse
Ki-67 (1:100) (Thermo Fisher Scientific, Cambridge, MA, USA). The analyses were performed as
described above.

2.6. Immunofluorescence, FADD, BCL-2, and Caspase-3 Activity

CT-26 cells and SW-480 cells were treated with OXA (5 µg/mL and 25 µg/mL) and PLGA NPs (NPs
1 and NPs 2, both 5 µg/mL) for 24 and 48 h. At each time point, CT-26 cells were incubated with the
primary antibodies (Abcam, Burlingame, CA, USA), fas-associated protein with death domain (FADD)
(ab24533), BCL-2 (ab32124), and caspase-3 (ab13847), and SW-480 cells were incubated with caspase-3
(ab13847). The primary antibody was detected with goat anti-rabbit Alexa Fluor 555 secondary
antibody (ab150078; Abcam) and DAPI was used for nuclear staining. Specimens were examined with
a Leica DM5500 B fluorescence microscope, equipped with a Leica DFC365 FX digital camera. Digital
images were acquired and stored using Leica Application Suite X (LAS X) software.

2.7. Internalization of PLGA NPs by Cells and Visualization by Fluorescence Imaging

CT-26 cells were seeded on 12-mm coverslips placed at the bottom of a 12-well plate. After 24 h
of incubation, NPs 1 and NPs 2 (5 µg/mL) were added. After 4 h and 24 h of incubation with NPs,
the cells were stained with a membrane stain and the nuclei were counterstained with DAPI. For the
visualization, a Leica DM5500 B fluorescence microscope was used as described above.

2.8. CRC Xenograft Models and Treatment Regimens

For xenographic tumor induction, a suspension of CT-26 cells (5 × 106) was subcutaneously
injected into the right flank of male Balb/c mice. The protocol was approved by the Committee on the
Ethics of Animal Experiments of the UFRN (Universidade Federal do Rio Grande do Norte) (CEUA,
permit number: 170.020/2019).

Once the tumor volume reached 3–4 mm [32], the animals were categorized into four groups (N =

8, each group) and treated intratumorally three times in 15 days with: (1) Control (CTRL) = 5 mg/kg
saline solution, (2) OXA = 5 mg/kg, (3) NPs 1 = 5 mg/kg, and (4) NPs 2 = 5 mg/kg. Then, the tumor size
was monitored every two days for 21 days or until the tumor reached a volume of 2000 mm3 [33,34].
Their size was calculated with the following equation [35]:

Volume = (length ×width2
× 0.523)

Animals were euthanized with (80 mg/kg, i.p.) 2% thiopental (Cristália, São Paulo, Brazil) on day
21. Subcutaneous tumor masses were harvested and immediately frozen at −80 ◦C for qPCR analysis.
Other tumors fragments were immersed in 10% paraformaldehyde for histopathological analysis.
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2.9. Immunohistochemical Staining of FADD, APAF-1, and BCL-2

From tumors of each treatment group, 4-µm-thin tissue sections were cut using a microtome
and transferred to gelatin-coated slides [36]. Tissue sections were incubated with primary antibodies
anti-FADD (ab24533), anti-apoptotic protease activating factor 1 (APAF-1) (ab2001), and BCL-2 (ab32124;
Abcam, Burlingame, CA, USA) at 4 ◦C overnight. Slices were washed with phosphate-buffered saline
(PBS) and incubated with a streptavidin/Haptoglobin Related Protein (HRP)-conjugated secondary
antibody (Biocare Medical, Concord, CA, USA). Immunoreactivity to the various proteins was
visualized with a colorimetric-based detection kit following the protocol provided by the manufacturer
(TrekAvidin-HRP Label + Kit from Biocare Medical, Pacheco, USA). Light microscopy (Nikon Eclipse
2000 equipped with Nikon DS-Fi2; Nikon Corporation, Tokyo, Japan) with a high-power objective
(40×) was used to acquire digital images. The intensity of cell immunostaining was scored as follows:
1 = absence of positive cells, 2 = small number of positive cells or isolated cells, 3 = moderate number
of positive cells, and 4 = large number of positive cells. Labelling intensity was evaluated by two
previously trained examiners in a double-blind fashion.

2.10. Analysis of mRNA Expression

Total RNA was extracted from fragments of tumor tissue with a trizol reagent (Invitrogen Co.,
Carlsbad, CA, USA) and the SV Total RNA Isolation System (Promega, Madison, WI, USA). Real-time
quantitative PCR analyses of β-actin, FADD, APAF-1, multidrug resistance protein 1 (MDR1), survivin,
C-X-C chemokine receptor type 4 (CXCR4), and monocyte-derived chemokine (CCL22) mRNAs were
performed with SYBR Green Mix in the Applied Biosystems1 7500 FAST system (Applied Biosystems,
Foster City, CA, USA), according to a standard protocol with the primers listed in Table 2.

Table 2. Primer sequences used for PCR.

mRNA Oligonucleotides Primers Temperature

β-actin 5′-AAC-TTT-GGC-ATCGTG-GAA-GG-3′ 5′-GTGGATGCAGGGATGATGTTC-3′ 60 ◦C

FADD 5′-AGAAGAAGAACGCCTCGGTG-3′ 5′-GCTCACAGATTCCTGGGCTT-3′ 56.5 ◦C

APAF-1 5′-TTCCAGTGGCAAGGACACAG-3′ 5′-CCACTCTCCACAGGGACAAC-3′ 56.8 ◦C

MDR1 5′-TCAGCAACAGCAGTCTGGAG-3′ 5′-ACTATGAGCACACCAGCACC-3′ 55.2 ◦C

Survivin 5′-AGAACAAAATTGCAAAGGAGACA-3′ 5′-GGCATGTCACTCAGGTCCAA-3′ 55.2 ◦C

CXCR4 5′-ACCTCGGTGTCCTCTTGCTGTCCA-3′ 5′-GCTTGACGTTGGCTCTGGCGATGT-3′ 56.5 ◦C

CCL22 5′-GAGACAACAGTGGTCCCAGG-3′ 5′-CTGGCACTGTCAATCCCTGT-3′ 56.8 ◦C

The standard PCR conditions were as follow: 50 ◦C for 2 min and 95 ◦C for 10 min, followed by
40 30-s cycles at 94 ◦C, a variable annealing primer temperature for 30 s, and 72 ◦C for 1 min. Mean
threshold cycle (Ct) values were used to calculate the relative expression levels of the target genes
for the experimental groups, relative to those in the negative control group; expression data were
normalized relative to the housekeeping gene β-actin using the 2−∆∆Ct formula.

2.11. Primary CRC Tissue Microarray

Biopsies were obtained from 180 patients undergoing surgical resection of CRC at the Cancer
Referral Center of Natal, Brazil. Additional clinical information has been previously described together
with the method to generate the tissue microarray (TMA) blocks [37]. This research was approved by
the institutional committee (No. 030/0030/2006, 20th July, 2006).

For immunohistochemistry (IHC), anti-BCL-2, anti-caspase-8, and anti-Ki-67 antibody were used
(Abcam, Burlingame, CA, USA) at a dilution of 1:1500. The number of positive cells within each TMA
core was counted under a light microscope with a high-power magnification (40×).
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BCL-2, caspase-8, and Ki-67 expression in the tumor tissue and surrounding stromal tissue was
independently assessed by two researchers, who were blinded to the clinical data. Disease staging was
performed according to the modified Dukes’ criteria classification [37].

2.12. Statistical Analysis

All in vitro experiments or in vivo were performed in triplicate and a one-way ANOVA was
used, followed by Bonferroni’s post hoc test for parametric data and Kruskal–Wallis test followed by
a Dunn’s multiple comparison test. A p-value of <0.05 was considered to be statistically significant
(p < 0.05, p < 0.01, p < 0.001, and p < 0.0001). Statistical significance was measured using parametric
testing of the TMA samples, assuming equal variance, with a standard t-test for two paired samples
used to assess the difference between test and control samples, unless stated otherwise. The probability
of survival over time compared to positivity of immunohistochemical labeling for Ki-67, caspase-8, and
BCL-2 was estimated using Kaplan–Meier product limit survival curves with a log-rank (Mantel–Cox)
comparison test.

3. Results

3.1. Preparation and Physicochemical Properties of PLGA NPs

We loaded NPs with OXA and then studied their therapeutic potential (Table 1). Besides the
empty NPs (control), each batch was a combination of the following compounds: OXA, RA, and CHO.
CHO improved and facilitated the uptake of the PLGA NPs into cancer cells. First, the PLGA NPs
were characterized to ascertain their size and surface charge (Table 1). The average size ranged from
400 nm to 800 nm in diameter. The average zeta potential ranged between −21.4 mV and −29.6 mV.
Figure 1 shows two representative examples of AFM analysis of PLGA NPs, which revealed that all
PLGA NPs were spherical in shape with a uniform size distribution.
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Figure 1. Representative AFM images of blank glass, NPs 1 and NPs 2 in alternating contact (AC) mode
in air (scale bar = 500 µm) are showed in the left column of the panel. Fluorescence images in the right
columns of the panel show the internalization of NPs by CT-26 cells. The nanoparticles (yellow) were
detected in all treated groups and time points. Scale bar: 20 µm.
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3.2. Viability Assay

After incubation with the samples for 24 and 48 h, the viability of CT-26 was assessed by MTS
assay in a concentration-dependent manner (Figure 2A,B). To assess the possible improvement of
drug efficacy, two cell viability tests were performed: (1) With free OXA and (2) with CHO-coated
PLGA NPs containing OXA and/or RA. The range of 5 µg/mL to 200 µg/mL of OXA highly reduced
cell viability after 24 and 48 h (Figure S1). However, concentrations of 5, 10, and 25 µg/mL of this
chemotherapeutic agent were closest to the half maximal inhibitory concentration (IC50). Therefore,
these concentrations were used in a second step.

NPs 1, NPs 2, NPs 6, and NPs 7 reduced cell viability comparable to free OXA. Cell proliferation
reduced in a dose-dependent manner, thereby, confirming the efficacy and successful uptake of
our nanoparticulate systems (Figure 2A,B). The others system, i.e., NPs 3, NPs 4, and NPs 8, did
not demonstrate satisfactory cytotoxicity for CT-26 cells because they did not have OXA in their
composition. The formulation of NPs 5 (empty control) did not show cytotoxicity, confirming that
PLGA is biocompatible and did not influence the results (Figure 2A,B).
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Figure 2. Cell viability (A,B), proliferation (C), total death for CT-26 for 24 h (D), total death for CT-26
for 48 h (E) and total death for 3T3 cells for 48 h (F). Mean cell proliferation of CT-26 cells treated
with OXA and PLGA NPs for 24 h (A) and 48 h (B). Ki-67 immunostaining of CT-26 cells treated with
OXA (5 µg/mL), NPs 1 (5 µg/mL), and NPs 2 (5 µg/mL) and compared to negative control for 48 h (C).
The statistic of the treatments for the total death when compared to the negative control is displayed
(* p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001). Comparison between OXA (5 µg/mL) and NPs
1 (5 µg/mL, �) as well as between OXA (5 µg/mL) and NPs 2 (5 µg/mL, ��).

To evaluate the effect of free OXA, NPs 1, and NPs 2 on the viability of the human CRC cell line
SW-480, cells were treated with doses of 5, 25, and 50 µg/mL for 24 and 48 h. The results showed
that free OXA as well as the NPs induced cell death, as determined by Hoechst labelling and flow
cytometric analysis (Figure 3A,B). Thus, in conclusion, free OXA as well as NPs 1 and NPs 2 (5 µg/mL
and 25 µg/mL) showed cytotoxicity in CT-26 and SW-480 cells after 24 and 48 h of incubation.
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The dot plots generated by flow cytometric analysis show counts of cells with initial apoptosis 
(Annexin V-FITC-positive/DAPI-negative) in the lower right quadrant, while the upper right 

Figure 3. Cell viability, proliferation, and detection of caspase-3 of SW-480 cells. Mean cell proliferation
of SW-480 cells treated with OXA and PLGA NPs for 24 h (A) and 48 h (B). All treatment groups
were compared to the negative control group (**** p < 0.0001 and ** p < 0.01). Ki-67 immunostaining
of SW-480 cells treated with OXA, NPs 1, and NPs 2, and compared to negative control for 48 h (C).
All treatments were statistically significant (**** p < 0.0001). Representative photomicrographs of
caspase-3 in SW-480 cells stained with 4,6-diamidino-2-phenylindole (DAPI) (blue) and anti-caspase-3
antibody (red). Contrast index for caspase-3 after 24 h (D) and 48 h (E) (*** p < 0.001). Scale bar: 50 µm.
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3.3. Detection of Apoptosis and Proliferation by Flow Cytometery

The dot plots generated by flow cytometric analysis show counts of cells with initial apoptosis
(Annexin V-FITC-positive/DAPI-negative) in the lower right quadrant, while the upper right quadrant
represents late apoptosis (Annexin V-FITC-positive/DAPI-positive) (Figures S2–S4). The total apoptosis
was calculated with the sum of early (Q3) and late (Q2) apoptotic cells.

In CT-26 cells, the antitumor activity of OXA (5 µg/mL and 25 µg/mL) induced apoptosis after
24 h (p < 0.001, Figure 2D). However, after 48 h, only a concentration of 25 µg/mL OXA showed
significant activity (p < 0.0001, Figure 2E). Similarly, NPs 1 (5 µg/mL, p < 0.001), NPs 2 (5 µg/mL and
25 µg/mL, p < 0.0001 and p < 0.01, respectively), and NPs 7 (5 µg/mL, p < 0.01) induced apoptosis
after 24 h (Figure 2D). However, unlike free OXA, NPs 1 (5 µg/mL, p < 0.0001), NPs 2 (5 µg/mL and
25 µg/mL, p < 0.0001 and p < 0.05, respectively), NPs 6 (5 µg/mL, p < 0.01), and NPs 7 (5 µg/mL, p < 0.05)
induced apoptosis after 48 h (Figure 2E). When compared to free OXA at the same concentration, NPs
1 (5 µg/mL, p < 0.0001) and NPs 2 (5 µg/mL, p < 0.0001) showed statistically significant antitumor
activity after 48 h (Figure 2E). Importantly, our NPs did not induce apoptosis in nontumor 3T3 cells at
any dose (Figure 2F). However, nontumor cells showed a significant death rate when exposed to free
OXA (5 µg/mL and 25 µg/mL, p < 0.001 and p < 0.0001, respectively) after 48 h (Figure 2F).

A Ki-67 immunostaining was performed on CT-26 cells to evaluate the cell growth fraction after
treatment with free OXA (5 µg/mL), NPs 1 (5 µg/mL), and NPs 2 (5 µg/mL), which was expressed in
the G1, S, and G2/M cell cycle phases and was absent in resting (G0) cells. CT-26 cells treated with NPs
1 and NPs 2 showed a higher Ki-67 expression (p < 0.001 and p < 0.0001, respectively) than free OXA
when compared to the negative control (p < 0.0001, Figure 2C). However, SW-480 cells treated with
NPs 1 and NPs 2 exhibited a lower Ki-67 expression than free OXA when compared to the negative
control (p < 0.0001, Figure 3C).

3.4. Immunofluorescence of FADD, BCL-2, and Caspase-3

To investigate the activated apoptosis pathway in CT-26 cells treated with free OXA and NPs 1
and NPs 2, three different proteins were investigated by means of immunofluorescence microscopy.

After treating with OXA (5 µg/mL and 25 µg/mL), NPs 1 (5 µg/mL), and NPs 2 (5 µg/mL), antibody
staining (FADD and caspase-3) was statistically significant when compared to the control for all
samples after 24 h. However, BCL-2 staining did not show significant results (p > 0.05, Figure 4). For
FADD, it was p < 0.05, p < 0.01, p < 0.01, and p < 0.01, respectively, and for caspase-3 it was p < 0.001,
p < 0.0001, p < 0.001, and p < 0.01, respectively.

Our analysis showed significant FADD staining for NPs 1 (5 µg/mL, p < 0.05) and NPs 2 (5 µg/mL,
p < 0.05) only 48 h after treatment. However, a decrease in BCL-2 immunoreactivity for all treatments
(p < 0.001, p < 0.01, p < 0.01, p < 0.001) was observed. When compared to the control, caspase-3 staining
of CT-26 treated with OXA, NPs 1, and NPs 2 was significant (p < 0.01 for all treatments, Figure 5).

When caspase-3 staining was evaluated in SW-480 cells, a higher expression of caspase-3 was
perceived in cells treated with OXA (5 µg/mL, p < 0.01) when compared to control cells after 24 and
48 h (Figure 3D,E). However, OXA (25 µg/mL), NPs 1 (5 µg/mL), and NPs 2 (5 µg/mL) did not show
significant caspase-3 expression when compared to the control.
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Figure 4. Detection of fas-associated protein with death domain (FADD), BCL-2, and caspase-3 after
24 h of treatment. CT-26 cells stained with DAPI (blue), anti-FADD, anti-BCL-2, and anti-caspase-3
antibodies (red). Contrast index for FADD, * p < 0.05, ** p < 0.01 (A); BCL-2, p > 0.05 (B); and caspase-3,
** p < 0.01, *** p < 0.001, **** p < 0.0001 (C). Scale bar: 50 µm.
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Figure 5. Detection of FADD, BCL-2, and caspase-3 after 48 h of treatment. CT-26 cells stained with
DAPI (blue), anti-FADD, anti-BCL-2, and anti-caspase-3 antibodies (red). Contrast index for FADD,
* p < 0.05 (A); BCL-2, ** p < 0.01, *** p < 0.001 (B); and caspase-3, ** p < 0.01 (C). Scale bar: 50 µm.



Pharmaceutics 2020, 12, 193 12 of 20

3.5. Internalization of NPs by CT-26 Cells

Internalization of NPs 1 and NPs 2 by CT-26 cells was studied using fluorescence microscopy
(Figure 1). After 4 h and 24 h of incubation, the cell membranes were stained to visualize internalization
of NPs 1 and NPs 2 by cells. NPs 1 and NPs 2 showed accumulation within the cells at both time points.

3.6. In Vivo Study

To confirm whether NPs 1 and NPs 2 were more efficient DDSs to downregulate apoptosis
pathways, drug resistance, and metastasis factors in vivo when compared to free OXA, the expression
of FADD, APAF-1, BCL-2, caspase-3, MDR1, survivin, CXCR4, and CCL22 was observed in tumors
of Balb/c mice using qPCR and/or immunohistochemistry. As shown in Figure 6, tumor growth and
volume decreased in groups treated with free OXA, NPs 1, and NPs 2 (5 mg/kg, p < 0.0001). After 15 days
of treatment with free OXA (5 mg/kg), NPs 1 (5 mg/kg), and NPs 2 (5 mg/kg), immunohistochemical
analyses revealed an increased expression of FADD (Figure 7A,B, p < 0.0001) and caspase-3 (Figure 7A,D,
p < 0.0001), and a decreased expression of BCL-2 (Figures 7A and 8C, p < 0.0001 for NPs 1 and p < 0.001
for OXA and NPs 2) in tumors of Balb/c mice when compared to the control group. A comparison
between the different treatment groups showed a higher expression of FADD and caspase-3 in tumors
of groups treated with NPs 1 (Figures 7B and 8D) than in groups treated with free OXA and NPs 2.
On the other hand, BCL-2 had a lower expression in groups treated with NPs 1 (Figure 7C) than in the
other two groups. Indeed, genes of FADD and APAF-1 were evaluated in tumors by means of RT-PCR
after 15 days of treatment. From the gene expression analysis, it was observed that the increase of
FADD was statistically significant in groups treated with free OXA (5 mg/kg) and NPs 1 (5 mg/kg)
when compared with the control (Figure 7E, p < 0.05 and p < 0.001, respectively). The increase of
APAF-1 was statistically significant in groups treated with NPs 1 (5 mg/kg) and NPs 2 (5 mg/kg) when
compared to the control (Figure 7E, p < 0.001 and p < 0.05, respectively). When the gene expression of
FADD and APAF-1 is compared between the treatment groups, it is apparent that their expression was
higher after treatment with NPs 1 than after treatment with either free OXA or NPs 2 (Figure 7E).

The gene expression analysis of drug resistance and metastasis factors was also evaluated by
RT-PCR. Based on Figure 7F, the expression of MDR1 and survivin genes, which are involved in
drug resistance, was reduced after treatment with NPs. The MDR1 gene expression decreased after
treatment with NPs 2 (5 mg/kg, p < 0.05), while the survivin gene expression decreased after treatment
with NPs 1 (5mg/kg, p < 0.05). As metastasis is one of the biggest concerns of cancer management
strategies, we investigated two genes from chemokines related to metastasis by means of RT-PCR.
When compared to the control group, NPs 1 was able to reduce CXCR4 gene expression while NPs 2
decreased the CCL22 gene expression (Figure 7G, both p < 0.05).
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Figure 6. Morphology of all the tumors collected from (A) control, (B) OXA (5 mg/kg), (C) NPs 1
(5 mg/kg), and (D) NPs 2 (5 mg/kg) mice. Tumor growth curve of the Balb/c xenografts with different
treatments (E). All treatment groups were compared to the negative control group (**** p < 0.0001).
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Figure 7. Analysis of apoptosis, drug resistance, and metastasis factors. Representative
photomicrographs of immunohistochemistry of tumor fragments of mice receiving different treatments
(A). Immunohistochemistry score by anti-FADD (B), anti-BCL-2 (C), anti-caspase-3 (D), relative
messenger ribonucleic acids (mRNA) expression by RT-PCR for FADD and apoptotic protease activating
factor 1 (APAF -1) (E), multidrug resistance protein 1 (MDR1) and survivin (F), and C-X-C chemokine
receptor type 4 (CXCR4), and monocyte-derived chemokine (CCL22) (G). All treatment groups were
compared to the negative control group (**** p < 0.0001). Comparison between OXA (5 mg/kg) and
NPs 1 (5 mg/kg, � p < 0.05) as well as between OXA (5 mg/kg) and NPs 2 (5 mg/kg, �� p < 0.01) was
also performed (p < 0.0001 for both). Magnification: 40×.

3.7. Expression of Anti-Apoptosis and Pro-Apoptosis Proteins in Primary Colorectal Tumors

Apoptosis is associated with several other processes of tumor progression, like drug resistance,
cell proliferation, and metastasis. Here, we evaluated if the expression of BCL-2, caspase-8, and Ki-67
would be associated with poor prognosis in tumors with low (1/2) and high (3/4) modified Dukes’
classification of the patients in primary CRC. High expression of BCL-2 was an indication of recurrence
of the CRC (p = 0.0001, Figure 8). In addition, patients who showed high expression of caspase-8
indicated a greater tendency towards death within 60 months of follow-up, although our data were
not statically significant (p = 0.10, Figure 8). Furthermore, high expression of BCL-2 and caspase-8
was associated with more aggressive tumors, as represented by lymph node involvement (p = 0.0002
for both), modified Dukes’ criteria grade (p = 0.0001 and p = 0.07, respectively), and proliferation by
Ki-67 (p = 0.04 and p = 0.0001, respectively, Table 3). These results show that the synthesis of new drug
systems to specifically target apoptosis, especially in human primary tumor of aggressive cancers,
is necessary as part of a novel cancer management strategy.
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Figure 8. Expression of BCL-2 and caspase-8 in primary colorectal tumors. (A) Kaplan–Meier
survival curve estimated by BCL-2 staining in colorectal cancer (CRC) tumors (log-rank × 2 = 30.75,
p < 0.0001), (B) Kaplan–Meier survival estimated by caspase-8 staining in CRC tumors (log-rank ×
2 = 2.61, p = 0.10). Immunohistochemical staining for BCL-2 and caspase-8 in colorectal carcinoma.
Colorectal adenocarcinoma with a high modified Dukes’ classification (“3” and “4”) showing: (C)
Strong cytoplasmic staining of BCL-2, and (E) weak BCL-2 cytoplasmic staining. Strong cytoplasmic
staining of caspase-8 (D), and (F) weak caspase-8. Magnification: 40×.

Table 3. Clinicopathological characteristics of CRC patients in relation to caspase-8 and BCL-2
expression. Distributions of tumor caspase-8 and BCL-2 expression categorizations according to
clinical-pathological and Ki-67 expression (percentages in parenthesis). High expression of caspase-8
was associated with higher tumor grade, lymph node metastasis, and proliferation (Ki-67), while high
expression of BCL-2 was associated with higher tumor grade and lymph node metastasis. Fisher’s
exact = 1, chi-square = 2.

Clinicopathological
Characteristics of CRC Patients

Caspase-8 (n = 180) BCL-2 (n = 180)

Weak Strong p Value Weak Strong p Value

Number of Patients 75
(41.6%)

105
(58.3%) - 69

(38.33%)
111

(41.67%) -

Lymph Node Status
0.0002 1 0.0002 1Negative 15(20%) 03(2.86%) 39(56.52%) 23(20.72%)

Positive 60(80%) 102(97.14%) 30(43.48%) 88(79.28%)

Modified Dukes’ Criteria Grade
0.0001 1 0.07 1Low (I and II) 25(33.3%) 07(6.67%) 41(59.42%) 35(31.53%)

High (III and IV) 50(66.7%) 98(93.33%) 28(40.58%) 76(68.47%)

Ki-67

0.04 2 0.0001 2<10% 02(2.7%) 02(1.9%) 09(13.05%) 24(21.62%)
11–25% 18(24%) 11(10.48%) 11(15.94%) 52(46.85%)
>25% 55(73.3%) 92(87.62%) 49(71.01%) 35(31.53%)
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4. Discussion

Evasion of apoptosis is one of the major causes of tumor progression. In this study, we identified
increased expression of BCL-2 and caspase-8 in human CRC. In addition, we demonstrated that
increased expression of BCL-2 and caspase-8 is associated with proliferation (Ki-67), a high invasion
grade, and a positive lymph node status. This suggests a growth advantage of tumor cells with high
expression of caspase-8 in the pathogenesis of CRC, which is consistent with previous studies [38–41].
However, previous studies showed that inactivating mutations of the caspase-8 genes are rare in
human colorectal carcinomas [42]. There is growing evidence that caspase-8 does not just act as an
inducer of apoptosis, but also in metastasis [43]. Induction of cell death is one of the challenges for the
development of new drugs, especially in aggressive tumors with a high level of mortality.

Based on evidences that tumor progression is associated with failing cell control mechanisms,
we designed OXA-loaded PLGA NPs combined with RA and CHO to assess the improvement of the
antitumor activity of OXA. Firstly, we evaluated the cytotoxicity of OXA-containing NPs in CT-26 cells.
The data showed that OXA-containing NPs 1, NPs 2, NPs 6, and NPs 7 possess a cytotoxic activity
(after 24 and 48 h), which was similar to the free drug. However, NPs 1 and NPs 2 exhibited a higher
cytotoxic activity than others NPs after 48 h. According to these results, we decided to assess the
cytotoxicity of NPs 1 and NPs 2 in SW-480 cells. Both NPs showed to have cytotoxic activity in this cell
line. These results revealed that RA and CHO helped OXA to inhibit the cell viability in CT-26 as well
as SW-480 cells, probably by increasing the availability or potentializing the cytotoxic effects of OXA
inside of cells [23,44,45].

OXA is a third-generation platinum drug, which inhibits DNA replication [46]. However, the
obtained efficacy is suboptimal due to the aggressive side effects OXA and drug resistance of cancer
cells [46–48]. The pro-apoptotic activities of NPs and OXA were analyzed by flow cytometry for both
CT-26 and nontumor cells. NPs 1, NPs 2, NPs 6, and NPs 7 had pro-apoptotic activity at a concentration
of 5 µg/mL in the tumor cell line at 24 and 48 h. However, NPs 1 and NPs 2 exhibited a higher
pro-apoptotic activity than higher concentrations of free OXA. Interestingly, they also reduced the total
apoptosis in the nontumor cell line. Previous studies reported that NPs-encapsulated chemotherapeutic
agents induce apoptosis in several tumor cell lines without interfering with nontumor cell lines [49,50].
This result indicates that it is possible to use lower concentrations of OXA when it is encapsulated in
a nanoparticulate DDS. In addition, it is possible to combine OXA with CHO and RA. Due to their
high proliferation rate, tumor cells require higher amounts of CHO than nontumor cells. Thus, coating
with CHO facilitates the internalization of NPs and, thereby, increases the delivery of OXA into tumor
cells. This improves the efficiency of the system and decreases the adverse effects that are related
to the cumulative impact of OXA on patients [12,23,51]. Our study contributed to this knowledge
and, in addition, we did not observe significant cell death in nontumor cells. This indicates that
these nanoparticulate DDSs (NPs 1 and NPs 2) can have a protective effect on nontumor cells, while
selectively targeting tumor cells.

High uptake of NPs by tumor cells and effective intracellular drug release are necessary to achieve
an enhanced therapeutic effect in clinic trials. The uptake of NPs 1 and NPs 2 by CT-26 cells was
investigated after 4 h and 24 h, which revealed that our NPs were mainly located in the cytoplasm
close to the nucleus. It is worth mentioning that the CHO-coated NPs combined with RA (NPs 1 and
NPs 2) showed rapid uptake and improved therapeutic efficacy through induction of apoptosis in
CRC cells [23,52]. Therefore, our results indicate the importance of CHO for the increased capture and
internalization of DDS in the treatment of CRC [23,53].

The pro-apoptotic activity of free OXA (5 µg/mL and 25 µg/mL), NPs 1 (5 µg/mL), and NPs 2
(5 µg/mL) in CT-26 cells was confirmed by immunoreactivity of caspase-3, FADD, and BCL-2, which
are involved in the extrinsic and intrinsic apoptosis pathway. The extrinsic pathway was activated by
all compounds within 24 h, but only NPs 1 and NPs 2 induced a positive immunoreactivity to FADD
after 48 h. These results show that our OXA-containing nanoparticulated DDS exhibits a prolonged
activity as compared to the free drug, which suggests an increased bioavailability inside the cancer
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cells [45,51,52]. Since immunoreactivity for BCL-2 was observed only after 48 h, our data suggests
that the NPs act primarily by activating the extrinsic pathway. Previous studies give evidence for
a strong correlation between intrinsic apoptosis and cell proliferation in tumor progression [44,54].
The expression of Ki-67 is strongly associated with (tumor) cell proliferation and growth, and is
widely used in routine pathological investigations as a proliferation marker [55]. Owing to high cell
proliferation, frequently associated with the Ki-67 protein labeling index, Ki-67 may be a promising
factor for targeted molecular therapies [55]. In this study, NPs 1 (5 µg/mL) and NPs 2 (5 µg/mL)
strongly decreased the expression of Ki-67 in SW-480 cells but not in CT-26 cells. Interestingly, this
result corroborates findings in the literature by describing the anti-apoptotic protein BCL-2 as an
inhibitor of p53, a pro-apoptotic and suppressor protein [56]. Since mutated p53 can also induce a
G2/M cell cycle and stimulate Ki-67, our NPs 1 and NPs 2 were able to induce extrinsic apoptosis, which
has an independent path of BCL-2 and p53 and showed that the BCL-2-p53-Ki-67 path is common
in aggressive tumors [57]. In our study, we found that NPs 1 and NPs 2 induced apoptosis via the
extrinsic path and blocked the proliferation of cancer cells, thereby, suggesting that the NPs act on
different signaling pathways.

With the aim to observe the efficiency of NPs in an animal model, we inoculated CT-26 cells
subcutaneously in the flank of Balb/c mice and, when the tumors reached 4 mm, the mice were
treated with free OXA, NPs 1, and NPs 2 (all 5 mg/kg), respectively, 3 times over a period of 2 weeks.
Based on the expression of FADD, BCL-2, and caspase-3, our in vivo results suggested that NPs 1
induced apoptosis more than NPs 2, especially through the extrinsic pathway, corroborating with our
in vitro results. One of the advantages of RA combined with OXA and CHO, is that CHO increases
internalization of nanoparticles as described above and, therefore, increased amounts of RA can
act directly on the regulation of apoptotic pathway proteins and at the tumor microenvironment as
demonstrated by Watabe et al. [53].

High levels of CXCR4, a receptor correlated with tumor malignancy, and CCL22, a member of
the chemokine family, are related to migration, invasion, and metastasis in various tumors, leading
to a poor prognosis and malignant progression [58–61]. Our results show that NPs 1 and NPs 2
decrease CXCR4 and CCL22 expression in the primary microenvironment, which indicates that our
nanoparticulated DDSs act as important modulators of metastatic sites. Drug resistance to OXA is
a problem, which reduces its effectiveness and increases the chances of metastasis, thereby, limiting
tumor treatment with this drug. In this study, when analyzing primary tumors treated with free OXA as
well as NPs 1 and NPs 2, we observed downregulation of multidrug resistance (MDR), such as, MDR1
expression by NPs 2 and survivin by NPs 1. This proves that encapsulation of drugs decreases drug
resistance since NPs were taken up by endocytosis by passing drug efflux pumps which are altered in
tumor cells [62,63]. Drug efflux pumps expressed on human cancer cells majorly contribute to MDR,
especially those related to P-gp also known as multidrug resistance protein 1 (MDR1) and surviving [64].
These results suggest that CHO functionalized PLGA nanoparticles loaded with anti-cancer drug OXA
and chemosensitizer RA enhanced therapeutic potential by modulating MDR of tumor cells through
RA and enhanced the anticancer activity of DDSs. Dual drug loaded nanoparticles revealed better
therapeutic efficacy with enhanced expression or downregulation of pro-apoptotic/anti-apoptotic
proteins and downregulation of metastastic factors, such as CXCR4 and CCL22.

An upregulation of apoptosis in the microenvironment of human primary tumors is the key point
to reduce proliferation and metastasis and, consequently, improve the survival of patients. Here,
we designed a system of OXA-loaded NPs combined with RA and CHO to study their efficiency in
inducing apoptosis and regulating proliferation, drug resistance, and metastatic factors. Taken together,
the data presented in this study indicated that nanoparticulate DDSs (NPs 1 and NPs 2) possess
antitumor activity in CRC cells in vitro and in vivo, which is preferentially mediated by the extrinsic
apoptosis pathway. In vivo results also suggest that NPs 1 and NPs 2 downregulate resistance to OXA
and metastasis factors. Cytoprotective activity based on the non-induction of cell death in nontumor
cells is combined with the antitumor activity and modulation of the tumoral microenvironment,
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indicating that these systems are safe candidates for drug delivery that can be used for the treatment of
cancer with decreased adverse effects.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4923/12/2/193/s1,
Figure S1. Mean cell proliferation of CT-26 cells treated with OXA for 24 h. (A) and 48 (B) hours. The concentrations
used were: 5 µg/mL, 10 µg/mL, 25 µg/mL, 50 µg/mL, 100 µg/mL, and 200 µg/mL. All treatment groups were
compared to the negative control group (**** p < 0.0001), Figure S2. Flow cytometry to determine apoptosis. Dot
plots of flow cytometry with the effect of different doses of OXA, DMSO, and NPs on early and late apoptotic CT-26
cells after 24 h. are displayed, Figure S3. Flow cytometry to determine apoptosis. Dot plots of flow cytometry with
the effect of different doses of OXA, DMSO, and NPs on early and late apoptotic CT-26 cells at 48 h are displayed,
Figure S4. Flow cytometry to determine apoptosis. Dot plots of flow cytometry with the effect of different doses of
oxaliplatin, DMSO, and NPs, on early and late apoptosis in 3T3 cells at 48 h. are displayed.
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