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Chapter 7

Participant-level Rumor detection
based on Information Diffusion
Analysis

Users are the main contributor to the rumor spreading in Online social networks
(OSNs) [26], which go through the whole life cycle of news diffusion. In this chapter,
we propose two independent and complementary participant-level models for rumor
detection, i.e., PLRD (Participant-Level Rumor Detection model) and UMLARD
(User-aspect Multi-view Learning with Attention for Rumor Detection mlodel). And
both PLRD and UMLARD are implemented according the following two design
considerations.

First, we considered the life cycle of real and fake news on social media, which
plays a crucial role in information diffusion. When the news is produced by the
content creator, it starts its journey on the social media platform. Once people
are exposed to the news, they become the content consumers. According to the
confirmation bias theory, people tend to favor, interpret and share information in a
way that confirms or strengthens their prior beliefs or ideologies [145]. As a result,
if a news item confirms the consumers’ prior ideology, they may share it within their
social networks in the role of content distributor. Since fake news is intentionally
written to mislead readers into believing and propagating false information (e.g., 5G
networks trigger COVID-19), it is plausible that fake news is more easily distributed
among its believers than real news, which is neutral in its beliefs and ideology.
This idea is supported by prior studies, which have noted that false information
tends to spread significantly faster, further, deeper, and more broadly than real
information [43]. Therefore, considering all participants, including content creators
and content distributors, in the news diffusion chain may improve the overall rumor
detection performance of our approach.

Another design consideration is the lack of effective methods to represent all partic-
ipants in the news diffusion chain. Prior predictive studies have simply used aggre-
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gated statistics, such as the total number of content distributors (retweets) and the
average time of information distribution, to quantify the diffusion process. This in-
evitably results in information loss and suboptimal performance. Other examples of
such aggregated statistics include network-level attributes (e.g., density) to represent
diffusion networks, the final hidden representation from recurrent neural networks
to model the temporal spreading sequence, and overall descriptive statistics of user
characteristics (e.g., mean user tenure) to describe users in the diffusion [23]. While
such data may be helpful in modeling, they are not quite specific enough to provide
a clear picture of by whom, when, why, and how news is diffused. Therefore, the key
question motivating our study is how to design an effective predictive method that
represents all-participant patterns throughout the whole diffusion process.

7.1 PLRD: A Participant-Level Rumor Detection
Framework via Fine-grained User Representa-
tion Learning

7.1.1 Section Overview

In this section, we propose a novel framework based on deep representation learning
for rumor detection, named PLRD (Participant-Level Rumor Detection). In view of
theories on propagation and social influence, PLRD incorporates multi-scale features
of all users1 enrolled in the diffusion process to predict a given post’s credibility (e.g.,
classify it as rumor or non-rumor). Specifically, PLRD first employs sparse matrix
factorization to embed the global graph (i.e., user-interaction graph constructed on
all propagation threads), which can efficiently learn the social homophily for users.
Then, it uses a multi-hop graph convolutional layer, and a bi-directional GRU to
learn fine-grained user representations (i.e., the user influence, user susceptibility,
and user temporal information). To understand the different importance of users’
multi-scale representations, a feature-level attention layer was designed to explain
which types of features are essential in rumor propagation. Moreover, to capture
the uncertainty in learned features, PLRD introduces a variational autoencoder.
Finally, PLRD employs a user-level attention layer to allocate different importance
to users and aggregate them to form a unique rumor representation. The rumor
prediction is generated based on the learned unique representation.

Our design science work on rumor detection makes two main contributions to the
literature in this field. First, our design is rooted in social influence and propagation
theory, from which we derive various constructs in our model. PLRD detects rumors
at a very fine-grained participant level. It is very different from prior works that also
combine information from various sources (e.g., reply networks, diffusion sequence,

1In our work, the user influence, user susceptibility and user temporal information are collec-
tively referred to as multi-scale information of users
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and attributes of spreading users), but still heavily depend on the text features.
Our approach comprehensively exploits user-profiles and propagation threads and
shows a strong ability to detect rumors without using any text information. Second,
we make a methodological contribution by proposing an approach to learn fine-
grained user representation via deep representation learning that effectively captures
all participant information in a diffusion chain. This information includes user
influence, user susceptibility, and user temporal information. Experimental results
using real-world datasets confirm the effectiveness of our approach over prior rumor
detection methods. Our approach has direct implications for social media platforms
that are vulnerable to rumor spreading since it can be deployed to identify original
users who initiate rumors and those who spread rumors. Overall, the proposed
rumor-detection model can help improve the user experience and benefit society by
helping individuals obtain healthy and genuine information.

This section is based on the following publication [45]:

• Chen, X., Zhou, F., Zhang, F., Bonsangue, M.: Catch me if you can: A
participant-level rumor detection framework via fine-grained user representa-
tion learning. Information Processing & Management, 58(2021) 102678

7.1.2 Birds of a feather flock together: the perspective of all
participants

Rumor detection has long been a subject of interdisciplinary research. Various
theories have been proposed and validated. In this section, we discuss several major
theories that guide us to derive relevant constructs in our model for better rumor
detection.

7.1.2.1 Theory

Users play major roles in the dissemination of rumors or fake news. A set of user-
based and propagation-based theories have been developed to study how a rumor
spreads, how users engage with a rumor, and the role users play in rumor creation,
propagation, or intervention. For example, in the echo chamber effect, individuals
tend to believe information is correct after repeated exposures [146]. Confirmation
bias theory tells us that individuals tend to trust information that confirms their
preexisting beliefs or hypotheses, which they perceive to surpass that of others [147].
People choose to interact with those who share similar opinions and avoid those
with whom they profoundly disagree. Both indicate that people may react to and
process information differently based on information type (e.g., rumor vs. non-
rumor). On the other hand, homophily theory says that individuals in homophilic
relationships share common characteristics (beliefs, demographics, etc.) that make
communication easier [148]. Meanwhile, social identity theory shows that individuals
do something primarily because others are doing it and to conform in order to be
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liked and accepted by others. Such social influence and homophilic atmospheres also
exist in and are commonly seen in online social networks [149].

In sum, all the above considerations suggest that user attributes likely have an
impact on rumor detection, such as user influence, susceptibility, and temporal, etc.
This assumption is also empirically confirmed by our data exploration (see below)
and computational experiments (see the Evaluation section below). We therefore
hypothesize that:

Hypothesis 1. Combining various information at a fine-grained all-participant
level in a diffusion chain will improve rumor discovery performance.

Hypothesis 2. Deep representation learning-based methods will improve rumor
discovery performance compared to using shallow machine learning methods.

7.1.2.2 Data

In our work, we conduct experiments on four standard real-word testbeds: Twit-
ter15, Twitter16, Science and RumourEval19, all of which were collected from Twit-
ter1, one of the most popular social media platforms in the U.S. The descriptive
statistics of all datasets are shown in Table 7.1.

Twitter15/162 were released by [84]. More details can be found in Section 6.4.1.
In Twitter15 and Twitter16, we keep the tweets labeled as “non-rumor” or “false
rumor” (relabeled as “rumor” in our work), since the others were beyond our research
interest.

Science3 is collected and studied by [43]. It includes complete retweet cascades
linked to rumors that were verified and published by fact-checking websites. In the
original data, each tweet cascade is related to a specific label, i.e., “TRUE”, “FALSE”
or “MIXED”. In our work, we keep only the tweets labeled as “TRUE” or “FALSE”
(relabeled as “non-rumor” and “rumor” in our work, respectively). To the best of our
knowledge, the Science dataset is the most credible dataset among all the existing
Twitter-based rumor detection datasets as it overcomes issues of partiality or bias
because of the sampling restriction characteristic. In this chapter, we use the Science
dataset to provide model-free evidence to support the Hypothesis 1.

RumourEval194 [150] is an extensive dataset from RumourEval17 [151], which is
augmented with new Twitter test data and Reddit material. Here, we keep Twitter
data but ignore the Reddit material, to finally obtain 381 Twitter conversation
threads. Each thread consists of a claim and a tree of comments, and is related to a
specific label, i.e., “true”, “false” or “unverified”. We filter out unverified tweets and
finally get 271 Twitter conversation threads (relabeled as “non-rumor” and “rumor”,

1https://twitter.com/
2https://www.dropbox.com/s/46r50ctrfa0ur1o/rumdect.zip
3Researchers interested in gaining access to Science dataset should contact [43] directly.
4https://competitions.codalab.org/competitions/19938
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respectively). Because the RumourEval19 contains rich textual information rather
than diffusion patterns, in the experiments part, we use RumourEval19 to test our
model performance when including textual features.

Table 7.1: Statistics of the datasets.

Statistic Science Twitter15 Twitter16 RumourEval19
# source tweets 16,901 739 404 271
# users 3,603,265 306,402 168,659 4,774
# edges of global graph 3,586,360 336,486 182,493 4,503
# non-rumors 14,442 370 199 167
# rumors 2,459 369 205 104
Max. # retweets 46,895 2,990 999 155
Min. # retweets 5 97 100 3
Avg. # retweets 213 493 479 18
Avg. # time length 749 Hours 743 Hours 167 Hours 37 Hour

For each tweet, we construct the diffusion graph and the global graph from the
propagation threads (see Section 3.1 for recalling the formal definitions). In Twit-
ter15/16, no user information is provided due to constraints set out in Twitter’s
terms of service. We crawl all the related user profiles via Twitter API 1 based on
the provided user IDs. We follow the work of Liu et al. [100] and select 8 general user
characteristics for experiments, which are summarized in Table 7.2. As for Science,
all data, such as ids, were anonymized, so we directly use the user characteristics
provided in this dataset, which are listed in Table 7.3. Here, the concrete definitions
of each characteristic can be found in the supplementary of [43]. The RumourEval19
provided JSON files for each source tweet and its corresponding replies, and each
file contains the complete information of the tweet and the users.

Table 7.2: Summary of user characteristics for Twiter15/16 and RumourEval19.

No. Characteristic Data Type
1 length of user name Integer
2 user count created time Integer
3 length of description Integer
4 followers count Integer
5 friends count Integer
6 statuses count Integer
7 is verified Binary
8 is geo enabled Binary

7.1.2.3 Model-free evidence

Following from our earlier Hypothesis 1 that utilizing the information of all users
who participated in a diffusion chain might improve rumor detection, we first check

1https://dev.twitter.com/rest/public
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Table 7.3: Summary of user characteristics for Science.

No. Characteristic Data Type
1 user count created time Integer
2 followers count Integer
3 friends count Integer
4 Engagement Float
5 is verified Binary

for any patterns or differences among involved participants in terms of their overall
attributes across the rumors and non-rumors via analyzing the Science dataset.
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Figure 7.1: Social influence/susceptibility analysis on Science.

• Social influence/susceptibility: followers/friends. Social influence may
affect the speed and the depth of diffusion. On Twitter, a user’s social influence
can be measured by the size of their social circle in relation to two factors:
the number of friends (i.e., users the specific user is following) and the number
of followers (i.e., users following the specific user). We calculate the average
followers/friends across all participants and find that this average in the rumors
group is different from that in the non-rumors group (see Figure 7.1a). To
compute the social influence of all participants, we define a new metric, TFF
(the follower-friend-ratio [152]), which combines followers and friends: TFF =
#followers
#friends . Users with TFF < 1 are less influential but with higher susceptibility,
since they have fewer followers than friends, and extreme cases are fake users.
In contrast, users with TFF > 1 are more influential, e.g., celebrity accounts.
Figure 7.1b shows that a higher percentage of users with TFF < 1 are involved
in rumors, while more influential users participate in non-rumors.

• Structural and temporal impact of diffusion. Many prior studies have
demonstrated that falsehood diffuses significantly farther, faster, deeper, and
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Figure 7.2: Structural and temporal analysis on Science.

more broadly than the truth in all categories of information [43]. This being
the case, we expect to see that the spreading pattern, in terms of network struc-
tures and the temporal sequence of retweeting, should vary based on rumor
type. To this goal, we analyze the propagation speed, depth-time distribution
and depth-breadth distribution, respectively, which are shown in Figure. 7.2.
In the diffusion graph, the depth of a node is the number of hops from the
node to the source node, and the breadth at a specific depth of a graph is the
total number of nodes at this depth level. From Figure. 7.2a, we can find that
at the same time-scale, rumors can infect more users than non-rumors, which
demonstrates that rumors spreading faster than non-rumors. In Figure. 7.2b,
we measured the average time (in minutes) rumor or non-rumor tweets took
to reach different depths, where we observe that (1) rumors can reach deeper
users than non-rumors, and (2) rumors require less time to reach the same
depth with non-rumors. In Figure. 7.2c, we plot the average breadth at every
depth for rumors and non-rumors, which indicates that rumors spread broader
than non-rumors, especially at a deeper level. These observations substantiate
our belief that incorporating such structural and temporal information into the
model may improve rumor detection performance.

7.1.3 Methodology

In this section, we first present a preliminary overview of rumor detection in our
context and describe the overall framework of the proposed PLRD method, followed
by details of each component in the model. As discussed above, two challenges
need to be addressed when designing an effective rumor detection system: (1) how
to incorporate fine-grained all-participant information in one model – not simply
aggregating or concatenating – to capture rumor spreading patterns; and (2) how to
effectively learn latent representations of users’ propagation activities in a diffusion
chain to capture fine-grained user representations. To answer these two questions,
we first formally define our problem and describe its context.
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Table 7.4: Main notations used throughout this chapter.
Symbol Description
G, N Global graph, and the number of nodes of global graph.
Gi, GT

i Diffusion graph and inverse diffusion graph of mi.

EG, eG∗
The user social homophily embedding matrix and social
homophily vector for user u∗.

Ti Time-embedding of mi.
Hinf
i The representations of the user influence.

Hsus
i The representations of the user susceptibility.

Htemp
i The representations of the user temporal information.

Ūi The representation after feature-level attention.
Uz
i The representation after VAE.

UF
i The representation after concatenate operation.

Ri the final representation of tweet mi.
Ŷ/ŷ∗ The predicted label.
Y/y∗ The ground truth.

7.1.3.1 Preliminaries and Problem Statement

In this section, we give the necessary background and formally define the rumor
detection problem. We list the main mathematical notations used throughout the
paper in Table 7.4.

In this study, we formalize our rumor detection problem as a supervised binary-
class classification task. Suppose the input of the task is from a rumor detec-
tion dataset (e.g., Twitter) consisting of a set of posts (e.g., tweets) denoted as
M = {mi, i ∈ [1, |M |]}. Each mi corresponds to its own diffusion process and all
participating users, so that mi can be represented by {Ci,Ui}, where Ci and Ui

are the cascade graph and the user characteristics matrix (see Definition 1 and Def-
inition 5), respectively. The cascade graph Ci can be further broken down into a
diffusion graph Gi and diffusion path Pi (see Definition 2 and Definition 3). In ad-
dition, we construct a global graph G based on all tweets M , to represent the social
homophily among all users. See their formal definitions below.

Definition 13 Global Graph G. The global graph G = {U,E} is a collection of
nodes and edges, which is constructed based on all posts in the dataset. U =

⋃|M |
i=1 Ui

is a user set contains all users in dataset, and E is the edge set. An edge between ui
and uj refers to these two users share the same tweet (or discuss the same topic).

Definition 14 Rumor Detection. Given a tweet mi = {Ci(to),Ui(to)} within
an observation window to ( in our work, to is the total number of retweets), and
the global graph G, the goal of rumor detection is to learn a function f(ŷi|mi,G) to
classify the source tweet mi into one of the rumor categories, where the predicted
result ŷi represents either non-rumor or rumor.
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i
<latexit sha1_base64="yJSWBhPpvxw7loC3FL3wGGmXhls=">AAAB7HicbVBNTwIxEJ3FL8Qv1KOXRmLiieyiiR6JHvSICQsksJJu6UJDt920XROy4Td48aAxXv1B3vw3FtiDgi+Z5OW9mczMCxPOtHHdb6ewtr6xuVXcLu3s7u0flA+PWlqmilCfSC5VJ8Saciaob5jhtJMoiuOQ03Y4vp357SeqNJOiaSYJDWI8FCxiBBsr+Xd99tjslytu1Z0DrRIvJxXI0eiXv3oDSdKYCkM41rrruYkJMqwMI5xOS71U0wSTMR7SrqUCx1QH2fzYKTqzygBFUtkSBs3V3xMZjrWexKHtjLEZ6WVvJv7ndVMTXQcZE0lqqCCLRVHKkZFo9jkaMEWJ4RNLMFHM3orICCtMjM2nZEPwll9eJa1a1buo1h4uK/WbPI4inMApnIMHV1CHe2iADwQYPMMrvDnCeXHenY9Fa8HJZ47hD5zPH3FdjnE=</latexit>

(a)

(b)

MHGCN Bi-GRU

                                                                  

Ui
<latexit sha1_base64="jExzZUTCC8EXFwSAOU8S30R6kKI=">AAAB83icbVBNS8NAEN3Ur1q/qh69BIvgqSRV0GPRi8cKpi00oWy2k3bpZhN2J2IJ/RtePCji1T/jzX/jts1BWx8MPN6bYWZemAqu0XG+rdLa+sbmVnm7srO7t39QPTxq6yRTDDyWiER1Q6pBcAkechTQTRXQOBTQCce3M7/zCErzRD7gJIUgpkPJI84oGsn3EZ4wjHJv2uf9as2pO3PYq8QtSI0UaPWrX/4gYVkMEpmgWvdcJ8Ugpwo5EzCt+JmGlLIxHULPUElj0EE+v3lqnxllYEeJMiXRnqu/J3Iaaz2JQ9MZUxzpZW8m/uf1Moyug5zLNEOQbLEoyoSNiT0LwB5wBQzFxBDKFDe32mxEFWVoYqqYENzll1dJu1F3L+qN+8ta86aIo0xOyCk5Jy65Ik1yR1rEI4yk5Jm8kjcrs16sd+tj0Vqyiplj8gfW5w9045H0</latexit>

M
<latexit sha1_base64="qoIgzmWRkxtOIOPGOqTDWraEkPI=">AAAB8XicbVDLSgNBEOyNrxhfUY9eBoPgKexGQY9BLx4jmAcmS5idzCZDZmeWeQhhyV948aCIV//Gm3/jJNmDJhY0FFXddHdFKWfa+P63V1hb39jcKm6Xdnb39g/Kh0ctLa0itEkkl6oTYU05E7RpmOG0kyqKk4jTdjS+nfntJ6o0k+LBTFIaJngoWMwINk567EVsKFNuNeqXK37VnwOtkiAnFcjR6Je/egNJbEKFIRxr3Q381IQZVoYRTqelntU0xWSMh7TrqMAJ1WE2v3iKzpwyQLFUroRBc/X3RIYTrSdJ5DoTbEZ62ZuJ/3lda+LrMGMitYYKslgUW46MRLP30YApSgyfOIKJYu5WREZYYWJcSCUXQrD88ipp1arBRbV2f1mp3+RxFOEETuEcAriCOtxBA5pAQMAzvMKbp70X7937WLQWvHzmGP7A+/wBcYGQww==</latexit>

EG
<latexit sha1_base64="3y/HZAVTPoQgS2ycNmgHhzWrXpE=">AAACAXicbVBNS8NAEN3Ur1q/ol4EL8EieCpJFfRYFNFjBfsBTSyb7aZdutmE3YlYQrz4V7x4UMSr/8Kb/8ZN24O2Phh4vDfDzDw/5kyBbX8bhYXFpeWV4mppbX1jc8vc3mmqKJGENkjEI9n2saKcCdoABpy2Y0lx6HPa8ocXud+6p1KxSNzCKKZeiPuCBYxg0FLX3HOBPoAfpJfZXeqGGAYE8/Qqy7pm2a7YY1jzxJmSMpqi3jW/3F5EkpAKIBwr1XHsGLwUS2CE06zkJorGmAxxn3Y0FTikykvHH2TWoVZ6VhBJXQKssfp7IsWhUqPQ1535jWrWy8X/vE4CwZmXMhEnQAWZLAoSbkFk5XFYPSYpAT7SBBPJ9K0WGWCJCejQSjoEZ/bledKsVpzjSvXmpFw7n8ZRRPvoAB0hB52iGrpGddRABD2iZ/SK3own48V4Nz4mrQVjOrOL/sD4/AGBCpeQ</latexit>

Xi
<latexit sha1_base64="7NreFF8w212N83RIX/DFCIxjYUI=">AAAB83icbVBNS8NAEN3Ur1q/qh69LBbBU0mqoMeiF48V7Ac0pWy2k3bpZhN2J2IJ/RtePCji1T/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVHJo8lrHuBMyAFAqaKFBCJ9HAokBCOxjfzvz2I2gjYvWAkwR6ERsqEQrO0Eq+j/CEQZh1pn3RL1fcqjsHXSVeTiokR6Nf/vIHMU8jUMglM6bruQn2MqZRcAnTkp8aSBgfsyF0LVUsAtPL5jdP6ZlVBjSMtS2FdK7+nshYZMwkCmxnxHBklr2Z+J/XTTG87mVCJSmC4otFYSopxnQWAB0IDRzlxBLGtbC3Uj5imnG0MZVsCN7yy6ukVat6F9Xa/WWlfpPHUSQn5JScE49ckTq5Iw3SJJwk5Jm8kjcndV6cd+dj0Vpw8plj8gfO5w95eJH3</latexit>

Ai,A
T
i

<latexit sha1_base64="OLS0NRVW0H3qM+KZVYw7ZOIK8zw=">AAACCnicbVC7TsMwFHXKq5RXgJElUCExoCopSDAWWBiL1JfUhshxndaq40T2DaKKMrPwKywMIMTKF7DxN7iPgbYc6UrH59wr33v8mDMFtv1j5JaWV1bX8uuFjc2t7R1zd6+hokQSWicRj2TLx4pyJmgdGHDaiiXFoc9p0x/cjPzmA5WKRaIGw5i6Ie4JFjCCQUueedgB+gh+kF5lXsqy09nnfVrLPLNol+wxrEXiTEkRTVH1zO9ONyJJSAUQjpVqO3YMboolMMJpVugkisaYDHCPtjUVOKTKTcenZNaxVrpWEEldAqyx+ncixaFSw9DXnSGGvpr3RuJ/XjuB4NJNmYgToIJMPgoSbkFkjXKxukxSAnyoCSaS6V0t0scSE9DpFXQIzvzJi6RRLjlnpfLdebFyPY0jjw7QETpBDrpAFXSLqqiOCHpCL+gNvRvPxqvxYXxOWnPGdGYfzcD4+gXC8puT</latexit>

Hinf
i

<latexit sha1_base64="A13m1UfZZLmN+HwP4ODiax9VKw8=">AAAB/XicbVDLSsNAFJ34rPUVHzs3g0VwVZIq6LLopssK9gFtLJPppB06mYSZG7GG4K+4caGIW//DnX/jtM1CWw9cOJxzL/fe48eCa3Ccb2tpeWV1bb2wUdzc2t7Ztff2mzpKFGUNGolItX2imeCSNYCDYO1YMRL6grX80fXEb90zpXkkb2EcMy8kA8kDTgkYqWcfdoE9gB+ktayX8uwu5TLIenbJKTtT4EXi5qSEctR79le3H9EkZBKoIFp3XCcGLyUKOBUsK3YTzWJCR2TAOoZKEjLtpdPrM3xilD4OImVKAp6qvydSEmo9Dn3TGRIY6nlvIv7ndRIILj3zUJwAk3S2KEgEhghPosB9rhgFMTaEUMXNrZgOiSIUTGBFE4I7//IiaVbK7lm5cnNeql7lcRTQETpGp8hFF6iKaqiOGoiiR/SMXtGb9WS9WO/Wx6x1ycpnDtAfWJ8/lJmV8w==</latexit>

Hsus
i

<latexit sha1_base64="yEHhJmGdN3+pzD+St6x3uQ6NgQ8=">AAAB/XicbVDLSsNAFJ34rPUVHzs3g0VwVZIq6LLopssK9gFtLJPppB06mYSZG7GG4K+4caGIW//DnX/jtM1CWw9cOJxzL/fe48eCa3Ccb2tpeWV1bb2wUdzc2t7Ztff2mzpKFGUNGolItX2imeCSNYCDYO1YMRL6grX80fXEb90zpXkkb2EcMy8kA8kDTgkYqWcfdoE9gB+ktayX8uwu1YnOenbJKTtT4EXi5qSEctR79le3H9EkZBKoIFp3XCcGLyUKOBUsK3YTzWJCR2TAOoZKEjLtpdPrM3xilD4OImVKAp6qvydSEmo9Dn3TGRIY6nlvIv7ndRIILr2UyzgBJulsUZAIDBGeRIH7XDEKYmwIoYqbWzEdEkUomMCKJgR3/uVF0qyU3bNy5ea8VL3K4yigI3SMTpGLLlAV1VAdNRBFj+gZvaI368l6sd6tj1nrkpXPHKA/sD5/AMJKlhE=</latexit>

Htime
i

<latexit sha1_base64="g6OhlNZLgq97/jOHz0DS+ewreE8=">AAAB/nicbVBNS8NAEN3Ur1q/ouLJS7AInkpSBT0WvfRYwX5AG8tmO2mXbj7YnYglBPwrXjwo4tXf4c1/47bNQVsfDDzem2FmnhcLrtC2v43Cyura+kZxs7S1vbO7Z+4ftFSUSAZNFolIdjyqQPAQmshRQCeWQANPQNsb30z99gNIxaPwDicxuAEdhtznjKKW+uZRD+ERPT+tZ/2UZ/cp8gCyvlm2K/YM1jJxclImORp986s3iFgSQIhMUKW6jh2jm1KJnAnISr1EQUzZmA6hq2lIA1BuOjs/s061MrD8SOoK0ZqpvydSGig1CTzdGVAcqUVvKv7ndRP0r9yUh3GCELL5Ij8RFkbWNAtrwCUwFBNNKJNc32qxEZWUoU6spENwFl9eJq1qxTmvVG8vyrXrPI4iOSYn5Iw45JLUSJ00SJMwkpJn8krejCfjxXg3PuatBSOfOSR/YHz+AG8olm8=</latexit>

· · ·<latexit sha1_base64="9pGPaDabNijkWLtd2pluvCo4p5o=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSRV0GPRi8cK9gPaUDabTbt2sxt2J0Ip/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZemApu0PO+ncLa+sbmVnG7tLO7t39QPjxqGZVpyppUCaU7ITFMcMmayFGwTqoZSULB2uHodua3n5g2XMkHHKcsSMhA8phTglZq9Wik0PTLFa/qzeGuEj8nFcjR6Je/epGiWcIkUkGM6fpeisGEaORUsGmplxmWEjoiA9a1VJKEmWAyv3bqnlklcmOlbUl05+rviQlJjBknoe1MCA7NsjcT//O6GcbXwYTLNEMm6WJRnAkXlTt73Y24ZhTF2BJCNbe3unRINKFoAyrZEPzll1dJq1b1L6q1+8tK/SaPowgncArn4MMV1OEOGtAECo/wDK/w5ijnxXl3PhatBSefOYY/cD5/AK+ljzM=</latexit>

|Ui|
<latexit sha1_base64="fHTNM/IEJ/WXNvfZB91/K0UrnY0=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGCaQttKJvtpl262YTdiVDa/gYvHhTx6g/y5r9x2+agrQ8GHu/NMDMvTKUw6Lrfztr6xubWdmGnuLu3f3BYOjpumCTTjPsskYluhdRwKRT3UaDkrVRzGoeSN8Ph3cxvPnFtRKIecZTyIKZ9JSLBKFrJn/hdMemWym7FnYOsEi8nZchR75a+Or2EZTFXyCQ1pu25KQZjqlEwyafFTmZ4StmQ9nnbUkVjboLx/NgpObdKj0SJtqWQzNXfE2MaGzOKQ9sZUxyYZW8m/ue1M4xugrFQaYZcscWiKJMEEzL7nPSE5gzlyBLKtLC3EjagmjK0+RRtCN7yy6ukUa14l5Xqw1W5dpvHUYBTOIML8OAaanAPdfCBgYBneIU3RzkvzrvzsWhdc/KZE/gD5/MH8VqOxQ==</latexit>

Feature-level Attention

VAE

µj
<latexit sha1_base64="f5nmjnUTLmgD6R/5VnqKuDSgxzs=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48VTFtoQ9lsN+3a3U3Y3Qgl9Dd48aCIV3+QN/+N2zQHbX0w8Hhvhpl5YcKZNq777ZTW1jc2t8rblZ3dvf2D6uFRW8epItQnMY9VN8Saciapb5jhtJsoikXIaSec3M79zhNVmsXywUwTGgg8kixiBBsr+X2RDh4H1Zpbd3OgVeIVpAYFWoPqV38Yk1RQaQjHWvc8NzFBhpVhhNNZpZ9qmmAywSPas1RiQXWQ5cfO0JlVhiiKlS1pUK7+nsiw0HoqQtspsBnrZW8u/uf1UhNdBxmTSWqoJItFUcqRidH8czRkihLDp5Zgopi9FZExVpgYm0/FhuAtv7xK2o26d1Fv3F/WmjdFHGU4gVM4Bw+uoAl30AIfCDB4hld4c6Tz4rw7H4vWklPMHMMfOJ8/3AyOtw==</latexit>

�j
<latexit sha1_base64="Am0/FL3b5tXHD7EFh+GxJPaY7Ro=">AAAB73icbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHoxWME84BkCbOT2WTMPNaZWSEs+QkvHhTx6u9482+cJHvQxIKGoqqb7q4o4cxY3//2VlbX1jc2C1vF7Z3dvf3SwWHTqFQT2iCKK92OsKGcSdqwzHLaTjTFIuK0FY1upn7riWrDlLy344SGAg8kixnB1kntrmEDgXsPvVLZr/gzoGUS5KQMOeq90le3r0gqqLSEY2M6gZ/YMMPaMsLppNhNDU0wGeEB7TgqsaAmzGb3TtCpU/ooVtqVtGim/p7IsDBmLCLXKbAdmkVvKv7ndVIbX4UZk0lqqSTzRXHKkVVo+jzqM02J5WNHMNHM3YrIEGtMrIuo6EIIFl9eJs1qJTivVO8uyrXrPI4CHMMJnEEAl1CDW6hDAwhweIZXePMevRfv3fuYt654+cwR/IH3+QMdhpAE</latexit>

zj
<latexit sha1_base64="1d0L55YQtorfoRo0gO54lpe9zQ8=">AAAB83icbVDLSgNBEOyNrxhfUY9eBoPgKexGQY9BLx4jmAdklzA7mU3GzD6Y6RXjkt/w4kERr/6MN//GSbIHTSxoKKq66e7yEyk02va3VVhZXVvfKG6WtrZ3dvfK+wctHaeK8SaLZaw6PtVciog3UaDknURxGvqSt/3R9dRvP3ClRRzd4TjhXkgHkQgEo2gk10X+iH6QPU16971yxa7aM5Bl4uSkAjkavfKX249ZGvIImaRadx07QS+jCgWTfFJyU80TykZ0wLuGRjTk2stmN0/IiVH6JIiVqQjJTP09kdFQ63Hom86Q4lAvelPxP6+bYnDpZSJKUuQRmy8KUkkwJtMASF8ozlCODaFMCXMrYUOqKEMTU8mE4Cy+vExatapzVq3dnlfqV3kcRTiCYzgFBy6gDjfQgCYwSOAZXuHNSq0X6936mLcWrHzmEP7A+vwBruqSGg==</latexit>

ūj
<latexit sha1_base64="0FHj81lPdy1HSfu+JLMd7zwMms4=">AAAB+3icbVBNS8NAEN34WetXrEcvi0XwVJIq6LHoxWMF+wFtCJvtpl272YTdibSE/BUvHhTx6h/x5r9x2+agrQ8GHu/NMDMvSATX4Djf1tr6xubWdmmnvLu3f3BoH1XaOk4VZS0ai1h1A6KZ4JK1gINg3UQxEgWCdYLx7czvPDGleSwfYJowLyJDyUNOCRjJtyv9gKisD2wCQZilee4/+nbVqTlz4FXiFqSKCjR9+6s/iGkaMQlUEK17rpOAlxEFnAqWl/upZgmhYzJkPUMliZj2svntOT4zygCHsTIlAc/V3xMZibSeRoHpjAiM9LI3E//zeimE117GZZICk3SxKEwFhhjPgsADrhgFMTWEUMXNrZiOiCIUTFxlE4K7/PIqaddr7kWtfn9ZbdwUcZTQCTpF58hFV6iB7lATtRBFE/SMXtGblVsv1rv1sWhds4qZY/QH1ucP+PiVCw==</latexit>

ū
0
j

<latexit sha1_base64="OkCnlB/Xa9qS9vWlmdanOtks3nM=">AAAB/3icbVBNS8NAEN3Ur1q/ooIXL8EieipJFfRY9OKxgv2ANobNdtOu3WzC7kQsMQf/ihcPinj1b3jz37htc9DWBwOP92aYmefHnCmw7W+jsLC4tLxSXC2trW9sbpnbO00VJZLQBol4JNs+VpQzQRvAgNN2LCkOfU5b/vBy7LfuqVQsEjcwiqkb4r5gASMYtOSZe10fy7QL9AH8IE2yzLu7TY8yzyzbFXsCa544OSmjHHXP/Or2IpKEVADhWKmOY8fgplgCI5xmpW6iaIzJEPdpR1OBQ6rcdHJ/Zh1qpWcFkdQlwJqovydSHCo1Cn3dGWIYqFlvLP7ndRIIzt2UiTgBKsh0UZBwCyJrHIbVY5IS4CNNMJFM32qRAZaYgI6spENwZl+eJ81qxTmpVK9Py7WLPI4i2kcH6Bg56AzV0BWqowYi6BE9o1f0ZjwZL8a78TFtLRj5zC76A+PzB/AQlrA=</latexit>

User-level Attention

ŷi
<latexit sha1_base64="LLuD+0H6QsirIpYmIonHd/tZAQ0=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16CRbBU0mqoMeiF48V7Ac0IWy2m3bpZhN2J9IQ8le8eFDEq3/Em//GbZuDtj4YeLw3w8y8IOFMgW1/G5WNza3tnepubW//4PDIPK73VJxKQrsk5rEcBFhRzgTtAgNOB4mkOAo47QfTu7nff6JSsVg8QpZQL8JjwUJGMGjJN+vuBEPuAp1BEOZZUfjMNxt2017AWidOSRqoRMc3v9xRTNKICiAcKzV07AS8HEtghNOi5qaKJphM8ZgONRU4osrLF7cX1rlWRlYYS10CrIX6eyLHkVJZFOjOCMNErXpz8T9vmEJ44+VMJClQQZaLwpRbEFvzIKwRk5QAzzTBRDJ9q0UmWGICOq6aDsFZfXmd9FpN57LZerhqtG/LOKroFJ2hC+Sga9RG96iDuoigGXpGr+jNKIwX4934WLZWjHLmBP2B8fkDCj+VFg==</latexit>

… …
…

FC

Softmax

(c)

UF
i

<latexit sha1_base64="DAbRwn4LK4BDWnWYeskuxJtdBJk=">AAAB+XicbVBNS8NAEN34WetX1KOXxSJ4KkkV9FgUxGMF0xbaWDbbTbt0swm7k2IJ+SdePCji1X/izX/jts1BWx8MPN6bYWZekAiuwXG+rZXVtfWNzdJWeXtnd2/fPjhs6jhVlHk0FrFqB0QzwSXzgINg7UQxEgWCtYLRzdRvjZnSPJYPMEmYH5GB5CGnBIzUs+0usCcIwszLe/wxu817dsWpOjPgZeIWpIIKNHr2V7cf0zRiEqggWndcJwE/Iwo4FSwvd1PNEkJHZMA6hkoSMe1ns8tzfGqUPg5jZUoCnqm/JzISaT2JAtMZERjqRW8q/ud1Ugiv/IzLJAUm6XxRmAoMMZ7GgPtcMQpiYgihiptbMR0SRSiYsMomBHfx5WXSrFXd82rt/qJSvy7iKKFjdILOkIsuUR3doQbyEEVj9Ixe0ZuVWS/Wu/Uxb12xipkj9AfW5w8HpZPp</latexit>

Global graph

Time 
Embedding

Ti
<latexit sha1_base64="2pgjzr29J+GU1MA2I8g3ylqyvG4=">AAAB83icbVBNS8NAEN34WetX1aOXxSJ4KkkV9Fj04rFCv6ApZbOdtEs3m7A7EUvo3/DiQRGv/hlv/hu3bQ7a+mDg8d4MM/OCRAqDrvvtrK1vbG5tF3aKu3v7B4elo+OWiVPNocljGetOwAxIoaCJAiV0Eg0sCiS0g/HdzG8/gjYiVg2cJNCL2FCJUHCGVvJ9hCcMwqwx7Yt+qexW3DnoKvFyUiY56v3Slz+IeRqBQi6ZMV3PTbCXMY2CS5gW/dRAwviYDaFrqWIRmF42v3lKz60yoGGsbSmkc/X3RMYiYyZRYDsjhiOz7M3E/7xuiuFNLxMqSREUXywKU0kxprMA6EBo4CgnljCuhb2V8hHTjKONqWhD8JZfXiWtasW7rFQfrsq12zyOAjklZ+SCeOSa1Mg9qZMm4SQhz+SVvDmp8+K8Ox+L1jUnnzkhf+B8/gBzXJHz</latexit>

Xi
<latexit sha1_base64="7NreFF8w212N83RIX/DFCIxjYUI=">AAAB83icbVBNS8NAEN3Ur1q/qh69LBbBU0mqoMeiF48V7Ac0pWy2k3bpZhN2J2IJ/RtePCji1T/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVHJo8lrHuBMyAFAqaKFBCJ9HAokBCOxjfzvz2I2gjYvWAkwR6ERsqEQrO0Eq+j/CEQZh1pn3RL1fcqjsHXSVeTiokR6Nf/vIHMU8jUMglM6bruQn2MqZRcAnTkp8aSBgfsyF0LVUsAtPL5jdP6ZlVBjSMtS2FdK7+nshYZMwkCmxnxHBklr2Z+J/XTTG87mVCJSmC4otFYSopxnQWAB0IDRzlxBLGtbC3Uj5imnG0MZVsCN7yy6ukVat6F9Xa/WWlfpPHUSQn5JScE49ckTq5Iw3SJJwk5Jm8kjcndV6cd+dj0Vpw8plj8gfO5w95eJH3</latexit>

=

M
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Figure 7.3: Overview of PLRD: (a) input of PLRD; (b) preprocessing layer; (c)
fine-grained user representation learning and rumor detection layer.

7.1.3.2 Overall framework of PLRD

In this section, we describe our proposed PLRD rumor detection system. It con-
sists of the following components (see Figure 7.3): (a) inputs, including (1) the
propagation threads of tweet mi, and (2) a global graph constructed on all tweets
propagation threads; (b) the preprocessing layer, which consists of (1) constructing
a diffusion graph and inverse diffusion graph based on propagation threads, (2) con-
structing a user characteristic matrix based on user profiles, (3) pre-training retweet
time-stamps via positional encoding, and (4) pre-training global graph via random-
ized truncated singular value decomposition-based sparse matrix factorization; and
(c) the fine-grained user representation learning layer and the rumor detection layer,
in which we learn user influence and susceptibility via a multi-hop graph convolution
layer, model user temporal feature via bi-directional GRU, then aggregate and en-
hance the learned multi-scale user representations through a feature-level attention
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layer and a variational autoencoder. Finally, after a user-level attention layer, we
feed the unique rumor representation into a rumor classifier. Specifically, we use
several fully connected feedforward layers and a softmax output layer to generate a
rumor prediction. Below, we explain each of the above components in detail.

7.1.3.3 Social homophily learning from global graph

As mentioned in section 7.1.3.1, we construct the global graph based on all the
retweet threads in the dataset. Our goal is to capture social homophily for all users.
The social homophily among users specifies that users with similar interests are more
likely to closely connected [153]. We assume that the users who discuss the same
post in social communities share homophilous relationships in our work. Then, we
try to model social homophily in an unsupervised manner, which encourages users
with shared social neighborhoods to have similar latent representation.

More specifically, we cast the problem of learning social homophily as the task of
graph embedding. The global graph G always contains tens of thousands of nodes,
and to model such a large graph effectively is a tough challenge in the field of graph
representation learning [154, 155]. Inspired by the success of sparse matrix fac-
torization (SMF) in large-sized graph representation learning, in our work, we use
a randomized tSVD-based SMF to learn social homophily from the global graph.
Here, tSVD is truncated singular value decomposition, which can prevent the prob-
lem of infeasible computation of factorization for a large-sized matrix [156, 157].
Specifically, given global graph G, we can obtain the adjacency matrix AG ∈ RN×N

and diagonal degree matrix DG ∈ RN×N , N is the number of nodes in global graph.
Each entry AGi,j of A

G equals to 1 when uj and uj share the same post or i = j, oth-
erwise AGi,j = 0. And DGi,i =

∑N
j AGi,j. To learn the embedding of G via randomized

tSVD-based SMF, we first define a proximity matrix MG as:

MG
i,j =

{
ln pGi,j − ln(λN GE,j), (ui, uj) ∈ E

0, otherwise (7.1)

where pGi,j = AGi,j/D
G
i,i indicates the weight of (ui, uj) in E. N GE,j are the negative

samples connected with user uj, which can be defined as N GE,j ∝ (
∑

i:(i,j)∈E pi,j)
3/4

(y ∝ x means that y and x are in a directly proportional relation) [158]. The goal of
the global graph embedding is transformed to factorize the matrix MG. Specifically,
the step for the approximate matrix factorization of M1 are as follows: (1) we first
look for a matrix Q ∈ RN×d with d orthonormal columns that let M ≈ QQTM;
(2) suppose we found such matrix Q, we define M̂ = QTM ∈ Rd×N , which is
quite smaller compare with the original matrix M. Then we have M̂ = SΣVT,
where Σ is the diagonal matrix with top-d singular values, and S,V ∈ RN×d are
orthonormal matrices with d selected singular values; (3) finally, the factorization of
M is approximate to M ≈ QQTM = (QS)ΣVT and the calculation of the output

1for brevity, we ignore the superscript G.
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embeddings for the global graph is EG = QSΣ1/2 and EG = {eGj |j ∈ [1, N ]} ∈ RN×d

. That is, for each user uj in the global graph, was allocated a relative latent
embedding, i.e., eGj , and users with similar preferences and behavior (i.e., interested
in the same posts) will have similar embeddings.

7.1.3.4 Users’ influence and susceptibility learning

The role of each participant in the diffusion process of mi has two types, i.e., sender
and receiver [159]. In previous diffusion research [160, 161], the role of the sender
reflects a user’s influence, that is, the ability to spread information to other users.
On the opposite, the receiver role reflects the susceptibility of a user, i.e., the ability
of a user to be infected by possible senders. In our work, we learn the influence
and susceptibility for each user from the diffusion graph Gi of mi. However, in the
original diffusion graph Gi, the information passed from a sender to a receiver, so
that modeling Gi can acquire influence for each user, is not efficient for suscepti-
bility learning. To overcome this problem, we introduce an inverse diffusion graph
GT
i , which changes the direction of information propagation, i.e., from receiver to

sender.

Inspired by the recent success of deep learning technologies in graph representation
learning, such as graph convolutional network (GCN) [41, 61], and graph attention
network (GAT) [109], in order to model the higher-order relationships among par-
ticipants, we propose a multi-hop graph convolution layer (MHGCN) to extract user
influence and susceptibility from Gi and GT

i , respectively. The convolution kernel
of MHGCN is defined as:

H = gθ ∗X = σ( ‖
k∈O

(Â
(k)
XW(k))) (7.2)

where ‖
k∈O

represents the order-level concatenate, and σ is a non-linear activation

function such as ReLU. Â
(k)

denotes the normalized adjacency matrix Â ∈ R|U |×|U |
multiplied by itself k times, |U | is the number of nodes in graph, and O is a set
of integer adjacency powers from 0 to K, K is the max-order. The calculation of
normalized adjacency matrix is denoted as Â = D̄−1Ā, where Ā = A + I, and I is
diagonal identity matrix. X ∈ RN×dX is the input graph signal, dX is the dimension
number. W(k) ∈ RdX×F is the weight matrix for different order. Given the diffusion
graph Gi and its inverse diffusion graph GT

i , we have:

Xi = Concat(Ei,Ui),

Hinf
i = σ( ‖

k∈O
(Â

(k)
i XiW

(k)
1 )),

Hsus
i = σ( ‖

k∈O
((Â

T
i )(k)XiW

(k)
2 )).

(7.3)

Ei = {eGj |uj ∈ Ui}, where eGj is looked up through global graph embedding matrix
EG by given user id, and Ui is the user characteristics matrix. Hinf

i ,Hsus
i ∈ R|Ui|×F
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are user influence and user susceptibility, respectively.

7.1.3.5 Users’ temporal learning

We learn temporal information for users from the diffusion path Pi. Specifically,
by modeling the timestamp information we can extract the dynamic and temporal
information for each participant user, which has been demonstrated to help rumor
detection [162].

Assume that, the time window is [t1, to], we first split the time window into l disjoint
time intervals, and compute the corresponding time interval for each retweet user
uj as pos =

⌊
tj−t1
to/l

⌋
, where t0 is the timestamp for the source post user. Then,

we use positional encoding introduced in the Transformer [131] to allocate initial
embedding for each time interval.

TP (pos)2d = sin
pos

100002d/dtime
,

TP (pos)2d+1 = cos
pos

100002d/dtime
.

(7.4)

where pos ∈ [0, l) denotes the time interval each user fall into, d refers to dimension,
and dtime is the total dimensions of the time interval embedding. So that, for a
given tweet mi, we construct an initial time-embedding matrix denoted as Ti ∈
R|Ui|×dtime .

After that, we feed Ti into a Bi-directional GRU (Bi-GRU) [108] to learn the tem-
poral information Htime

i for users.

Htime
i = Bi-GRU(Ti),Htime

i ∈ R|Ui|×F (7.5)

7.1.3.6 Feature-level aggregation attention

After obtaining the multi-scale latent representation of users, i.e., Hinf
i , Hsus

i and
Htime
i , we propose an attention-based method to capture the different importance

among three types of representations. Let ûj =
[
hinfj ,hsusj ,htimej

]
∈ R3×F denote

the learned feature set for user uj. The attention aj for ûj is calculated as:

û
′

j = tanh (ûj ·wj) ,

aj = softmax
(
û

′

j ·w
′

j

)
,

(7.6)

where wj ∈ RF×F and w′
j ∈ RF×1 are weight matrices, aj ∈ R3×1 is the learned at-

tention. Then the aggregated feature vector for user uj is ūj = ûj ·aj, where ūj ∈ RF .
Finally, we get the fused user feature vector matrix as Ūi = {ūj|j ∈ [1, |Ui|]}.
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7.1.3.7 VAE-based uncertainty learning

In most of the existing works, the learned Ūi can be directly fed into a classification
layer to predict the label of mi. In our work, motivated by the ability of variational
autoencoders (VAE) [163] in coping with randomness and uncertainty, we employ
VAE to capture the uncertainty in the learned user features. Let fDec(·), fDec(·)
and fNN(·) denote the encoder, decoder and neural network, respectively. Then the
VAE-based uncertainty learning layer can be simply formalized as:

zj = fENC(ūj), ū
′

j = fDec(zj), j = 1, 2, · · · , |Ui|.
µj = fNN(ūj), log σ2

j = fNN(ūj), zj ∼ N (µj, σ
2
j )

(7.7)

where ū′
j represents the reconstructed input features. zj ∈ Rdz is the latent vector.

Specifically, VAE gets µ and log σ2 from the encoder (we omit the subscript j for
simplicity), and then samples latent representation z from Gaussian distribution via
reparameterization trick, where z = µ+σε and ε ∼ N (0, 1). Then the decoder takes
the latent representation z as input, and try to reconstruct the original input feature.
In general, the marginal log-likelihood of ū – log pθ(ū) = log

∫
z pθ(ū|z)p(z)dz, which

is intractable to compute effectively. Instead, we adopt variational inference by
defining a simple parametric distribution over the latent variables qφ(z|ū) (a.k.a.
fEnc parameterized by φ), and maximizing the evidence lower bound (ELBO) on
the marginal log-likelihood of each observation:

log pθ(ū) = log

∫

z
pθ(ū|z)p(z)dz

= Eqφ(z|ū) log[
pθ(ū, z)

qφ(z|ū)
] + KL[qφ(z|ū)||pθ(z|ū)]

≥ Eqφ(z|ū)[log pθ(ū, z)− log qφ(z|ū)] , ELBO(ū)

(7.8)

To optimize the ELBO, we use a parametric inference network and reparameteriza-
tion of qφ(z|ū) to alternatively maximize the following reformulation:

ELBO(ū) = Eqφ(z|ū)[log pθ(ū, z)− log qφ(z|ū)]

= Eqφ(z|ū)[log pθ(z) + log pθ(ū|z)− log qφ(z|ū)]

= Eqφ(z|ū)pθ(ū|z)−KL[qφ(z|ū)||pθ(z)]

(7.9)

where pθ(ū|z) denotes the decoder and the first term of Equation (7.9) is the re-
construction loss, which is used to measure the likelihood value of the reconstructed
features. The second term is the Kullback-Leibler (KL) divergence between the vari-
ational distribution qφ(z|ū) and the prior pθ(z) (which is always ≥ 0). Therefore,
the objective of maximizing ELBO of log pθ(ū) turns to minimize the Kullback-
Leibler (KL) divergence. Through this VAE-based uncertainty learning layer, the
learned latent representation for all users form a user latent representation matrix
Uz
i = {uzj |j ∈ R|Ui|×dz}.
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7.1.3.8 User-level aggregation attention

We concatenate Ūi and Uz
i at user-level to form a new user representation ma-

trix UF
i ∈ R|Ui|×(F+dz). Then we try to merge the user-level information to form

an unique representation Ri for tweet mi through attention sum-pooling opera-
tion:

âj =
exp(〈w, tanh(WauFj + ba)〉)∑|Ui|
∗:=1 exp(〈w, tanh(WauF∗ + ba)〉)

,

Ri =
N∑

j=1

âjuFj

(7.10)

where Wa ∈ R(F+dz)×d, ba ∈ Rd and w ∈ Rd.

7.1.3.9 Rumor detection

Our ultimate goal is to predict the rumor label ŷi of tweet mi. We calculate this
through feeding Ri into several fully connected layers and a softmax output layer,
which is denoted as:

ŷi = softmax (FC (Ri)) (7.11)

where ŷi is a vector of predicted probabilities of all rumor categories for the tweet
mi.

In the implementation, we train PLRD to estimate all the model parameters by
minimizing the cross-entropy of the predictions Ŷ and the ground truth labels Y.
The prediction loss is:

Lpre = − 1

|B|

|B|∑

i=1

1∑

c=0

yi,c log ŷi,c (7.12)

where |B| is the batch size, yi,c and ŷi,c are the ground truth and predicted results
for the i-th sample. That is, if the sample belongs to c-th class, ŷi,c is 1; otherwise
it is 0.

The total loss of PLRD should take the ELBO into consideration, that is:

L = Lpre −
1

|B|

|B|∑

i=1

ELBO(Ūi) (7.13)

During training, the well-known stochastic gradient descent is applied to update
parameters. Specifically, we use the adaptive learning rate optimization algorithm
Adam [139] for model training. All hyper-parameters are tuned using the stan-
dard grid search for optimal results. The next section provides the details of the
computational experiments.
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7.1.3.10 Computational complexity analysis

In this section, we give a brief analysis of the computational complexity of PLRD.
(1) The complexity for social homophily learning from global graph: as analyzed
in [155], the overall complexity of this layer is O(d2|U | + |E|), where d, |U | and
|E| are the dimensions of user social homophily, number of nodes and edges in
global graph, respectively. (2) The complexity for users’ influence and susceptibility
learning: we use a multi-hop graph convolutional layer to learn the users’ influence
and susceptibility (cf. Eq 7.2). Recall that, the dimensions of the input and the
output are dX and F , respectively, the max-order isK, and the normalized adjacency
matrix Â is a sparse matrix with m nonzero elements. Therefore, for a single
MHGCN layer, the computational complexity is O(F × K × m × dX). (3) The
other parts of the PLRD are implemented by GRUs and MLPs. The time and
space complexity are related to the input dimensions of latent variables. Since the
users’ social homophily are computed in preprocessing phase, the computational
complexity of whole PLRD is therefore O(F ×K ×m× dX).

7.1.4 Evaluation

In this section we evaluate our proposed PLRD framework and demonstrate its
practical utility through quantitative experiments.

7.1.4.1 Evaluation metrics and baselines

In our work, we use Accuracy (ACC), Precision (Pre), Recall (Rec), and F1 as
the evaluation protocols to measure the models’ performance. In particular, ACC
measures the proportion of correctly classified tweets, while F1 is the harmonic mean
of the precision and recall.

We compare our method with a battery of baselines, they are:

• DTC [23]: A decision tree-based classification model that combines manually
engineered characteristics of tweets to compute the information credibility.

• SVM-TS [85]: A linear SVM-based time series model, which can capture
the variation of a broad spectrum of social context information over time by
converting the continuous-time stream into fixed time intervals.

• GRU [33]: An RNN-based model has been employed to learn the sequential
cascading effect of tweets with high-level feature representations extracted
from relevant posts over time.

• TD-RvNN [34]: A tree-structured RNN model for rumor detection, which
embeds hidden indicative signals in the tree-structures and explores the im-
portance of comments for rumor detection.
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• PPC_RNN+CNN [100]: An early-stage rumor detection model through
classifying news propagation paths with RNN and CNN, which learns the
rumor representations through the characteristics of users and source tweets
(for brevity, the model name is abbreviated to PPC).

• dEFEND [87]: A co-attention-based fake news detection model that exploits
both news contents and user comments for fake news detection.

• Bi-GCN [16]: A GCN-based model exploiting the bi-directional propagation
structures and comments for rumor detection.

• GCAN [102]: A co-attention network that detects true and false rumors based
on the content of the source tweet and its propagation-based users. We also
provide a variant of GCAN, denoted as GCAN-Text, which removes the source
tweet features in the original inputs.

7.1.4.2 Experimental setup

We implement DTC with Weka1, SVM-based models with scikit-learn2, and other
neural network-based models with Tensorflow3. All baselines follow the parameter
settings in the original papers.

For PLRD, the learning rate is initialized at 0.001 and gradually decreases as the
training proceeds. We set the embedding size d for the social homophily to 40. As
for time-embedding, we set the total number of time intervals to be 100 and each
interval represents 10 minutes. Retweets with a latency of more than 1,000 minutes
would fall into the last time interval. The size of time-embedding is dtime set to 50.
The hidden size F of user influence, susceptibility, and temporal information are set
to 64; the hidden size dz of the VAE-based uncertainty learning layer is set to 32. The
batch size is set to 32 for Twitter15/16, 128 for Science and 16 for RumourEval19,
and the training process is iterated upon for 500 epochs but would be stopped earlier
if the validation loss does not decrease after 10 epochs. And we randomly choose
70% data for training and the rest of 10% and 20% for validation and testing. The
experiments are conducted on a machine with an Intel i7-6700 3.40GHZ CPU and a
single NVIDIA GeForce GTX 2080Ti. The time cost for model training is less than
10 minutes on all datasets used in this work.

7.1.4.3 Study on Twitter15/16

Table 7.5 and 7.6 summarizes the overall performance on Twitter15 and Twit-
ter16 datasets. The last two rows show the performance of the complete version
of our model PLRD and the improvement percentage compare with the second-best
method, which basically yields much better performance than the other baseline

1https://www.cs.waikato.ac.nz/ml/weka/
2https://scikit-learn.org/
3https://www.tensorflow.org/
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Table 7.5: Overall performance comparison of rumor detection on Twitter15. The
best method is shown in bold, and the second best one is underlined. The number of
retweets is 40.

Twitter15
Method Acc Pre Rec F1
DTC 0.495 0.494 0.481 0.495
SVM-TS 0.519 0.519 0.518 0.519
GRU 0.580 0.544 0.545 0.544
TD-RvNN 0.678 0.671 0.674 0.672
PPC 0.691 0.674 0.686 0.679
dEFEND 0.738 0.658 0.661 0.654
Bi-GCN 0.748 0.731 0.759 0.745
GCAN 0.875 0.825 0.829 0.825
GCAN-Text 0.683 0.705 0.652 0.678
PLRD 0.934 0.928 0.929 0.927
Improvement 8.98% 12.5% 12.1% 12.4%

Table 7.6: Overall performance comparison of rumor detection on Twitter16. The
best method is shown in bold, and the second best one is underlined. The number of
retweets is 40.

Twitter16
Method Acc Pre Rec F1
DTC 0.561 0.575 0.537 0.562
SVM-TS 0.693 0.692 0.691 0.692
GRU 0.554 0.514 0.516 0.515
TD-RvNN 0.661 0.632 0.641 0.636
PPC 0.655 0.632 0.651 0.641
dEFEND 0.702 0.637 0.638 0.631
Bi-GCN 0.711 0.709 0.710 0.716
GCAN 0.823 0.803 0.841 0.822
GCAN-Text 0.664 0.716 0.579 0.648
PLRD 0.875 0.876 0.874 0.855
Improvement 6.32% 9.09% 3.92% 4.01%

methods across all metrics. Note that we conduct a McNemar’s test [144] between
our PLRD and the best baseline based on the prediction results on the testing set.
The p-values are p < 0.001 on both Twitter15 and Twitter16. Therefore, we can
conclude that the performance between PLRD and GCAN exists with statistical
significance.

We make the following additional observations. O1: The feature-based approaches –
DTC and SVM-TS use hand-crafted features based on the overall statistics of tweets,
which perform poorly. These two methods not sufficient to capture the generalizable
features associated with tweets and the diffusion process. Notably, SVM-TS achieves
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comparatively better performance than DTC because it utilizes an extensive set
of features and focuses on retweets’ temporal features. O2: Deep learning-based
models achieve better performance than feature-based methods. GRU is the first
deep-learning-based method for rumor detection, which performs worst among deep-
learning-based baselines because it only relies on the temporal-linguistics features of
the post sequence but ignores other useful information such as diffusion structures
and user profiles. Both TD-RvNN and PPC outperform GRU, which indicates the
effectiveness of modeling the propagation structure and temporal information in
rumor detection. Moreover, PPC proves user profile features as important as text
features for rumor detection. dEFEND utilize a co-attention mechanism to learn the
correlation between news contents and user comments, which performs better than
TD-RvNN and PPC but worse than Bi-GCN and GCAN. Bi-GCN and GCAN claim
that they can learn structure information from graphs, and their performance indeed
exceeds other baseline methods. However, Bi-GCN constructs the structural tree
based on the replies, which can not reflect the full process of rumor diffusion. As for
GCAN, it captures the similarity between users rather than propagation structural
features. According to the results, GCAN performs much better than Bi-GCAN,
because it takes both text information and user profiles into consideration. By
comparing GCAN with its variants GCAN-Text, we can find that after removing
text information, the performance of GCAN remarkably decrees, demonstrating
that GCAN is not efficient to capture user-related features. O3: PLRD consistently
outperforms all baselines on both Twitter15 and Twitter16. Compare to the best
baseline method Bi-GCN, PLRD learns rumor representation from a participant-
level without any text information, demonstrate the primary motivations of this
work – i.e., users are the main contributor to the rumor propagation.

7.1.4.4 Study on Science

Table 7.7: Overall performance comparison of rumor detection on Science. The best
method is shown in bold. The number of retweets is 40.

Science
Method Acc Pre Rec F1
PPC 0.655 0.649 0.568 0.606
GCAN-Text 0.671 0.646 0.622 0.634
PLRD 0.768 0.727 0.814 0.768

In this section, we conduct an experiment on Science dataset. Specifically, from the
original Science dataset, we first filter out (1) the tweets with less than 10 retweets
and more than 100; and (2) the tweets’ with a diffusion period exceed 24 hours.
After that, we have 3, 493 tweets in total, and the processed dataset is still highly
imbalanced, e.g., only 610 tweets were labeled as “non-rumor”, while the majority
(i.e., 2, 883) were classified as “rumor”. We randomly select 1, 000 items from the
rumor set to make sure the number of tweets labeled as non-rumors is 50% of the
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rumors, and finally, we get a new experiment dataset with 1, 000 rumors and 610

non-rumors. Table 7.3 summarizes the performance comparison between PLRD and
two state-of-the-art propagation-based baselines, i.e., PPC and GCAN-Text1. We
can observe that our PLRD outperforms both PPC and GCAN-Text on all metrics,
which indicates that our model is more effective and stable in extracting diffusion
patterns of users even without any textual information.

7.1.4.5 Study on RumourEval19

Table 7.8: Overall performance comparison of rumor detection on RumourEval19.
The best method is shown in bold. The result of the “Base” model has referenced the
best method from the paper [150]. “w/o Text” means without textual features. The
number of comments is 100.

RumourEval19
Method Acc Pre Rec Macro-F1
Base – 0.596 0.603 0.577
TD-RvNN 0.667 0.641 0.673 0.615
Bi-GCN 0.734 0.733 0.735 0.661
PLRD 0.813 0.826 0.885 0.788
PLRD w/o Text 0.750 0.806 0.842 0.692

Since the RumorEval19 dataset has rich textual features, in this section we conduct
an experiment on RumourEval19 to test the PLRD performance when including
textual features. Specifically, we first use a pre-trained model – BERTweet [164] – to
generate the tweet embedding for each source tweet and its corresponding comments,
and then concatenate the source tweet embedding and comments embedding to form
a textual embedding matrix C ∈ R|Ui|×dtext for each tweet. Finally, we combine C
with X to form the input of PLRD. For a comparison, we choose TD-RvNN and
Bi-GCN as baselines, and also provide the result of the best method in [150] denotes
as “Base”. From Table 7.8, we can find that under the situation of unbalanced
label distribution, our PLRD can still achieve competitive performance compared
with other baselines on rumor detection. After deleting the textual features, the
performance of PLRD slightly drops, which demonstrate that textual features are
powerful and can help improve the model performance.

7.1.4.6 Ablation study

In this section, we conduct an ablation study on Twitter15 and Twitter16 to explore
the effect of each component in PLRD. Towards that, we derive the following variants
of PLRD:

1The Science dataset only provides anonymous user profile characteristics and propagation
threads. No textual features are available. So we compare with PPC and GCAN-Text.
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• w/o user profiles (UP): In “w/o UP”, we do not consider the user profile
characteristics, which means we do not use Ui and only keep Ei as input
features.

• w/o social homophily (SH): In “w/o SH”, we ignore the social homophily
of users, which means we do not use Ei and only keep Ui as input features.

• w/o user influence (UI): In “w/o UI”, we do not capture user influence,
which means ignore Hinf

i .

• w/o user susceptibility (US): In “w/o US”, we do not capture user sus-
ceptibility, which means ignore Hsus

i ..

• w/o user temporal (UT): In “w/o UT”, we do not take the user temporal
information into consideration, which means ignore Htime

i .

• w/o graph information (GI): In “w/o GI”, we do not utilize any infor-
mation from the global graph and the diffusion graph, which means we ignore
users’ social homophily, influence, susceptibility and only keep the users’ tem-
poral learning component. The input of this part is the concatenation of user
features and temporal information.

• w/o feature uncertainty (FU): In “w/o FU”, we remove the VAE-based
uncertainty learning layer and use Ūi directly.

• w/o feature-level attention (FA): In “w/o FA”, we remove the feature-
level aggregation attention in PLRD and concatenate the different user features
directly, i.e., Ūi = concat(Hinf

i ,Hsus
i ,Htime

i ) ∈ R|Ui|×3F .

• w/o user-level attention (UA): In “w/o UA”, we do not allocate different
importance for each user and directly use a sum-pooling to form the rumor
representation.

Table 7.9: performance comparison between PLRD and its variants.

Twitter15 Twitter16
Method Acc Pre Rec F1 Acc Pre Rec F1
w/o UP 0.853 0.842 0.838 0.828 0.838 0.858 0.847 0.840
w/o SH 0.906 0.894 0.910 0.896 0.802 0.821 0.786 0.794
w/o UI 0.868 0.863 0.871 0.859 0.800 0.859 0.871 0.867
w/o US 0.841 0.877 0.857 0.864 0.781 0.794 0.775 0.782
w/o UT 0.873 0.914 0.935 0.920 0.795 0.792 0.802 0.788
w/o GI 0.806 0.755 0.811 0.782 0.758 0.716 0.732 0.724
w/o FU 0.913 0.911 0.914 0.911 0.854 0.847 0.859 0.848
w/o FA 0.811 0.842 0.843 0.848 0.790 0.831 0.837 0.816
w/o UA 0.896 0.906 0.877 0.886 0.854 0.838 0.831 0.829
PLRD 0.934 0.928 0.929 0.927 0.875 0.876 0.874 0.855

120



7.1 PLRD: A Participant-Level Rumor Detection Framework via Fine-grained
User Representation Learning

The results, shown in Table 7.9, indicate that the original PLRD outperforms these
variants in terms of all metrics. From Table 7.9, we can observe that: (1) Both user
profile features (w/o UP) and social homophily (‘w/o SH) are reliable inputs of our
model that because user profiles can be used to identify an individual, and social
homophily can reflect the user preference. (2) User influence (w/o UI), susceptibility
(w/o US), and temporal features (w/o UT) are indispensable for rumor detection.
(3) The result of “w/o GI” performs worst among all variants, demonstrating that
graph data (global graph and diffusion graph) provide considerable meaningful fea-
tures, and are thus indispensable in rumor detection. (4) The fact that “w/o FU”
provides lower performance compare with PLRD, reflects the benefit of modeling
the feature uncertainty. (5) The two attention-based aggregation layers, i.e., feature-
level aggregation attention (w/o FA) and user-level aggregation attention (w/o UA),
play crucial roles in detecting rumors. Especially the feature-level aggregation atten-
tion (w/o FA), after removing it, the performance remarkably decreases, suggesting
that distinguishing the importance of different scale of user features can improve
detection performance. Similarly, “w/o UA” demonstrates that different users play
different roles in rumor spreading.

7.1.4.7 Privacy-preserving study

In this section, we conduct experiments on Twitter15 dataset to test our PLRD’s
performance on privacy-preserving scenarios which can be summarized as: (1) ran-
domly removing different proportions of edges in the global graph G; (2) randomly
masking different proportions of user characteristics u, and (3) randomly removing
different proportions of edges in the diffusion graph G. Note that, in scenario (1)
and (2) we only keep related features as inputs, i.e., in scenario (1), we only use
the user homophily E generated from the global graph as input, and in scenario
(2) we only keep user characteristic U as input. Both scenarios are tested on 40

retweets.

Figure 7.4 plots the performance of PLRD in scenarios (1) and (2), which shows that
even though we only keep 20% of edges in the global graph, the PLRD still achieves
90% accuracy. However, when masking 80% of user characteristics, the performance
of PLDR drops significantly.

Figure 7.5 shows the performance of PLRD with the different numbers of retweets
in scenario (3). We find that when we only observe few retweets, e.g., 10 and 40, the
performance of the model decreases as the removal of edges in the diffusion graph.
In contrast, when the number of observation retweets is sufficient enough such as
100, dropping a few edges would help improve the model performance. The reasons
behind is that: (1) with the increase of observed retweets, there is a great possibility
to introduce noise into the graph, which can be eliminated with random removal of
graph edges; and (2) randomly drop a few of graph edges is widely used as a data
augmentation method in graph representation learning field [165, 166], which can
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Figure 7.4: Evaluations on randomly removing different proportions of edges in the
global graph and random masking different proportions of user characteristics.

improve model generalization and overcome the overfitting and over-smooth issues
of graph neural networks.)

7.1.4.8 Early detection

Another critical goal of rumor detection is to detect rumors as early as possible
that is essential to stop their spread in a timely fashion. Next we investigate the
performance of models on identifying rumors at an early stage. Here, we consider
the early 50 retweets.

Figure 7.6 shows the performance comparison on early-stage detection between our
PLRD and the selected baselines. Note that we omit the feature-based approaches
(i.e., DTC and SVM-TS) and GRU since they did not show comparable performance,
especially on early rumor detection. Moreover, we also ignore TvRvNN, dEFEND,
and Bi-GCN, because these methods are built on the replies that may not exist
in the early-stage. We observe that PLRD performs better than PPC and GCAN,
especially when there are only a few observations. PLRD needs a short time to
identify the misinformation because PLRD learns the rumor representation from a
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Figure 7.5: Evaluations on randomly removal of diffusion links based on Twitter15.
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Figure 7.6: Evaluations on early rumor detection.

participant-level and fuses users’ multi-scale knowledge, such as user influence, user
susceptibility, user temporal information, etc.

We also investigate the time-varying performance between PLRD and its variants.
Specifically, we choose “w/o UP”, “w/o SH”, “w/o FU”, “w/o FA” and “’w/o UA’ as the
comparison methods. The results show in Figure 7.7. We find that the performance
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Figure 7.7: Evaluations on early rumor detection among variants of PLRD.

of PLRD surpasses all variants, and with the number of retweets increased, the
accuracy of all methods grow to saturation.

7.1.4.9 Interpretability analysis

The above ablation studies have shown the superiority of each component in PLRD.
In this section, we provide more in-depth insights by visualizing features.

Figure 7.8 plots the importance of the feature-level aggregation layer and user-
level aggregation layer. As for the feature-level aggregation attention, we randomly
selected two different types of tweets in Twitter15 and plotted the importance of the
different features. Figure 7.8a and Figure 7.8b show the results of previous 10 and
40 retweet users, respectively. Overall, we find that (1) the three types of features
for each user have different importance; (2) attention distribution varies between
rumor and non-rumor. Specifically, as for rumor tweets, participants try to affect
others, while themselves are easier to expose in the misleading tweets. In contrast, in
non-rumor tweets, participants are more influential compare with the susceptibility.
Moreover, temporal information plays a crucial role in detecting both rumor and
non-rumor. In Figure 7.8c, we investigate the role of the retweet users at the very
beginning of the diffusion. As shown, the later users are more critical in rumor
spreading, which confirms the hypothesis that rumors can spread deeper than non-
rumors [43]. Moreover, to have an intuitive explanation regarding the superiority
of each component in PLRD, we plot the learned latent representations (i.e.,Ū, Uz,
UF and R ) using t-SNE [125]. Each point in the plot represents a tweet in the test
set (tweets with similar latent vectors are closer in the plot), and different colors
refer to different labels, i.e., green represents non-rumor, orange represents rumor.
From Figure 7.9a, we see clear clustering phenomena by Ū. These latent vectors
can already be used to predict directly. In contrast, Figure 7.9b “smoothes” this
clustering effect by modeling the feature uncertainty, which should help explore more
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Figure 7.8: Attention visualization of PLRD. “Inf”: influence; “Sus”: susceptibility;
“Temp”: temporal.

possibilities. From Figure 7.9c – Figure 7.9d, we find that the model learned more
suitable latent representations for prediction after a user-level attention layer.

7.1.5 Summary

In this first part of the chapter, we first provided empirical evidence that all partic-
ipants in the diffusion chains of rumors exhibit different patterns than participants
in the diffusion chains of non-rumors. Based on these findings, we proposed a novel
fine-grained all- participant level rumor detection model, named PLRD (Participant-
Level Rumor Detection). Specifically, PLRD learns fine-grained user representa-
tions, i.e., user influence, user susceptibility, and user temporal information from
the propagation threads of a given post, and merges the learned features to form a
unique rumor representation through a feature-level attention layer and a user-level
attention layer. Moreover, a variational autoencoder used to capture uncertainty
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Figure 7.9: Visualization of the learned latent representation on Twitter15 using t-
SNE. Each point is a sample from the test set. The color green represents non-rumor,
and the orange one represents rumor.
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from features further improves the learned rumor representation. Compared with
existing rumor detection methods, PLRD makes predictions only based on user-level
features learned from the diffusion process of posts, which overcomes the problem
of overemphasizing the text features. We conducted experiments on four real-world
datasets, Twitter15, Twitter16, Science and RumourEval19. The experiment results
not only demonstrate that our model significantly outperforms the baselines regard-
ing effective early detection, but also supports the hypothesis that the combination
of various user information at a participant level in a diffusion chain will improve the
performance of rumor discovery. Besides, our ablation study further demonstrates
that each part in our model is indispensable for rumor detection.
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7.2 UMLARD: Multi-view Learning with Distinguish-
able Feature Fusion for Rumor Detection

7.2.1 Section Overview

In section 7.1, we proposed a novel participant-level rumor detection model – PLRD,
which can learn fine-grained all-participant patterns throughout the whole diffusion
process, including social patterns (user social homophily), diffusion patterns (user
influence and susceptibility), temporal patterns (how fast the news is propagated
in the social network), all-participant profile patterns. Based on the experimental
results compared with existing state-of-the-art deep learning-based rumor detection
methods, we have seen that PLRD achieves significant improvements. In this sec-
tion, we propose a new model UMLARD – User-aspect Multi-view Learning with
Attention for Rumor Detection model, which can make even better predictions than
PLRD and other recent works. UMLARD inherits the advantages of PLRD, i.e.,
solving the same limitations that are also considered by PLRD:

(L1) Lack of systematic user-aspect rumor modeling : Recent research [43] reveals
that humans are the principal “culprits” in spreading false news. Existing studies
either directly aggregate users’ profile information as model inputs [85, 86, 102],
which only pay attention to the local structure correlations among propagated users
and the sequential propagation patterns [100] (i.e., user temporal features), or focus
on learning the global structure of rumor diffusion [16] (i.e., user structural features).
Essentially, these works learn the rumor representation from an event-level, and still
lacks a unified framework that can learn rumor diffusion while extracting meaningful
features from user-aspect.

(L2) Indistinguishable importance of both features and users : Different features play
different roles in rumor detection at different phases of propagation. As information
spreads, for example, the effect of structural information and temporal information
on discriminating rumors becomes different [84, 85]. Also, users may either uncon-
sciously forward some unproven news, or deliberately propagate the fake news in
the information spread [26]. Understanding the efficacy of features and individual
users at the same time would help detect rumors, which, however, has not been well
investigated in existing studies.

(L3) Limited interpretability : Most existing studies focus on explaining the news
content, e.g., discover the important sentence in the articles or emotional words
in comments [87], to interpret the detection results. However, these works cannot
explain critical features beyond text and determine user’s roles in rumor propaga-
tion.

Besides all those points above, UMLARD also improves on PLRD by overcoming
the following limitation is not solved by PLRD:
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(L4) Entangled high-level feature learning : Existing works learn high-level represen-
tations (e.g., structural or temporal) for rumor detection by exploiting user profiles
or pretrained textual features as model inputs. While improving detection perfor-
mance, it is difficult to demonstrate the effectiveness and high-level representations
of the model, because (1) the learned representations are entangled with the original
input [102], and (2) the models use the same input [44] to learn different high-level
features.

To develop UMLARD and address the limitations L1–L4 above, inspired by recent
progress in multi-view learning [167, 168, 169], we initiate the attempts to cap-
ture the principal characteristics of users and rumors by learning multiple distinct
features. Multi-view learning is a promising learning paradigm that jointly models
different views of the same input data for improving learning performance [170]. For
example, a web page can be described in forms of text, video, and image [171] simul-
taneously. By exploring the complementarity and consistency of different views, it
can further improve the model performance [172]. Specifically, we exploit different
views to represent an instance for comprehensively describing the information of
the instance. We first abstract the user-aspect features of the users engaged in the
diffusion process as user profile-view, user structural-view, and user temporal-view,
and then incorporate different views to predict the credibility of the given infor-
mation. Specifically, UMLARD exploits different embedding methods to learn the
view-specific high-level representations of a given post from the hierarchical diffusion
process and user profiles. To understand the importance of each view and the role
of the user, UMLARD employs a view-wise attention network and a capsule atten-
tion network to incorporate both view-level and user-level features. It allows us to
better discriminate feature influence and the effect of user behaviors in spreading
rumors.

Our main contributions towards rumor detection problem provide:

• User-aspect feature extraction (L1): We conceptualize user-aspect fea-
tures as different views, including profile-view, structural-view, and temporal-
view, and present a novel model to learn different views for each user who
engaged in the information diffusion.

• View-specific embedding methods (L2): UMLARD utilizes different em-
bedding methods to learn view-specific high-level representations based on
different inputs: (1) an attention-based layer aims to learn user profile-view
by assigning different importance to features in user profiles; (2) an improved
GCN-based network to learn structural-view from the diffusion network while
considering the direction of information dissemination, taking the adjacency
matrices of diffusion networks as input; and (3) a time-decay LSTM considers
the influence of users and is used for temporal-view learning based on the dif-
fusion path taking two types of embeddings as inputs, i.e., static-embedding
and dynamic-embedding.
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• Distinguishable hierarchical feature fusion (L3): We design a hierarchi-
cal feature fusion mechanism to unify the knowledge from different perspec-
tives, which consists of two components: (1) a view-wise attention layer to
capture the features from different views; and (2) a capsule attention layer to
differentiate the most related users.

• Explainable prediction results (L4): UMLARD explains the significance
of features according to the learned attention values. Specifically: (1) the
dimensional-wise attention network shows the importance of different charac-
teristics in the user profiles; (2) the view-wise attention results tell how the
users play different roles in different phases of rumor propagation; and (3)
from the capsule attention results, one can easily understand which users play
critical roles in detecting the rumors.

This section is based on the following publication [46]:

• Chen, X., Zhou, F., Trajcevski, G., Bonsangue, M.: Multi-view Learning
with Distinguishable Feature Fusion for Rumor Detection. Knowledge-Based
Systems 240 (2022) 108085

7.2.2 Problem Statement
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Figure 7.10: An example of the extracted information from a tweet diffusion.

Suppose we have a set of tweets M =
{
mi, i ∈

[
1, |M |

]}
, where each tweet mi is a

quadruplet representing the corresponding diffusion process and the users enrolled:
mi =

{
Gi,Pi,Ui,Ci

}
, where Gi,Pi,Ui,Ci are diffusion graph, diffusion path, user

characteristic matrix and the content vector of source tweet, respectively. The con-
cepts of diffusion graph, diffusion path and user characteristic matrix are formally
defined in Definition. 2, 3 and 5. And the definition of tweet content is shown as
follow:

Definition 15 Tweet Content. For a tweet mi, the text content Ci is considered
to be a sequence of words – i.e., Ci = [wi1,wi2, . . . ,wiL] ∈ RL×dword, where L is the
number of words in source tweet.

We note that each word is represented by a dword-dimension vector using a particular
word embedding technique, e.g., word2vec.
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7.2 UMLARD: Multi-view Learning with Distinguishable Feature Fusion for
Rumor Detection

We summarize the (definitions of the) symbols used in this section in Table 7.10. We
note that, in the sequel, whenever there is no ambiguity, we may omit the double-
subscript from the notation (i.e., whenever we are unambiguously working with one
specific tweet mi, we may drop i from the sequences denoting users, time-stamps,
etc.).

Table 7.10: Main notations used throughout this chapter.
Symbol Description
p∗ the user profile vector of each user.
g∗ The pre-trained node embedding of each user.
es∗ The static embedding of each user.
ed∗ The dynamic embedding of each user.
duser The hidden size of the profile-view.
dstru The hidden size of the structural-view.
dtemp The hidden size of the temporal-view.
dword The hidden size of the word embedding.
dview The hidden size of the multi-view layer.
HUser
i The representations of the profile-view.

HStru
i The representations of the structural-view.

HTemp
i The representations of the temporal-view.

HText
i The representations of the content feature.

V
′

i, sin
the representation after view-wise attention and capsule
attention for tweet mi.

HRumor
i the final representation of tweet mi.

Ŷ/ŷ∗ The predicted label.
Y/y∗ The ground truth.

We now formally define the rumor detection problem that we study as follows:

Definition 16 Rumor Detection. Given a tweet mi =
{
Gi,Pi,Ui,Ci

}
within

an observation window to, our rumor detection goal is to learn a function f from
labeled claims, i.e., f(ŷi|Gi,Pi,Ui,Ci; to), where the predicted result ŷi takes one of
the four finer-grained classes: non-rumor, false rumor, true rumor, and unverified
rumor (as introduced in [84]).

7.2.3 Methodology

In this section, we first introduce the preliminaries and basic notations, and then
formalize the problem studied in this paper. Subsequently, we present the details of
the proposed UMLARD framework.

As illustrated in Figure 7.11, UMLARD consists of three main components: (1)
Representation learning layer that simultaneously extracts user-aspect features from
the profile-view, structural-view, and temporal-view, while embedding the source
tweet content into low-dimensional space; (2) Hierarchical fusion layer that fuses
the learned representation at both view-level and user-level; and (3) Rumor detection
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7. PARTICIPANT-LEVEL RUMOR DETECTION BASED ON INFORMATION
DIFFUSION ANALYSIS

layer that makes use of a fully connected layer to predict the labels of tweets, based
on the learned user-aspect knowledge and tweet content.
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hu�1
<latexit sha1_base64="SZIndp2yoLGjoQ4Ivb0zqZvKW4A=">AAAB+XicbVDJSgNBEO2JW4zbqDdzaQyCCIaZeNBjwIsHDwmYBZJh6On0JE16FrprgmGcP/HiQRFv4p9406+xsxw08UHB470qqup5seAKLOvLyK2srq1v5DcLW9s7u3vm/kFTRYmkrEEjEcm2RxQTPGQN4CBYO5aMBJ5gLW94PfFbIyYVj8I7GMfMCUg/5D6nBLTkmmYX2D14fjrI3DQ5tzPXLFllawq8TOw5KVXP3h+K3/Wjmmt+dnsRTQIWAhVEqY5txeCkRAKngmWFbqJYTOiQ9FlH05AETDnp9PIMn2ilh/1I6goBT9XfEykJlBoHnu4MCAzUojcR//M6CfhXTsrDOAEW0tkiPxEYIjyJAfe4ZBTEWBNCJde3YjogklDQYRV0CPbiy8ukWSnbF+VKXadxi2bIoyI6RqfIRpeoim5QDTUQRSP0iJ7Ri5EaT8ar8TZrzRnzmUP0B8bHD8xTlr8=</latexit>

fu
<latexit sha1_base64="Hu1SsfwuLKWxQP3qEilsQ53yslU=">AAAB83icbVC7SgNBFJ31GeMrainIaBCswm4stAzYWFhEMA/ILmF2MpsMmZ1dZu6Iy5LfsLFQxNYfsbTzF/wKJ49CEw9cOJxzL/feE6aCa3DdL2dpeWV1bb2wUdzc2t7ZLe3tN3ViFGUNmohEtUOimeCSNYCDYO1UMRKHgrXC4dXYb90zpXki7yBLWRCTvuQRpwSs5PvAHiCM8mjUNd1S2a24E+BF4s1IuXbsH2X9j+96t/Tp9xJqYiaBCqJ1x3NTCHKigFPBRkXfaJYSOiR91rFUkpjpIJ/cPMKnVunhKFG2JOCJ+nsiJ7HWWRzazpjAQM97Y/E/r2MgugxyLlMDTNLposgIDAkeB4B7XDEKIrOEUMXtrZgOiCIUbExFG4I3//IiaVYr3nmlemvTuEFTFNAhOkFnyEMXqIauUR01EEUpekTP6MUxzpPz6rxNW5ec2cwB+gPn/Qc9v5WG</latexit>

hu�1
<latexit sha1_base64="SZIndp2yoLGjoQ4Ivb0zqZvKW4A=">AAAB+XicbVDJSgNBEO2JW4zbqDdzaQyCCIaZeNBjwIsHDwmYBZJh6On0JE16FrprgmGcP/HiQRFv4p9406+xsxw08UHB470qqup5seAKLOvLyK2srq1v5DcLW9s7u3vm/kFTRYmkrEEjEcm2RxQTPGQN4CBYO5aMBJ5gLW94PfFbIyYVj8I7GMfMCUg/5D6nBLTkmmYX2D14fjrI3DQ5tzPXLFllawq8TOw5KVXP3h+K3/Wjmmt+dnsRTQIWAhVEqY5txeCkRAKngmWFbqJYTOiQ9FlH05AETDnp9PIMn2ilh/1I6goBT9XfEykJlBoHnu4MCAzUojcR//M6CfhXTsrDOAEW0tkiPxEYIjyJAfe4ZBTEWBNCJde3YjogklDQYRV0CPbiy8ukWSnbF+VKXadxi2bIoyI6RqfIRpeoim5QDTUQRSP0iJ7Ri5EaT8ar8TZrzRnzmUP0B8bHD8xTlr8=</latexit>

xu<latexit sha1_base64="QvCvyU0ZhYy6SjPl/vBLZrF67sE=">AAAB83icbVC7SgNBFJ2NrxhfUUtBRoNgFXZjoWXAxsIignlANoTZyWwyZHZ2mbkjWZb8ho2FIrb+iKWdv+BXOHkUmnjgwuGce7n3niARXIPrfjm5ldW19Y38ZmFre2d3r7h/0NCxUZTVaSxi1QqIZoJLVgcOgrUSxUgUCNYMhtcTv/nAlOaxvIc0YZ2I9CUPOSVgJd8HNoIgzEbjrukWS27ZnQIvE29OStUT/zjtf3zXusVPvxdTEzEJVBCt256bQCcjCjgVbFzwjWYJoUPSZ21LJYmY7mTTm8f4zCo9HMbKlgQ8VX9PZCTSOo0C2xkRGOhFbyL+57UNhFedjMvEAJN0tig0AkOMJwHgHleMgkgtIVRxeyumA6IIBRtTwYbgLb68TBqVsndRrtzZNG7RDHl0hE7ROfLQJaqiG1RDdURRgh7RM3pxjPPkvDpvs9acM585RH/gvP8AWT2VmA==</latexit>

cu<latexit sha1_base64="XbRPQGBbhepgbyrYMZGMV7DHYf0=">AAAB83icbVC7SgNBFJ31GeMrainIaBCswm4stAzYWFhEMA/ILmF2MpsMmZ1dZu6Iy5LfsLFQxNYfsbTzF/wKJ49CEw9cOJxzL/feE6aCa3DdL2dpeWV1bb2wUdzc2t7ZLe3tN3ViFGUNmohEtUOimeCSNYCDYO1UMRKHgrXC4dXYb90zpXki7yBLWRCTvuQRpwSs5PvAHiCMcjrqmm6p7FbcCfAi8WakXDv2j7L+x3e9W/r0ewk1MZNABdG647kpBDlRwKlgo6JvNEsJHZI+61gqScx0kE9uHuFTq/RwlChbEvBE/T2Rk1jrLA5tZ0xgoOe9sfif1zEQXQY5l6kBJul0UWQEhgSPA8A9rhgFkVlCqOL2VkwHRBEKNqaiDcGbf3mRNKsV77xSvbVp3KApCugQnaAz5KELVEPXqI4aiKIUPaJn9OIY58l5dd6mrUvObOYA/YHz/gM5KpWD</latexit>

ou<latexit sha1_base64="bp4X+DcUOb+iF8KuSOzVIBk69Pg=">AAAB83icbVC7SgNBFJ31GeMrainIaBCswm4stAzYWFhEMA/ILmF2MpsMmd1ZZu6Iy5LfsLFQxNYfsbTzF/wKJ49CEw9cOJxzL/feE6aCa3DdL2dpeWV1bb2wUdzc2t7ZLe3tN7U0irIGlUKqdkg0EzxhDeAgWDtVjMShYK1weDX2W/dMaS6TO8hSFsSkn/CIUwJW8n1gDxBGuRx1TbdUdivuBHiReDNSrh37R1n/47veLX36PUlNzBKggmjd8dwUgpwo4FSwUdE3mqWEDkmfdSxNSMx0kE9uHuFTq/RwJJWtBPBE/T2Rk1jrLA5tZ0xgoOe9sfif1zEQXQY5T1IDLKHTRZERGCQeB4B7XDEKIrOEUMXtrZgOiCIUbExFG4I3//IiaVYr3nmlemvTuEFTFNAhOkFnyEMXqIauUR01EEUpekTP6MUxzpPz6rxNW5ec2cwB+gPn/QdLfpWP</latexit>

xu<latexit sha1_base64="QvCvyU0ZhYy6SjPl/vBLZrF67sE=">AAAB83icbVC7SgNBFJ2NrxhfUUtBRoNgFXZjoWXAxsIignlANoTZyWwyZHZ2mbkjWZb8ho2FIrb+iKWdv+BXOHkUmnjgwuGce7n3niARXIPrfjm5ldW19Y38ZmFre2d3r7h/0NCxUZTVaSxi1QqIZoJLVgcOgrUSxUgUCNYMhtcTv/nAlOaxvIc0YZ2I9CUPOSVgJd8HNoIgzEbjrukWS27ZnQIvE29OStUT/zjtf3zXusVPvxdTEzEJVBCt256bQCcjCjgVbFzwjWYJoUPSZ21LJYmY7mTTm8f4zCo9HMbKlgQ8VX9PZCTSOo0C2xkRGOhFbyL+57UNhFedjMvEAJN0tig0AkOMJwHgHleMgkgtIVRxeyumA6IIBRtTwYbgLb68TBqVsndRrtzZNG7RDHl0hE7ROfLQJaqiG1RDdURRgh7RM3pxjPPkvDpvs9acM585RH/gvP8AWT2VmA==</latexit>

hu�1
<latexit sha1_base64="SZIndp2yoLGjoQ4Ivb0zqZvKW4A=">AAAB+XicbVDJSgNBEO2JW4zbqDdzaQyCCIaZeNBjwIsHDwmYBZJh6On0JE16FrprgmGcP/HiQRFv4p9406+xsxw08UHB470qqup5seAKLOvLyK2srq1v5DcLW9s7u3vm/kFTRYmkrEEjEcm2RxQTPGQN4CBYO5aMBJ5gLW94PfFbIyYVj8I7GMfMCUg/5D6nBLTkmmYX2D14fjrI3DQ5tzPXLFllawq8TOw5KVXP3h+K3/Wjmmt+dnsRTQIWAhVEqY5txeCkRAKngmWFbqJYTOiQ9FlH05AETDnp9PIMn2ilh/1I6goBT9XfEykJlBoHnu4MCAzUojcR//M6CfhXTsrDOAEW0tkiPxEYIjyJAfe4ZBTEWBNCJde3YjogklDQYRV0CPbiy8ukWSnbF+VKXadxi2bIoyI6RqfIRpeoim5QDTUQRSP0iJ7Ri5EaT8ar8TZrzRnzmUP0B8bHD8xTlr8=</latexit> �tu

<latexit sha1_base64="IqwYoe2isS/3Rl4CncJPXloEXHo=">AAAB8nicbVC7SgNBFJ31GeMrainIaBCswm4stAxoYWERwTxgdwmzk9lkyOzMMnNXCEs+w8ZCEVu/xNLOX/ArnDwKTTxw4XDOvdx7T5QKbsB1v5yl5ZXVtfXCRnFza3tnt7S33zQq05Q1qBJKtyNimOCSNYCDYO1UM5JEgrWiwdXYbz0wbbiS9zBMWZiQnuQxpwSs5AfXTADJoZONOqWyW3EnwIvEm5Fy7Tg4GvY+vuud0mfQVTRLmAQqiDG+56YQ5kQDp4KNikFmWErogPSYb6kkCTNhPjl5hE+t0sWx0rYk4In6eyIniTHDJLKdCYG+mffG4n+en0F8GeZcphkwSaeL4kxgUHj8P+5yzSiIoSWEam5vxbRPNKFgUyraELz5lxdJs1rxzivVO5vGLZqigA7RCTpDHrpANXSD6qiBKFLoET2jFwecJ+fVeZu2LjmzmQP0B877DzBelOc=</latexit>

Attention

FC+Softmax

Source tweet

Content  representation

HText
i<latexit sha1_base64="EHwfuI5rIRtTxkNyLKe8oo5ObQo=">AAACBXicbVC7TsMwFHXKq5RXgBGGiAqJqUoKEowVLB2L1JfUhspxndaq40T2DaKKsrDwKywMIMTKP7DxN7hpBmg5kuXjc+7V9T1exJkC2/42Ciura+sbxc3S1vbO7p65f9BWYSwJbZGQh7LrYUU5E7QFDDjtRpLiwOO0401uZn7nnkrFQtGEaUTdAI8E8xnBoKWBedwH+gCen9TTAbtLsheDpKmvNB2YZbtiZ7CWiZOTMsrRGJhf/WFI4oAKIBwr1XPsCNwES2CE07TUjxWNMJngEe1pKnBAlZtkW6TWqVaGlh9KfQRYmfq7I8GBUtPA05UBhrFa9Gbif14vBv/KTZiIYqCCzAf5MbcgtGaRWEMmKQE+1QQTyfRfLTLGEhPQwZV0CM7iysukXa0455Xq7UW5dp3HUURH6ASdIQddohqqowZqIYIe0TN6RW/Gk/FivBsf89KCkfccoj8wPn8AMtSZqQ==</latexit>

Concat

V
0
i<latexit sha1_base64="Qy9eQ5eHcz9b1eH7s/vG5ZRbV0o=">AAAB+XicbVBNS8NAEN34WetX1KOXxSJ6KkkV9Fj04rGC/YA2hs120y7dbMLupFhC/okXD4p49Z9489+4bXPQ1gcDj/dmmJkXJIJrcJxva2V1bX1js7RV3t7Z3du3Dw5bOk4VZU0ai1h1AqKZ4JI1gYNgnUQxEgWCtYPR7dRvj5nSPJYPMEmYF5GB5CGnBIzk23YP2BMEYdbKff6YneW+XXGqzgx4mbgFqaACDd/+6vVjmkZMAhVE667rJOBlRAGnguXlXqpZQuiIDFjXUEkipr1sdnmOT43Sx2GsTEnAM/X3REYirSdRYDojAkO96E3F/7xuCuG1l3GZpMAknS8KU4EhxtMYcJ8rRkFMDCFUcXMrpkOiCAUTVtmE4C6+vExatap7Ua3dX1bqN0UcJXSMTtA5ctEVqqM71EBNRNEYPaNX9GZl1ov1bn3MW1esYuYI/YH1+QPaBpPL</latexit>HStru

i<latexit sha1_base64="14bcXIQ67fiIXFovq46hiyJVtmo=">AAACBXicbVC7TsMwFHXKq5RXgBGGiAqJqUoKEowVLB2LoA+pDZHjOq1Vx4nsG0QVZWHhV1gYQIiVf2Djb3DbDNBypCsdn3OvfO/xY84U2Pa3UVhaXlldK66XNja3tnfM3b2WihJJaJNEPJIdHyvKmaBNYMBpJ5YUhz6nbX90NfHb91QqFolbGMfUDfFAsIARDFryzMMe0Afwg7Seeewunb4YpDcgkyzzzLJdsaewFomTkzLK0fDMr14/IklIBRCOleo6dgxuiiUwwmlW6iWKxpiM8IB2NRU4pMpNp1dk1rFW+lYQSV0CrKn6eyLFoVLj0NedIYahmvcm4n9eN4Hgwk2ZiBOggsw+ChJuQWRNIrH6TFICfKwJJpLpXS0yxBIT0MGVdAjO/MmLpFWtOKeV6vVZuXaZx1FEB+gInSAHnaMaqqMGaiKCHtEzekVvxpPxYrwbH7PWgpHP7KM/MD5/AECfmbI=</latexit>

HTemp
i<latexit sha1_base64="3k386UF32TMZ2sZ6NMp5gwzqvK8=">AAACBXicbVC7SgNBFJ2Nrxhfq5ZaLAbBKuxGQcugTcoIeUESw+zkbjJk9sHMXTEs29j4KzYWitj6D3b+jZNNCk08cOHMOfcy9x43ElyhbX8buZXVtfWN/GZha3tnd8/cP2iqMJYMGiwUoWy7VIHgATSQo4B2JIH6roCWO76Z+q17kIqHQR0nEfR8Ogy4xxlFLfXN4y7CA7peUk37/C7JXhyTOvhRmvbNol2yM1jLxJmTIpmj1je/uoOQxT4EyARVquPYEfYSKpEzAWmhGyuIKBvTIXQ0DagPqpdkV6TWqVYGlhdKXQFamfp7IqG+UhPf1Z0+xZFa9Kbif14nRu+ql/AgihECNvvIi4WFoTWNxBpwCQzFRBPKJNe7WmxEJWWogyvoEJzFk5dJs1xyzkvl24ti5XoeR54ckRNyRhxySSqkSmqkQRh5JM/klbwZT8aL8W58zFpzxnzmkPyB8fkDG++Zmg==</latexit>

HUser
i<latexit sha1_base64="cIdamFuLYWU7tsOldUVp98X0BMo=">AAACBXicbVA9SwNBEN3zM8avqKUWh0GwCndR0DJokzKClwSSGPY2c8mSvQ9258RwXGPjX7GxUMTW/2Dnv3FzuUITHwy8fW+GnXluJLhCy/o2lpZXVtfWCxvFza3tnd3S3n5ThbFk4LBQhLLtUgWCB+AgRwHtSAL1XQEtd3w99Vv3IBUPg1ucRNDz6TDgHmcUtdQvHXURHtD1knra53dJ9uKYOApkmvZLZatiZTAXiZ2TMsnR6Je+uoOQxT4EyARVqmNbEfYSKpEzAWmxGyuIKBvTIXQ0DagPqpdkV6TmiVYGphdKXQGamfp7IqG+UhPf1Z0+xZGa96bif14nRu+yl/AgihECNvvIi4WJoTmNxBxwCQzFRBPKJNe7mmxEJWWogyvqEOz5kxdJs1qxzyrVm/Ny7SqPo0AOyTE5JTa5IDVSJw3iEEYeyTN5JW/Gk/FivBsfs9YlI585IH9gfP4AKbyZow==</latexit>

sin
<latexit sha1_base64="gyDDRMGPruvlWs5IoyG/mfJZsbo=">AAAB+HicbVBNS8NAEN3Ur1o/GvXoZbEInkpSBT0WvXisYD+gDWGz3bRLN5uwOxFryC/x4kERr/4Ub/4bt20O2vpg4PHeDDPzgkRwDY7zbZXW1jc2t8rblZ3dvf2qfXDY0XGqKGvTWMSqFxDNBJesDRwE6yWKkSgQrBtMbmZ+94EpzWN5D9OEeREZSR5ySsBIvl0dAHuEIMx07mdc5r5dc+rOHHiVuAWpoQIt3/4aDGOaRkwCFUTrvusk4GVEAaeC5ZVBqllC6ISMWN9QSSKmvWx+eI5PjTLEYaxMScBz9fdERiKtp1FgOiMCY73szcT/vH4K4ZVn/klSYJIuFoWpwBDjWQp4yBWjIKaGEKq4uRXTMVGEgsmqYkJwl19eJZ1G3T2vN+4uas3rIo4yOkYn6Ay56BI10S1qoTaiKEXP6BW9WU/Wi/VufSxaS1Yxc4T+wPr8Abjtk8c=</latexit>

HRumor
i<latexit sha1_base64="Ozvy4nn+z+qGPZyWXDG17Q7Cwpc=">AAACBnicbVDLSsNAFJ3UV62vqEsRgkVwVZIq6LLopssq9gFtDJPppB06k4SZG7GErNz4K25cKOLWb3Dn3zhts9DWAxfOnHMvc+/xY84U2Pa3UVhaXlldK66XNja3tnfM3b2WihJJaJNEPJIdHyvKWUibwIDTTiwpFj6nbX90NfHb91QqFoW3MI6pK/AgZAEjGLTkmYc9oA/gB2k989hdOn0xSG8SEcks88yyXbGnsBaJk5MyytHwzK9ePyKJoCEQjpXqOnYMboolMMJpVuolisaYjPCAdjUNsaDKTadnZNaxVvpWEEldIVhT9fdEioVSY+HrToFhqOa9ifif100guHBTFsYJ0JDMPgoSbkFkTTKx+kxSAnysCSaS6V0tMsQSE9DJlXQIzvzJi6RVrTinler1Wbl2mcdRRAfoCJ0gB52jGqqjBmoigh7RM3pFb8aT8WK8Gx+z1oKRz+yjPzA+fwANsZoj</latexit>

Gi
<latexit sha1_base64="OBeHGUbhgcMPk9H7MrZd2pezA6s=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiBz1WMG2hDWWznbZLN5uwuxFK6G/w4kERr/4gb/4bt20O2vpg4PHeDDPzwkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjpo5TxdBnsYhVO6QaBZfoG24EthOFNAoFtsLx7cxvPaHSPJaPZpJgENGh5APOqLGSf9fL+LRXrrhVdw6ySrycVCBHo1f+6vZjlkYoDRNU647nJibIqDKcCZyWuqnGhLIxHWLHUkkj1EE2P3ZKzqzSJ4NY2ZKGzNXfExmNtJ5Eoe2MqBnpZW8m/ud1UjO4DjIuk9SgZItFg1QQE5PZ56TPFTIjJpZQpri9lbARVZQZm0/JhuAtv7xKmrWqd1GtPVxW6jd5HEU4gVM4Bw+uoA730AAfGHB4hld4c6Tz4rw7H4vWgpPPHMMfOJ8/26SOtw==</latexit>

Pi
<latexit sha1_base64="VgQMkxfIyhmoVwfwHMOT6kgfXrM=">AAAB+HicbVDLSsNAFL3xWeujUZduBovgqiRV0GXRjcsK9gFtCJPppB06mYSZiVBDvsSNC0Xc+inu/BsnbRbaemDgcM693DMnSDhT2nG+rbX1jc2t7cpOdXdv/6BmHx51VZxKQjsk5rHsB1hRzgTtaKY57SeS4ijgtBdMbwu/90ilYrF40LOEehEeCxYygrWRfLs2jLCeEMyzdu5nLPftutNw5kCrxC1JHUq0fftrOIpJGlGhCcdKDVwn0V6GpWaE07w6TBVNMJniMR0YKnBElZfNg+fozCgjFMbSPKHRXP29keFIqVkUmMkiplr2CvE/b5Dq8NrLmEhSTQVZHApTjnSMihbQiElKNJ8ZgolkJisiEywx0aarqinBXf7yKuk2G+5Fo3l/WW/dlHVU4ARO4RxcuIIW3EEbOkAghWd4hTfryXqx3q2PxeiaVe4cwx9Ynz9PuJOD</latexit>Ui

<latexit sha1_base64="TxldeID61aX5PTQrtJAKtkG/kCs=">AAAB9XicbVDLSgNBEJyNrxhfUY9eBoPgKexGQY9BLx4jmAcka5id9CZDZh/M9Kph2f/w4kERr/6LN//GSbIHTSxoKKq66e7yYik02va3VVhZXVvfKG6WtrZ3dvfK+wctHSWKQ5NHMlIdj2mQIoQmCpTQiRWwwJPQ9sbXU7/9AEqLKLzDSQxuwIah8AVnaKT7HsITen7azPqpyPrlil21Z6DLxMlJheRo9MtfvUHEkwBC5JJp3XXsGN2UKRRcQlbqJRpixsdsCF1DQxaAdtPZ1Rk9McqA+pEyFSKdqb8nUhZoPQk80xkwHOlFbyr+53UT9C/dVIRxghDy+SI/kRQjOo2ADoQCjnJiCONKmFspHzHFOJqgSiYEZ/HlZdKqVZ2zau32vFK/yuMokiNyTE6JQy5IndyQBmkSThR5Jq/kzXq0Xqx362PeWrDymUPyB9bnD0FgkwA=</latexit>

Ci
<latexit sha1_base64="spZ1iMaw8TYUwLAS7LhCN4bEMUI=">AAAB9XicbVDLSgNBEJz1GeMr6tHLYBA8hd0o6DGYi8cI5gHJGmYnvcmQ2QczvWpY9j+8eFDEq//izb9xkuxBEwsaiqpuuru8WAqNtv1trayurW9sFraK2zu7e/ulg8OWjhLFockjGamOxzRIEUITBUroxApY4Eloe+P61G8/gNIiCu9wEoMbsGEofMEZGum+h/CEnp/Ws34qsn6pbFfsGegycXJSJjka/dJXbxDxJIAQuWRadx07RjdlCgWXkBV7iYaY8TEbQtfQkAWg3XR2dUZPjTKgfqRMhUhn6u+JlAVaTwLPdAYMR3rRm4r/ed0E/Ss3FWGcIIR8vshPJMWITiOgA6GAo5wYwrgS5lbKR0wxjiaoognBWXx5mbSqFee8Ur29KNeu8zgK5JickDPikEtSIzekQZqEE0WeySt5sx6tF+vd+pi3rlj5zBH5A+vzByW+ku4=</latexit>

(a) User-aspect multi-view learning 

(b) View-wise attention and capsule attention (c) Prediction

Figure 7.11: An overview of UMLARD. (a) The inputs of UMLARD are the ob-
served diffusion network, the diffusion path, the user characteristic matrix, and the
content of the source tweet. It uses a dimensional-wise attention layer, a multi-layer
diffusion graph convolutional network (M-DGCN), and a time-decay LSTM to learn
the latent representations from the three kinds of inputs, respectively. (b) It learns to
discriminate the role of three-views and the importance of users in identifying misinfor-
mation. (c) Finally, we concatenate the learned features with text content to perform
classification.

7.2.3.1 Learning the User Profile-View

User profiles have been demonstrated to be strong indicators when detecting ru-
mors [26, 83]. The user profile characteristics are either explicit (e.g., username
and geolocations) or implicit (e.g., gender and age). However, accessing the implicit
features may not always be feasible due to the privacy concerns of many OSNs.
Therefore, we consider the following eight explicit features, grouped in two major
categories, which can be typically accessed in most OSNs:

• Profile-Related features include five basic user description fields: the screen
name that the user identify herself; the user’s self description; the attribute
indicating whether the account has been verified by the platform; the geo-
graphical location of the user; and the UTC time that the user account was
created on the social platform.

• Influence-Related features include three attributes describing user activi-
ties and social relations: the number of posts issued by the user, the number
of followers, and the mutual follower-ship.

For each user uj in a tweet mi, we concatenate the profile characteristics into one
feature vector, and then form the user characteristic matrix Ui ∈ R|Ui|×duser by
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concatenating all user vectors for the users involved in spreading the tweet.

To provide explanations on which characteristics are useful for rumor detection, we
design a dimensional-wise attention layer to assign weights to each dimension of user
profiles. Its aim is to learn how to discriminate the importance of different char-
acteristics. First, we expand Ui as a sequence of 1-dimensional “channels” for the
features, i.e., Ui ∈ R|Ui|×1×duser , where |Ui|, 1 and duser can be regarded as the height,
width and channel of an image (similarly to the channels for each of the primitive
colors – red, green and blue – in image processing). Then, we use a global average
pooling (GAP) to aggregate the global information into a dimensionality-wise de-
scriptor z ∈ Rduser , where z = 1

|Ui|×1

∑|Ui|,1
h=1,w=1 Ui(h,w). To capture the dimensional-

wise dependencies, we employ two fully connected layers with non-linearity – i.e.,
dimensionality-reduction layer and dimensionality-increasing layer:

fred = tanh(W1z + b1),

finc = softmax(W2fred + b2),
(7.14)

where W1 ∈ R duser
r
×duser and W2 ∈ Rduser× duserr are parameter matrices, b1 ∈ R duser

r

and b2 ∈ Rduser are biases, and r is the reduction ratio. Thus, the final output of
the user profile-view becomes:

HUser
i = Uifinc + Ui, (7.15)

where HUser
i ∈ R|Ui|×duser , finc denotes the attention score allocating different im-

portance to each dimension of Ui through the multiplication operation, i.e., Uifinc.
The operation of plus Ui is borrowed from the idea of skip connections [66].

The objective of dimensional-wise attention layer is to obtain a new user character-
istic matrix through correlation training between the user profile’s different charac-
teristics by assigning different dimensions of the matrix with the different weights
during training the model. In general, the contributing characteristics would be
strengthened. Since the trivial characteristics should be weakened, we can also
reduce the noise brought by non-critical characteristics, thereby improving the ac-
curacy of the detection task. This effect is especially valuable for early-stage rumor
detection. For example, when the number of participating users and the correspond-
ing profiles are limited, it is particularly important to encourage the fundamental
characteristics to explain rumor identification decisions. We will provide visual ex-
planations in Sec. 7.2.4.

7.2.3.2 Learning the User Structural-View

The structural information of users who participate in spreading a tweet is extracted
from the diffusion graph, which aims to capture the degree of connection, similarity,
distance, and even community, etc., between users [99]. Inspired by the recent suc-
cesses of network representation learning methods in processing graph-structured
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data [41, 61, 115, 173], we define a multi-layer diffusion graph convolutional net-
work (M-DGCN) as user structural-view encoder, in which the propagation rule of
diffusion convolutional network is defined as:

H(l+1) = σ((θO(D−1
O A) + θI(D−1

I AT ))H(l)), (7.16)

where θO and θI are filter parameters; D−1
O A and D−1

I AT are transition matrices
of the forward diffusion process and the reverse one, respectively – DO and DI

represent out-degree diagonal matrix and in-degree diagonal matrix, respectively;
σ(·) denotes activation function, i.e., ReLU(·) here; H(l) ∈ R|U |×F is the matrix of
activation in the l-th layer – |U | is the number of users in the diffusion graph and F
is the dimension of the output. The difference between our M-DGCN and previous
graph convolutional network [41, 61] is that the Chebyshev kernel in M-DGCN is
equal to 1, whereas we stack a couple of such layers to aggregate the information
from the distant nodes rather than the K-localized convolutions. In this layer, the
initial input H(0) is obtained from a pre-trained network embedding layer which
maps a user uj to it’s D-dimensional representation gj ∈ RD, which allows the
varying-size diffusion networks learning.

In order to reduce over-fitting for diffusion convolutional network, we employed a
recently developed technique DropEdge (cf. [165]) for robust structural-view learn-
ing. That is, we randomly drop edges from the input diffusion graphs to generate
different copies with a certain ratio in each training epoch. More specifically, sup-
pose the total number of edges in the diffusion graph is |E| and the dropping rate
is rdrop. The adjacency matrix after dropout is computed as Â = A−Adrop, where
Adrop is the matrix constructed using |E| × rdrop edges randomly sampled from the
original edge set E. After the diffusion convolutional layer, the diffusion graph Gi

is represented as a vector matrix HStru
i ∈ R|Ui|×dstru .

The structural-view HStru
i learned through M-DGCN represents the role of a node

(i.e., a user) in the information spreading. M-DGCN not only models the prop-
agation direction of information between spreaders but also aggregates high-order
structural details, including the cascade virality, spreading patterns, etc., which may
facilitate the rumor identification. We note that in [84] it has been demonstrated
that the rumors have similar propagation patterns.

7.2.3.3 Learning the User Temporal-View

Users’ engagement time and the sequential patterns of retweets also play an essential
role in detecting rumors [33, 100]. We capture this view of users based on the
diffusion path. Each user in the diffusion path would be assigned two types of
embeddings: a static-embedding and a dynamic-embedding.

• Static-embedding refers to the relative position j (1 ≤ j ≤ |Ui|) for each
user uj in the sequence. We encode this information based on the chronological
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order of retweet times, and the users with the same retweet time will have the
same position embedding. Inspired by the self-attention [131], we obtain the
static-embedding esj using a positional-encoding technique based on sine and
cosine functions of frequencies:

PE(j)2d = sin(j/100002d/de),

PE(j)2d+1 = cos(j/100002d/de)
(7.17)

where de is an adjustable dimension and 1 ≤ d ≤ de/2 denotes the dimension
index in esj . The basic idea of this choice is to allow the model attending the
relative position of the users. For details of this formula, refer to [131].

• Dynamic-embedding initializes user representations as one-hot vector q ∈
RN , where N denotes the total number of users in the dataset. All users
are associated with a specific embedding matrix E ∈ RN×de , where de is an
adjustable dimension. Matrix E converts each user uj into a unique represen-
tation vector as edj = qE, edj ∈ Rde . In this way, the user embedding matrix E
can be learned during training, supervised by the downstream task, i.e., rumor
detection in this work.

Subsequently, we use an RNN model (e.g., LSTM [40]) to learn the temporal de-
pendence of the diffusion. However, the influence of retweet users will diminish
over time, and the “vanilla LSTM” is not capable of capturing this time-decay effect
of information diffusion. To address this issue, we introduce a time-gate inspired
by [174] into the LSTM.

The time-gate not only controls the influence of xj – the combination of static
and dynamic embeddings – on the current step, but also caches the time interval
between consecutive retweets to model the time-decay effect. Specifically, a time-
decay LSTM unit takes: xj, previous hidden state hj−1, and time interval ∆tj as
inputs – and outputs the current hidden state hj using:

xj = esj + edj ,

ij = σ (Wxixj + Uhihj−1 + bi) ,

fj = σ (Wxfxj + Uhfhj−1 + bf ) ,

Tj = σ (WxTxj + tanh (Wtt∆tj) + bT ) ,

oj = σ (Wxoxj + Uhohj−1 + Wto∆tj + bo) ,

c̃j = tanh (Wxzxj + Uhzhj−1 + bz) ,

(7.18)

where σ (·) is the sigmoid function; ij, fj,Tj,oj, c̃j,b∗ are the input gate, forget
gate, time gate, output gate, new candidate vector and bias vector, respectively.
The matrices Wx∗ ∈ Rde×dtemp , Wt∗ ∈ R1×dtemp and Uh∗ ∈ Rdh×dtemp represent the
different gate parameters. In particular, the memory cell cj is updated by replacing
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the existing memory unit with a new cell cj as:

cj = fj � cj−1 + ij �Tj � c̃j, (7.19)

where � denotes the element-wise multiplication. The hidden state is then updated
by:

hj = oj � tanh (cj) , (7.20)

Finally, the representation vector for the temporal-view isHTemp
i =

{
hTemp
j |j ∈ [1, |Ui|]

}
,

where HTemp
i ∈ R|Ui|×dtemp . Note that the temporal-view of the user obtained by the

time-decay LSTM reflects each user’s influence on the subsequent participators in
the message diffusion.

7.2.3.4 View-Wise Attention for View-Level Feature Fusion
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View-wise Attention

Figure 7.12: Illustration of view-wise attention.

After obtaining the latent representation for each view, we need to fuse the multi-
view features. Rather than directly concatenating different aspects, as often done in
the existing solutions [91, 94, 175], we present a method to capture the differences
between different views. The primary motivation stems from the observation that
various views are not equally relevant in the task of rumor identification. Towards
that, we propose a view-wise attention layer to prioritize the fundamental views for
each user.

As depicted in Figure 7.12, the view-wise attention layer takes profile-view, structural-
view, and temporal-view as input and generates the attention score for each view at
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the user-level. Specifically, it first normalizes the dimensions of the three views’ vec-
tors as dview via a fully connected layer. Let Vi =

[
Ĥ

User
i , Ĥ

Stru
i , Ĥ

Temp
i

]
denote the

feature set after dimension normalization. Each vector vj =
[
ĥ

User
j , ĥ

Stru
j , ĥ

Temp
j

]
∈

Vi represents a view feature set for a specific user uj engaged in spreading tweet mi.
Then, the view-wise attention layer calculates the attention score attenj ∈ R1×3 for
each view of the user-level feature set vj ∈ Rdview×3 as:

v̄j = tanh (Wv · vj) , (7.21)

attenj = softmax
(
wT
v · v̄j

)
, (7.22)

where Wv ∈ Rdview×dview , wv ∈ Rdview are learnable projection parameters during
training, v̄j =

[
h̄User
j , h̄Stru

j , h̄Temp
j

]
. Here, the view-wise attention layer first com-

putes the hidden representation of vj through multiplying it with Wv to get v̄j,
which is implemented with a fully connected layer without bias. It measures the
weight of a view as the similarity of h̄∗j (∗ ∈ {User, Stru,Temp}) with a view-level
context vector wv and finally obtains a normalized weight through a softmax func-
tion. Each entry of attenj represents an importance score for a specific view of user
j.

Finally, the fused multi-view feature vector v′
j for user uj can be calculated as:

v
′

j = attenj · vj, (7.23)

where v′
j ∈ Rdview . The fused multi-view feature vector for each user forms the multi-

view matrix, denoted as V
′

i =
{
v′

1,v
′
2, · · · ,v

′

|Ui|

}
, where V

′

i ∈ R|Ui|×dview .

7.2.3.5 Capsule Attention for User-level Feature Fusion

Most of existing works [16, 100, 102] would directly use V
′

i for rumor detection.
However, that does not properly discriminate different users, contrary to the fact
that different users in a tweet propagation network may contribute differently to
classifying the tweet. In our UMLARD, we introduce a capsule attention layer
inspired by the recent success of capsule networks [133, 176, 177]. The Capsule
network was first proposed in [133] and the main idea is to replace the scalar-
output feature detectors in traditional neural networks with vector-output capsules,
and train the model by the dynamic routing algorithm. It can be regarded as
a parallel attention mechanism that allows each underlying capsule to attend to
higher capsules at different importance.

In UMLARD, the capsule attention chooses the most related underlying vectors dy-
namically to form the only upper capsule via an unsupervised routing-by-agreement
mechanism, which also avoids the intensive computation raised by a huge amount
of parameters used in multi-layer attention. More precisely, in the n-th iteration,
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the upper capsule sin is calculated by:

sin =

|Ui|∑

j

ajv̂j, v̂j = Wv
′

j, (7.24)

where the coupling coefficient aj indicates the contributions of a user capsule to the
upper capsule – namely, the attention score of each user. W ∈ Rdview×dcaps is the
transform matrix that guarantees the feature representation ability of the center
vector after clustering, and identifies the order of input features. Note that before
the last iteration we add a normalization s̃in = sin/ ‖sin‖ in sin to overcome the
information loss caused by the original CapsAtt [176].

The coupling coefficient aj ∈ R|Ui|×1 is determined by a “routing softmax” whose
initial logit is denoted as bj, where bj is the log prior probability that the j-th user
capsule should be coupled to the upper capsule sin. The coefficient is calculated
by:

aj =
exp(bj)∑|Ui|
k exp(bk)

, (7.25)

The log prior is initialized with zero and then updated by adding agreements between
the user capsule and the upper capsule:

bj = bj + v̂j · s̃in, (7.26)

These agreements are added to log priors after each routing, i.e., the output capsule
sin represents the feature matrix after correlation learning, which can be easily
coupled into the model for downstream tasks, in our case the rumor detection.

7.2.3.6 Tweet Content Representation

Tweet content is one of the most important features in rumor detection [23, 29, 78],
and has been extensively studied in the literature [16, 33, 80, 102, 178], where vari-
ous natural language processing (NLP) techniques have been exploited for learning
informative signals from the textual content. Though content learning is beside the
scope of this thesis, we describe a simple CNN layer for text representation learning
from the input of word embedding matrix for completeness. A single CNN layer is
denoted as:

hm = σ(W ∗wm:m+d−1), (7.27)

where H = {h1,h2, · · · ,hL−d+1} is the extracted feature map, and W ∈ Rd×dword is
the convolutional kernel with d as size of the receptive filed, and σ as non-linearity.
Then max-pooling operation is used over the feature map to generate the output
representation Ĥ. In our work, we use multiple CNN layers with different receptive
fields to obtain multiple features, and then concatenate all outputs to form the tweet
content representation HText

i .
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7.2.3.7 Training Objective

Finally, we concatenate content representation HText
i and capsule attention sin to

merge the information as:

HRumor
i = concat(HText

i , sin) (7.28)

which is subsequently used for predicting the label ŷi of tweet mi via a fully con-
nected layer and the softmax function:

ŷi = softmax
(
FC
(
HRumor
i

))
. (7.29)

We train all the parameters by minimizing the cross-entropy of the predictions Ŷ
and the ground truth labels Y as:

L(Y, Ŷ) = −
∑

i∈|M |

yi log ŷi + λ ‖Θ‖2
2 , (7.30)

where ‖Θ‖2
2 is the L2 regularizer over all the model parameters Θ, and λ is the

trade-off coefficient. In this work, we use RAdam [140] as optimizer. The whole
training process of UMLARD is outlined in Algorithm 10.

Algorithm 10: Training of UMLARD.

Input: A set of tweets M =
{
mi

}|M |
i=1

, each tweet mi =
{
Gi,Pi,Ui,Ci

}
.

Output: Predicted labels Ŷ for all tweets.
1: repeat
2: for mi in a batch do
3: Profile-view learning: HUser

i ← Ui via Eq.(7.14) and Eq.(7.15);
Structural-view learning HStru

i ← Gi via Eq.(7.16);
Temporal-view Learning HTemp

i ← Pi via Eq.(7.18) - Eq.(7.20);
Content representation: HText

i ← Ci via Eq.(7.27);
4: Nomalize dimensions:

Vi = [Ĥ
User
i , Ĥ

Stru
i , Ĥ

Temp
i ]← [HUser

i ,HStru
i ,HTemp

i ];
5: View-wise attention learning: V

′

i ← Vi via Eq.(7.21) to Eq.(7.23);
6: Capsule attention learning: sin ← V

′

i via Eq.(7.24);
7: Merge HText

i and sin via Eq.(7.28);
8: Estimate the probability ŷi via Eq.(7.29);
9: Compute loss L(yi, ŷi), via Eq.(7.30);
10: Update parameters using RAdam.
11: end for
12: until convergence;

7.2.3.8 Computational Complexity

We finalize this section with a discussion of the computational complexity of UM-
LARD, analyzed in two categories.
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— Complexity of multi-view representation learning is influenced by four main com-
ponents:

(1) As for profile-view that only uses dimensional-wise attention to allocate varying
weights to each dimension, the computational complexity stems from the two fully
connected layers, i.e., O(2d2

user/r). Because the dimension of user characteristic duser

is very small, this computational cost is typically negligible.

(2) We use a multi-layer diffusion convolutional network for the structural-view
learning (cf. Eq.(7.16)), which can be decomposed into two parts with the same
time complexity, i.e., D−1

I A and D−1
O AT . Since the two matrices are very sparse,

the time complexity is O(|E|), i.e., linear with the number of edges. Specifically,
in a two-layer M-DGCN, the computational complexity is O(|E|DF1F2), where D,
F1 and F2 are the input feature size, and the hidden size for the first and the last
M-DGCN layer, respectively.

(3) The temporal-view is learned through a time-decay LSTM. The computational
complexity of original LSTM per time step is O(1) due to LSTM is local in space
and time [40]. Compared with LSTM, the only difference of our time-decay LSTM is
an extra time-gate that controls the influential decreasing with time. This operator
introduced extra parameters that requires 4(dedtemp + d2

temp + dtemp) + dedtemp +

3dtemp complexity. Besides, the dynamic embedding in UMLARD needs N × de
parameters.

(4) For the source tweet representation learning, the CNN layers have the time
complexity of O(

∑L
l=1(M2

l K
2
l Cl−1Cl)), where L is the total number of CNN layers;

Kl Cl−1, Cl are kernel size, input channel number and output channel number for
l-th layer; output size is Ml = (Xl−Kl)/Stride+ 1 and Xl is the input feature size.
Overall, this component requires

∑L
l=1(K2

l Cl−1Cl) parameters.

— Complexity of fusion layers. In the hierarchical fusion layers, the time and space
complexities of both view-wise attention and capsule attention are related to the
input and output dimensions of the latent variables. In view-wise attention, it
introduces dview× dview + |Ui| × dview parameters. As for the capsule attention layer,
the parameter size is dview × dcaps, where dview and dcaps represent view size and
capsule size, respectively.

7.2.4 Evaluation

We now present the findings from our experimental evaluations. We compare the
performance of our UMLARD with the state-of-art baselines on rumor detection,
and we also investigate the effects of different components by comparing several
variants of UMLARD.

Specifically, we would aim at providing quantitative characterization of the following
research-related questions:
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Table 7.11: Statistics of the datasets.

Statistic Twitter15 Twitter16 Weibo
# source tweets 1,482 809 4,664
# users 477,009 286,657 2,746,818
# non-rumors 370 199 2,351
# false-rumors 369 205 2,313
# true-rumors 372 207 –
# unverified-rumors 371 198 –
Max. # retweets 2989 3058 59,318
Min. # retweets 55 73 10
Avg. # retweets 398 422 816
Avg. # time length 1,268 Hours 828 Hours 1,811 Hours

• Q1: How does UMLARD perform on rumor detection compare with the state-
of-the-art baselines?

• Q2: What is the effect of each component of UMLARD?

• Q3: Can UMLARD detect rumors in early stages of their propagation?

• Q4: Can UMLARD explain the model behavior and the predicted results?

7.2.4.1 Experimental Settings

Following is the description of the main aspects of our experimental setup.

1) Datasets: We conduct our experiments on the three real-world datasets1: Twit-
ter15, Twitter16 [84] and Weibo [33]. In each dataset, a group of widespread source
tweets along with their propagation threads with time stamps are provided. We
construct propagation paths and diffusion networks from the propagation threads,
which are also used for user temporal-aspect embedding and user structural-aspect
embedding.

Different from the experiment settings in previous PLRD (Section 7.1), in this sec-
tion, we consider the two Twitter datasets as multi-class datasets, i.e., each source
tweet is annotated with one of the four class labels, i.e., non-rumor, false-rumor,
true-rumor, and unverified-rumor, while the Weibo dataset contains binary labels:
false-rumor, non-rumor – the labeling rules follow the method in [33]. The statis-
tics of the three datasets are shown in Table 7.11. We extract the same user char-
acteristics as PLRD for both Twitter and Weibo dataset, as shown in Table 7.2.
Specifically, as for the Weibo dataset, we directly extract these eight characteris-
tics from the JSON files in the original dataset. And the way to split the dataset
into training, validation, and testing set follows the same setting in PLRD (see
Section 7.1.4.2).

1https://www.dropbox.com/s/7ewzdrbelpmrnxu/rumdetect2017.zip?dl=0
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2) Baselines: We compare UMLARD with following state-of-the-art rumor detection
baseline models:

• DTC [23], SVM-TS [85],GRU [108], TD-RvNN [34], PPC_RNN+CNN
(PPC), Bi-GCN [16], GCAN [102], the description of these baseline meth-
ods can be found in Section 7.1.4.1. We also compared UMLARD with
PLRD [45] (Section 7.1).

• SVM-RBF [86]: A support vector machine (SVM) based model that uses ra-
dius basis function (RBF) as the kernel and leverages the handcrafted features
of posts for rumor detection.

• PLAN [179]: A hierarchical token- and post-level attention model for ru-
mor detection, which models pairwise interactions between tweets via the self-
attention mechanism.

• Bi-GCN-U [16]: A variant of Bi-GCN, which uses user profile characteristics
to replace the comment features.

• STS-NN [180]: A rumor detection model based on spatial-temporal neural
networks. It treats the spatial structure and temporal structures as a whole
to learn a fine-grained rumor representation.

• GCAN-G [102]: A variant of GCAN, which uses the diffusion graph to replace
the user similarity graph.

• RDEA [103]: A self-supervised rumor detection model. On the basis of Bi-
GCN [16], RDEA improves the rumor representations and alleviates limited
data issues through event augmentation and contrastive learning.

3) Implementation details: We implement DTC with Weka1, SVM-based models
with scikit-learn2, and other neural network-based models with Tensorflow3. All
baselines follow the parameter settings in the original papers. For UMLARD, the
learning rate is initialized at 0.001 and gradually decreases as the training proceeds.
We use word2vec to initialize the word embeddings with dword = 300 dimensions,
and the convolution kernel size is set to [3, 4, 5], and per size with 100 kernels. The
embedding size for structural view dstru and temporal view dtemp of users are both
set to 64; the view size dview is also set to 64, as is the the capsule size; and the
iteration number varies between 2 and 4. The batch size is 64; and the rate of
dropout in the main neural networks is 0.5; the dropout rate in DropEdge is 0.2.
The training process is iterated upon for 200 epochs, but would be stopped earlier
if the validation loss does not decrease after 10 epochs.

4) Evaluation metrics: We use accuracy (ACC) and F-measure (F1) as the eval-
uation protocols to measure the models’ performance. Specifically, ACC measures

1https://www.cs.waikato.ac.nz/ml/weka/
2https://scikit-learn.org/
3https://www.tensorflow.org/
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the proportion of correctly classified tweets, while F1 is the harmonic mean of the
precision and recall values averaged across four classes. As for the Weibo dataset,
we also report the precision and recall results.

Table 7.12: Overall performance comparison of rumor detection on Twitter15 (the
observation window is set to the previous 40 retweets). “UR": unverified-rumor; “NR":
non-rumor; “TR": true-rumor; “FR": false-rumor. The best method is shown in bold,
and the second best is shown as underlined. A paired t-test is performed and ∗ indicates
a statistical significance p < 0.05 compared to the best baseline method (RDEA).

Model
Twitter15

ACC. F1
UR NR TR FR

DTC 0.454 0.415 0.733 0.317 0.355
SVM-RBF 0.318 0.218 0.225 0.455 0.082
SVM-TS 0.544 0.483 0.796 0.404 0.472
GRU 0.646 0.608 0.592 0.792 0.574
TD-RvNN 0.723 0.654 0.682 0.821 0.758
PPC 0.697 0.689 0.760 0.696 0.645
PLAN 0.787 0.775 0.7754 0.768 0.807
Bi-GCN 0.829 0.752 0.772 0.885 0.847
Bi-GCN-U 0.778 0.764 0.741 0.853 0.752
GCAN 0.808 0.690 0.930 0.812 0.758
GCAN-G 0.750 0.731 0.754 0.823 0.678
STS-NN 0.808 0.779 0.786 0.860 0.808
RDEA 0.835 0.819 0.786 0.887 0.837
PLRD 0.622 0.519 0.832 0.438 0.596
UMLARD 0.857* 0.835* 0.840* 0.906* 0.848*

7.2.4.2 Overall Performance (Q1)
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Figure 7.13: ROC curve comparison for each information type. Area under curve of
ROC (AUC) is presented after the legend.

Table 7.12, Table 7.13, and Table 7.14 report the performance comparison among
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Table 7.13: Overall performance comparison of rumor detection on Twitter16 (the
observation window is set to the previous 40 retweets). “UR": unverified-rumor; “NR":
non-rumor; “TR": true-rumor; “FR": false-rumor. The best method is shown in bold,
and the second best is shown as underlined. A paired t-test is performed and ∗ indicates
a statistical significance p < 0.05 compared to the best baseline method (RDEA).

Model
Twitter16

ACC. F1
UR NR TR FR

DTC 0.465 0.403 0.643 0.419 0.393
SVM-RBF 0.321 0.419 0.037 0.423 0.085
SVM-TS 0.574 0.526 0.755 0.571 0.420
GRU 0.633 0.686 0.593 0.772 0.489
TD-RvNN 0.737 0.708 0.662 0.835 0.743
PPC 0.702 0.608 0.711 0.816 0.664
PLAN 0.799 0.779 0.754 0.836 0.821
Bi-GCN 0.837 0.818 0.772 0.885 0.847
Bi-GCN-U 0.786 0.733 0.783 0.875 0.767
GCAN 0.765 0.784 0.848 0.678 0.754
GCAN-G 0.721 0.642 0.690 0.799 0.732
STS-NN 0.829 0.838 0.775 0.899 0.809
RDEA 0.848 0.868 0.729 0.922 0.823
PLRD 0.646 0.618 0.698 0.609 0.445
UMLARD 0.901* 0.822* 0.965* 0.960* 0.855*

UMLARD and baselines on three datasets, from which we have the following obser-
vations:

O1: Feature-based approaches such as SVM-TS, SVM-RBF, and DTC perform
poorly. These methods use hand-crafted features based on the overall statistics of
tweets, but are not sufficient to capture the generalizable features associated with
tweets and the process of information diffusion. Notably, SVM-RBF performs worse
than the other two methods on two Twitter datasets. However, it achieves the best
performance among the feature-based modes on Weibo dataset, because it selects
the features based on Weibo that are hard to be generalized to other social platforms
such as Twitter. SVM-TS achieves relatively better performance because it utilizes
an extensive set of features and primarily focuses on retweets’ temporal traits.

O2: Deep learning-based models perform significantly better than feature-based
methods. As the first work exploiting RNN for efficient rumor detection, GRU only
relies on temporal-linguistics of the repost sequence while ignoring other useful infor-
mation such as diffusion structures and user profiles. TD-RvNN and PPC_RNN+CNN
outperform GRU, which indicates the effectiveness of modeling the propagation
structure and temporal information in rumor detection. The performance of PLAN
slightly exceeds TD-RvNN and PPC_RNN+CNN, because it still mainly focuses
on textual information and ignores structural features of rumor propagation.
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Table 7.14: Overall performance comparison of rumor detection on Weibo (the ob-
servation window is set to the previous 40 retweets). “NR": non-rumor; “FR": false-
rumor. The best method is shown in bold, and the second best is shown as underlined.
A paired t-test is performed and ∗∗ indicates a statistical significance p < 0.01 com-
pared to the best baseline method (RDEA).

Model
Weibo

ACC NR FR
Prec. Rec. F1 Prec. Rec. F1

DTC 0.731 0.715 0.747 0.730 0.747 0.715 0.731
SVM-RBF 0.741 0.738 0.747 0.742 0.745 0.735 0.740
SVM-TS 0.780 0.801 0.753 0.780 0.762 0.808 0.784
GRU 0.762 0.803 0.715 0.757 0.728 0.809 0.767
TD-RvNN 0.832 0.832 0.812 0.821 0.821 0.861 0.841
PPC 0.845 0.870 0.810 0.839 0.810 0.883 0.844
PLAN 0.857 0.829 0.904 0.857 0.893 0.805 0.835
Bi-GCN 0.891 0.892 0.892 0.890 0.891 0.891 0.890
Bi-GCN-U 0.864 0.896 0.818 0.860 0.830 0.910 0.868
GCAN 0.880 0.911 0.861 0.885 0.866 0.929 0.896
GCAN-G 0.831 0.815 0.824 0.819 0.847 0.815 0.831
STS-NN 0.875 0.881 0.866 0.865 0.851 0.872 0.852
RDEA 0.911 0.902 0.923 0.907 0.913 0.899 0.901
PLRD 0.899 0.936 0.863 0.900 0.862 0.946 0.904
UMLARD 0.928** 0.942** 0.965** 0.924** 0.894** 0.944** 0.928**

O3: Bi-GCN, GCAN, STN-SS, and RDEA have considered structural or temporal
information, and thus outperform other baselines. In particular, Bi-GCN constructs
the diffusion graph based on user replies, i.e., the retweets with comments, which
may not reflect the whole structure of rumor dispersion. In contrast, GCAN models
the structural information from the user similarity matrix rather than propagation
network. Therefore, according to the results, Bi-GCN performs much better than
GCAN, because it takes the comments information into consideration. Besides, the
bi-directional GCN is more effective in learning propagation structures than vanilla
GCN used in GCAN. Although STS-NN extracts both structural and temporal fea-
tures for rumor detection, STS-NN still performs worse than Bi-GCN, because it
fails to discriminate the spatial structures and the temporal patterns. RDEA im-
proves the performance of Bi-GCAN via introducing contrastive learning and event
augmentations, which alleviate the influence of limited data issue. However, this
method still faces the same problem as Bi-GCN, i.e., reply network is not enough to
represent the full information diffusion process. Through comparing UMLARD with
Bi-GCN-U and GCAN-G, we find that the performance of Bi-GCN-U and GCAN-G
drops significantly. This result indicates that these methods heavily depend on the
input features and are ineffective in extracting diffusion patterns as our method.
PLRD does not perform very well at Twitter15 and Twitter16 while showing com-
petitive results on the Weibo dataset, since the label of Twitter15 and Twitter16
becomes more fine-grained, and PLRD is not sensitive to the un-verified and true
rumors.
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O4: UMLARD consistently outperforms all other baselines across all datasets. Com-
pare to the best baseline RDEA, UMLARD models rumor diffusion from multi-view
perspective that allows the model to discriminate the importance of features and
users in spreading the tweets. These results also validate one of our primary moti-
vations, i.e., various features play different roles in spreading the rumors, and users
are the main contributor to the misinformation propagation.

Finally, we scrutinize the performance of UMLARD on discriminating against the
individual type of information on Twitter15 and Twitter16. Figure 7.13 plots the
ROC curves of the model performance on four different kinds of tweets. We find that
our model achieves the best identification results on true-rumors, which indicates
that the characteristics of true-rumors are more distinctive from other types of
messages. This result also implies that our model is more expressive on a binary
classification task that only needs to classify tweets as rumors or truths (cf. the
results on Weibo in Table 7.13). In practice, however, unverified-rumors and false-
rumors are noisy signals that require careful treatment, which is a promising way of
further improving the detection accuracy.

7.2.4.3 Ablation Experiments (Q2)

In this section, we conduct an ablation study to explore the effect of each component
in UMLARD. Towards that, we derive the following variants of UMLARD:

• -VA: In -VA, ignores the different importance of different views, i.e., it removes
the view-wise attention layer.

• -CA: In -CA, replaces the capsule attention layer with a fully connected layer.

• -TD: In -TD, neglects the time decay effect of retweet behaviors which is
replaced by a vanilla LSTM [40] to learn sequential retweet behavior.

• -NC: In -NC, removes the content feature of the source tweet but keeps the
temporal, profile, and structural features.

• -NP: In -NP, disregards the profile features of users but retains temporal,
structural, and content features.

• -NS: In -NS, ignores the structural features of users but keeps temporal, pro-
file, and content features.

• -NT: In -NT, ignores the temporal features of users but keep structural, profile,
and content features.

• -USER: In -USER, ignores the user-aspect features (i.e., temporal, structural,
and profile) that only retains the content feature.

Figure 7.14 illustrates the performance of the variants, where we can observe that:
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Figure 7.14: Ablation study of UMLARD. Two attention mechanisms can signifi-
cantly improve the detection performance by distinguishing the importance of features
and users. Tweet content and profile information are two most informative features
on rumor detection.

(1) The content of tweet (-NC and -USER) is still the most critical signal of dis-
criminating rumors among various features. Without it, the model performance
would significantly drop, as observed in many previous works [16, 102]. However,
only based on the content feature is insufficient to develop an effective rumor detec-
tion model that can identify different types of rumors with high accuracy.

(2) Profile information (-NP) is another reliable indicator to detect the rumors
because it is a straightforward but useful method to identify the users that spread
the misinformation intentionally [26, 83].
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(a) Structural view (b) Temporal view

Figure 7.15: Study on structural and temporal view. We only use structural or
temporal views to detect rumors in 10, 30, and 60 mins. The results demonstrate the
importance of both views in rumor detection.

(3) Though both structural (-NS) and temporal information (-NT) are informa-
tive, they are not as important as contents of tweets and user profiles. This result
also explains why the methods proposed in [100], and [16] do not show comparable
performance as ours – the former mainly focuses on modeling the temporal informa-
tion of retweets, whereas the latter one relies on graph neural networks to exploit
the diffusion structures. We also conduct additional experiments to demonstrate
the importance of structural and temporal features once the input contains enough
information, especially in a binary classification task (e.g., Weibo). The results are
shown in Figure 7.15. We find that as for Twitter datasets, the detection perfor-
mance based on structural features grows slightly but is still not good enough as the
type of rumors is fine-grained, making it challenging to learn discriminative struc-
tural features. As for the Weibo dataset, both structural and temporal features are
helpful for rumor detection even in a short time.

In order to demonstrate our findings in Figure 7.15, we conduct statistical analysis
of the datasets and plot the temporal and structural propagation patterns in Fig-
ure 7.16–7.19. We find that the differences in temporal patterns are more obvious
compared with the structural patterns. In addition, the differences between true
and false rumors in Weibo are more significant than the discrepancy between the
fine-grained types of rumors in Twitter datasets.

(4) The two attention mechanisms proposed in this work, i.e., view-wise attention
(-VA) and capsule attention (-CA), play a crucial role on identifying the misin-
formation – the importance of which even exceed temporal features and diffusion
patterns. This result also suggests that distinguishing the significance of different
views of users can improve classification performance. Similarly, different users play
different roles in spreading misinformation, e.g., users may intentionally mislead
others or unknowingly retweet doubtful news. However, examining users’ purposes
is beyond the scope of this work and is left as our future work.
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(c) Weibo

Figure 7.16: The average number of retweets for different types of rumors at different
timestamps.
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(c) Weibo

Figure 7.17: The cumulative number of retweets for different types of rumors at
different timestamps.
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Figure 7.18: The average time (in seconds) required to reach the same network
depth. The observation window 60 minutes.
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Figure 7.19: The average network breadth for different types of rumors. The obser-
vation window is 60 minutes.

(5) Finally, the discrepancy between UMLARD and -TD indicates the gain of mod-

eling time decay in retweet cascades. In other words, both real information and false
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information will significantly reduce their influence over time.

(a) Accuracy (b) Macro-F1

Figure 7.20: Content-aspect study of UMLARD.
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Figure 7.21: DropEdge Study of UMLARD.

To further investigate the content-aspect effect, we examine the influence of differ-
ent word embedding methods. Specifically, we use the state-of-the-art Bert-based
pretraining model [181] to replace the word2vec and then compare the performance
on accuracy and macro-F1. In our work, we choose BERT-Base1, which was trained
on a large text corpus (e.g., Wikipedia). The results are shown in Figure 7.20. We
can observe that the performance of Bert-based UMLARD is surprisingly lower.
This happens due to the characteristics of tweet text, which are short, sparse, spo-
radic and written casually. Therefore, the Bert-based pretraining techniques that
are usually trained on large-scale language corpus are difficult to directly used for
short-text tasks such as Twitter content embedding. This conjecture is in accordance
with some recent observations on [164].

Furthermore, at the end of this section, we conduct an extra experiment to demon-
strate the effectiveness of the ”DropEdge” technical used in the data prepossessing.
The dropout rate is set from 0 to 0.9, and the experimental results are shown in

1https://github.com/google-research/bert
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Figure 7.21. We find that slightly dropping the edges in the diffusion graph would
improve the model performance.

7.2.4.4 Performance on Early Detection (Q3)

Another important goal of rumor detection is to detect misinformation as early as
possible and stop its spread in a timely fashion. Now we investigate the performance
of models on identifying rumors at early-stage. Here, we consider two metrics for
gauging the observation windows of information spread, i.e., the previous 40 retweets
and the propagation in the first hour. In this section, the experiments of early
detection are conducted on Twitter15 and Twitter16.
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(a) Early 40 retweets (Twitter15).
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(b) Early 40 retweets (Twitter16).
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(c) Early 1-hour retweets (Twitter15).
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(d) Early 1-hour retweets (Twitter16).

Figure 7.22: Evaluations on early rumor detection. (a) and (b): PPC_RNN+CNN
and GCAN are cascade length-based methods. (c) and (d): Tv-RvNN, Bi-GCN, STS-
NN and RDEA are built on the user comments that may not exist in early-stage
retweets – hence, we observe their performance over time.

Figure 7.22 shows the performance comparison on early-stage detection between
our UMLARD and the baselines. Note that we omit the feature-based methods
and credibility-based approaches since they did not show comparable performance,
especially on early rumor detection. We observe that UMLARD performs better,
especially when there are only a few observations. UMLARD needs a short time
to identify the misinformation because it fuses the multi-view knowledge of users.
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For example, understanding the role of a user in spreading information is vital
since tweets’ size, spread speed and patterns are different. Moreover, UMLARD
is capable of discriminating the importance of features even with few observations,
which means the interference caused by the trivial or useless features would be
dampened during training the model. In all cases, their early detection accuracy
grows at the early stage of propagation. However, we find that the performance of
our model demonstrates obvious advantage as time goes on.

(a) Early 40 retweets (Twitter15). (b) Early 40 retweets (Twitter16).

(c) Early 1-hour retweets (Twitter15). (d) Early 1-hour retweets (Twitter16).

Figure 7.23: Evaluations on early rumor detection among variants of UMLARD. (a)
and (b): The model performance using early 40 retweets. (c) and (d): The models are
trained with early one hour observations.

We also investigate the time-varying performance between the variants and the full
UMLARD. As shown in Figure 7.23, we find that the accuracy of all methods grows
to saturation with increasing the number of retweets or time elapsed. Moreover,
from Figure 7.23c and 7.23d, we can observe that the performance of -NP, -NT, and
-NS is very close to the full UMLARD, because the models have acquired enough
knowledge to detect rumors within a short observation time.

7.2.4.5 Interpretability Analysis (Q4)

The above experimental results have shown the superiority of the proposed hier-
archical attentions. Namely, they can effectively discriminate the importance of
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multi-views of users and the roles of users in spreading the (mis)information. Here,
we provide more in-depth insights into the two components by visualizing the hier-
archical attention layers in UMLARD.
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Figure 7.24: Visualization of user profiles importance and the role of earlier spreaders
(Twitter15).

Figure 7.24 shows the importance of user-profiles and users themselves – the higher
the value, the more important the feature or the user. Figure 7.24a plots the im-
portance of eight user profile characteristics, where we vary the number of observed
retweets between {5, 10, 15, 20}. We can observe that the follower counts is the most
informative feature, followed by the register time, verified account, and geo-enabled
features, consistent with the findings in [26, 83], i.e., the users enrolled in spreading
of rumors have fewer followers.

In Figure 7.24b, we investigate the role of the retweet users at the very begin-
ning of the cascade. As shown, the earlier users are more important for detecting
non-rumors (NR) and true-rumors (TR). To the contrary, the later participators
are important for detecting unverified-rumors (UR) and false-rumors (FR). This
phenomenon shows that authoritative users usually spread TRs and NRs at the be-
ginning of spreading information. URs and FRs, after the false information spread a
while, will see an influx of massive malicious users, who would pretend these tweets
as real information.

We now discuss the impact of the different views of users in rumor detection. We
randomly selected four different types of tweets in Twitter15 and plots the impor-
tance of different views. Figure 7.25a and Figure 7.25b show the results of previous
5 and 10 retweet users, respectively. Overall, we can see that the three views of each
user in these tweets have different importance. Specifically, when there are few ob-
servations (e.g., only 5 retweet users), the profile view and the temporal view of the
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Figure 7.25: Visualization of the different user-aspect importance (Twitter15).

users dominate the rumor detection performance. As the number of retweet users
increases, the structural information becomes more and more important. This re-
sult can be understood intuitively: In reality, at the very beginning the participants
directly retweet the information from the source spreader, which leads to the similar
propagation structures of information cascades. However, users are different from
each other in profile and the time of retweeting, which are, consequently, the most
important views for early-stage misinformation detection. Besides, by comparing
different types of information, the non-rumor and the true-rumor have very similar
weight distribution over different users’ views, as observed in Figure 7.24b.

7.2.5 Summary

In this work, we presented UMLARD – a novel model for rumor detection which fuses
multiple information contexts pertaining to users of social networks. Combining
multiple views of users aspects and discriminating the importance of spreaders and
user-aspect information, we successfully identified users’ roles in different stages of
rumor diffusion. UMLARD significantly outperforms previous methods in terms
of misinformation classification and rapid rumor detection. Our approach is also
notable in its strength of interpreting model behaviors and the predicted results.
The experiments conducted on real Twitter datasets and Weibo dataset support
the hypothesis that characteristics of user-profiles, aspects view of participants, as
well as user’s engagement time and tweets’ diffusion patterns, can contribute to
the misinformation prediction from the collective signals. Besides, our experimental
results on early-detection discern several vital features of false information.
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