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Chapter 6

Modeling Hierarchical Diffusion for
Rumor Detection

6.1 Chapter Overview

Conventional methods for rumor detection broadly fall into two groups: (1) hand-
crafted feature-based approaches — mostly identifying and incorporating complicated
hand-crafted features for rumor detection, including lexical features |23, 29|, syn-
tactic features |23, 79|, visual features [24, 77], user profile related features |26, 83|,
and social relationship features [137, 138]. Their performance highly depends on the
effectiveness of extracted features, which require extensive domain knowledge. (2)
credibility propagation-based approaches [24, 31, 32|, which aims to find the truth
against conflicting information. These approaches usually leverage the inter-entity
relations but heavily rely on the constructed credibility network for high rumor iden-
tification accuracy. Recent studies inspired by the successes of deep learning methods
in many fields have developed various neural network-based models to learn several
feature representations for rumor detection in an end-to-end way [16, 33, 34, 102].
Although these methods have shown performance improvements over the previ-
ous methods, they still face several critical limitations. First, most of the existing
methods still require a large volume of textual data or a rich collection of users’
comments as input [16, 34, 102]. In addition, previous works focused on either
microscopic diffusion patterns that emphasize users’ personal retweeting behavior
or macroscopic diffusion structures depicting the full rumor in-network diffusion
paths [16, 100].

To overcome the limitations mentioned above, in this chapter, we propose MMRD
(Macroscopic and Microscopic-aware Rumor Detection), a novel deep learning-
based framework for rumor detection. MMRD models the rumor diffusion from both
macroscopic and microscopic perspectives through newly designed encoding compo-
nents Macrok and MicroE and enhancing the diffusion representations through the
cross-learning mechanism. We design a fusion gate to selectively aggregate learned
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6. MODELING HIERARCHICAL DIFFUSION FOR RUMOR DETECTION

macroscopic and microscopic knowledge and introduce the attention mechanism to
merge row-level information to form a unique rumor representation. The rumor
prediction is generated based on the learned rumor representation. Moreover, a
knowledge distillation technique is applied to further improve the model’s detection

performance. Our main contributions are summarized as follows:

e Firstly, we propose a new model to learn the representation of rumor through
modeling the macroscopic and microscopic diffusion. The model is flexible and

can be easily integrated into any existing approaches.

e Secondly, we design two encoding components for macroscopic and micro-
scopic diffusion modeling, respectively, as well as the mechanism to control
the information aggregation.

e Thirdly, MMRD employs a powerful technique-knowledge distillation to trans-
fer knowledge from a teacher model to a student model, which further improves
the model performance since the student capture more knowledge than the

teacher.

e Finally, we conduct extensive evaluations on two benchmark datasets. The
experimental results demonstrate that our model significantly outperforms ex-

isting baseline methods on rumor detection.
This chapter is based on the following publication|44]:

e Chen, X., Zhou, F., Zhang, F., Bonsangue, M.: Modeling microscopic and
macroscopic information diffusion for rumor detection. International Journal
of Intelligent Systems36(2021) 5449-5471

6.2 Problem statement

We first borrow the definitions of macro-level and micro-level diffusion prediction
from the field of information cascades modeling [71] to define macroscopic diffusion
and microscopic rumor diffusion, and then give the formalized definition of rumor

detection, which are formally defined as follows.

In information cascades modeling, the macro-level diffusion prediction aims at pre-
dicting the eventual size of a given cascade. Similarly, the macroscopic diffusion in
our work refers to the evolution of the network scale, representing both the change
of edges and nodes.

Definition 10 Macroscopic diffusion. We denote the macroscopic diffusion as
a diffusion graph G = {U, E} (see Definition 2), where U is the user set comprising
N users, and E = {(u;, u;)|u;, u; € U} represents a set of edges connecting pairs of
users when u; retweets u;.
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6.3 MMRD: Modeling Microscopic and Macroscopic Information Diffusion for
Rumor Detection

Similar to micro-level diffusion prediction that aims to predict the next infected user,
we define the user infected process as microscopic diffusion, i.e., who will engage in
the information spreading and when this event (retweeting) occurs.

Definition 11 M:icroscopic diffusion. We represent the microscopic diffusion as
a user-time series P = {(u1,t1), -+, (uj,t;), -, (un,tn)}, where (uy,ty) denotes
user uy created source tweet at time ty, and the rest of (u;,t;) tuples denote user
u; retweet the source tweet at time t;. Here, all users are in chronological order
according to their timestamps. P is also known as diffusion path in Definition 3

Recall the definition of observed diffusion graph G(t,) and diffusion path P(t,) in
Definition 4, where t, is the observation window, we now give a formal definition of
rumor detection in this work:

Definition 12 Rumor detection. Given a tweet m = {Gp,(t,), Pm(to)} within
an observation window t,, the goal of rumor detection is to learn a classification
function f(m) to classify m as a rumor or non-rumor.

Others definitions, such as user vector, used in next sections, are formally given in
Definition 5.

Table 6.1: Main notations used throughout this chapter.

Symbol Description
MacroE(+) | Macroscopic diffusion encoding component.
MicroE(:) | Microscopic diffusion encoding component.
H,, The macroscopic diffusion representation learned by
acro MacroE.
FMacro Dimension of macroscopic diffusion representation.
The microscopic diffusion representation learned by Mi-
HMicro
croE.
FMacro Dimension of microscopic diffusion representation.
Hpg,,. Importance-aware diffusion representation.
Hgumor Rumor representation.
K A set of order powers.
K Max order (i.e., max-value of K).
Y,y Prediction and the ground truth.

6.3 MMRD: Modeling Microscopic and Macroscopic
Information Diffusion for Rumor Detection

The overall framework of the proposed model MMRD is shown in Figure 6.1. In
particular, it consists of the following main components: (a) the input layer, which
takes the observed diffusion graph G(t¢,) and diffusion path P(¢,) as inputs; (b)
the normal training process, so-called the training process of a teacher model, the
teacher model consists of (1) the macroscopic and microscopic diffusion encoding
layer, including MacroE, MicroE, and cross-learning mechanism, (2) the fusion gate,
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Attention

Humor
>@=> o= 57—+
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Pooling
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Figure 6.1: Overview of MMRD: (a) inputs of MMRD; (b) normal training process
of MMRD; (c) the process of train MMRD with knowledge distillation.

J

and (3) the rumor detection layer; (c) knowledge distillation phase, which is used to
further improve the model performance. With this model in mind, we first introduce
two essential structural encoding components — MacroE and MicroE, and then
discuss how to generate the unique rumor representation based on the two modules
that will preserve both macroscopic and microscopic diffusion properties. Finally,
we introduce how to use the knowledge distillation technique to develop a powerful
student model for rumor detection.

Output  Hyiero
o2 OoN—-1 &N
h Micro h Micro

( . )/ Attention N )
B "/—lHMacro

[

HMacro
(a) MacroE (b) MicroE

Figure 6.2: Illustration of diffusion encoding components.

6.3.1 Macroscopic Diffusion Encoding Component

The macroscopic diffusion of a tweet m reflects its diffusion scale. In our work, we
cast the macroscopic diffusion modeling as learning the latent structural patterns
from its diffusion graph G,,(t,). Inspired by the recent success of graph neural
networks in processing the graph structural data, e.g., graph convolutional net-
work (GCN) [41, 61] and graph attention network (GAT) [109], we implement the
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macroscopic diffusion encoding component (MacroE) based on vanilla GCN [61].
The vanilla GCN is a multi-layer structure that contains several convolution layers,
which is defined as:
HO+D — 4 (gHu)W(J‘))
_ X X (6.1)
A=D2A+1Iy)D2
where HY) € RN*4 and HUHY e RV*4i+1 are the input and output for layer 7,
WU e RE*di+1 is a trainable weight matrix and o(-) is an activation function (e.g.,
Relu). Aisa symmetrically normalized adjacency matrix with self-connections, and
D is a diagonal degree matrix. The adjacency matrix A and degree matrix D are
expressed as the following:

A — 1 if (u;,u;) € E and @ # j,
710 otherwise.

D, =Y A,
J

(6.2)

The initial input of the first GCN layer H® = X, which is formed by user vectors,
ie, X = {uy, - ,uy} € RV Even the vanilla GCN shows powerful ability in
graph embedding, it still faces some limitations: (1) it focuses on undirected graphs
rather than the directed graph [10]; and (2) the nodes receive latent representa-
tions only from their immediate neighbors, cannot be summarized as higher-order

adjacency information [111, 130].

To overcome the aforementioned limitations of GCN in modeling the directed graph
and learning higher-order interactions, in this work, we reference the work of CasCN [10]
(ref. Chapter 4) and MixHop [126], and extend the vanilla GCN. Finally, we propose
a directed multi-hop graph convolutional network with attention aggregation as the

MacroE (Figure 6.2a). The convolutional kernel of MacroE is defined as:

)

Hacro = faca [U(L XW(k))kelC]

) (

~(0 =) . ~(K)
= U(fAGG |:L XW(O):L XW(l): e :L XW(K) ) (63)

= o(faccHeyHuy: - Ho))

where X € RV*F is the input feature matrix and Hysero = {hhurer = > Do} €
RN XFM*™ g the output of MacroE. In order to capture the directional information

from the diffusion graph, we replace the A with L - normalized Laplacian for directed
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6. MODELING HIERARCHICAL DIFFUSION FOR RUMOR DETECTION

graph. The calculation of L is defined as:

E
P:(l—a)N+a(D_lA),
L=0:(I-P)d 2, (6.4)
-2
L=—L-1I
)\maa:

where P is a transition probability matrix, E € RV*V

is an all-one matrix. « € (0, 1)
is an initial probability used to restrict the state transition matrix D™'A a strongly
connected matrix [10]. ® is a diagonal matrix with entries ® (v,v) = ¢ (v) — ¢ (v) is

the column vector of P [117], and A, denotes the largest eigenvalue of L.

IC is a set of integer order powers — the value of K is from 0 to K, and Wy, € RExEFMeere

k ~
is the weight matrix for k-hops. L( : denotes the normalized Laplacian matrix L
multiplied by itself k& times, and its value represents the probability connecting

0
path from vertex u; to vertex w; in k-hops. Specifically, L( ) I is an identity
matrix. Through the Laplacian matrix’s multiple powers, MacroE mixes the feature
representation of higher-order neighbors in one graph convolutional layer.

faca(+) is an aggregation function, which is used to fuse the latent representation
from different orders. In most of the existing works [112, 126|, facg(-) is similar to
the pooling methods in CNNs, which can be a mean-pooling function, max-pooling
function, or sum-pooling function. However, the distance of the message passing
for each node is different, i.e., different nodes have different max-orders. In this
work, we implement the aggregation function via the order attention mechanism at
the node-level. As for each node w; in the diffusion graph G,,(t,), it has a set of
latent representations h?g), e ,h?;{) from K-orders. Then the order attention of u;
is calculated as:

o exp((wuj,tanh(Wujhz(Z) +by,)))
S exp((wa,, tanh (W, h?) +b,,))))’

K
hﬂjacro = Z &(’i)h(’i)

k=1

uj

(6.5)

where W, € RF Meeroxd b,, € R? and w,, € R’ So that, the aggregation
Macro = Attention(hg, -+ hijy),[j €

function fage is formulated as face = {h),0
{1,--- ,N}}. The calculation process of MacroE is outlined in Algorithm 7.

MacroE vs. GCN: As depicted above, the convolutional kernel in MacroE for
one single order is similar to a single layer of GCN, i.e., i(k)XW(k) and KH(j)W(j),
respectively. The main differences between our MacroE and GCN are: (1) we use
normalized directed Laplacian L to replace the symmetrically normalized adjacency
matrix A in GCN, which introduces the directional information of edges into the
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6.3 MMRD: Modeling Microscopic and Macroscopic Information Diffusion for
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Algorithm 7: Calculation of MacroE (Eq. (6.5)).

Input: Feature matrix X, normalized laplacian matrix f, a set of order powers KC
and its max-value K = max(K).
Parameters: {W ) }rex.

1. B:=X

2: for k=0 to K do
3 if £ =0 then

4 B :=1B

5 else

6: B :=L1LB

7 end if

8 H(k) = BW(k)
9: end for

~(k
/*From step 1 to 9, complete the calculation of (L( )XW(k))keK in Eq. (6.3)*/

10: Hpsoero := ngg([H(o), s ,H(k), s ,H(K)]) via Eq. (65)
11: return o(H)

convolution rather than only considering the link information between nodes; and
(2) our MacroE can learn high-order information for each node by using one single
layer; however, GCN relies on multi-layers and may introduce the over-smoothing
issue in learning node feature representations [112].

6.3.2 Microscopic Diffusion Encoding Component

The microscopic diffusion encoding component (MicroE, shown in Figure 6.2b)
alms to capture temporal patterns from the user engagement time series P, (t,).
Inspired by the success of RNNs in sequential modeling, we employ a Bi-directional
GRU (Bi-GRU) [108] as the encoding component, where the hidden states are used
to memorize the diffusion history. At each step t;, Bi-GRU takes the feature vector
and previous hidden state as inputs and computes the updated hidden state as:

<—>] . . H] icro
h =Bi-GRU(x/,h/"'),h e RF" (6.6)

—J
Then, the output of MicroE module is a sequence of hidden states Hyicro = {h y4.0l7 €
{1’ . 7N}} E RNXFM’LCTO

6.3.3 Macroscopic and Microscopic Cross-learning

After introducing the necessary encoding components, we go to describe how to
apply them to learn the latent representations from macroscopic and microscopic
diffusion, summarized into two steps. In the first step, we train Macrok and MicroE
separately. MacroE takes the feature matrix X, the normalized Laplacian matrix L
and max-order number K as inputs. As for MicroE, we first represent the infected
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6. MODELING HIERARCHICAL DIFFUSION FOR RUMOR DETECTION

timestamp of each user into one-hot vector t; € Réme and then concatenate the
timestamp vector matrix T = {t1,--- ,t5} with X to form the input X for MicroE.
Specifically, assume that, the time window is [t,t,], and we first split the time
window into [ disjoint time intervals, and then compute the corresponding time
interval for each retweet user u; as t) , = {%J, where ¢; is the timestamp for the
source post user, and t; is timestamp for user w;. Finally, each user’s timestamp
is falling into corresponding time intervals and each interval is related to a one-hot
embedding, thus, for u; its timestamp embedding equals to the related time-interval
embedding. Note that, in our work, the initial feature matrix X is extracted from
users’ profiles. Figure 6.3 shows a toy example of the model inputs. The outputs of
first step are H},,,,, and Hj,,,, respectively:

H.,. = MacroE(X,L, K)

) (6.7)
H,,.,, = MicroE(concat(X, T))

In the second step, we train MacroE and MicroE in a cross-learning manner. Specif-
ically, we use H,,.. to train a new MicroE, and vice versa. The outputs of second
step are H? and H?

Macro Micro®

2 1 T
HMacro = MacrOE(HMicrm L7 K) (6 8)
2 . 1 :
HMicro = MlcrOE(HMacm)
(TTTTT T T T T T T T Al U —0.246 —0.055 —0.203 —0.055 —0.002 —0.002
: : G(to) .1 —0.037 —0.958 —0.031 —0.008 —0.008 —0.008
—0.01 —0.002 -0.325 —0.002 -0.079 —0.079
i i .ﬂ.\. —0.037 —0.008 —0.031 —0.958 —0.008 —0.008
- - —0.041 —0.009 —0.034 —0.009 —0.958 —0.008 |2
: : A. 6 —0.041 —-0.009 —-0.034 —0.009 —0.008 —0.958 L
| 1 - r Y
! :u1 s 010110 ---01010t
] ]
000110 ---01010
| |22..22 [ o 1to T
| ]
! B pi,) 6 [110110---01010] tg
|
E ! [ 110 189 1906 --- 3769 0 0]
! a8 4114015394 --- 225600 U
! wpuy g | Juz X
! ! [15 13 136 7143 --- 4356 1 0] Ug
\ e e e e o ]
Figure 6.3: A toy example of the model inputs.
6.3.4 Feature fusion via hybrid aggregation layer
We concatenate H? with H? to form H € RNVX2FYM* and concatenate
Macro Macro Mion Macro y
H},,.,, with H3,. to form Hyze,, € RV*2F . Thus, for each tweet m;, we have a

macroscopic representation H ..., and a microscopic representation H ;.. In most
of the existing works, after getting H y/400 and H pzcr0, they will concatenate them di-
rectly, however, this operation ignores the different dependence on the two different
representations. In our work, in order to effectively aggregate the learned represen-
tations, inspired by the gate mechanism [108] and attention mechanism [131], we
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6.3 MMRD: Modeling Microscopic and Macroscopic Information Diffusion for
Rumor Detection

design (1) a fusion gate to fuse Hygero and H e, to form Hpy,,, and (2) row-level
attention to aggregate features to merge a unique representation Hpgypor-

To selectively integrate the important information of two representations, we employ
a concise and effective fusion gating mechanism that produces an importance-aware

diffusion representation Hp,e as follows:

G = sigmoid(W . Husaero + W Husicro + Bgate)

(6.9)
HFuse =G ®© HMacm + (]- - G) ®© HMicro

2
Wgate

where W .. € R¥"2F " and bee € R¥'. Note that, here F/ = FMacro —
FMicro G is used to drop trivial parts of macroscopic representation and add impor-
tant information from microscopic representation. The rationale behind this design
is that the representation fusion Hpye = {hpy, -, hhe) € RY*?F would be

aware of the different importance of macroscopic and microscopic diffusion.

Then, we merge the row-level information of Hp,,. to form an unique representation

H rumor for tweet m through attention sum-pooling operation:

exp((w, tanh(W,hZ, __ +b,)))

Fuse

SO exp((w, tanh(W, b, + b))’

N (6.10)
J

Fuse

Clj—

HRumor = ajh
Jj=1

where W, € R?"*4 b, € R? and w € R%.

6.3.5 Rumor detection and optimization

Subsequently, Hgumor is used to generate the corresponding binary prediction vector

¥V = [Jo, U1], where 7, 91 indicate that the prediction probabilities of the label being
0 and 1, respectively, via a fully connected layer and the Softmax function:

y = Softmax (FC (H gumor)) - (6.11)

In our implementation, we train all the model parameters by minimizing the cross-

entropy between y and y:

Bl 1
1 N 2

L= —157 2 2 teelogdic + A6, (6.12)

i=1 ¢=0
where |B| is the batch size, y; . and ;. are the ground truth and predicted results
for the i-th sample. That is, if the sample belongs to c-th class, ;. is 1; other-
wise it is 0. [|©|3 is the Ly regularizer over all the model parameters ©, and \
is the trade-off coefficient. The optimization can be solved by stochastic gradient
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6. MODELING HIERARCHICAL DIFFUSION FOR RUMOR DETECTION

descent—based optimization approaches, such as Adam [139] and RAdam [140]. The
above computation process of our MMRD model is outlined in Algorithm 8.

Algorithm 8: Training process of MMRD.

Input: A set of tweets M = {mz}‘l]\:/lll, each tweet m; = {Gi(to),ﬂ-(to)}, the
max-order number K.
Output: MMRD-optimized parameters ©.
1: initialize ©
2: while © has not converged do
3:  for each tweets batch B do
4: for each tweet m; in tweets batch B do
5 /* (1st) Train MacroE and MicroE separately. */
1st macroscopic diffusion encoding: H} « X, L, K via Eq.(6.3);

Macro

1st microscopic diffusion encoding: Hj,,,,, < X via Eq.(6.6);
6: /* (2nd) Cross-learning MacroE and MicroE */
2nd macroscopic diffusion encoding: H2,,. . + H,. . L, K via Eq.(6.3);
2nd microscopic diffusion encoding: H3j,,,, < Hjjuero via Eq.(6.6);
7 /* Concatenate operation */
HM@CTO = Concat(H}\/lacrm H?\Z[acro)
H yticro = Concat<H}Wcm7 H%Micro)
8: macroscopic and microscopic representation fusion:
H puse < Hatacro, Hasiero via Eq.(6.9);
9: Attention sum-polling: Hgymor < Hpuse via Eq.(6.10);
10: Estimate the probability y via Eq.(6.11);
11: end for

12: L + Eq.(6.12);
13: O « RAdam(L)
14:  end for
15: end while

6.3.6 Rumor detection with knowledge distilling

In order to further improve the model performance on rumor detection task, we
inspired by knowledge distillation technique [141]. The knowledge distillation tech-
nique, which involves capturing the “dark knowledge” from a teacher model to guide
the learning of a student network, has emerged as an essential technique for model
improvement. We first train a teacher model via Algorithm 8, and then trans-
fer the knowledge from the teacher model to a student model. Here in our work,
the student model has the same model architecture as the teacher model (self-
distillation [142, 143]). Before introducing the concrete training procedure of MMRD
with knowledge distillation, we first give the definition of the softmax with temper-

exp(H/T)
>, exp(H/T)

ature:

¢; = softmax(H, 1) = (6.13)
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where 7 is a temperature that is normally set to 1. We use a higher value for
temperature 7 to produce a softer probability distribution over the class, which
brings the advantage that the information carried by the negative label will be

relatively amplified, and the model training will pay more attention to the negative
label.

The concrete training procedure of the knowledge distillation is listed in Algorithm 9,
and Figure 6.1-(c) gives a visualization of Algorithm 9. The objective function of
the knowledge distillation is a weighted average of two different objective functions.
The first loss function is the cross-entropy with the soft targets and it is computed
using the same high temperature 7 = ¢ in the softmax of the student model as was
used for generating the soft targets from the teacher model.

|B|
£soft - - Zsz 1Og yzS (614>
=1

where y!' = softmax(FC(HEL,,,,.),7 = t) is soft output from teacher model, and
y? = softmax(FC(H?%,,.,,), T = t) is soft output from student model.

The second loss function is the cross-entropy with the ground truth. This is com-
puted using exactly the same logits in softmax of the student model but at a tem-

perature of 1.
|B|

Liara ==Y y;log i} (6.15)
=1

where y; is the ground truth and g7 = softmax(FC(H3,,.,,),7 = 1) is the hard
output of student model. Finally, the objective function of knowledge distillation
is:

£KD = (1 - ﬁ)‘csoft + ﬁﬁhard (616>

where 3 is the balance weight, which always been a considerably lower value since
the amplitude of the gradients produced by the scale of the soft output as 1/72. This
ensures that the relative contributions of the hard and soft targets remain roughly
unchanged [141].

6.4 Evaluating MMRD

In this section present the findings from our experimental evaluations. We compare
the performance of our MMRD with the state-of-art baselines on rumor detection,
and we also investigate the effects of different components by comparing several
variants of MMRD. Specifically, we aim at providing empirical evaluations to answer
the following research questions:

e Q1 How does MMRD perform compared with the state-of-the-art baselines
on rumor detection?
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Algorithm 9: Training procedure of MMRD with knowledge distillation.

Input: A set of tweets M = {mi}yfll, each tweet m; = {Gi(to),ﬂ-(to)}, the

max-order number K, temperature 7.

Output: Student-optimized parameters O.
1: Pre-train a Teacher model via Alogrithm 8.
2: initialize © in Student model.
3: while © has not converged do

4:

5
6:
7

9:
10:
11:
12:

for each tweets batch B do
for each tweet m,; in tweets batch B do

H7,,... «Teacher

/* Train Student model via step 1 to step 9 in Alogrithm 8.*/
HY,, ... < Student

/* Soft outputs from Teacher*/
y! = softmax(FC(HF,,...), T = t)
/* Soft outputs from Student*/
y5 = softmax(FC(H3,,..,), T = 1)
/* Hard outputs from Student */
97 = softmax(FC(H?3,,..,), 7 = 1)

calculate loss Lip via Eq. 6.16

end for
O « RAdam(EKD)
end for

13: end while
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6.4 Evaluating MMRD

e Q2 How does each component of MMRD contribute to the performance?

e Q3 Can MMRD detect rumor at an early stage?

6.4.1 Datasets

We conducted our experiments on two real-world datasets: Twitterld, Twitterl6.
Both Twitter15 and Twitter16 datasets were collected by Ma et al. [33]. Each dataset
contains a collection of source tweets with its corresponding propagation threads.
The original datasets were constructed for multi-class classification, and we removed
the tweets labeled as “unverified” or “true rumor” since they were beyond our research
interest, and only keep “non-rumor" and “false-rumor" labels as ground truth in both
datasets. We built the macroscopic diffusion graph and microscopic diffusion path
for each source tweet from its propagation threads. The statistics of the datasets
are presented in Table 6.2. The user profiles were crawled via Twitter API based on
the provided user IDs, and for a fair comparison, we follow PPC_RNN-+CNN [100]
that extracts eight types of characteristics, including, (1) length of a user name; (2)
created time of a user account; (3) length of description; (4) followers count; (5)
friends count; (6) statuses count; (7) whether the user is verified; and (8) whether

the geographical information is enabled.

Table 6.2: Statistics of the datasets.

Statistic Twitterld | Twitterl6
# source tweets 739 404

# non-rumor 370 199

# rumor 369 205

# users 306,402 168,659
Max. # retweets 2,990 999
Min. # retweets 97 100
Avg. # retweets 493 479
Avg. # time length | 743 Hours | 167 Hours

6.4.2 Baselines

We compare our model with a series of state-of-the-art baseline approaches for rumor

detection:

e DTC [23]: A decision tree-based classification model that combines manually

engineered characteristics of tweets to compute the information credibility.

e SVM-TS [85]: A linear SVM-based time series model, which can capture
the variation of a broad spectrum of social context information over time by

converting the continuous-time stream into fixed time intervals.
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e SVM-RBF [86]: A SVM-based model that uses radius basis function (RBF)
as the kernel, and leverages the handcrafted features of posts for rumor detec-
tion.

e GRU [33]: An RNN-based model, which learns temporal patterns and content
features from user comments for rumor detection.

e TD-RvNN [34]: A top-down tree-structured RNN model that explores the
importance of propagation structure for rumor detection.

e PPC_RNN+CNN [100]: A model combines RNN and CNN for early rumor
detection, which learns the rumor representations through the characteristics
of users.

e Bi-GCN [16]: A GCN-based model exploring rumor dissemination through
bi-directional propagation structures and text contents for rumor detection.

e GCAN [102]: A state-of-the-art co-attention network for rumor detection,
which learns the rumor representation based on the tweets content and the
corresponding retweet users.

6.4.3 Parameter Settings and Evaluation Metrics

We implement DTC with Weka!, SVM-TS and SVM-RBF with scikit-learn?, and
other deep learning-based baselines and our MMRD with Tensorflow®. The hy-
perparameters of baselines are the same as the settings described in the original
papers.

Note that, in our work, MMRD only takes the user profiles and timestamps as
inputs, and ignores the content features, such as source tweet text and comments,
for a fair comparison, we implement some variants for the baselines by changing
the initial inputs. Specifically, as for TD-RvNN and Bi-GCN, we use user profile
features to replace the comment features, and the variants of these two baselines are
denoted as TD-RvNN(yger) and Bi-GCN yger), respectively. As for GCAN, we remove
the source tweet features in the original inputs which termed as GCAN-Text.

The main hyperparameters in our MMRD are tuned as follows. The batch size is
32. The output dimension of MacroE FM™ = 64, and the hidden sizes of both the
forward GRU and backward GRU units are F"M*™ = 32, The max-order number
K is 3. The number of time intervals [ is 100 and the embedding size for each
timestamp vector dy,. is 50. The learning rate for both the teacher training phase
and knowledge distillation is 0.001 and the balance weight 8 in distillation is 0.3.
The temperature 7 in knowledge distillation is 2.5. The training process is iterated
upon for 500 epochs but would be stopped earlier if the validation loss does not

Thttps:/ /www.cs.waikato.ac.nz/ml/weka/
Zhttps:/ /scikit-learn.org/
3https://www.tensorflow.org/
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decrease after 10 epochs. And we randomly choose 70% data for training and the
rest of 10% and 20% for validation and testing. In this work, we measured the
detection deadline by the number of retweets, i.e., the first k-th retweets. In the
overall performance, the baselines and our MMRD consider the first 40-th retweets.
We choose accuracy (ACC), precision (Pre), recall (Rec) and F-score (F1) as the

evaluation protocols to measure the models’ performance in this work.

Table 6.3: Overall performance comparison of rumor detection on Twitterl5. The
best method is shown in bold, and the second best one is underlined.

Twitterld

Method Acc Pre Rec F1
DTC 0.495 0.494 0.481 0.495
SVM-TS 0.519 0.519 0.518 0.519
SVM-RBF 0.535 0.552 0.521 0.536
GRU 0.580 0.544 0.545 0.544
TD-RvNN 0.628 0.594 0.616 0.604
PPC RNN+CNN | 0.691 0.674 0.686 0.679
Bi-GCN 0.748 0.731 0.759 0.745
GCAN 0.835 0.825 0.829 0.825
TD-RvNN (yger) 0.678 0.671 0.674 0.672
Bi-GCN (yger) 0.820 0.846 0.824 0.834
GCAN-Text 0.683 0.705 0.652 0.678
MMRD 0.922 0.922 0.923 0.922
Improvement 10.41% 11.76% 11.34% 11.76%

Table 6.4: Overall performance comparison of rumor detection on Twitter16. The
best method is shown in bold, and the second best one is underlined.

Twitter16

Method Acc Pre Rec F1

DTC 0.561 0.575 0.537  0.562
SVM-TS 0.693  0.692 0.691 0.692
SVM-RBF 0.711 0.724  0.709  0.716
GRU 0.554 0.514 0.516  0.515
TD-RvNN 0.633 0.619 0.610 0.614
PPC_RNN+CNN | 0.655  0.632 0.651 0.641
Bi-GCN 0.711 0.709 0.710 0.716
GCAN 0.823  0.803 0.841 0.822
TD-RVNN (User) 0.661 0.632 0.641 0.636
Bi-GCN (yger) 0.814  0.815 0.816  0.816
GCAN-Text 0.664 0.716  0.579  0.648
MMRD 0.876 0.877 0.874 0.875
Improvement 6.44% 9.22% 3.92% 6.45%
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6.4.4 Overall performance (Q1)

The overall performance is shown in Table 6.3 and 6.4, from which we can find that
our MMRD model consistently outperforms all baselines on both Twitterl5 and
Twitterl6 datasets. In addition to the overall superiority of our model, we have the
following observations.

First, compared to the deep learning-based methods, feature-based methods such
as DTC, SVM-TS, and SVM-RBF are not competitive because their performance
heavily depends on the hand-crafted features. However, designing effective features
is time-consuming and requires extensive field-specific knowledge. Furthermore, the
performance gain of SVM-TS over DTC lies in its capability of considering time
information. On the other hand, SVM-RBF performs slightly better than SVM-TS,
suggesting that the kernel-based SVM is better than linear SVM but is still limited
to the quality of hand-crafted features.

Second, among all the deep learning-based baselines, GRU, as the early deep learning-
based work for rumor detection, performs the worst, primarily because it only relies
on temporal-linguistics of the repost sequence but ignores other informative signals
such as diffusion structures and user profiles. In addition, both TD-RvNN and Bi-
GCN explore the dissemination of rumors on the basis of GRU and learn textual
information from replies (i.e., the retweets with comments). However, their perfor-
mance is not competitive when there are few comments or replies. Bi-GCN generally
performs well than TD-RvNN, demonstrating that GCN is a powerful graph learn-
ing model compared with tree structure RNN. PPC_ RNN+CNN performs relatively
well than GRU and TD-RvNN, implying that user-profile information is more in-
formative than text information in rumor detection, the reason is that compared
with the replies, in reality, there exist more retweets without any comments, how-
ever, the user information of such retweets is acquirable. The same observations
can find when compare Bi-GCN with its variant Bi-GCN ey and TD-RvNN with
TD-RvNN (yger).-

On the other hand, GCAN takes both text information and user-profile information
as input and indeed outperforms other baselines. By comparing GCAN with its
variant GCAN-Text, we can find that the performance of GCAN still heavily relies
on text information. This is because it models the structural information from the
user similarity matrix rather than the retweet network, which may be insufficient in
capturing user interactions, and due to the two datasets were existed for a long time,
when we try to crawl the user profiles for all users in the datasets, we find that some
user accounts do not exist anymore, and it causes difficulties in constructing user
similarity graph. Besides that, compare GCAN-Text with Bi-GCN yser), the results
of Bi-GCN(yser) far exceed GCAN-Text, this observation illustrates the diffusion
graph is more powerful than user similarity graph in detecting rumor when ignoring
the textual features. To further illustrate that our MMRD indeed significantly
outperforms the baselines, we conduct a McNemar’s test [144| between our MMRD
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and the best baseline (GCAN) based on the prediction results on the testing set, and
the p-values are 0.001 and 0.013 on Twitterl5 and Twitter16, respectively. As p <
0.05 on both Twitterl5 and Twitterl6, we can conclude that MMRD significantly
outperforms GCAN.

Our MMRD, in contrast, learns rumor representation from macroscopic and mi-
croscopic diffusion without any textual information, suggesting the possibility of
detecting rumors by completely exploiting rumors’ diffusion patterns. However, the
performance of MMRD can be further improved by taking into account other infor-
mation such as textual information.

6.4.5 Ablation study (Q2)

In order to answer the RQ2, we conduct several ablation studies from the following
perspectives: (1) we first propose five variants of MMRD and compare their perfor-
mance on both Twitterl5 and Twitter16; then, (2) we compare the performance of
MMRD in without knowledge distillation and cross distillation settings; finally, (3)
we pick up two special parameters to test the model’s accuracy change brings by
them when changing their value.

6.4.5.1 Variants comparison

We conducted an ablation study to explore each component’s effect in MMRD by
removing a particular component from the original MMRD. Towards that, we derive
the following variants of MMRD:

e -AGG_Atten: In “AGG_ Atten”, we use sum-pooling function to replace
the attention aggregation function fsgq in MacroE.

e -Gate: In “-Gate”, we remove the fusion gate from the MMRD, i.e., concate-
nate H oo and Hyyiepo directly (Hpyse = concat(H pyaero, Hasicro) )-

e -Atten: In “-Atten”, we replace the attention sum-pooling with normal sum-
pooling, that is Hpgymor = Zﬁvzl h’,

Fuse*

e -GCN: In “-“GCN”, we replace the convolution kernel in MacroE with a vanilla
GCN layer.

e -Time: In “Time”, we ignore the timestamp information, i.e., the input fea-
ture of the first MicroE are user profile features.

The results of the ablation study are summarized in Table 6.5, where we can observe
that:

(1) The accuracy of “~Atten" remarkably decreases compared with other variants,
which indicates that user-level attention sum-pooling can learn the importance of
each user in rumor diffusion since it allocates different significance to each row (that
correlated to a specific user) of Hp,. The visualization of the attention weights is
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Table 6.5: Performance comparison between MMRD and its variants.

Twitterld Twitter16

Method Acc Pre Rec F1 Acc Pre Rec F1

-AGG_Atten | 0.854 0.855 0.855 0.855 | 0.826 0.827 0.824 0.825
-Gate 0.875 0.875 0.874 0.875 | 0.845 0.845 0.844 0.844
-Atten 0.831 0.835 0.829 0.832 | 0.795 0.799 0.769 0.784
-GCN 0.851 0.851 0.851 0.851 | 0.807 0.807 0.806 0.807
-Time 0.878 0.878 0.879 0.878 | 0.845 0.863 0.839 0.851
MMRD 0.922 0.922 0.923 0.922 | 0.876 0.877 0.874 0.875

depicted in Figure 6.4, which further proves the effectiveness. From Figure 6.4, we
also find that the later users are more critical in rumor spreading, which confirms the
hypothesis that rumors can spread deeper than non-rumors [43|. (2) Using the fusion
gate to control the dependency on macroscopic diffusion and microscopic diffusion
will improve the model performance as achieved by the “-Gate". (3) The results
of ““GCN" demonstrate that multi-hop and directional information are essential for
macroscopic diffusion modeling, and the performance of ““AGG__ Atten" worse than
MMRD, which further demonstrates that as for each node, their order-dependency is
different. (4) As for “~Time", it shows the importance of the timestamp information
in capturing microscopic diffusion.
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Figure 6.4: Visualization of attention weights in attention sum-pooling, which ran-
domly choose 3 rumors and 3 non-rumors from Twitterl5. Dark colors refer to a higher
value.

6.4.5.2 Performance on knowledge distillation

In our work, one of the most important components is the use of knowledge distilla-
tion to enhance model performance. In order to test the performance of knowledge
distillation (for briefly, simplify as KD), in this section, we conduct experiments on
removing KD and using cross KD, respectively.

Figure 6.5 shows the results when removing the KD, we find that, after removing
KD, although the model still can achieve better performance compared with the
baselines in Table 6.3 and 6.4, it can be further improved by using KD to transfer
knowledge from a teacher model to a student model. Besides that, the effect of KD
is more remarkable on the Twitterl6 dataset, it yields a large performance interval
between “MMRD” and “MMRD w /o KD”.
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Figure 6.5: The effectiveness of knowledge distillation. The number of observed
retweet users per source tweet varies from 10 to 100, and we plot the corresponding
detection accuracy of MMRD with and without knowledge distillation. “MMRD w/o
KD” denotes MMRD without knowledge distillation.

Figure 6.6 shows the comparison between different strategies of cross KD. Specif-
ically, we train the teacher model and student model based on different datasets
and then test the student’s performance on both Twitter15 and Twitter16 datasets.
For example, “T15/S16” means we first train a Teacher model “T15” on Twitterlh
dataset and then distill the model on Twitterl6 to get a student model “S16”, and
finally use the “S16” model to perform rumor detection on Twitterl5 and Twitter16,
respectively. From Figure 6.6, we observe that the performance of MMRD is much
better when both the Teacher model and Student model train on the same dataset,
this is because of some dataset-specific reasons, such as diffusion scale, the number

of non-exist users, user-specific feature (e.g., create time), etc.
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Figure 6.6: Cross knowledge distillation. The number of observed retweet users per
source tweet sets to 40. Each bar represents the detection accuracy and the labels
of the x-axis denote the datasets used when training the teacher model and student
model. E.g., “T'15” and “T16” denote that we train the teacher model on Twitterl5,
and Twitter16, respectively; “S15” and “S16” means that we learn the student model
via distilling knowledge on Twitterl5 and Twitterl6, respectively.
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6.4.5.3 Parameter analysis

From all parameters in MMRD, we choose two special parameters to conduct pa-
rameter analysis experiments — the value of max-order K and the time embedding
size dyme. The results shows in Figure 6.7. From both Figure 6.7a and Figure 6.7b,
we find that by blindly increase the number of K and dy,., the model accuracy
not improve, instead, decreased. And when set K = 3 and dy,. = 50, the model
achieves the best performance. Moreover, the embedding size d;;,. with small values
achieve better performance than large values. And Figure 6.7a also demonstrates
that take the higher-order of node interaction into consideration is useful when mod-
eling macroscopic diffusion of tweets.
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Figure 6.7: Results of parameter analysis on Twitter15 and Twitter16 when the num-
ber of observed retweet users per source tweet sets to 40. (a) Performance on different
max-order value K, ranging from 2 to 5. (b) Performance on different embedding size
dtime of timestamp vector T.
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Figure 6.8: Evaluations on early rumor detection. (a) The average propagation speed
of tweets calculated based on Twitterl5 and Twitterl6 datasets. (b) and (c) plot the
detection accuracy when the number of observed retweet users per source tweet are in
the range of [10, 20, 30, 40, 50, 100] on Twitter15 and Twitter16, respectively.

6.4.6 Early detection (Q3)

Detecting rumors as early as possible is crucial for public opinion control. Figure 6.8a
shows the average propagation speed of messages on twitter calculated based on
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Twitterl5 and Twitterl6. We find that within 60 minutes, both Twitterl5 and
Twitter16 have a diffusion speed near 190 retweets. And when the time is extremely
small, i.e., within 30 minutes, the average retweets of both two datasets are close
to 100. So, to investigate the performance of models on identifying rumors at an
early stage, here, we consider the number of observed retweet users per source tweet
from the list [10, 20, 30,40, 50, 100]. Besides, for a fair comparision, we choose user
profile-based mtheods, i.e., “TD-RvNN use)”, “PPC_RNN+CNN”, “Bi-GCN (yger)”
and “GCAN-Text” as contrast methods. Figure 6.8b and Figure 6.8c show the
performance comparison of early-stage detection between our MMRD and selected
baselines. We can see that MMRD performs better, especially when there are only a
few observations, i.e., MMRD achieves almost 89% and 87% accuracy on Twitter15
and Twitter16, respectively, even with only 10 retweet user observations.

6.5 Summary

This paper proposed a novel rumor detection model named MMRD, which can
effectively and efficiently summarize a unique representation for each rumor prop-
agation through capturing the dissemination patterns from both macroscopic and
microscopic diffusion levels. Simultaneously, MMRD leverages the knowledge distil-
lation technique to transfer knowledge from a pretraining teacher model to a student
model which further improves the model detection performance. The experimen-
tal results based on two real-world Twitter data sets demonstrate that our method
achieves state-of-the-art performance on rumor detection and also effective in de-
tecting rumors at an early stage. Besides that, MMRD detects rumor via learning
its spreading process, which can help us to develop rumor spreading models.
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